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Abstract
Wegive optimal bounds formatrixKloosterman sumsmodulo prime powers extending earlier
work of the first two authors on the case of prime moduli. These exponential sums arise in
the theory of the horocyclic flow on GLn .

1 Introduction

The purpose of this paper is to give good upper bounds for the sums

Kn(A, B; pk) =
∑

X∈GLn(Z/pkZ)

ψ((AX + X−1B)/pk), (1)

with given A, B ∈ Z
n×n where for an n × n matrix X we let ψ(X) = e2π i Tr X . Note that

ψ(XY ) = ψ(Y X). A good upper bound may mean different things, it could be optimal, or
somewhat crude but easily usable, and we will provide both.

These sums themselves are of independent interest. They arise naturally in certain
equi-distribution problems and are natural analogues of the classical Kloosterman sums∑

x (p) e2π i(ax+bx−1)/p .
In our earlier paper [6] we dealt with the case k = 1. As usual upper bounds modulo

a prime require the heavy machinery of some type of Weil cohomology. For higher prime
powers the methods are usually of a very different sort, based on Taylor expansions, and
occasionally referred to as the stationary phase [3]. One such example is provided by Salie’s
explicit evaluation of the one-dimensional case in [14]. We will prove that such a result holds
generically even for n × n matrices, but generic here is much more restricted than being
non-zero, or even invertible.
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We summarize the main results. Clearly if p divides all matrix entries of A and B then
one may clear appropriate powers and either arrive at a trivial sum, or one where one of A
or B is different from the zero-matrix. From now on we will assume that this is the case and
denote it as

gcd(A, B, p) = 1.

First we have the following reductions to a counting argument.

Proposition 1.1 Assume gcd(A, B, p) = 1 and that k > 1.

1. If k = 2 l then

Kn(A, B; pk) =
∑

X

ψ((AX + X−1B)/pk)

where the sum is over X ∈ GLn(Z/pk
Z) satisfying X AX ≡ B mod pl .

2. If k = 2 l + 1 then

Kn(A, B; pk) = 1

pn2

∑

X

ψ((AX + X−1B)/pk)SA,B(X; p)

where the sum is over X ∈ GLn(Z/pk
Z), X AX ≡ B mod pl , and where

SA,B(X; p) =
∑

U mod p

ψ((SU + T U 2)/p),

with S = (AX − X−1B)/pl and T = AX.

Remark 1.2 Note that if p �= 2, then SA,B(X; p) is either 0 or equals G(AX; p), for the
generalized Gauss sum

G(T ; p) =
∑

U mod p

ψ(T U 2/p)

See below in Sect. 3.

The case when A is invertible modulo p is special and can bemademore explicit, in complete
analogue of Salie’s evaluation of the classical one dimensional Kloosterman sum [14].

Corollary 1.3 1. Kn(A, B; pk) = 0 unless the invariant factors, (the Smith normal forms),
of A and B agree up to mod pl , where l = [k/2]. In particular if k > 1 and
gcd(det A, p) = 1 (ie. A is invertible mod p) then Kn(A, B; pk) = 0 unless
gcd(det B, p) = 1 as well.

2. Assume that gcd(det(AB), p) = 1 and that AB is regular semisimple mod p, (i.e. all
eigenvalues are different). Then

(a) If k = 2 l then

Kn(A, B; pk) = pkn2/2
∑

Y

ψ(2Y/pk)

where the sum is over Y ∈ GLn(Z/pZ), Y 2 ≡ AB mod pk.
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(b) If k = 2 l + 1 then

Kn(A, B; pk) = ζ pkn2/2
∑

Y

ψ(2Y/pk)

where the sum is over Y ∈ GLn(Z/pZ), Y 2 ≡ AB mod pk, and where ζ is a p-th
root of unity.

(c) In particular we have |Kn(A, B; pk)| ≤ 2n pkn2/2.

Note that in the regular semisimple case we have square root cancellation. Also note that
we do not assume that the eigenvalues of AB are defined over Fp . Finally, this condition is
generic, its complement is a Zariski closed set.

We now return to the non-generic cases. By Proposition 1.1 in order to bound the sums
in 1 we need to bound

N∗(A, B; pl) = #{X ∈ GLn(Z/pl
Z)|AX ≡ X−1B mod pl} . (2)

Note that

N∗(A, B; pl) = N∗(X A, B X−1; pl)

for any X ∈ GLn(Z/pl
Z) and so if N∗(A, B; pl) is not zero, then it equals N∗(C, C; pl)

for C = X A, for any X for which X A ≡ B X−1 (mod pl).
For l = 1 it is possible (see Thm. 1.5 below) to describe N∗(C, C; p) explicitly. This

allows one to show that for awell defined exponent e = eC wehavemn < N∗(C, C; p)/pe <

Mn for some absolute constants mn, Mn that depend on n only. The exponent e = eC itself
depends on the combinatorial type of the Jordan decomposition ofC over an algebraic closure
of Fp .

As a first step towards this goal we have the following reduction.

Proposition 1.4 For any C ∈ F
n×n
p let mC2(x) = ∏r

j=1 f j (x)k j ∈ Fp[x] be the minimal

polynomial of C2, where the f j (x) ∈ Fp[x] are irreducible. Let Vj = ker f j (C2)k j and
C j = C|Vj be the restriction of C to Vj . Then we have

N∗(C, C; p) =
r∏

j=1

N∗(C j , C j ; p) . (3)

In case of a primary minimal polynomial the explicit counting formulas depend on the

value of
(

x
f (x)

)
where as usual [13]

(
x

f (x)

)
is the quadratic residue symbol, defined for an

irreducible polynomial f ,

(
g(x)

f (x)

)
=

⎧
⎨

⎩

1 if g is a non - zero square in Fp[x]/( f ),

−1 if g is a not a square in Fp[x]/( f ),

0 if f |g
To state our main result we need to introduce further notation the details of which are

presented in Sect. 3. For any partition λ = [n1, ..., nk ] we let Nλ be a nilpotent matrix
with Jordan blocks of size n1, ..., nk . For q = pd let Fq be the field with q elements, and
ZGL |λ|(Fq )(Nλ) be the centralizer of Nλ in the group GL |λ|(Fq) where |λ| := n1 + · · · + nk .
(See Proposition 3.1).

