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Abstract
We unfold the theta integrals defining the Kudla–Millson lift of genus 1 associated to even
lattices of signature (b, 2), where b > 2. This enables us to compute the Fourier expansion of
such defining integrals and prove the injectivity of the Kudla–Millson lift. Although the latter
result has been already proved in [5], our new procedure has the advantage of paving the
ground for a strategy to prove the injectivity of the lift also for the cases of general signature
and of genus greater than 1.
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1 Introduction

We consider the Kudla–Millson lift as a linear map from a space of elliptic cusp forms to the
space of closed 2-forms on some orthogonal Shimura varieties. Starting from the foundational
work of Kudla an Millson [9, 10, 13], such a lift has attracted much interest. In fact, it is
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strictly related with Borcherds’ singular theta lift [6], and its injectivity provides a way to
study the geometry of orthogonal Shimura varieties by means of modular forms [4, 5, 7, 20].

In this article we apply Borcherds’ formalism [1] to unfold the theta integrals that arise
from the very definition of the Kudla–Millson lift. As an application, we compute the Fourier
expansion of such integrals and prove that the Kudla–Millson lift is injective in many cases.
The latter result is the same as [5, Theorem 5.3], but it is here proved in a different way.

The new procedure illustrated in this paper has the advantage of paving the ground for a
strategy to prove the injectivity of the Kudla–Millson lift in the case of general signature, gen-
eralizing [2], as well as the cases of genus higher than 1. This has been recently implemented
by the author and Metzler [15], and the author and Kiefer [8] respectively.

The theta kernel of the Kudla–Millson lift may be constructed as a theta form associated to
the reductive dual pair (SL2(R),O(n, 2)). The theta correspondence in this setting has been
of great interest in several other articles, for instance in the works of Oda [17] and Rallis–
Schiffmann [18, 19], where theta lifts from elliptic modular forms (with level) to orthogonal
modular forms were studied.

We now explain the results of this article inmore details. Let
(
L, (·,·)) be a non-degenerate

even lattice of signature (b, 2), where b > 2. We denote by q(λ) = (λ, λ)/2 the quadratic
form of L , and write λ2 in place of (λ, λ), for every λ ∈ L . To simplify the illustration, we
assume L to be unimodular. Let k = 1 + b/2. This is an even integer, as one can easily
deduce from the well-known classification of unimodular lattices.

Let V = L ⊗ R. The Hermitian symmetric domain D associated to the linear algebraic
group G = SO(V ) may be realized as the Grassmannian Gr(L) of negative definite planes
in V . Let X� = �\D be the orthogonal Shimura variety arising from a subgroup � of finite
index in SO(L).

Kudla and Millson constructed a G-invariant Schwartz function ϕKM on V with values in
the spaceZ2(D) of closed differential 2-forms onD. An explicit formula for ϕKM is provided
in Sect. 2. We denote by ω∞ the Schrödinger model of the Weil representation of SL2(R)

acting on the space S(V ) of Schwartz functions on V ; see Definition 2.1 for details.

Definition 1.1 The Kudla–Millson theta form associated to L is defined as

�(τ, z, ϕKM) = y−k/2
∑

λ∈L

(
ω∞(gτ )ϕKM

)
(λ, z),

for every τ = x + iy ∈ H and z ∈ Gr(L), where gτ = (
1 x
0 1

)(√
y 0

0
√

y−1

)
is the standard

element of SL2(R) mapping i ∈ H to τ .

In the variable τ , the Kudla–Millson theta form transforms like a (non-holomorphic) modular
form of weight k with respect to SL2(Z). In the variable z, it defines a closed 2-form on D
and X� .

Let Sk
1 be the space of weight k elliptic cusp forms with respect to the full modular

group SL2(Z).

Definition 1.2 The Kudla–Millson lift of genus 1 associated to L is the map

�KM
L : Sk

1 −→ Z2(X�), f �−→ �KM
L ( f ) =

∫

SL2(Z)\H
yk f (τ )�(τ, z, ϕKM)

dx dy

y2
,

(1.1)
where dx dy

y2
is the standard SL2(Z)-invariant volume element of H.

In Sect. 3 we rewrite �(τ, z, ϕKM) in terms of Siegel theta functions �L attached to
certain homogeneous polynomials P(α,β) of degree (2, 0) defined on the standard quadratic
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space Rb,2; see (2.7) for the definition of such polynomials. The Siegel theta functions �L

were introduced by Borcherds in [1].
As explained in Sect. 5, is it possible to rewrite the lift �KM

L ( f ) as

�KM
L ( f ) =

b∑

α,β=1

( ∫

SL 2(Z)\H
yk+1 f (τ )�L (τ, g,P(α,β))

dx dy

y2
︸ ︷︷ ︸

=:I(α,β)(g)

)
· g∗(ωα,b+1 ∧ ωβ,b+2

)
,

(1.2)
where g ∈ G is any isometrymapping z to afixedbase point z0 ofD, and g∗(ωα,b+1 ∧ ωβ,b+2

)

is a cotangent vector of
∧2 T ∗

z D; see Definition 2.2 for details on the construction of the
latter. We refer to the integral functions I(α,β) : G → C appearing in (1.2) as the defining
integrals of the Kudla–Millson lift of f .

The idea of this paper is to apply the formalism of Borcherds [1] to unfold the defining
integrals I(α,β), rewriting them over the simpler unfolded domain �∞\H, where �∞ is the
subgroup of translations in SL2(Z). Such an unfolding, which depends on the choice of a
splitting L = LLor ⊕ U for some Lorentzian sublattice LLor and some hyperbolic plane U ,
is carried over in Sect. 5; see Corollary 5.2 for a precise statement.

If a complex valued function defined over G is invariant with respect to (Eichler transfor-
mations arising from) some Lorentzian sublattice of L , then it admits a Fourier expansion.
Although this general principle is classical in the literature, for the sake of completeness we
provide an overview of it in Sect. 4.

In Sect. 5.2 we use the unfolding of I(α,β) to compute the Fourier expansion of the defining
integralsI(α,β), obtaining the following result.Wedenote by cn( f ) then-thFourier coefficient
of the cusp form f . Let u, u′ be the standard generators of the hyperbolic plane U . For
every g ∈ G, we denote by z ∈ Gr(L) the plane mapping to the base point z0 under g,
and denote by vz the orthogonal projection of any v ∈ L ⊗ R to z. We also denote by w⊥
the orthogonal complement of uz⊥ in z⊥. The linear map g# : L ⊗ R → L ⊗ R, g#(v) =
g(vw⊥ + vw), induces a split of the polynomial P(α,β) in terms of polynomials P(α,β),g#,h+,0
of degree (2 − h+, 0); see (3.5) for details.

Theorem 1.3 Let f ∈ Sk
1 , and let I(α,β) : G → C be the defining integrals of the Kudla–

Millson lift �KM
L ( f ). The Fourier coefficient of I(α,β) associated to λ ∈ LLor , such

that q(λ) > 0, is
√
2

|uz⊥|
2∑

h+=0

∑

t≥1
t |λ

( t

2i

)h+
cq(λ)/t2( f )

∫ +∞

0
yk−h+−3/2 exp

(
− 2π yλ2

w⊥
t2

− π t2

2yu2
z⊥

)

× exp(−�/8π y)
(P(α,β),g#,h+,0

)(
g#(λ/t)

)
dy,

(1.3)

where we say that an integer t ≥ 1 divides λ ∈ LLor , in short t |λ, if and only if λ/t is still a
lattice vector in LLor .

The Fourier coefficient of I(α,β) associated to λ = 0, i.e. the constant term of the Fourier
series, is ∫

SL2(Z)\H
yk+1/2 f (τ )√

2 |uz⊥| �LLor (τ, g#,P(α,β),g#,0,0)
dx dy

y2
. (1.4)

In all remaining cases, the Fourier coefficients are trivial.

In Sect. 6we illustrate how to deduce the injectivity of�KM
L bymeans of the Fourier expansion

provided by Theorem 1.3. The idea is as follows. Since the cotangent vectorsωα,b+1∧ωβ,b+2
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are linearly independent, if the lift �KM
L ( f ) of a cusp form f vanishes, then all defining

integrals I(α,β) in (1.2) are zero. This implies that all Fourier coefficients of I(α,β) appearing
in Theorem 1.3 are zero for every g ∈ G. We show that for every λ ∈ LLor of positive norm
there exists an isometry g ∈ G such that some of the integrals appearing in (1.3) are non-zero;
see Lemma 6.2. An easy inductive argument on the primitivity of λ implies that the Fourier
coefficient (1.3) vanishes for such choices of λ and g only if cλ( f ) = 0. Summarizing,
if �KM

L ( f ) = 0, then all Fourier coefficients of f vanish, therefore f is trivial.
The results above are illustrated in the case of even unimodular lattices L of signa-

ture (b, 2), where b > 2. In Sect. 7 we generalize them to non-unimodular lattices. We also
provide an alternative proof of the known injectivity of �KM

L in this setting, namely [5, The-
orem 5.3], stated below. For every integer N , we write U (N ) for the lattice U as a Z-module
but equipped with the rescaled quadratic form Nq(·).
Theorem 1.4 (Bruinier) Let L be an even lattice of signature (b, 2), where b > 2, that splits
off U (N ) ⊕ U, for some positive integer N. The Kudla–Millson theta lift �KM

L is injective.

2 The Kudla–Millson Schwartz function

Let V be a real vector space endowed with a symmetric bilinear form (·,·) of signature (b, 2),
where b > 2. Its associated quadratic form is defined as q(·) = (·,·)/2. In this section we
provide an explicit formula of the Kudla–Millson Schwartz function ϕKM attached to V ,
following the wording of [6, Section 2 and Section 4] and [11, Section 7].

Let (e j ) j be an orthogonal basis of V such that (eα, eα) = 1 for every α = 1, . . . , b,
and (eμ, eμ) = −1 for μ = b + 1, b + 2. We denote the corresponding coordinate functions
by xα and xμ. The choice of (e j ) j induces an isometry g0 : V → R

b,2, whereRb,2 is the real
space Rb+2 endowed with the standard quadratic form of signature (b, 2) defined as

q0
(
(x1, . . . , xb+2)

t ) =
b∑

j=1

x2j /2−x2b+1/2−x2b+2/2, for every (x1, . . . , xb+2)
t ∈ R

b+2.

The Grassmannian associated to V is the set of negative definite planes in V , namely

Gr (V ) = {z ⊂ V : dim z = 2 and (·,·)|z < 0}.
The plane z0 spanned by eb+1 and eb+2 is the base point of Gr(V ). The Hermitian symmetric
space arising as the quotient D = G/K , where G = SO(V ) ∼= SO(b, 2) and K is the
maximal compact subgroup of G stabilizing z0, may be identified with Gr(V ); see [3, Part 2,
Section 2.4]. From now on, we write D and Gr(V ) interchangeably.

For every z ∈ D, we define the standard majorant (·,·)z as

(v, v)z = (vz⊥ , vz⊥) − (vz, vz), (2.1)

where v = vz + vz⊥ ∈ V is written with respect to the decomposition V = z ⊕ z⊥. We will
often write v2 in place of (v, v), and the standard majorant as (v, v)z = v2

z⊥ − v2z .
Let g be the Lie algebra of G, and let g = p + k be its Cartan decomposition. It is well-

known that p ∼= g/k is isomorphic to the tangent space ofD at the base point z0. With respect
to the basis of V chosen above, we have

p ∼= {( 0 X
Xt 0

) | X ∈ Matb,2(R)
} ∼= Matb,2(R). (2.2)
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Wemay assume that the chosen isomorphism is such that the complex structure on p is given
as the right-multiplication by J = ( 0 1−1 0

) ∈ GL 2(R) on Matb,2(R).
To simplify the notation, we write e(t) = exp(2π i t), for every t ∈ C, and denote

by
√

t = t1/2 the principal branchof the square root, so that arg(
√

t) ∈ (−π/2, π/2]. If s ∈ C,
we define t s = es Log(t), where Log(t) is the principal branch of the logarithm.

Definition 2.1 We denote by ω∞ the Schrödinger model of (the restriction of) the Weil
representation of Mp2(R) × O(V ) acting on the space S(V ) of Schwartz functions on V .
The action of O(V ) is defined as

ω∞(g)ϕ(v) = ϕ
(
g−1(v)

)
,

for every ϕ ∈ S(V ) and g ∈ O(V ). The action of Mp2(R) is given by

ω∞
(
1 x
0 1

)
ϕ(v) = e(xq(v))ϕ(v), for every x ∈ R,

ω∞
(

a 0
0 a−1

)
ϕ(v) = a(b+2)/2ϕ(av), for every a > 0,

ω∞(S)ϕ(v) = √
i
2−b

ϕ̂(−v),

(2.3)

where S = (( 0 −1
1 0

)
,
√

τ
)
, and ϕ̂(ξ) = ∫V ϕ(v)e2π i(v,ξ)dv is the Fourier transform of ϕ.

The standard Gaussian of R
b,2 is defined as

ϕ0(x1, . . . , xb+2) = e−π
∑b+2

j=1 x2j , for every (x1, . . . , xb+2)
t ∈ R

b+2.

The standard Gaussian of V is the Schwartz function ϕ0 ◦ g0, where g0 is the isometry
arising from the choice of the basis (e j ) j of V .

Let A2(D), resp. Z2(D), be the space of differential, resp. closed, 2-forms on D. The
group G acts on A2(D) by pullback. We say that ϕ ∈ S(V ) ⊗ A2(D) is G-invariant if

g∗ϕ
(
g(v)

) = ϕ(v) for every v ∈ V , (2.4)

where g∗ϕ(v) is the pullback of ϕ(v) ∈ A2(D) induced by the action of g on D.
We remark that

[S(V ) ⊗ A2(D)
]G ∼=

[
S(V ) ⊗

∧2
(p∗)

]K
, (2.5)

where the isomorphism is given by evaluating G-invariant functions on the left-hand side
of (2.5) at the base point z0 of D. Therefore, we can define any G-invariant function ϕ

in
[S(V ) ⊗ A2(D)

]G firstly as an element of
[S(V ) ⊗∧2

(p∗)
]K , and then spread it to the

whole D under the action of G. The Kudla–Millson Schwartz function ϕKM is constructed
in this way, as we now quickly recall.

Definition 2.2 We denote by Xα,μ, where 1 ≤ α ≤ b and b + 1 ≤ μ ≤ b + 2, the basis
vectors of Matb,2(R) given by matrices with 1 at the (α, μ − b)-th entry and zero otherwise.
These vectors provide a basis of p under the isomorphism (2.2). Let ωα,μ be the element of
the corresponding dual basis which extracts the (α, μ − b)-th coordinate of elements in p,
and let Aα,μ be the left multiplication by ωα,μ. The function ϕKM is defined applying the
operator

Db,2 = 1

2

b+2∏

μ=b+1

[ b∑

α=1

(
xα − 1

2π

∂

∂xα

)
⊗ Aα,μ

]

to the standard Gaussian (ϕ0 ◦ g0) ⊗ 1 ∈ [S(V ) ⊗∧0
(p∗)

]K , namely ϕKM = Db,2
(
(ϕ0 ◦

g0) ⊗ 1
)
.
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It is easy to rewrite ϕKM ∈ [S(V ) ⊗∧2
(p∗)

]K explicitly as

ϕKM(v, z0) =
b∑

α,β=1

(
Q(α,β)ϕ0

)(
g0(v)

)
ωα,b+1 ∧ ωβ,b+2, (2.6)

where

Q(α,β)

(
g0(v)

) :=
{
P(α,β)

(
g0(v)

)
, if α �= β,

P(α,β)

(
g0(v)

)− 1
2π , otherwise,

and P(α,β)

(
g0(v)

) := 2xαxβ,

(2.7)
for every v ∈ V with g0(v) = (x1, . . . , xb+2)

t ∈ R
b,2. It is easy to check that

Q(α,β)

(
g0(v)

) =
{

1
2 H1(xα)H1(xβ) if α �= β,
1
4π H2(

√
2πxα) otherwise,

where Hn(t) is the n-th Hermite polynomial.

Remark 2.3 In (2.6) we constructed ϕKM as a K -invariant function in S(V ) ⊗∧2
(p∗). To

construct a global G-invariant function in
[S(V ) ⊗ A2(D)

]G , we may spread ϕKM on the
whole G by means of (2.5) as follows. Let z ∈ D, and let g ∈ G be any isometry mapping z
to z0. By virtue of (2.4) we have

ϕKM(v, z) = g∗ϕKM
(
g(v), z0

) =
b∑

α,β=1

(
Q(α,β)ϕ0

)(
g0◦g(v)

)·g∗(ωα,b+1∧ωβ,b+2). (2.8)

Since ϕKM is K -invariant at the base point z0, the value ϕKM(v, z) given by (2.8) does not
depend on the choice of the isometry g mapping z to z0. Furthermore, the function ϕKM is a
closed form on D; see [10].

3 The Kudla–Millson theta form

After a quick overview of some well-known results, in this section we provide an explicit
formula of�(τ, z, ϕKM) by means of the one of ϕKM computed in Sect. 2. We then introduce
Borcherds’ formalism [1], and show how to rewrite the Kudla–Millson theta form in terms
of Siegel theta functions.

Let
(
L, (·,·)) be a unimodular lattice of signature (b, 2), where b > 2. We fix once

and for all an integer k = 1 + b/2 and an orthogonal basis (e j ) j of V = L ⊗ R such
that e2j = 1, for every j = 1, . . . , b, and e2b+1 = e2b+2 = −1. The choice of such a basis

induces an isometry g0 : V → R
b,2.We denote the Grassmannian Gr(V ) also byGr(L). This

is identified with the Hermitian symmetric domain D arising from G.
We recall from Definition 1.1 that the Kudla–Millson theta form is defined as

�(τ, z, ϕKM) = y−k/2
∑

λ∈L

(
ω∞(gτ )ϕKM

)
(λ, z),

for every τ = x + iy ∈ H and z ∈ Gr(L), where gτ = (
1 x
0 1

) (√
y 0

0
√

y−1

)
is the standard

element of SL2(R) mapping i ∈ H to τ .
Let Ak

1 be the space of analytic functions on H satisfying the classical weight k modular
transformation property with respect to SL2(Z). TheKudla–Millson theta form�(τ, z, ϕKM)
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is a non-holomorphic modular form with respect to the variable τ ∈ H, and a closed 2-form
with respect to the variable z ∈ D, in short �(τ, z, ϕKM) ∈ Ak

1 ⊗ Z2(D). In fact, the
Kudla–Millson theta form is �-invariant, for every subgroup � of finite index in SO(L). This
implies that �(τ, z, ϕKM) descends to an element of Ak

1 ⊗Z2(X�), where X� = �\D is the
orthogonal Shimura variety arising from �.

Kudla and Millson showed that the n-th Fourier coefficient of �(τ, z, ϕKM) is a Poincaré
dual form for the n-th Heegner divisor on X� . Moreover, they proved that the cohomology
class [�(τ, z, ϕKM)] is a holomorphicmodular formofweight k with values in H1,1(X�), and
coincides with Kudla’s generating series of Heegner divisors; see [13] and [12, Theorem 3.1].

Using the spread (2.8) of ϕKM, we may rewrite the Kudla–Millson theta form as

�(τ, z, ϕKM) =
b∑

α,β=1

y−k/2
∑

λ∈L

(
ω∞(gτ )(Q(α,β)ϕ0)

)(
g0 ◦ g(λ)

)

︸ ︷︷ ︸
=:F(α,β)(τ,g)

· g∗(ωα,b+1 ∧ ωβ,b+2),

(3.1)
where g ∈ G is any isometry of V = L ⊗ R mapping z to z0, and Q(α,β) is the polyno-
mial defined in (2.7). Since the Kudla–Millson Schwartz function ϕKM is the spread to the
whole D = Gr(L) of an element of S(V ) ⊗∧2

(p∗) which is K -invariant, the definition
of �(τ, z, ϕKM) does not depend on the choice of g mapping z to z0.

One of the goals of Sect. 3.2 is to rewrite the auxiliary functions F(α,β)(τ, g) arising as
in (3.1) in terms of Siegel theta functions.

3.1 Siegel theta functions

Let M be an indefinite even unimodular lattice of general signature (p, q). In this section
we quickly recall how to construct Siegel theta functions attached to M , as in [1, Section 4].
This is ancillary to Sect. 3.2, where we will rewrite the Kudla–Millson theta form associated
to a lattice L of signature (b, 2) in terms of Siegel theta functions attached to L and certain
Lorentzian sublattices.

We denote by Gr(M) the Grassmannian of negative-definite subspaces of dimension q
in M ⊗ R. This is (a realization of) the symmetric domain associated to the linear algebraic
group G = SO(M ⊗ R). We fix once for all an isometry g0 : M ⊗ R → R

p,q and a base
point z0 = g−1

0 (R0,q) of Gr(M), where R0,q is the span of the last q vectors of the standard
basis of Rp,q . The coordinates of Rp,q are denoted by x j .

We recall from [1, Section 3] the standard operators

� =
p+q∑

j=1

∂2

∂x2j
and exp

(
− �

8π y

)
=

∞∑

m=0

1

m!
(

− �

8π y

)m

acting on smooth functions defined on R
p,q . Note that � is the Laplacian of Rp+q and not

the one of Rp,q .