If we have partitions μ, ν we let λ = μ + ν be their join. Also the dual partition λ′ of λ

may be defined via the matrix Nλ as λ′ = [d1, ..., dk], d1 ≥ d2 ≥ · · · ≥ dk where

dim ker N j
λ = d1 + · · · + d j .
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Theorem 1.5 Assume that p �= 2. Let C be a m × m matrix and assume that the minimal
polynomial of C2 is of the form f (x)k , where f (x) ∈ Fp[x] is irreducible. We let q = pd ,
d = deg f , and λ be the partition of m/d with dual λ′ = [d1, ..., dk], d1 ≥ d2 ≥ · · · ≥ dk

where

1

d
dimFp ker f j (C2) = d1 + · · · + d j .

1. If
(

x
f (x)

)
= 1 we have N∗(C, C, p) = N∗+(λ, q), where q = pdeg f and

N∗+(λ, q) =
∑

λ=μ+ν

#ZGL |λ|(Fq )(Nλ)

#ZGL |μ|(Fq )(Nμ)#ZGL |ν|(Fq )(Nν)
. (4)

2. If
(

x
f (x)

)
= −1 then all d j will be even, and λ = μ + μ for some partition μ. Then we

have N∗(C, C, p) = N∗−(λ, q) where

N∗−(λ, q) = #ZGL |λ|(Fq )(Nλ)

#ZGL |μ|(Fq2 )(Nμ)
. (5)

3. If f (x) = x we have

N∗(C, C; p) = p
∑k

j=1 d2
j

k∏

j=1

r j∏

t j =1

(
1 − 1

pt j

)
(6)

where we put r j := d j − d j+1 ( j = 1, . . . , k where dk+1 := 0), ie. r j is the number of
blocks of size j × j ( j = 1, . . . , k) in the Jordan normal form of C.

We are now ready to state our main bounds. For a refined statement we need the stable
rank of a matrix A defined as rk∞ A = limm→∞ rk Am .

Theorem 1.6 Assume that p �= 2 and l ≥ 1.

1. Let r = rk(C mod p), r∞ = rk∞(C mod p),

N∗(C, C; pl) ≤ 2r∞ pe(l,n,r ,r∞)

where

e(l, n, r , r∞) = (n − r)2 + (r − r∞)2 + r2∞/2 + (l − 1)
(
(n − r)(n − r∞) + r2∞/2

)
.

2. Assume that r = rk(Amod p) = rk(B mod p) > 0. We have

N∗(A, B; pl) ≤ 2r

{
pln(n−r) if r ≤ n/2

pln2/2 if n/2 < r ≤ n
. (7)

3. In particular if n > 1 and gcd(A, B, p) = 1 then N∗(A, B; pl) ≤ 2n pl(n2−n). If
gcd(det A, det B, p) = 1 then N∗(A, B; pl) ≤ 2n pln2/2.

Remark 1.7 The case p = 2 is special, in view of (14). Assume AX = X−1B = C mod p.
If C �= In , in particular, if AB �= In mod 2, the bound 2l(n2−n) still holds.

We also need the following general bound for the sum SA,B(X; p).
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Proposition 1.8 Assume that A, B are such that there exists X so that AX ≡ X−1B mod pl .
Let

SA,B(X; p) =
∑

U mod p

ψ((SU + T U 2)/p)

with S = (AX − X−1B)/pl and T = AX mod p. Assume that p �= 2. We have that

|SA,B(X; p)| ≤ p(n−r)(n−r∞)+r2∞/2

where r = rk T , r∞ = rk∞ T . In particular, we always have |SA,B(X; p)| ≤ pn2−n and

under the additional assumption that A is invertible, we have |SA,B(X; p)| ≤ pn2/2.

In view of Proposition 1.1 as a corollary of the above we have the following

Theorem 1.9 Assume that n > 1 and the matrices A, B are not both 0mod p. We then have
the following bounds.

1. If k = 1, by [6]

|Kn(A, B; p)| ≤

⎧
⎪⎨

⎪⎩

2pn2−n+1 for all A, B

4p3n2/4 if gcd(det A, det B, p) = 1

4pn2/2 if gcd(det B, p) = 1, and AB−1 regular semisimple.

2. If k > 1 we have

|Kn(A, B; pk)| ≤ 2n

{
pkn2−� k

2 �n for all A, B

pkn2−� k
2 �n2 if gcd(det A, det B, p) = 1.

The paper is organized as follows. First in section 2 we prove Proposition 1.1, this then
gives the optimal bounds for the generic situation. In the next section we list some facts
concerning partitions, the Sylvester equation and multivariable Gauss sums. These will be
used in the following sections. First inSect. 4wegiveupper bounds for the number of solutions
of various quadratic equations in matrices modulo a prime. In the last section Sect. 5 we then
prove the estimates in the last three statements above.

While this work was in progress El-Baz, Lee and Strömbergsson [5] independently arrived
to quantitavely similar bounds in their work on the equidistribution of rational points on
horocycles. While there are some overlaps the main results are different in nature.

2 Reduction to counting

In this section we prove Proposition 1.1 and its corollaries. As in the statement we need to
deal with the case of even and odd exponents separately.

2.1 The case p2 l

Let k = 2 l. For any unit U ∈ GLn(Z/pk
Z) Kn(A, B; pk) = ∑

X∈GLn(Z/pkZ) ψ((AXU +
U−1X−1B)/pk).

Let H < GLn(Z/pk
Z) be the subgroup of matrices U such that U ≡ I (pl). Explicitly

we have

H = {I + U1 pl | U1 (pl)}.
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Since (I + U1 pl)−1 = I − U1 pl , we have that

Kn(A, B; pk) = 1

pln2

∑

X∈GLn(Z/pkZ)

ψ((AX + B X−1)/pk)
∑

U1 mod pl

ψ((AXU + BU X−1)/pl )).

As noted above, ψ(BU X−1) = ψ(X−1BU ), and so the inner sum
∑

U1 mod pl

ψ((AX − X−1B)U/pl))

vanishes, unless AX ≡ X−1B mod pl . This proves the first claim in Proposition 1.1.

2.2 The case p2 l+1

Let k = 2 l + 1. We again use the subgroup H defined above which in this case consists
of matrices U = I + U1 pl + U2 p2 l where U1 (resp. U2) runs on (Z/pl

Z)n×n (resp. on
(Z/pZ)n×n), with inverse

U−1 = I − U1 pl + (U 2
1 − U2)p2l .