Definition 3.1 LetP be a homogeneous polynomial onRp,q of degree (m+, m−), i.e. homo-
geneous of degree m+ in the first p variables, and homogeneous of degree m− in the last q
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variables. The Siegel theta function �M associated to M and P is defined as

�M (τ, δ, ν, g,P) =
∑

λ∈M

exp(−�/8π y)(P)
(
g0 ◦ g(λ + ν)

)

× e
(
τq
(
(λ + ν)z⊥

)+ τ̄q
(
(λ + ν)z

)− (λ + ν/2, δ)
)
,

(3.2)

for every τ = x + iy ∈ H, δ, ν ∈ M ⊗ R, and g ∈ G, where z = g−1(z0) ∈ Gr(M).
If δ = ν = 0, then we drop them from the notation and write only �M (τ, g,P).

Remark 3.2 If the polynomial P is harmonic, i.e. �P = 0, then exp
(− �/8π y

)
(P) = P .

This is the case of the polynomials P(α,β) defined in (2.7), if α �= β. Instead, the polynomi-
als P(α,α) are homogeneous but non-harmonic, for every α.

The theta function �M may be regarded as a non-holomorphic modular form with respect to
the variable τ ∈ H. This is [1, Theorem 4.1], which we state in our notation as follows.

Theorem 3.3 (Borcherds) Let M be a unimodular lattice of signature (p, q). If P is a homo-
geneous polynomial of degree (m+, m−) on R

p,q , then

�M (γ · τ, aδ + bν, cδ + dν, g,P) = (cτ + d)p/2+m+
(cτ̄ + d)q/2+m−

�M (τ, δ, ν, g,P),

for every γ = ( a b
c d

) ∈ SL 2(Z).

In the remaining part of this section, we illustrate how to rewrite the Siegel theta func-
tion �M with respect to the split of some hyperbolic plane of M , following the wording of
[1, Section 5]. This will be essential to unfold the theta integrals defining the Kudla–Millson
lift. Since we do not need to use Borcherds’ formalism in all its generality, from now on
we restrict ourselves to the case of an even unimodular lattice L of signature (b, 2) in place
of M .

It is well known that any unimodular lattice L as above splits (up to isomorphisms) into
an orthogonal direct sum of sublattices as

L = E8 ⊕ · · · ⊕ E8 ⊕ U︸ ︷︷ ︸
=LLor

⊕ U , (3.3)

where E8 is the 8-th root lattice and U is the hyperbolic lattice of rank 2. Let LLor be
a Lorentzian unimodular sublattice of L defined as the orthogonal complement of some
hyperbolic plane U , as in (3.3). We may assume that the orthogonal basis (e j ) j of L ⊗ R

chosen above is such that LLor ⊗ R is generated by e1, . . . , eb−1, eb+1, and that U ⊗ R is
generated by eb and eb+2.

Let u, u′ be a basis of U such that (u, u) = (u′, u′) = 0 and (u, u′) = 1. We may suppose
that

u = eb + eb+2√
2

and u′ = eb − eb+2√
2

. (3.4)

In this way, we may rewrite L as the orthogonal direct sum of LLor with Zu ⊕ Zu′.

Definition 3.4 Let z ∈ Gr(L), and let g ∈ G be an isometry mapping z to z0. We denote
by w the orthogonal complement of uz in z, and by w⊥ the orthogonal complement of uz⊥
in z⊥. We denote by g# : L ⊗R → L ⊗R the linear map defined as g#(v) = g(vw⊥ + vw).

We remark that g# is an isometry fromw⊥⊕w to its image, and that it vanishes onRuz⊥⊕Ruz .

123



Unfolding and injectivity of the... Page 9 of 28    10 

Definition 3.5 Let z ∈ Gr(L), and let g ∈ G be an isometrymapping z to z0. For every homo-
geneous polynomial P of degree (m+, m−) on Rb,2, we define the homogeneous polynomi-
als Pg#,h+,h− , of degrees respectively (m+ − h+, m− − h−) on g0 ◦ g#(L ⊗ R) ∼= R

b−1,1,
by

P(g0 ◦ g(v)
) =

∑

h+,h−
(v, uz⊥)h+ · (v, uz)

h− · Pg#,h+,h−
(
g0 ◦ g#(v)

)
. (3.5)

In Sect. 3.2 wewill rewrite the Kudla–Millson theta form in terms of Siegel theta functions
associated to the homogeneous polynomials P(α,β) defined on Rb,2 as in (2.7), namely

P(α,β)

(
(x1, . . . , xb+2)

t ) = 2xαxβ,

where the indices α and β are in {1, . . . , b}. Since the polynomials P(α,β) are homogeneous
of degree (2, 0), we may simplify (3.5) as

P(α,β)

(
g0 ◦ g(v)

) =
2∑

h+=0

(v, uz⊥)h+ · P(α,β),g#,h+,0
(
g0 ◦ g#(v)

)
. (3.6)

The following result provides a formula to compute P(α,β),g#,h+,0.

Lemma 3.6 For every g ∈ G, the polynomial P(α,β),g#,h+,0 arising from the decomposi-
tion (3.6) of P(α,β) may be computed as

P(α,β),g#,h+,0
(
g0 ◦ g#(v)

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
u4

z⊥

(
g(u), eα

)(
g(u), eβ

)
, if h+ = 2,

2
u2

z⊥

(
g(u), eα

)(
g#(v), eβ

)+ 2
u2

z⊥

(
g(u), eβ

)(
g#(v), eα

)
, if h+ = 1,

2
(
g#(v), eα

)(
g#(v), eβ

)
, if h+ = 0,

(3.7)

where z = g−1(z0) ∈ Gr(L).

Proof For every v ∈ L ⊗R, we denote by x j the coordinate of v with respect to the standard
basis e1, . . . , eb+2 of L ⊗ R. We recall that

P(α,β)

(
g0(v)

) = 2xαxβ = 2(v, eα)(v, eβ).

If g ∈ G = SO(L ⊗ R), then P(α,β)

(
g0 ◦ g(v)

) = 2
(
v, g−1(eα)

)(
v, g−1(eβ)

)
. To rewrite

the latter polynomial as in (3.6), we rewrite
(
v, g−1(e j )

)
in terms of (v, uz⊥), for j = α, β.

The negative definite plane z = g−1(z0) is generated by g−1(eb+1) and g−1(eb+2),
whereas thepositive definiteb-dimensional subspace z⊥ is generatedby g−1(e1), . . . , g−1(eb).
Hence, the vectors g−1(eα) and g−1(eβ) lie in z⊥. Recall that w (resp. w⊥) is the orthogonal
complement of uz (resp. uz⊥ ) in z (resp. z⊥). We may decompose

g−1(e j ) = s j uz⊥ + v′
j , (3.8)

for some s j ∈ R, where v′
j is the orthogonal projection of g−1(e j ) to w⊥ and j = α, β.

By virtue of (3.8) we may rewrite P(α,β)

(
g0 ◦ g(v)

)
as

P(α,β)

(
g0 ◦ g(v)

) = 2(v, uz⊥)2sαsβ + (v, uz⊥)
(
2sα(v, v′

β) + 2sβ(v, v′
α)
)+ 2(v, v′

α)(v, v′
β).

(3.9)
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Comparing (3.9) with (3.6), we deduce that

P(α,β),g#,h+,0
(
g0 ◦ g#(v)

) =

⎧
⎪⎨

⎪⎩

2sαsβ, if h+ = 2,

2sα(v, v′
β) + 2sβ(v, v′

α), if h+ = 1,

2(v, v′
α)(v, v′

β), if h+ = 0.

Since uz⊥ is orthogonal to w⊥, it follows that

s j =
(
uz⊥ , g−1(e j )

)

u2
z⊥

=
(
g(u), e j

)

u2
z⊥

.

Moreover, since e j is orthogonal to g(vw) for every j ≤ b, we may rewrite

(v, v′
j ) = (vw⊥ , g−1(e j )

) = (g#(v), e j
)
.

��

The following result illustrates how to decompose the Siegel theta function �L attached to
the polynomial P(α,β) with respect to the splitting L = LLor ⊕ U chosen in (3.3). It is [1,
Theorem 5.2], rewritten with respect to our unimodular lattice L .

Theorem 3.7 (Borcherds) Let L = LLor ⊕U be a unimodular lattice of signature (b, 2), and
let μ ∈ (LLor ⊗ R) ⊕ Ru be the vector defined as

μ = −u′ + uz⊥/2u2
z⊥ + uz/2u2

z .

We have

�L (τ, g,P(α,β))

= 1
√
2yu2

z⊥
�LLor (τ, g#,P(α,β),g#,0,0) + 1

√
2yu2

z⊥

∑

c,d∈Z
gcd(c,d)=1

∑

r≥1

2∑

h+=0

(
− r

2iy

)h+

× (cτ̄ + d)h+
e
(

− r2|cτ + d|2
4iyu2

z⊥

)
�LLor

(
τ, rdμ,−rcμ, g#,P(α,β),g#,h+,0

)
.

(3.10)

Remark 3.8 In Theorem 3.7 we should write μLLor as argument of �LLor , namely the orthog-
onal projection of μ to LLor ⊗ R, instead of μ. However, since μLLor = μ − (μ, u′)u, we
have

μw = (μLLor )w = −u′
w,

μw⊥ = (μLLor )w⊥ = −u′
w⊥ ,

(μ, u) = (μLLor , u).

This explain why we may use such an abuse of notation. Note also that the orthogonal
projection L ⊗ R → LLor ⊗ R induces an isometric isomorphismw⊥⊕w → w⊥

Lor⊕wLor =
LLor ⊗ R. This implies that we may identify w with wLor and consider w as an element
ofGr(LLor); see [4, p. 42].Analogously,wemay regard g#|LLor⊗R as an element of SO(LLor⊗
R).
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3.2 The Kudla–Millson theta form in terms of Siegel theta functions.

In this section we explain how to rewrite the Kudla–Millson theta form �(τ, z, ϕKM) in
terms of certain Siegel theta functions �L . We then rewrite the latter with respect to a
splitting L = LLor ⊕ U , for some Lorentzian lattice LLor and some hyperbolic plane U .

At the beginning of Sect. 3 we rewrote the Kudla–Millson theta form as

�(τ, z, ϕKM) =
b∑

α,β=1

F(α,β)(τ, g) · g∗(ωα,b+1 ∧ ωβ,b+2), (3.11)

in terms of certain auxiliary functions F(α,β) arising from the Schrödinger model ω∞ applied
to the polynomial Q(α,β) multiplied with the standard Gaussian ϕ0; see (3.1).

We are now ready to compute the auxiliary functions F(α,β) in terms of Siegel theta
functions.

Lemma 3.9 For every index α, β = 1, . . . , b, we may rewrite the auxiliary function F(α,β) in
terms of Siegel theta functions as

F(α,β)(τ, g) = y · �L(τ, g,P(α,β)), (3.12)

where τ = x + iy ∈ H, g ∈ G, and P(α,β) is the homogeneous polynomial defined in (2.7).

Proof Suppose that α �= β. Let gτ = (
1 x
0 1

) (√
y 0

0
√

y−1

)
be the standard element of SL2(R)

mapping i to τ = x + iy. Recall the Schrödinger model ω∞ of the Weil representation
from Definition 2.1. Since the polynomial Q(α,β) = P(α,β) is homogeneous of degree (2, 0)
on R

b,2, we may compute

ω∞(gτ )
(P(α,β)ϕ0

)(
g0 ◦ g(v)

) = yk/2 · ω∞
(
1 x
0 1

) (P(α,β)ϕ0
)(

g0 ◦ g(y1/2v)
)

= yk/2 · e
(
xq(v)

) · (P(α,β)ϕ0
)(

g0 ◦ g(y1/2v)
)

= y1+k/2 · e
(
xq(v)

) · P(α,β)

(
g0 ◦ g(v)

) · ϕ0
(
g0 ◦ g(y1/2v)

)
.

(3.13)

Since ϕ0
(
g0 ◦ g(y1/2v)

) = e−π y(v,v)z , where z = g−1(z0) ∈ Gr(L), we may deduce that

e
(
xq(v)

) · ϕ0
(
g0 ◦ g(y1/2v)

) = e
(
xq(v)

) · e−π y(v,v)z = e
(
τq(vz⊥) + τ̄q(vz)

)
,

for every τ ∈ H. This, together with (3.13), implies that

ω∞(gτ )
(P(α,β)ϕ0

)(
g0 ◦ g(v)

) = y1+k/2 · P(α,β)

(
g0 ◦ g(v)

) · e
(
τq(vz⊥) + τ̄q(vz)

)
,

which we may insert into the formula defining F(α,β) in (3.1), obtaining that

F(α,β)(τ, g) = y ·
∑

λ∈L

P(α,β)

(
g0 ◦ g(λ)

) · e
(
τq(λz⊥) + τ̄q(λz)

)
.

It is enough to compare this with (3.2), to deduce (3.12). In fact, the polynomial P(α,β) is
harmonic; see Remark 3.2.

The case α = β is analogous. The only difference is that

Q(α,α)(g0 ◦ g(y1/2v)
) = y · exp (− �/8π y

)
(P(α,α))

(
g0 ◦ g(v)

)
.

��
We conclude this section illustrating how to rewrite F(α,β) with respect to the split-
ting L = LLor ⊕ U .
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Corollary 3.10 For every α, β = 1, . . . , b, we may rewrite the auxiliary function F(α,β)(τ, g)

with respect to the splitting L = LLor ⊕ U as

F(α,β)(τ, g) =
√

y
√
2u2

z⊥
�LLor(τ, g#,P(α,β),g#,0,0) +

√
y

√
2u2

z⊥

∑

c, d ∈ Z

gcd(c, d) = 1

∑

r≥1

2∑

h+=0

(
− r

2iy

)h+

× (cτ̄ + d)h+ · exp
(

− πr2|cτ + d|2
2yu2

z⊥

)

× �LLor

(
τ, rdμ,−rcμ, g#,P(α,β),g#,h+,0

)
.

(3.14)

Proof It is a direct consequence of Lemma 3.9 and Theorem 3.7. ��

4 Fourier expansions of complex-valued functions on SO(L ⊗ R)

In this section we recall two different models of Gr(L), namely the projective model D+
b

in P(L ⊗C), and the tube domain model Hb in LLor ⊗C. We then explain how to identify the
group of isometries G = SO(L ⊗R)with the product K ×Hb, where K is the stabilizer in G
of the base point z0 ∈ Gr(L). Furthermore, we illustrate how to use such an identification to
construct Fourier expansions of complex-valued functions defined on G which are invariant
with respect to translations by elements of LLor. This will be relevant in Sect. 5.1, where we
compute Fourier expansions of certain LLor-invariant functions arising from a decomposition
of the Kudla–Millson theta lift; see Theorem 5.5. Since the results appearing in this section
are known to experts, we provide here only a quick overview.

Recall that we denote by L an even unimodular lattice of signature (b, 2), by (e j ) j the
standard basis of L ⊗R, and by u and u′ the isotropic lattice vectors defined as in (3.4). The
lattice LLor is the Lorentzian sublattice of L orthogonal to the hyperbolic lattice Zu ⊕ Zu′.

4.1 Models of the symmetric space associated to G

We denote by Db the b-dimensional complex manifold

Db = {[ZL ] ∈ P(L ⊗ C) : (ZL , ZL) = 0 and (ZL , ZL) < 0
}
.

It has two connected components. We choose the one containing [Z0
L ], where Z0

L := [eb+1+
ieb+2], and denote it by D+

b . Such a component is identified with Gr(L) as illustrated in [3,
Part II, Lemma 2.17], explainingwhyD+

b is usually referred as the projective model ofGr(L).
The idea is to associated to z ∈ Gr(L) an element [ZL ] ∈ D+

b with ZL = X L + iYL by
choosing a suitable basis X L , YL of the negative definite plane z.

We now recall the tube domain model of Gr(L). If ZL ∈ L ⊗C, then ZL = Z +au′ + bu
for some Z ∈ LLor ⊗ C and some a, b ∈ C. We write ZL = (Z , a, b) in short. The tube
domain model Hb is defined as the connected component of

{
Z = X + iY ∈ LLor ⊗ C : Y 2 < 0

}

mapping to D+
b under the biholomorphism

Hb −→ D+
b , Z �−→ [ZL ] = [(Z , 1,−q(Z))].
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We remark that for fixed [ZL ] ∈ D+
b there is a unique representative ZL = (Z , 1,−q(Z))

such that Z = X + iY ∈ Hb and

X L = (X , 1, q(Y ) − q(X)) and YL = (Y , 0,−(X , Y )). (4.1)

That representative depends on the choice of the isotropic vectors u and u′. The representative
of the form (Z0, 1,−q(Z0)) of the base point in D+

b is the one such that Z0 = X0 + iY0,
with X0 = 0 and Y0 = √

2eb+1.
We identified Gr(L) with D+

b and Hb. The base point z0 = 〈eb+1, eb+2〉 of Gr(L) maps
under such identifications respectively to

z0 ←→ [Z0
L ] = [−√

2eb+2 + i
√
2eb+1] ←→ Z0 = i

√
2eb+1.

The following result can be regarded as a dictionary to rewrite functions defined on one of
the previous models as functions on the remaining ones. It will be useful in Sect. 5.2, where
we rewrite certain theta integrals in terms of the tube domain model Hb.

Lemma 4.1 Let w (resp. w⊥) be the orthogonal complement of uz (resp. uz⊥ ) in z (resp. z⊥),
and let μ = −u′ +uz⊥/2u2

z⊥ +uz/2u2
z . If Z = X + iY ∈ Hb corresponds to z under the pre-

vious identifications, and if the representative of the corresponding point [ZL ] = [X L + iYL ]
in D+

b is chosen such that (4.1) is satisfied, then

X2
L = Y 2

L = Y 2

u2
z⊥ = −u2

z = −1/Y 2,

λw = (λ, Y )Y/Y 2,

uz = X L/Y 2

μLLor = X ,

(λ, λ)w = λ2 − 2(λ, Y )2/Y 2,

(4.2)

where λ is any vector of LLor ⊗R, and μLLor is the orthogonal projection of μ to LLor ⊗R.

Proof See e.g. [1, p. 543] and [4, pp. 79, 80]. ��

4.2 The identification of K × Hb with G

Let z ∈ Gr(L), and let Z = X + iY ∈ Hb and [ZL ] ∈ D+
b be the corresponding points in

the tube domain model and in the projective model, respectively. From now on we suppose
that ZL = X L + iYL is the only representative of [ZL ] such that (4.1) is fulfilled.

We want to fix once and for all an identification of K ×Hb with G, i.e. a diffeomorphism

ι : K × Hb −→ G. (4.3)

For the purposes of this article, we need to choose an identification ι fulfilling the properties
illustrated in the following result. The reason, which will become clear with Theorem 5.5, is
that we need to use such properties to prove that some series, arising from the Kudla–Millson
lift, are actually Fourier expansions of complex-valued functions defined on G. Recall the
construction of w, w⊥ and g# from Definition 3.4.

Lemma 4.2 There exists a diffeomorphism ι : K × Hb → G such that

ι(κ, Z) = κ · ι(1, Z), ι(1, Z) : z �−→ z0, and ι(1, Z) : Ru �−→ Ru,

and also such that the associated function ι(1, Z)#|LLor⊗R does not depend on the real part
of Z, or equivalently ι(1, Z)#(v) = ι(1, Z + X ′)#(v) for every v, X ′ ∈ LLor ⊗ R.
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To construct such a ι we use the following explicit Iwasawa decomposition of G. We choose
a basis of L ⊗ R which differs both from the orthonormal one used to construct the Kudla–
Millson Schwartz function, thatwe denoted by (e j ) j , and from the one used in [4, Section 4.1]
to give coordinates ofHb. The reason is that the new basis enables us to rewrite the factors A
and N of an Iwasawa decomposition G = K AN as groups of matrices with an easy descrip-
tion, namely as diagonal matrices for the former, and upper triangular for the latter.

The new basis we choose is the one given by

u, d, d3, . . . , db, d ′, u′, (4.4)

where d j := e j−2 for 3 ≤ j ≤ b, while d := (eb−1+eb+1)/
√
2 and d ′ := (eb−1−eb+1)/

√
2

are the standard generators of the hyperbolic plane U split off orthogonally by LLor, such
that LLor = D ⊕ U for some positive definite unimodular lattice D.

As illustrated e.g. in [16, Section 5.1] and [14, Section 2.3], we may realize the Iwasawa
decomposition of G = SO(L ⊗ R) over the basis (4.4) as G = K AN , where K is the
stabilizer of the base point z0 = 〈u − u′, d − d ′〉R, which is the same we chose in the
previous sections, A = { diag(m1, m2, 1, . . . , 1, m−1

2 , m−1
1 ) : m1, m2 ∈ R>0

}
is a group of

diagonal matrices with non-negative entries, and N is the group of upper triangular matrices
as in [16, First paragraph of Section 5.2].

If Z = X + iY ∈ LLor ⊗ C, we may rewrite it with respect to the basis (4.4) as the
column vector Z = (0, Z2, . . . , Zb+1, 0)t , for some Z j ∈ C, and analogously for the real
and imaginary part of Z . We may rewrite the tube domain modelHb with respect to the new
basis (4.4) as

Hb = {Z ∈ LLor ⊗ C : q(Y ) < 0 and Yb+1 < 0}.
One can easily use the induced action of G on Hb to prove the following result.