Therefore

Kn(A, B; pk) = 1

pn2(l+1)

∑

X∈GLn(Z/pkZ)

∑

U

ψ((AXU + X−1BU−1)/pk)

where U = I + U1 pl + U2 p2 l is such that U1 will run mod pl and U2 will run mod p.
Now fix X ∈ GLn(Z/pk

Z), and consider
∑

U

ψ((AX(I + U1 pl + U2 p2l) + X−1B(I − U1 pl + (U 2
1 − U2)p2l))/pk)

= ψ((AX + B X−1)/pk)S1(X)S2(X)

where

S1(X) =
∑

U1 (pl )

ψ((AX − X−1B)U1 + X−1BU 2
1 pl)/pl+1)

and

S2(X) =
∑

U2 (p)

ψ((AX − X−1B)U2/p).

Note that S2 = 0 unless AX ≡ X−1B mod p in which case S2 = pn2 . S1 is a Gauss sum in
matrices, albeit a very special one. By the condition from S2 we have that AX −X−1B = pM
for some integral matrix M , then we have

S1(X) =
∑

U1 (pl )

ψ((MU1 + T U 2
1 )/pl)

where T ≡ X−1Bpl−1 ≡ AX pl−1 mod pl . This gives the claim when l = 1. For l > 1 note
that in view of pT ≡ 0mod pl we have for any V that

∑

U1 (pl )

ψ((MU1 + T U 2
1 )/pl) =

∑

U1 (pl )

ψ((M(U1 + pV ) + T (U1 + pV )2)/pl)
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= ψ(MV /pl−1)
∑

U1 (pl )

ψ((MU + T U 2)/pl) .

and so that S1(X) = ψ(MV /pl−1)S1(X). A suitable choice of V shows that S1(X) =
0 unless M ≡ 0 mod pl−1. In the original matrices A, B this is equivalent to AX ≡
X−1B mod pl in which case S1 = p(l−1)n2 SA,B(X; p). This gives the second claim of
Proposition 1.1.

2.3 The regular semisimple case

The proof of Corollary 1.3 Note that if X ∈ GLn(Z/pk
Z), AX ≡ X−1B mod pl , and A is

invertible then so is B. Moreover if Y = AX then Y 2 ≡ AB mod pl . Assume now that Y 2 ≡
AB mod pl and let X = A−1Y . Then AX ≡ Y mod pl and X−1B ≡ Y −1AB ≡ Y mod pl .
If AB = Y 2 is regular semisimple then all the eigenvalues of Y are different and no two of
them sum to 0. This is exactly the condition (see Sect. 3.3) to modify Y by adding a suitable
pl Z in such a way that Y 2 ≡ AB hold mod pk as well. In this case

Kn(A, B; pk) = Kn(Y , Y ; pk)

and the claim is an easy corollary of the calculations done in previous two subsections and
the regularity of Y 2.

3 Technical background

3.1 Partitions

A partition of an integer n is an ordered set λ = [n1, n2, . . . , nr ], n1 ≥ n2 ≥ · · · ≥ nr > 0,
of integers satisfying

∑
i ni = n. We will write n = |λ|. If λ and μ are two partitions, λ + μ

is the partition obtained by taking the parts of λ and μ together (and ordering them). We
denote by [n] the partition with one part n. In general if a number j appears r j times in λ, the
sequence [..., j, ..., j, ...] will be replaced by [..., jr j , ...], so for example the partition with
n parts all equal to 1 is written as [1n].

Given a partition λ its associated Young (Ferrer) diagram has r rows with n1, n2, ...nr

boxes in each row. For example for λ = [4, 3, 1] we have the diagram

The transpose of the diagram of λ is also a Young diagram of a partition λ′ called the
conjugate or dual partition to λ which may be described as follows. Let ri = ri (λ) be the
number of parts of λ which are equal to i ≥ 1 and di = ∑

j≥i r j . Then

λ′ = [d1, d2, . . .] (8)

which has the diagram

in our example λ = [4, 3, 1].
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3.2 Centralizers in GLn(Fq)

At first assume p �= 2 and let N be the nilpotent transformation of an Fq vector space
V of dimension n. Then V becomes an Fq [T ]-module where T acts via N , T v = Nv.
Such modules are isomorphic to the module Vλ = ⊕ jFq [T ]/(T n j ), for some partition
λ = [n1, . . . , nk], n1 + · · · + nk = n which is unique by the structure theorem of finitely
generated modules over principal ideal domains. To show the partition λ associated to N we
will use the notation N = Nλ.

Note that the the dual partition λ′ arises from considering di = dim(ker(Ni )) −
dim(ker(N i−1)). To see this assume we switch to the matrix point of view and assume
that N ∈ Mn(Fq) is a nilpotent matrix over Fq with r j blocks of size j × j ( j = 1, . . . , n1)
in the Jordan normal form of N . Let di = ∑

j≥i r j . as above. Then it is easy to see that
d1 is the number blocks, which also equals dim ker N . The claim then follows from an easy
inductive argument. One can alternatively define

di = ri + ri+1 + · · · + rk = dim(ker(N ) ∩ Im(N i−1)).

Finally we will need the order of the centralizer of unipotent elements in GLn(Fq). Note
that the centralizer of the unipotent I + N is the same as the centralizer of the nilpotent
transformation N .

Proposition 3.1 Let N = Nλ = [n1, ..., nk] with dual partition λ′ = [d1, ..., dn1 ]. Then the
centralizer of N has cardinality

#ZGLn(Fq )(N ) =
⎛

⎝
n1∏

j=1

(qr j − 1)(qr j − q) . . . (qr j − qr j −1)

⎞

⎠ · q
∑n1

j=1(d
2
j −r2j )

= q
∑k

j=1 d2
j

k∏

j=1

r j∏

t j =1

(
1 − 1

qt j

)
.

Proof This is Corollary IV.I.8 in [16]. ��
Remark 3.2 Note that if we define φr (T ) = ∏r

j=1(1 − T j ) and let φλ(T ) = ∏
φri (λ)(T )

then the statement can be rewritten as

#ZGLn(Fq )(N ) = q
∑k

j=1 d2
j φλ (1/q) .

3.3 Sylvester’s equation

Assume that A is m × m, B is n × n and X and C are m × n matrices. The matrix equation

AX − X B = C,

called Sylvester’s equation [17], has a rich literature over the real, or complex fields in view
of the important role it plays in various applications. (See. e.g. [4].) There are two important
questions here, existence of solutions, and a description of all solutions {X | AX − X B = C}.

For our task of estimating Kn(A, B; pk) we will concentrate on estimating the number of
solutions. If the field of coefficients is Fq for some p-power q , then the number of solutions
is clearly either 0 or qd , where

d = dA,B = dim{X | AX − X B = 0} ≤ mn. (9)
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While the bound by mn is trivial, in the case when A = λIn, B = λIm for the same scalar
λ, one has dA,B = mn.

Note that we may interpret the equation via linear transformations. To do so let W =
F

m
q , V = F

n
q viewed as column vectors. Both W and V become Fq [T ]-modules via mapping

T to A and B respectively.
If AX = X B then g(A)X = Xg(B) for any polynomial g ∈ Fq [T ] and so X gives rise

to a module homomorphism from W to V which we denote homFq [T ](W , V ).
For an irreducible polynomial f ∈ Fq [T ] let

V f e = {v ∈ V | f e(A)v = 0},
and similarly for W . The f -primary component of V is ∪∞

e=1V f e , which we denote by V f ∞ .
Clearly if X ∈ homFq [T ](W , V ) then

X(W f e ) ⊂ V f e (10)

which implies

homFq [T ](W , V ) =
⊕

f

homFq [T ](W f ∞ , V f ∞)

the sum over f ∈ Fq [T ] irreducible. Since the problem is linear, we may go to a finite field
extension if needed and then assume that the eigenvalues of A, B are in Fq . For f = T − λ

and e ≥ 1 we let

de(A − λ) = dim V(T −λ)e = dim ker(A − λI )e, d∞(A − λ) = dn(A − λ). (11)

As an immediate corollary of the trivial bound (9 we get the following

dA,B ≤
∑

λ∈Fq

d∞(A − λ)d∞(B − λ). (12)

Note that that for A semisimple the inequality above becomes an equality, showing that the
bound is sharp.

The application for us involves the special case when B = −A. If A is invertible the above
bound is sufficient, but the nilpotent case needs a more refined version given in the following
lemma.

Lemma 3.3 Assume that A ∈ Mm(Fq), B ∈ Mn(Fq) are nilpotent. Let

k = dim ker(A), l = dim ker(B),

Then

dim{X ∈ Mm,n(Fq) | AX = X B} ≤ kn + ml

2
.

Proof As above let W = F
m
q , V = F

n
q viewed as Fq [T ] modules via mapping T to A and B.

Then

W �
k⊕

i=1

Fq [T ]/(T mi ), V �
l⊕

j=1

Fq [T ]/(T n j ).

for some partitions (m1, ..., mk), (n1, ..., nl) of m and n respectively (with k, l as defined
above).
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Note that any element X of homFq [T ](Fq [T ]/(T b),Fq [T ]/(T a)) is determined by the
value X on 1mod T b and so by (10)

dim homFq [T ](Fq [T ]/(T b),Fq [T ]/(T a)) = min(a, b) (13)

This gives

dim{X ∈ Mm,n(Fq) | AX = X B} =
k,l∑

i, j=1

min(mi , n j ) ≤
k,l∑

i, j=1

mi + n j

2
≤ kn + ml

2
.

��
Corollary 3.4 The trivial bound (12) can be strengthened to

dim{X mod p | AX + X A = 0} ≤
∑

λ∈Fq

d1(A − λ)d∞(A + λ) . (14)

3.4 Generalities onmultivariable Gauss sums.

We start with a general setup on V = F
m
p . Let F(x) = Q(x) + L(x) with a quadratic form

Q, and a linear form L on V and define

G(F; p) =
∑

x∈V

e(F(x)/p)

where e(z) = e2π i z . If L = 0 and p �= 2, the sum G(Q; p) is easy to evaluate after
diagonalizing Q; it is a product of trivial factors and Gauss sums. The case when p = 2 is
slightly more involved [8], but still explicit.

For our use in what follows, some of the details are relevant, and so we sketch these.
Assume that p �= 2 when we have that Q comes from a bilinear form

B(x, y) = Q(x + y) − Q(x) − Q(y)

so that Q(x) = 1
2 B(x, x). B gives rise to a Riesz map R : V → V ∗, R : y �→ (Ry :

x �→ B(x, y)), which may not be surjective if B is degenerate. Still we have the following
dichotomy.

Proposition 3.5 Assume that p �= 2. Let F(x) = Q(x) + L(x), where Q is a quadratic and
L is a linear form on V .

1. If L has a Riesz-representative, i.e. L = Ry for some y, then G(F; p) =
e(−Q(y)/p)G(Q; p).

2. If L does not have a Riesz-representative then G(F; p) = 0.

Proof The first statement is trivial. To see the second, note that L does not have a Riesz
representative if and only if ker L does not contain

V ⊥ = {v ∈ V |B(v, y) = 0 for all y ∈ V }.
Therefore there is y, such that L(y) �= 0 but B(x, y) = 0 for all x , and so that Q(x + y) =
Q(x) + Q(y), and in particular Q(y) = 0. But then

G(F; p) =
∑

x

e(F(x + y)/p) =
∑

x

e((Q(x + y) + L(x + y))/p) = e(L(y)/p)G(F; p)

showing G(F; p) = 0 since e(L(y)/p) �= 1. ��
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The folllowing is an easy corollary of the evaluation of the standard Gauss sum [1].

Corollary 3.6 Assume that F = Q + L and that L has a Riesz representative, L = Ry. Write
Q = Q0 ⊥ Q1 where Q0 is totally isotropic, and Q1 non-degenarate. Let dim Q1 = r .
Then

G(F) = (det Q1/p) e(−Q(y)/p)pn−r/2,

where (·/p) is Legendre’s symbol.

4 The equation AX ≡ X−1B to primemodulus

4.1 Preliminary observations

Wewill concentrate on the case when the equation AX = X−1B is solvable. As noted above
wemay then simply assume thatC = AX0 = X−1

0 B for some fixed solution X0 and consider
the equation C X = X−1C . For this equation we start with the proof of Proposition 1.4.