Lemma 4.3 Let X ′ ∈ LLor ⊗ R, and let M(X ′) ∈ N be the matrix defined as

M(X ′) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −X ′
b+1 −X ′

3 ··· −X ′
b −X ′

2 −q(X ′)
1 0 ··· ··· 0 X ′

2

. . .
. . .

... X ′
3

. . .
. . .

...
...

. . . 0 X ′
b

1 X ′
b+1
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where we denote by X ′
j ∈ R the j-th coordinate of X ′ with respect to the basis (4.4). The

action of M(X ′) on Hb is given by the translation Z �→ Z + X ′.

We recall that AN acts on Gr(L) bijectively, that is, for every z ∈ Gr(L) there exists only
one a ∈ A and n ∈ N such that an maps z0 to z.

Definition 4.4 Let G = K AN be the Iwasawa decomposition of G = SO(L ⊗ R) con-
structed above. If Z ∈ Hb corresponds to the negative definite plane z ∈ Gr(L), then we
define ι(1, Z) := (an)−1, where a ∈ A and n ∈ N are chosen such that an maps z0 to z. We
also set ι(κ, Z) = κ · ι(1, Z), for every κ ∈ K .

It is easy to check that the ι above satisfies the properties illustrated in Lemma 4.2.
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4.3 Fourier expansions

In this section we introduce Fourier expansions of LLor-invariant complex valued functions
defined over G.

Recall that the sublattice LLor is unimodular. If a smooth function F : Hb → C is LLor-
invariant function, i.e. F(Z + λ) = F(Z) for every λ ∈ LLor, then it admits a Fourier
expansion of the form

F(Z) =
∑

λ∈LLor

c(λ, Y ) · e
(
(λ, X)

)
,

where we denote by c(λ, Y ) the Fourier coefficient of F associated to λ and Y .
It is possible to consider Fourier expansions of LLor-invariant functions defined over G

instead of Hb, as we are going to illustrate.
If F : G → C is a smooth function defined over G, we may use an identification ι as in

Sect. 4.2 to rewrite F as a function of the form F : K ×Hb → C, which we denote with the
same symbol. Suppose that F is LLor-invariant, i.e.

F(κ, Z + λ) = F(κ, Z) for every κ ∈ K , Z ∈ Hb and λ ∈ LLor,

then F admits a Fourier expansion

F(g) = F(κ, Z) =
∑

λ∈LLor

c(λ, κ, Y ) · e
(
(λ, X)

)
, (4.5)

where g ∈ G is identified with (κ, Z) ∈ Hb × K under ι. The functions c(λ, κ, Y ) are the
Fourier coefficients (with respect to ι) of F .

5 The unfolding of the Kudla–Millson lift

In this section we explain how to compute the Kudla–Millson lift of a cusp form f in terms
of integrals of f against certain Siegel theta functions. We then unfold such integrals and
deduce their Fourier expansions as complex-valued functions defined on G.

Recall that k = 1+b/2. The genus 1 Kudla–Millson lift�KM
L : Sk

1 → Z2(D) has already
been introduced with Definition 1.2. It produces �-invariant 2-forms on D which descend
to 2-forms on the orthogonal Shimura variety X� = �\D, for every arithmetic subgroup �

of SO(L).
By Lemma 3.9 and (3.1), we may rewrite the Kudla–Millson lift of a cusp form f ∈ Sk

1
in terms of Siegel theta functions as

�KM
L ( f ) =

b∑

α,β=1

( ∫

SL 2(Z)\H
yk+1 f (τ )�L (τ, g,P(α,β))

dx dy

y2
︸ ︷︷ ︸

=:I(α,β)(g)

)
· g∗(ωα,b+1 ∧ ωβ,b+2

)
,

(5.1)
for every g ∈ G mapping z to z0. The closed 2-form �KM

L ( f ) at the point z ∈ D does not
depend on the choice of such g.

We refer to the integrals I(α,β) appearing in (5.1) as the defining integrals of �KM
L ( f ).

They are complex-valued functions defined over G. The goal of this section is to compute a
Fourier expansion of such defining integrals I(α,β) by means of the unfolding trick.
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5.1 The unfolding of3KM
L

We aim to unfold the defining integrals I(α,β) appearing in (5.1) of the Kudla–Millson lift by
means of the Rankin–Selberg method. To do so, we follow the same strategy of Borcherds [1,
Section 5], rewriting the Siegel theta functions with respect to a split L = LLor ⊕ U . Recall
the polynomials P(α,β),g#,h+,0 from Lemma 3.6, and let �∞ be the index 2 subgroup {( 1 n

0 1

) :
n ∈ Z} of the group of translations in SL2(Z).

Proposition 5.1 Let α, β = 1, . . . , b and let f ∈ Sk
1 . Denote by h(α,β) the �∞-invariant

auxiliary function defined as

h(α,β)(τ, g) = yk+1/2 f (τ )√
2 |uz⊥|

∑

r≥1

2∑

h+=0

( r

2iy

)h+
exp
(

− πr2

2yu2
z⊥

)

× �LLor

(
τ, rμ, 0, g#,P(α,β),g#,h+,0

)
,

for every τ ∈ H and g ∈ G, where z = g−1(z0) ∈ Gr(L). The integrands appearing in the
defining integrals I(α,β) of the lift �KM

L ( f ) may be rewritten as

yk+1 f (τ )�L (τ, g,P(α,β)) = yk+1/2 f (τ )√
2 |uz⊥| �LLor(τ, g#,P(α,β),g#,0,0)

+
∑

γ=
( ∗ ∗

c d

)
∈�∞\ SL 2(Z)

h(α,β)(γ · τ, g).
(5.2)

Proof The definition of h(α,β) above corresponds to the product of yk f (τ )with the conjugate
of the summand in (3.14) associated to the values c = 0 and d = 1. Such a function is �∞-
invariant, since so is also �LLor (τ, rμ, 0, g#,P(α,β),g#,h+,h−).

Let γ = (
a b
c d

) ∈ �∞\SL 2(Z), for some coprime integers c, d ∈ Z, and let g ∈ G. By
the modular transformation properties of y, f (τ ) and �LLor , where the automorphic factor
of the latter is given by Theorem 3.3, we deduce that

h(α,β)(γ · τ, g) = 1√
2 |uz⊥| · yk+1/2

|cτ + d|2k+1 (cτ + d)k f (τ )

×
2∑

h+=0

|cτ + d|2h+ ∑

r≥1

( r

2iy

)h+
exp
(

− πr2|cτ + d|2
2yu2

z⊥

)

× (cτ̄ + d)(b−1)/2+2−h+
(cτ + d)1/2 �LLor (τ, M, N , g#,P(α,β),g#,h+,0),

(5.3)
where M, N ∈ LLor ⊗R are such that aM + bN = rμ and cM + d N = 0. The solutions of
the previous system of equations are M = rdμ and N = −rcμ. We replace them in (5.3),
and simplify the factors given by powers of (cτ + d) and their conjugates, deducing that

h(α,β)(γ · τ, g) = yk+1/2

√
2 |uz⊥| f (τ )

∑

r≥1

2∑

h+=0

( r

2iy

)h+
(cτ + d)h+

× exp
(

− πr2|cτ + d|2
2yu2

z⊥

)
�LLor (τ, rdμ,−rcμ, g#,P(α,β),g#,h+,0).

123



Unfolding and injectivity of the... Page 17 of 28    10 

From this and Corollary 3.10 we deduce that the value h(α,β)(γ · τ, g) equals the (c, d)-
summand of yk f (τ ) F(α,β)(τ, g) arising when rewriting F(α,β)(τ, g) as in (3.14). This
concludes the proof of (5.2). ��
Corollary 5.2 Let f ∈ Sk

1 . We may unfold the defining integrals I(α,β) of the Kudla–Millson
lift �KM

L ( f ) as

I(α,β)(g) =
∫

SL2(Z)\H
yk+1/2 f (τ )√

2 |uz⊥| �LLor (τ, g#,P(α,β),g#,0,0)
dx dy

y2

+ 2
∫

�∞\H
h(α,β)(τ, g)

dx dy

y2
,

(5.4)

where h(α,β) is the auxiliary function provided by Proposition 5.1.

Proof It is enough to apply the unfolding trick to the integral over SL2(Z)\H of the right-hand
side of (5.2). ��

5.2 Fourier expansions of unfolded integrals

In this section we compute the Fourier expansion of the defining integrals I(α,β) : G → C

of �KM
L ( f ) appearing in (5.1), for every f ∈ Sk

1 . To do so, we will replace in the unfolded
integrals provided by Corollary 5.2 the cusp form f with its Fourier expansion, and the Siegel
theta function �LLor with its defining series. We write the Fourier expansion of f as

f (τ ) =
∑

n>0

cn( f )e(nτ) =
∑

n>0

cn( f ) exp(−2πny)e(nx), (5.5)

where τ = x + iy.
Recall that we denote by (·,·)w the standard majorant with respect to w ∈ Gr(LLor), that

is (v, v)w = v2
w⊥ − v2w , for every v ∈ LLor ⊗ R. We rewrite

�LLor

(
τ, rμ, 0, g#,P(α,β),g#,h+,0

) =
∑

λ∈LLor

exp(−�/8π y)
(P(α,β),g#,h+,0

)(
g0 ◦ g#(λ)

)

× exp
(− π y(λ, λ)w

) · e
(
xq(λ)

) · e
(− r(λ, μ)

)
,

(5.6)
with respect to the decomposition of τ in real and imaginary part.

Remark 5.3 Even if P(α,β) is harmonic, namely if α �= β, the polynomials P(α,β),g#,h+,0
may not be harmonic. If h+ = 1, 2, then they are of degree respectively 0 and 1, so they
are harmonic. But the harmonicity of the one associated to h+ = 0 depends on the choice
of g, as illustrated in the following example. This explains why the operator exp(−�/8π y)

appearing in (5.6) can not be in general dropped, even under the hypothesis that α �= β.

Example 5.4 We are going to construct an isometry g ∈ G = SO(L ⊗ R) such that the poly-
nomial P(α,β),g#,0,0 is non-harmonic.

Suppose that α �= β and that α, β < b. Let g ∈ G be the isometry defined as

g : eα �→ eα + eβ√
2

, eb �→ eα − eβ√
2

, eβ �→ eb,

and fixing all remaining vectors of the standard basis of L ⊗ R. We remark that such an
isometry lies in the maximal compact subgroup K of G, that is, in the stabilizer of the base
point z0 ∈ Gr(L).
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Recall that P(α,β)

(
g0(v)

) = 2xαxβ , for every v = ∑b+2
j=1 x j e j ∈ L ⊗ R. For the special

choice of the isometry g as above, we may deduce that

P(α,β)

(
g0 ◦ g(v)

) = x2α − x2b , (5.7)

since

g(v) = x1e1 + · · · +
( xα + xb√

2

)
eα + · · · +

( xα − xb√
2

)
eβ + · · · + xβeb + · · · + xb+2eb+2.