Proof of Proposition 1.4 For any solution X of the equation C X = X−1C we also have
XC = C X−1 by multiplying from the left by X−1 and from the right by X . So we compute
C2X = C(C X) = C X−1C = XC2, ie. X andC2 commute. Let uswritemC2(x) ∈ Fp[x] for
the minimal polynomial of C2 and write it as mC2(x) = ∏r

j=1 f j (x)k j where f j (x) ∈ F[x]
is irreducible.

Then wemay decomposeFn
p = V1⊕· · ·⊕Vr as the direct sum of generalized eigenspaces

where Vj := ker( f j (C2)k j ). Since X and C2 commute, Vj is an X -invariant subspace in Fn
p

for 1 ≤ j ≤ r : indeed, for any v ∈ Vj we have f j (C2)k j v = 0 whence f j (C2)k j (Xv) =
X f j (C2)k j v = 0 showing Xv ∈ ker( f j (C2)k j ) = Vj . By a similar argument we also
deduce that Vj is also C-invariant (as C also commutes with C2). Therefore restricting the
identity C X = X−1C to the subspace Vj we deduce C j X j = X−1

j C j where C j (resp. X j )
is the restriction of C (resp. of X ) to Vj . On the other hand, whenever we have matrices
X j ∈ GL(Vj ) with C j X j = X−1

j C j (1 ≤ j ≤ r ) then we may form the block matrix X

from the matrices X j to obtain a solution of the equation C X = X−1C . So the number of
solutions of the equation C X = X−1C is the product of the number of solutions on each Vj .

This proves the proposition.

Now assume C is invertible. Since X is also invertible XC X = C if and only if Y = C X
satisfies Y 2 = C2 and we will count the number of solutions to this equation under the
assumption thatC2 hasminimal polynomial f k(x), with f (x) �= x irreducible. For this recall
that any linear transformation T has a uniquemultiplicative Jordan–Chevalley decomposition
as

T = Ts Tu = Tu Ts (15)

where Ts is semisimple, Tu is unipotent. If Y = YsYu and Y 2 = C2 then

Y 2
s = C2

s and Y 2
u = C2

u .

In case p �= 2, we can immediately infer that Yu = Cu from the following

Lemma 4.1 Assume that Z1, Z2 ∈ GLn(Fp) are unipotent such that Z2
1 = Z2

2 . If p �= 2
then Z1 = Z2.
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Proof For simplicitywe use the simple property that for any unipotent element Z inGLn(Fp)

we have Z pr = I for some r . Since p is odd

Z1 = (Z2
1)

(pr +1)/2 = (Z2
2)

(pr +1)/2 = Z2.

��
Therefore estimating N∗(A, B; p) is reduced to estimating

n(C, C; p) = {Y ∈ Mn(Fp) | Y 2 = C2, Y Cu = CuY }. (16)

Our last observation is now the following

Lemma 4.2 Put V := F
n
p and assume that the minimal polynomial of C2 : V → V is

mC2(x) = f k(x) where f ∈ Fp[x] is irreducible and let q = pdeg f . Then V has the
structure of an Fq -vectorspace such that all C, X , Y , Ys, Yu : V → V as above are Fq -
linear for any invertible solution X of the equation XC X = C. Further, Y 2

s is an Fq -scalar
multiple of the identity.

Proof We assume that f (x) �= x otherwise the claim is trivial. Note that Fp[x]/( f ) is
isomorphic to the field Fq with q = pdeg f elements. We choose such an isomorphism and
letα denote the image of x inFq , so thatFq = Fp[α]. The ringFp[x]/( f k) is then isomorphic
to Fq [t]/((t − α)k) and since C2

s ∈ Fp[C2] is a semisimple element, it may be identified
with α ∈ F

∗
q .

Therefore the action of Fp[C2
s ] on V gives an Fq -linear structure and since X , Y , Ys, Yu

all commute with C2
s they may be viewed as an Fq -linear transformation. Finally, we have

Y 2
s = C2

s = α I . ��

4.2 The proof of Theorem 1.5 in the invertible cases

Let V := F
m
p and C : V → V be an invertible Fp-linear map such that we have mC2(x) =

f k(x) for the minimal polynomial of C2 with some irreducible polynomial f (x) ∈ Fp[x].
By Lemma 4.2 we even have an Fq -linear structure on V (with q := pdeg f ) such that both
C and any solution X to the equation C X = X−1C are Fq -linear. Further, C has the Jordan–
Chevalley decomposition C = CuCs = CsCu with Cu unipotent and Cs semisimple. At
first assume p �= 2 and let N be the nilpotent transformation Cu − I . Then V becomes an
Fq [T ]-module where T acts via N , T v = Nv. Such modules are isomorphic to the module

Vλ = ⊕ jFq [T ]/(T n j ), (17)

for some partition λ = [n1, .., nk ], n1 + · · · + nk = n which is unique by the structure
theorem of finitely generated modules over PIDs. To show the partition λ associated to N we
will use the notation N = Nλ.

By Lemmas 4.1 and 4.2 it is enough to count elements in the set

Rα(λ) = {Y ∈ GLn(Fq) | Y 2 = α I , Y Nλ = NλY }, (18)

ie. we have N∗(A, B; p) = n(C, C; p) = #Rα(λ) where α ∈ F
∗
q denotes the unique

eigenvalue of C2 as an Fq -linear.

We start with the case when
(

x
f (x)

)
= 1 when we have α = β2 for some β ∈ F

∗
q . We

have the following
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Lemma 4.3 Let S(λ) denote set of pairs (U+, U−) of Fq [T ]-submodules U+, U− ≤ V such
that V = U+ ⊕ U−. The maps

Y �→ (UY ,+, UY ,−)

YU (u+ + u−) = β(u+ − u−) ← � V = U+ ⊕ U−

are inverse bijections between Rα(λ) and S(λ). Here u+ ∈ U+, u− ∈ U− and UY ,+ (resp.
UY ,−) denotes the β-eigenspace (resp. −β-eigenspace) of Y .

Proof Since p �= 2, Y 2 = α I implies Y is semisimple whence V is the direct sum of
the two eigenspaces of Y . Moreover, these eigenspaces are N -invariant, ie. they are Fq [T ]-
submodules. Conversely, given such a decomposition V = U+ ⊕U−, we have Y 2

U = α I and
YU commutes with N . ��

By the theorem of elementary divisors, for any decomposition V = U+ ⊕ U− of the
Fq [T ]-module V , λ is the sum of the multisets μ and ν where μ (resp. ν) is the partition
of dimU+ (resp. of dimU−) corresponding to the restriction of N to U+ (resp. to U−).
Therefore we may write S(λ) as the union of

S(λ, μ, ν) =
⎧
⎨

⎩(U+, U−) | U+, U− ≤Fq [T ] V , U+ ⊕ U− = V , U+ ∼=
⊕

j∈μ

Fq [T ]/(T j ), U− ∼=
⊕

j∈ν

Fq [T ]/(T j )

⎫
⎬

⎭

where μ runs over the multisets included in λ and ν = λ − μ is the difference.

Lemma 4.4 For any decomposition λ = μ + ν the centralizer ZGL |λ|(Fq )(N ) of N acts
transitively on the set S(λ, μ, ν).

Proof Assume we are given two decompositions U+ ⊕ U− = V = U ′+ ⊕ U ′− in
S(λ, μ, ν). Then we have the isomorphisms U+ ∼= ⊕

j∈μ Fq [T ]/(T j ) ∼= U ′+ and U− ∼=⊕
j∈ν Fq [T ]/(T j ) ∼= U ′− of Fq [T ]-modules. Taking the direct sum of these two isomor-

phismswe obtain an automorphism g : V = U+⊕U− → U ′+⊕U ′− = V . BeingFq [T ]-linear
it means that g lies in ZGL |λ|(Fq )(N ) when viewed as an Fq -linear transformation. ��

Proposition 4.5 If α ∈ (F∗
q)2 then

n(C, C; p) = #Rα(λ) =
∑

λ=μ+ν

#ZGL |λ|(Fq )(Nλ)

#ZGL |μ|(Fq )(Nμ)#ZGL |ν|(Fq )(Nν)
.

Proof By Lemma 4.3 we obtain #Rα(λ) = #S(λ) = ∑
λ=μ+ν #S(λ, μ, ν). The statement

follows from Lemma 4.4 noting that the stabilizer of a given decomposition V = U+ ⊕ U−
in S(λ, μ, ν) equals

ZGL |λ|(Fq )(Nλ) ∩ (GL |μ|(Fq) × GL |ν|(Fq)) = ZGL |μ|(Fq )(Nμ) × ZGL |ν|(Fq )(Nν).

��
Now assume

(
x

f (x)

)
= −1, so we have α = β2 for some β ∈ F

∗
q2\F∗

q . Put σ for

the nontrivial element in Gal(Fq2/Fq). Then ϕ = σ ⊗ I : Fq2 ⊗Fq V is a σ -semilinear
map (ie. Fq [T ]-linear with ϕ(βv) = σ(β)ϕ(v) = −βϕ(v)). Further, for a Fq2 [T ]-module
homomorphism f : Fq2 ⊗Fq V → Fq2 ⊗Fq V there exists an Fq [T ]-module homomorphism
f̃ : V → V with f = 1 ⊗ f̃ if and only if f commutes with ϕ, ie. f ◦ ϕ = ϕ ◦ f .
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Lemma 4.6 Assume α /∈ (F∗
q)2. Then the centralizer ZGL |λ|(Fq )(Nλ) acts transitively on the

set Rα(λ) (by conjugation).

Proof Let Y , Y ′ ∈ Rα(λ), ie. Y , Y ′ : V → V are both Fq [T ]-linear isomorphisms with
Y 2 = α I = Y ′2. Put U ≤ Fq2 ⊗Fq V (resp. U ′ ≤ Fq2 ⊗Fq V ) for the β-eigenspace of 1⊗ Y
(resp. of 1⊗Y ′). Then ϕ(U ) (resp. ϕ(U ′)) is the σ(β) = −β-eigenspace of Y (resp. of Y ′). In
particular, we have U ⊕ϕ(U ) = Fq2 ⊗Fq V = U ′ ⊕ϕ(U ′). Now if U ∼= ⊕

j Fq2 [T ]/(T m j )

for some partition μ = [m1, . . . , ms] then we have the isomorphism

ϕ(U ) ∼=
⊕

j

Fq2 [T ]/(σ (T )m j ) ∼=
⊕

j

Fq2 [T ]/(T m j ) ∼= U

of Fq2 [T ]-modules whence λ = μ+μ. Similarly, U ′ ∼= ϕ(U ′). By the structure theorem for
finitely generatedmodules over the PIDFq2 [T ], wemust haveU ∼= U ′ asFq2 [T ]-modules, as
well. Taking such an isomorphism S : U → U ′ we also define S(ϕ(u)) := ϕ(S(u)) on ϕ(U )

giving rise to an Fq2 [T ]-linear automorphism S : Fq2 ⊗Fq V = U ⊕ϕ(U ) → U ′ ⊕ϕ(U ′) =
Fq2 ⊗Fq V that satisfies S(1⊗ Y )S−1 = 1⊗ Y ′. Moreover, S descends to a map S̃ : V → V

(such that S = 1⊗ S̃) since it commutes with ϕ. Finally, S̃ satisfies S̃Y S̃−1 = Y ′ and lies in
the centralizer of Nλ as it is Fq [T ]-linear. ��
Proposition 4.7 Assume α /∈ (F∗

q)2. Then we have λ = μ + μ for some partition μ and

n(C, C; p) = #Rα(λ) = #ZGL |λ|(Fq )(Nλ)

#ZGL |μ|(Fq2 )(Nμ)
.

Proof By Lemma 4.6 Rα(λ) is the conjugacy class of Cs in ZGL |λ|(Fq )(Nλ). A moments
thought shows that we may define an Fq2 -linear structure on V where Cs acts via multipli-
cation by β where the Fq2 -linear maps are exactly those which are Fq -linear and commute
with Cβ . In particular, the centralizer of Cβ in ZGL |λ|(Fq )(Nλ) equals ZGL |μ|(Fq2 )(Nμ). ��

This leads to formula (5).