We are now ready to compute the polynomials P(α,β),g#,h+,0. Since u = (eb + eb+2)/
√
2,

we deduce that uz⊥
0

= eb/
√
2, hence (v, uz⊥

0
) = xb/

√
2. By comparing (5.7) with (3.6), or

directly by Lemma 3.6, we deduce that

P(α,β),g#,h+,0
(
g0 ◦ g#(v)

) =

⎧
⎪⎨

⎪⎩

x2α, if h+ = 0,

0, if h+ = 1,

−2, if h+ = 2.

In particular, the polynomial P(α,β),g#,0,0 is non-harmonic.

Weare now ready to prove themain result of this section.Recall the defining integralsI(α,β)

of the Kudla–Millson lift of a cusp form from (5.1).

Theorem 5.5 Let f ∈ Sk
1 . We identify G with K × Hb under a diffeomorphism ι as in

Lemma 4.2, such that every g ∈ G may be rewritten as ι(κ, Z), for a unique (κ, Z) ∈ K ×Hb.
The defining integrals I(α,β) : G → C of the Kudla–Millson lift �KM

L ( f ) have a Fourier
expansion of the form

I(α,β)(g) = I(α,β)

(
ι(κ, Z)

) =
∑

λ∈LLor

c(λ, κ, Y ) · e
(
(λ, X)

)
, (5.8)

where we decompose Z = X + iY ∈ Hb.
The Fourier coefficient of I(α,β) associated to any λ ∈ LLor with q(λ) > 0 is

c(λ, κ, Y ) =
√
2

|uz⊥|
2∑

h+=0

∑

t ≥ 1
t |λ

( t

2i

)h+
cq(λ)/t2( f )

∫ +∞

0
yk−h+−3/2

× exp
(

− 2π yλ2
w⊥

t2
− π t2

2yu2
z⊥

)

× exp(−�/8π y)
(P(α,β),g#,h+,0

)(
g0 ◦ g#(λ/t)

)
dy,

(5.9)

where we say that an integer t ≥ 1 divides λ ∈ LLor , in short t |λ, if and only if λ/t is still a
lattice vector in LLor .

The Fourier coefficient of I(α,β) associated to λ = 0, i.e. the constant term of the Fourier
expansion, is

c(0, κ, Y ) =
∫

SL2(Z)\H
yk+1/2 f (τ )√

2 |uz⊥| �LLor (τ, g#,P(α,β),g#,0,0)
dx dy

y2
. (5.10)

In all remaining cases, the Fourier coefficients are trivial.
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Implicit in (5.9) and (5.10) is that the right-hand sides do not depend on X . This is shown in
the proof of Theorem 5.5 using the following result.

Lemma 5.6 Let P be a homogeneous polynomial of degree (m+, m−) on R
b,2. We identify G

with K × Hb under a diffeomorphism ι as in Lemma 4.2. The value of the function

Pg#,h+,h−
(
g0 ◦ g#(λ)

)

with respect to the variable g = ι(κ, Z) ∈ G does not depend on the real part X of Z, for
any λ ∈ LLor ⊗ R and any h+, h−.

Proof of Lemma 5.6 Recall that we denote by x j = (v, e j ) the coordinate of any vec-
tor v ∈ L ⊗ R with respect to the standard basis vector e j , and by g0 : L ⊗ R → R

b,2 the
isometry defined as g0(v) = (x1, . . . , xb+2)

t . If Z ∈ Hb, we denote by z its corresponding
point on the Grassmannian Gr(L).

By Lemma 4.2, the isometry ι(1, Z) preserves the isotropic line Ru, for every Z ∈ Hb.
This means that there exists a function c : Hb → R \ {0} such that ι(1, Z)(u) = c(Z) · u.
Since ι is a diffeomorphism, the function c is smooth. Moreover, since ι(1, Z0) is the identity
by construction, and hence c(Z0) = 1 where Z0 is the point of the tube domain identified
with the base point z0 ∈ Gr(L), then c(Z) > 0 for every Z ∈ Hb. The vector uz/|uz | has
norm 1, hence

ι(1, Z)
( uz

|uz |
)

= c(Z)

|uz | · uz0

is a norm 1 vector, from which we deduce that c(Z) = |uz |/|uz0 | = |uz⊥|/|uz⊥
0
|.

For every g ∈ G, we rewrite g−1(e j ) with respect to the decomposition

L ⊗ R = Ruz⊥ ⊕ Ruz ⊕ w⊥ ⊕ w

as
g−1(e j ) = A j (g) · uz⊥ + B j (g) · uz + g−1(e j )w⊥⊕w, (5.11)

where A j , B j : G → R are the auxiliary functions defined as

A j (g) =
(
g−1(e j ), uz⊥

)

u2
z⊥

and B j (g) =
(
g−1(e j ), uz

)

u2
z

,

and where g−1(e j )w⊥⊕w is the orthogonal projection of g−1(e j ) on w⊥ ⊕ w. Suppose
that g = ι(κ, Z), for some κ ∈ K and Z ∈ Hb. We may compute

A j
(
ι(κ, Z)

) =
(

e j ,
(
κ · ι(1, Z)(u)

)
z⊥
0

)

u2
z⊥

=
(

e j , c(Z) · (κ(u)
)

z⊥
0

)

u2
z⊥

=
(

e j , κ(uz⊥
0
)
)

|uz⊥| · |uz⊥
0
| .

(5.12)
Since |uz⊥| = 1/|Y | by Lemma 4.1, we deduce that the value of the function A j does not
depend on X . The same procedure, with z in place of z⊥, shows that also the value of B j

does not depend on X .
The polynomialP(g0(v)

)
has x j = (v, e j ) as variables, henceP

(
g0◦g(v)

)
is a polynomial

of variables
(
v, g−1(e j )

)
, for every g ∈ G. To construct the polynomials Pg#,h+,h− , we need

to split g−1(e j ) as in (5.11), replace these in the variables of P(g0 ◦ g(v)
)
, and gather all

factors of the form (v, uz⊥) and (v, uz). We then deduce that Pg#,h+,h−
(
g0 ◦ g#(v)

)
is a

function of A j (g), B j (g) and
(
v, g−1(e j )w⊥⊕w

)
, where j runs from 1 to b + 2.
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We want to prove that Pg#,h+,h−
(
g0 ◦ g#(λ)

)
does not depend on the real part X , for

every λ ∈ LLor ⊗ R, where we identify g = ι(κ, Z). We already proved that A j and B j does
not depend on X . We rewrite
(
λ, g−1(e j )w⊥⊕w

)
=
(
λw⊥⊕w, g−1(e j )

)
=
(

g(λw⊥⊕w), e j

)
=
(
κ · ι(1, Z)#(λ), e j

)
,

(5.13)
and remark that the right-hand side of (5.13) does not depend on X by Lemma 4.2. This
concludes the proof. ��

Proof of Theorem 5.5 We consider the unfolding of I(α,β) provided by Corollary 5.2. The first
summand of the right-hand side of (5.4) is part of the constant term of the Fourier expansion
of I(α,β), since it does not depend on X . In fact, by Lemma 4.1, wemay rewrite it with respect
to the identification ι as
∫

SL2(Z)\H
yk+1/2 f (τ )√

2 |uz⊥| �LLor (τ, g#,P(α,β),g#,0,0)
dx dy

y2

=
∫

SL2(Z)\H
yk+1/2 f (τ )|Y |√

2

∑

λ∈LLor

exp(−�/8π y)
(P(α,β),g#,0,0

)(
g0 ◦ g#(λ)

)

× e
(− xq(λ)

) · exp (− π yλ2 + 2π y(λ, Y )2/Y 2)dx dy

y2
.

(5.14)
Lemma 5.6 implies that such a value does not depend on X .

As we are going to show soon, all other non-zero Fourier coefficients of the remaining
summand

∫
�∞\H h(α,β)(τ, g)

dx dy
y2

of (5.4) correspond to some λ ∈ LLor of positive norm,

so that e
(
(λ, X)

)
is not a constant function. This implies that (5.14) is exactly the constant

term of the Fourier expansion of I(α,β).
We now begin the computation of the Fourier expansion of the second summand appearing

on the right-hand side of (5.4). First of all, we compute the series expansion with respect
to τ = x + iy ∈ H of f (τ ) · �LLor (τ, rμ, 0, g#,P(α,β),g#,h+,0). To do so, we replace f
and �LLor respectively with (5.5) and (5.6), deducing that such a product equals

∑

m∈Z

∑

n>0, λ∈LLor
n−q(λ)=m

cn( f ) · exp(−2πny) · exp(−�/8π y)
(P(α,β),g#,h+,0

)(
g0 ◦ g#(λ)

)

× exp
(− π y(λ, λ)w

) · e
(
r(λ, μ)

) · e(mx).

We insert the previous formula in the defining formula of h(α,β) provided by Proposi-
tion 5.1, and then replace this in the second summand of the right-hand side of (5.4) deducing
that

2
∫

�∞\H
h(α,β)(τ, g)

dx dy

y2
=

√
2

|uz⊥|
2∑

h+=0

∑

r≥1

( r

2i

)h+ ∑

m∈Z

∑

n>0,λ∈LLor
n−q(λ)=m

cn( f )

× e
(
r(λ, μ)

) ∫ +∞

0
yk−h+−3/2 exp

(
− 2πny − π y(λ, λ)w − πr2

2yu2
z⊥

)

× exp(−�/8π y)
(P(α,β),g#,h+,0

)(
g0 ◦ g#(λ)

)
dy
∫ 1

0
e(mx)dx .