Corollary 4.8 Assume that C has minimal polynomial f (x)k where f (x) �= x is irreducible

and p �= 2. Then we have n(C, C, p) <
q2+1
q2−1

q
� n2

2 deg2 f
� = q2+1

q2−1
p
deg f � n2

2 deg2 f
� ≤ p2+1

p2−1
p

n2
2

and if k = 1 then there exists a constant 0 < c(q) < 1 (with limq→∞ c(q) = 1) such that

c(q)q
� n2

2 deg2 f
�

< n(C, C; p) <
q2 + 1

q2 − 1
q

� n2

2 deg2 f
�
.

In particular

n(C, C; p) ≤ 2pn2/2 deg f .

Proof Since n(C, C, p) is the number of square roots of C2
s commuting with Cu , the case

Cu = I gives an upper bound for the number of solutions in general. So we may assume
N = 0. Put n1 := dimFq V = n

deg f . Then in the split case we compute

n(C, C; p) =
n1∑

j=0

#GLn1(Fq)

#GL j (Fq)#GLn1− j (Fq)

=
n1∑

j=0

(qn1 − 1) . . . (qn1 − qn1−1)

(q j − 1) . . . (q j − q j−1)(qn1− j − 1) . . . (qn1− j − qn1− j−1)
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=
n1∑

j=0

qn21− j2−(n1− j)2 (1 − 1/qn1) . . . (1 − 1/q)

(1 − 1/q j ) . . . (1 − 1/q)(1 − 1/qn1− j ) . . . (1 − 1/q)

<

n1∑

j=0

qn21− j2−(n1− j)2 < q� n21
2 �(1 +

∞∑

j=1

2

q2 j
) = q2 + 1

q2 − 1
q� n21

2 �.

On the other hand, we have

n(C, C; p) =
n1∑

j=0

qn21− j2−(n1− j)2 (1 − 1/qn1) . . . (1 − 1/q)

(1 − 1/q j ) . . . (1 − 1/q)(1 − 1/qn1− j ) . . . (1 − 1/q)

> qn21−� n1
2 �2−� n1

2 �2(1 − 1/qn1) . . . (1 − 1/q) > c(q)q� n21
2 �

with constant c(q) = ∏∞
j=1(1 − 1/q j ) that clearly satisfies limq→∞ c(q) = 1. ��

Finally, assume p = 2. Since the 2-Frobenius is bijective on finite fields of characteristic
2, C2

s has a unique square root Ys = Cs . So we need to count the square roots of the unipotent
matrix C2

u or equivalently the square roots of the nilpotent matrix C2
u + I = (Cu + I )2.

Lemma 4.9 Assume that q is a power of 2. For any integer n > 0 we have the identification

Fq [T ]/(T n) ∼= Fq [T 2]/((T 2)�
n
2 �) ⊕ Fq [T 2]/((T 2)�

n
2 �)

as Fq [T 2]-modules.

Proof This amounts to the fact that the square of a nilpotent Jordan block of size n splits into
two blocks of size � n

2 � and � n
2 �. ��

Proposition 4.10 Assume q is a power of 2. Then the number of solutions of the matrix
equation Y 2 = C2 equals

∑

μ

#ZGLn(Fq )(N 2
λ )

#ZGLn(Fq )(Nμ)

where μ = [m1, . . . , mk] runs on the set of partitions such that
[
�m1

2
�, �m1

2
�, . . . , �mk

2
�, �mk

2
�
]

=
[
�n1

2
�, �n1

2
�, . . . , �nk

2
�, �nk

2
�
]
.

Proof By Lemma 4.9 N 2
μ is similar to N 2

λ if and only if
[
�m1

2
�, �m1

2
�, . . . , �mk

2
�, �mk

2
�
]

=
[
�n1

2
�, �n1

2
�, . . . , �nk

2
�, �nk

2
�
]
.

So for each such μ we are reduced to determine the cardinality of the fiber at N 2
λ of the map

{conjugacy class of Nμ} → {conjugacy class of N 2
λ }

M �→ M2.

However, all the fibers of the above map have the same cardinality by conjugation, so the
number of solutions to the above equation is

#{conjugacy class of Nμ}
#{conjugacy class of N 2

λ } = #ZGLn(Fq )(N 2
λ )

#ZGLn(Fq )(Nμ)
.

��
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4.3 The proof of Theorem 1.5 in the nilpotent case

Lemma 4.11 Assume XC X = C for some C ∈ Mn(Fp) and X ∈ GLn(Fp). Then for any
integer j ≥ 1 the subspaces ker(C j ) and Im(C j ) are X-invariant.

Proof Since X is invertible we may write C X = X−1C and XC = C X−1, so by induction
on j we deduce C j X = X (−1) j

C j and XC j = C j X (−1) j
. Therefore if v ∈ ker(C j ) then

we have C j Xv = X (−1) j
C jv = 0, ie. Xv ∈ ker(C j ). On the other hand, we compute

XC jw = C j X (−1) j
w ∈ Im(C j ) for any w ∈ F

n
p . ��

Proposition 4.12 Let C ∈ Mn(Fp) be a nilpotent matrix such that there are r j blocks of size
j × j ( j = 1, . . . , k) in the Jordan normal form of C. Then the number of solutions of the
equation XC X = C in X ∈ GLn(Fp) equals
⎛

⎝
k∏

j=1

(pr j − 1)(pr j − p) . . . (pr j − pr j −1)

⎞

⎠ · p
∑k

j=1(d
2
j −r2j ) = p

∑k
j=1 d2

j

k∏

j=1

r j∏

t j =1

(
1 − 1

pt j

)

where we put di = ri + ri+1 + · · · + rk = dim(ker(C) ∩ Im(Ci−1)) = dim(ker(Ci )) −
dim(ker(Ci−1)).

Proof First of all, we have Ck = 0 and dimFp (ker(C) ∩ Im(Ci )) = ∑k
j=i+1 r j . By lemma

4.11 the flag 0 ≤ ker(C)∩ Im(Ck−1) ≤ · · · ≤ ker(C)∩ Im(Ci ) ≤ · · · ≤ ker(C)∩ Im(C) ≤
ker(C) in ker(C) must be X -invariant for any solution X of the equation XC X = C . The
set of such maps X1 := X |ker(C) : ker(C) → ker(C) is the parabolic subgroup P(r1,...,rk ) of
GLr1+···+rk (Fp) of type (r1, . . . , rk) which has cardinality

#P(r1,...,rk ) =
⎛

⎝
k∏

j=1

(pr j − 1)(pr j − p) . . . (pr j − pr j −1)

⎞

⎠ · p
∑

1≤i< j≤k ri r j .