(5.15)
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Since
∫ 1
0 e(mx)dx equals 1 if m = 0 and is trivial otherwise, we may simplify (5.15)

extracting the terms associated with m = 0, obtaining that

2
∫

�∞\H
h(α,β)(τ, g)

dx dy

y2

=
√
2

|uz⊥|
∑

λ∈LLor

cq(λ)( f )

2∑

h+=0

∑

r≥1

( r

2i

)h+ ∫ +∞

0
yk−h+−3/2

× exp
(

− 2π yλ2
w⊥ − πr2

2yu2
z⊥

)

× exp(−�/8π y)
(P(α,β),g#,h+,0

)(
g0 ◦ g#(λ)

)
dy · e

(
r(λ, μ)

)
. (5.16)

Since e
(
(λ, μ)

) = e
(
(λ, X)

)
by Lemma 4.1, we may rewrite (5.16) in the same shape

of (5.8), i.e. we gather the terms multiplying e
(
(λ, μ)

)
, for every λ. This can be done simply

replacing the sum
∑

r≥1 with
∑

t≥1, t |λ, and the lattice vector λ with λ/t . In this way, we
obtain that

2
∫

�∞\H
h(α,β)(τ, g)

dx dy

y2

=
√
2

|uz⊥|
∑

λ∈LLor

2∑

h+=0

∑

t ≥ 1
t |λ

( t

2i

)h+
cq(λ/t)( f )

∫ +∞

0
yk−h+−3/2

× exp
(

− 2π yλ2
w⊥

t2
− π t2

2yu2
z⊥

)

× exp(−�/8π y)
(P(α,β),g#,h+,0

)(
g0 ◦ g#(λ/t)

)
dy · e

(
(λ, μ)

)
. (5.17)

This is the Fourier expansion of 2
∫
�∞\H h(α,β)(τ, g)

dx dy
y2

. In fact, if we identify G with K ×
Hb under ι, and write g = ι(κ, Z), then by Lemma 4.1 we may rewrite (5.17) as

2
∫

�∞\H
h(α,β)(τ, g)

dx dy

y2

= √
2 |Y |

∑

λ∈LLor

∑

t≥1,t |λ
cq(λ/t)( f )

2∑

h+=0

( t

2i

)h+ ∫ +∞

0
yk−h+−3/2 exp

(
− 2π yλ2

t2

)

× exp
(2π y(λ, Y )2

t2Y 2 + π t2Y 2

2y

)
exp(−�/8π y)

(P(α,β),g#,h+,0
)(

g0 ◦ g#(λ/t)
)
dy · e

(
(λ, X)

)
. (5.18)

By Lemma 5.6 the coefficient multiplying e
(
(λ, X)

)
in (5.18) does not depend on X . ��

6 The injectivity of the Kudla–Millson lift

This section is devoted to the proof of the injectivity of theKudla–Millson lift�KM
L associated

to unimodular lattices of signature (b, 2). Although such a result has already been proved in
[5], the procedure here proposed has the advantage of paving the ground for a strategy to prove
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the injectivity of the lift in several other cases; see [15] and [8]. The case of non-unimodular
lattices is carried out in Sect. 7.

Theorem 6.1 Let L be a unimodular lattice of signature (b, 2), with b > 2. The Kudla–
Millson theta lift �KM

L associated to L is injective.

To prove Theorem 6.1, we need the following ancillary result.

Lemma 6.2 Let λ ∈ LLor ⊗ R be such that q(λ) > 0. There exist two different
indexes α, β ∈ {1, . . . , b − 1}, and g ∈ G, such that

P(α,β),g#,1,0
(
g0 ◦ g#(λ)

)
> 0.

Proof of Lemma 6.2 Recall from Sect. 3.2 that we may use the standard basis vectors e j

of L ⊗R to construct a basis of the subspace LLor ⊗R as e1, . . . , eb−1, eb+1. We rewrite the
vector λ ∈ LLor ⊗ R with respect to such a basis as

λ =
b−1∑

j=1

λ j e j + λb+1eb+1,

for some real coefficients λ j . Since

2q(λ) =
b−1∑

j=1

λ2j − λ2b+1,

and since q(λ) > 0 by assumption, there exists an index β ∈ {1, . . . , b−1} such that the β-th
coordinate λβ of λ is non-zero.

Let α ∈ {1, . . . , b−1} be such that α �= β. Recall from (2.7) thatP(α,β)

(
g0(v)

) = 2xαxβ,

for every v = ∑
j x j e j ∈ L ⊗ R. We define g ∈ G to be the isometry interchanging eα

with eb, and eb+1 with eb+2, fixing the remaining standard basis vectors. We remark that g is
an element of the stabilizer K of the base point z0 ∈ Gr(L). For this choice of g we deduce
that P(α,β)(g0 ◦ g(v)) = 2xbxβ , since

g(v) =
b+2∑

j=1

x j g(e j ) = x1e1 + · · · + xbeα + · · · + xαeb + · · · + xb+2eb+1 + xb+1eb+2.

We write P(α,β) as in (3.6), for some homogeneous polynomials P(α,β),g#,h+,0 of
degree respectively (2 − h+, 0) on the subspaces g0 ◦ g#(L ⊗ R) ∼= R

b−1,1. Since we
chose u = (eb + eb+2)/

√
2, and since the base point z0 of Gr(L), stabilized by g, is the

negative definite plane in L ⊗R generated by eb+1 and eb+2, we deduce that uz⊥
0

= eb/
√
2.

This implies that (v, uz⊥
0
) = xb/

√
2, hence we deduce that

P(α,β)

(
g0 ◦ g(v)

) = (v, uz⊥
0
) · 2√2xβ . (6.1)

If we compare (6.1) with (3.6), or alternatively use Lemma 3.6, we see that for this special
choice of g we have

P(α,β),g#,h+,0
(
g0 ◦ g#(v)

) =
{
2
√
2xβ, if h+ = 1,

0, otherwise.

Since we chose β such that the β-th coordinate of λ is positive, we than conclude
that P(α,β),g#,1,0

(
g0 ◦ g#(λ)

)
> 0. ��
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We are now ready to prove the main result of this section.

Proof of Theorem 6.1 Let f ∈ Sk
1 be such that �KM

L ( f ) = 0. We want to prove that this
implies f = 0. Recall from (5.1) that

�KM
L ( f ) =

b∑

α,β=1

I(α,β)(g) · g∗(ωα,b+1 ∧ ωβ,b+2

)
, for every g ∈ G. (6.2)

Since the vectors ωα,b+1 ∧ ωβ,b+2, where α, β = 1, . . . , b, are linearly independent
in
∧2

(p)∗, we deduce from (6.2) that�KM
L ( f ) = 0 if and only if the defining integrals I(α,β)

are all zero, namely
∫

SL2(Z)\H
yk+1 f (τ )�L (τ, g,P(α,β))

dx dy

y2
= 0, for every α, β and for every g ∈ G.

(6.3)
As complex valued functions on G, the defining integrals I(α,β) : G → C of the Kudla–

Millson lift of f admit a Fourier expansion in the sense of Sect. 4. By Theorem 5.5, the
Fourier expansion of such defining integrals is

I(α,β)(g) =
∫

SL2(Z)\H
yk+1/2 f (τ )√

2 |uz⊥| �LLor (τ, g#,P(α,β),g#,0,0)
dx dy

y2

+
√
2

|uz⊥|
∑

λ∈LLor

2∑

h+=0

∑

t≥1
t |λ

( t

2i

)h+
cq(λ)/t2( f )

∫ +∞

0
exp
(

− 2π yλ2
w⊥

t2
− π t2

2yu2
z⊥

)

× yk−h+−3/2 exp(−�/8π y)
(P(α,β),g#,h+,0

)(
g0 ◦ g#(λ/t)

)
dy · e

(
(λ, μ)

)
.

(6.4)
We deduce from (6.3) that the Fourier coefficients of the Fourier expansion (6.4) are all zero.
We want to use this to show that cn( f ) = 0 for every positive integer n, that is, the cusp form
f is zero.
Wework by induction on the divisibility of all lattice vectors λ ∈ LLor such that q(λ) > 0.

Suppose that λ is primitive, that is, the only integer t ≥ 1 dividing λ is t = 1. The fact that
the Fourier coefficient of (6.4) associated to λ equals zero means that

√
2cq(λ)( f )

|uz⊥|
2∑

h+=0

(2i)−h+
∫ +∞

0
yk−h+−3/2 exp

(
− 2π yλ2

w⊥ − π

2yu2
z⊥

)

× exp(−�/8π y)
(P(α,β),g#,h+,0

)(
g0 ◦ g#(λ)

)
dy = 0.

(6.5)

Note that the integral appearing in (6.5) is a real number.
We are going to prove that there exist two different indices α, β ∈ {1, . . . , b − 1} and

an isometry g ∈ G, such that the sum over h+ appearing on the left-hand side of (6.5) is
non-zero. This implies that cq(λ)( f ) = 0, concluding the first step of the induction.

By Lemma 6.2 there exist two different indices α, β, and an isometry g ∈ G, such
that P(α,β),g#,1,0

(
g0 ◦ g#(λ)

) �= 0. This implies that, for such choices of α, β and g, the sum
over h+ appearing on the left-hand side of (6.5) is a non-zero complex number. In fact, its
imaginary part is

−1

2
P(α,β),g#,1,0

(
g0 ◦ g#(λ)

) ·
∫ +∞

0
yk−5/2 · exp

(
− 2π yλ2

w⊥ − π

2yu2
z⊥

)
dy. (6.6)
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Note that the integral appearing in (6.6) is a positive real number. We remark that in (6.6)
we drop the operator exp(−�/8π y) acting on P(α,β),g#,1,0, since the latter is a polynomial
of degree one, hence harmonic.

We now use induction. Suppose that cq(λ′)( f ) = 0 for every λ′ ∈ LLor divisible by
at most s positive integers. Let λ ∈ LLor be such that it is divisible by s + 1 inte-
gers 1 < d1 < · · · < ds . Since cq(λ/d j )( f ) = 0 for every j = 1, . . . , s by inductive
hypothesis, we may simplify the formula of the Fourier coefficient associated to λ of the
Fourier expansion (6.4) again as (6.5), where this time λ is non-primitive. Since the primi-
tivity of λ does not play any role in Lemma 6.2, we may deduce cq(λ)( f ) = 0 with the same
procedure used for the case of primitive λ.

To conclude the proof, it is enough to show that for every positive integer n there
exists λ ∈ LLor such that n = q(λ), and hence cn( f ) = 0 by the previous inductive argu-
ment. Equivalently, we want to prove that the quadratic form of the lattice LLor represents
every positive integer. This is ensured from the unimodularity of LLor, since this implies
that LLor splits off an hyperbolic plane. In fact, it is well-known that the quadratic form of
an hyperbolic plane represents all positive integers. ��

7 The case of non-unimodular lattices

We illustrated above how to prove the injectivity of the Kudla–Millson lift in the case of even
unimodular lattices of signature (b, 2). In this section we describe what needs to be changed
to deal with non-unimodular lattices. In particular, we provide a proof of the injectivity of
the Kudla–Millson lift �KM

L in the case of (not necessarily unimodular) lattices L that split
off U (N ) ⊕ U , for some positive integer N . This result is as in [5, Theorem 5.3], but proved
here in a different way.

The procedure that we follow in this section is essentially the same as the one used in
the previous sections. This motivates why we emphasize here only the main differences with
respect to the previous easier case, without providing the same amount of details.

Throughout this section we denote by L a (not necessarily unimodular) even lattice of
signature (b, 2), where b > 2, and we set k = 1 + b/2 ∈ 1

2Z. The discriminant group
associated to L is the quotient L ′/L , where L ′ is the dual of L . The quadratic form q of L
induces a Q/Z-valued quadratic form on L ′/L , which we still denote by q .

We denote by (eh)h∈L ′/L the standard basis of the group algebraC[L ′/L], and by 〈·,·〉 the
standard scalar product of C[L ′/L] defined as

〈 ∑

h∈L ′/L

λheh,
∑

h∈L ′/L

μheh

〉
:=

∑

h∈L ′/L

λhμh .

Let ρL be the Weil representation of the metaplectic group Mp2(Z) on C[L ′/L]; see
[4, Section 1.1] for details. A weight k modular form with respect to ρL and Mp2(Z) is a
function f : H → C[L ′/L] which is holomorphic onH and at the cusp ∞, and that satisfies
the modularity law

f (γ · τ) = φ(τ)2k · ρL(γ, φ) · f (τ ),

for every (γ, φ) ∈ Mp2(Z) and every τ ∈ H. We denote the components of f by fh , so
that f = ∑

h∈L ′/L fheh . These vector-valued modular forms admit a Fourier expansion,
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which we write as

f (τ ) =
∑

h∈L ′/L

∑

n∈Z+q(h)
n≥0

cn( fh) exp(−2πny)e(nx)eh,

where cn( fh) is the n-th Fourier coefficient of fh , or equivalently the n-th Fourier coefficient
of index h of f . If all c0( fh) vanish, then f is called a cusp form. We denote by Mk

1,L ,

resp. Sk
1,L , the space of modular forms, resp. cusp forms, of weight k with respect to ρL

and Mp2(Z).
We may rewrite the Kudla–Millson theta form attached to the lattice L as

�(τ, z, ϕKM)

= y−k/2
∑

h∈L ′/L

∑

λ∈L+h

(
ω∞(gτ )ϕKM

)
(λ, z)eh

=
b∑

α,β=1

y−k/2
∑

h∈L ′/L

∑

λ∈L+h

(
ω∞(gτ )(Q(α,β)ϕ0)

)(
g0 ◦ g(λ)

)
eh

︸ ︷︷ ︸
=:F(α,β)(τ,g)

⊗ g∗(ωα,b+1 ∧ ωβ,b+2),

(7.1)
where g ∈ G is any isometry mapping z ∈ D = Gr(L) to the base point z0, andQ(α,β) is the
polynomial on R

b,2 defined in (2.7). The auxiliary function F(α,β) highlighted in (7.1) may
be rewritten in terms of vector-valued Siegel theta functions as

F(α,β)(τ, g) = y ·
∑

h∈L ′/L

∑

λ∈L+h

exp(−�/8π y)(P(α,β))
(
g0 ◦ g(λ)

) · e
(
τq(λz⊥) + τ̄q(λz)

)
eh

= y · �L(τ, g,P(α,β)).

We suggest the reader to recall the vector valued theta functions �L , together with their
modular transformation properties, from [1, Section 4]. Whenever L is unimodular, they are
exactly the ones introduced in Sect. 3.1.

The Kudla–Millson lift �KM
L : Sk

1,L → Z2(D) is defined as

f �−→ �KM
L ( f ) =

∫

SL2(Z)\H
yk〈 f (τ ),�(τ, z, ϕKM)〉dx dy

y2
, (7.2)

where dx dy
y2

is the standard SL2(Z)-invariant volume element of H. We may rewrite such a
lift by means of (7.1) as

�KM
L ( f ) =

b∑

α,β=1

( ∫

SL2(Z)\H
yk+1〈 f (τ ),�L (τ, g,P(α,β))〉dx dy

y2
︸ ︷︷ ︸

=:I(α,β)(g)

)

· g∗(ωα,b+1 ∧ ωβ,b+2

)
.

(7.3)

We refer to the integrals I(α,β) appearing in (7.3) as the defining integrals of the
lift �KM

L ( f ). We want to compute their Fourier expansions by applying the unfolding trick.
To do this, we need to introduce another piece of notation, following the wording of [4,
pp. 41-42]. Recall that we do not assume that L splits off any hyperbolic plane, for now.

Let u be a primitive norm 0 vector of L , and let u′ ∈ L ′ be such that (u, u′) = 1.
Define LLor = (L ∩ u⊥)/Zu, and write n for the smallest positive value of the inner product
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of u with something in L , so that |L ′/L| = n2|L ′
Lor/LLor|. Let L ′

0 be the sublattice of L ′
defined as

L ′
0 = {λ ∈ L ′ : (λ, u) ≡ 0 mod n}.

We consider the projection p : L ′
0 → L ′

Lor constructed in [4, (2.7)]. This map is such
that p(L) = LLor, and induces a surjective map L ′

0/L → L ′
Lor/LLor which we also denote

by p. We recall that L ′
0/L = {λ ∈ L ′/L : (λ, u) ≡ 0 mod n}.

By [1, Theorem 5.2] we may rewrite the integrand of I(α,β) as

yk+1〈 f (τ ),�L(τ, g,P(α,β))〉 = yk+1/2

√
2 |uz⊥|

〈
fLLor (τ ; 0, 0),�LLor (τ, g#,P(α,β),g#,0,0)

〉

+ yk+1/2

√
2 |uz⊥|

∑

c,d∈Z
gcd(c,d)=1

∑

r≥1

∑

h+=0

( r

2iy

)h+
(cτ + d)h+

e
(

− r2|cτ + d|2
4iyu2

z⊥

)

× 〈 fLLor (τ ;−rd, rc),�LLor (τ, rdμ,−rcμ, g#,P(α,β),g#,h+,0)
〉
,

where fLLor (τ ; r , t) is the function arising from f ∈ Sk
1,L constructed as in [4, (2.12)].

Let h(α,β) be the auxiliary �∞-invariant function defined as

h(α,β)(τ, g) = yk+1/2

√
2 |uz⊥|

∑

r≥1

2∑

h+=0

(2iy)−h+
rh+

exp
(

− πr2

2yu2
z⊥

)

× 〈 fLLor (τ ;−r , 0),�LLor (τ, rμ, 0, g#,P(α,β),g#,h+,0)
〉
,

for every τ ∈ H and g ∈ G, where z = g−1(z0) ∈ Gr(L). Following the same procedure of
Proposition 5.1, together with [4, Theorem 2.6], we may deduce that

〈 f (τ ), F(α,β)(τ, g)〉yk = yk+1/2

√
2 |uz⊥| 〈 fLLor(τ, 0, 0),�LLor(τ, g#,P(α,β),g#,0,0)〉

+
∑

γ=
( ∗ ∗

c d

)
∈�∞\ SL 2(Z)

h(α,β)(γ · τ, g).

We proceed with the unfolding of I(α,β). We may deduce that the Fourier coefficient
of I(α,β) associated to λ ∈ LLor + hLor, where hLor ∈ L ′

Lor/LLor and q(λ) > 0, equals
√
2

|uz⊥|
2∑

h+=0

∑

t∈Z>0
t |λ

( t

2i

)h+ ∑

h∈L ′
0/L

p(h)=hLor/t

e
(
t(h, u′)

) · cq(λ)/t2( fh)

∫ +∞

0
yk−h+−3/2

× exp
(

− 2π yλ2
w⊥

t2
− π t2

2yu2
z⊥

)
· exp(−�/8π y)

(P(α,β),g#,h+,0
)(

g0 ◦ g#(λ/t)
)
dy,

(7.4)
where we say that a positive integer t divides λ ∈ L ′

Lor, in short t |λ, if and only if λ/t ∈ L ′
Lor.

Theorem 7.1 (Bruinier) Let L be an even lattice of signature (b, 2), with b > 2, that splits
off U (N ) ⊕ U, for some positive integer N. The Kudla–Millson theta lift �KM

L associated to
L is injective.

Since a large part of the proof ofTheorem7.1 is essentially the same as the one ofTheorem6.1,
we provide only a sketch of it.
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Sketch of the proof Let f ∈ Sk
1,L be such that �KM

L ( f ) = 0. This is equivalent to saying
that I(α,β)(g) = 0 for every α, β and every g ∈ G, since the vectors ωα,b+1 ∧ ωβ,b+2

appearing in (7.3) are linearly independent in
∧2

(p∗). We want to show that the vanishing
of the defining integrals of �KM

L ( f ) implies that f = 0.
The Fourier coefficients of I(α,β) associated to λ ∈ LLor + hLor, where hLor ∈ L ′

Lor/LLor

and q(λ) > 0, are as in (7.4). These coefficients are all zero, since so is I(α,β). We show
that the vanishing of the Fourier coefficients of I(α,β) implies the vanishing of the Fourier
coefficients of f by induction on the divisibility of λ. Suppose that λ is primitive. The fact
that the Fourier coefficient (7.4) associated to λ equals zero is equivalent to

√
2

|uz⊥|
( ∑

h∈L ′
0/L

p(h)=hLor

e
(
(h, u′)

) · cq(λ)( fh)
) 2∑

h+=0

(2i)−h+
∫ +∞

0
yk−h+−3/2

× exp
(

− 2π yλ2
w⊥ − π

2yu2
z⊥

)
· exp(−�/8π y)

(P(α,β),g#,h+,0
)(

g0 ◦ g#(λ)
)
dy = 0.

(7.5)
Since L splits off a hyperbolic plane, wemay choose u and u′ to be the standard generators

of such a hyperbolic plane, so that L = LLor ⊕ U and U = Zu ⊕ Zu′. It is easy to see
that L ′/L ∼= L ′

0/L ∼= L ′
Lor/LLor, that the map p is an isomorphism, and that the latter is

actually the standard orthogonal projection L ′/L → L ′
Lor/LLor, h + L → hLLor + LLor.

In particular, for every hLor ∈ L ′
Lor/LLor, the only h ∈ L ′

0/L such that p(h) = hLor

is h = hLor + L .
Since LLor is orthogonal to u′, an analogous argument on (7.5) as in the unimodular case

shows that cq(λ)( fhLor+L ) = 0 for every primitive λ ∈ LLor + hLor. This can be extended to
every (not necessarily primitive) λ by an easy inductive argument. We then deduce that

cq(λ)( fhLor+L) = 0, for every λ ∈ LLor + hLor and hLor ∈ L ′
Lor/LLor. (7.6)

To conclude the proof, it is enough to show that (7.6) implies that

cq(λ)( fh) = 0, for every λ ∈ L + h and h ∈ L ′/L. (7.7)

In fact (7.7) implies that cn( fh) = 0 for every positive n ∈ Z + q(h), since L splits off a
hyperbolic plane.

Our new approach provides a different way with respect to [5] to prove (7.6). In fact, the
latter is the same as [5, (5.3)]. If L splits off two orthogonal hyperbolic planes, i.e. N = 1, then
one can deduce (7.7) from (7.6) exactly as in [4, Proof of Theorem 5.12, last two paragraphs].
In the more general case where L splits off U (N ) ⊕ U , one can deduce (7.7) exactly as in
[5, Proof of Theorem 5.3, Part 3].
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