Lemma 4.13 For any 2 ≤ t ≤ k and X1 ∈ P(r1,...,rk ) the number of extensions of X1 to a
one-to-one linear map Xt : ker(Ct ) → ker(Ct ) satisfying

(i) XC X = C and
(ii)t ker(Ci ) ∩ Im(C j ) is Xt -invariant for all 1 ≤ i ≤ t and 0 ≤ j ≤ k

equals
∏

2≤ j≤t

pr j (r1+···+rk )+r j+1(r2+···+rk )+···+rk (rk− j+1+···+rk ).

Proof Weproceed by induction on t . Assumewe have amap Xt−1 : ker(Ct−1) → ker(Ct−1)

satisfying (i) and (i i)t−1 and pick an element v ∈ ker(Ct )∩Im(C j ) not lying in ker(Ct−1)+
Im(C j+1). We need to choose Xtv ∈ ker(Ct )∩ Im(C j ) so that C Xtv = X−1

t−1Cv is satisfied

since Cv ∈ ker(Ct−1) ∩ Im(C j+1) on which subspace the map X−1
t is already defined by

X−1
t−1 (as Xt−1 is one-to-one).Moreover, X−1

t−1Cv lies in ker(Ct−1)∩Im(C j+1)by assumption

(i i)t−1. In particular, there exists a vector w ∈ Im(C j ) such that Cw = X−1
t−1Cv and w ∈

ker(Ct ) (as we have Ctw = Ct−1X−1
t−1Cv = 0). Further,w is unique upto ker(C)∩ Im(C j ),

so the possible values of Xtv is exactly w + (ker(C) ∩ Im(C j )) which has cardinality
#(ker(C) ∩ Im(C j )) = pr j+1+···+rk . Finally, we let v run on the lift of a basis of the quotient
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space (ker(Ct ) ∩ Im(C j ))/(ker(Ct−1) + Im(C j+1)) for any j = k − t, k − t − 1, . . . , 1, 0
(noting Im(Ck−t+1) ⊆ ker(Ct−1)) we deduce that the number of extensions of Xt−1 to a
map Xt : ker(Ct ) → ker(Ct ) satisfying (i) and (i i)t is

k−t∏

j=0

#(ker(C) ∩ Im(C j ))
dimFp (ker(Ct )∩Im(C j ))/(ker(Ct−1)+Im(C j+1))

= prt (r1+···+rk )+rt+1(r2+···+rk )+···+rk (rk−t+1+···+rk )

as we have dimFp (ker(C
t ) ∩ Im(C j ))/(ker(Ct−1) + Im(C j+1)) = r j+t . ��

The statement follows from the above lemma by taking t = k: the number of solutions of
XC X = C in invertible X equals

#P(r1,...,rk )

∏

2≤ j≤k

pr j (r1+···+rk )+r j+1(r2+···+rk )+···+rk (rk− j+1+···+rk )

=
⎛

⎝
k∏

j=1

(pr j − 1)(pr j − p) . . . (pr j − pr j −1)

⎞

⎠ · p
∑k

j=2( j−1)r2j +
∑

1≤i< j≤k 2iri r j

=
⎛

⎝
k∏

j=1

(pr j − 1)(pr j − p) . . . (pr j − pr j −1)

⎞

⎠ · p
∑k

j=1(d
2
j −r2j )

as claimed. ��

Corollary 4.14 Assume C is nilpotent. Then we have n(C, C; p) ≤ p
∑k

j=1 d2
j ≤

prk(C)2+(n−rk(C))2 .

Proof Using Proposition 4.12 we compute

n(C, C; p) =
⎛

⎝
k∏

j=1

(pr j − 1)(pr j − p) . . . (pr j − pr j −1)

⎞

⎠ · p
∑k

j=1(d
2
j −r2j )

≤
⎛

⎝
k∏

j=1

(pr j )r j )

⎞

⎠ · p
∑k

j=1(d
2
j −r2j ) = p

∑k
j=1 d2

j ≤ pd2
1+(n−d1)2 = prk(C)2+(n−rk(C))2

by noting d1 = dim ker(C) = n − rk(C) and
∑k

j=1 d j = n. ��

Remark 4.15 For fixed n and p → ∞ the above upper estimate p
∑k

j=1 d2
j is in fact the order

of magnitude of n(C, C, p):

n(C, C; p)

p
∑k

j=1 d2
j

=
k∏

j=1

r j∏

t j =1

(
1 − 1

pt j

)
>

(
1 − 1

p

)n

.
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5 The proofs of the bounds

5.1 The equation AX ≡ X−1Bmodulo prime powers

Assume that A, B ∈ Mn(Z). We are interested in estimating the size of the affine variety
VA,B(pl) where

VA,B(pl) = {X ∈ GLn(Z/pl
Z) | AX = X−1B}. (19)

We will collect elements of VA,B(pl+1) according to their image in VA,B(pl). The final
push down to l = 1 will play a special role and we let

V (C)
A,B(pl) = {X ∈ VA,B(pl) | AX ≡ X−1B ≡ C mod p}. (20)

Let now X0 ∈ V (C)
A,B(pl) be given. Then all X ∈ VA,B(pl+1) such that X ≡ X0 mod pl

may be written as X = X0(I + plY ), for some Y mod p. The goal is to bound Y for which
(19) also holds mod pl+1. This leads to

AX0Y + Y X−1
0 B ≡ (X−1

0 B − AX0)/pl mod p.

Since X0 ∈ V (C)
A,B(pl) we have that Y is a solution to the Sylvester equation

CY + Y C ≡ (X−1
0 B − AX0)/pl mod p. (21)

Note that the equation above might have no solution, or exactly as many solution as

CY = −Y C mod p

for which we may apply Proposition 3.3 and its corollary. This gives

Lemma 5.1 Let rk C = r , rk∞ C = r∞. If l ≥ 1 and p �= 2 then

#V (C)
A,B(pl+1) ≤ p(n−r)(n−r∞)+r2∞/2#V (C)

A,B(pl).

Proof This is merely a restatement of Lemma 3.3 and (12). First note that

dim ker C = n − r and dim ker Cn = n − r∞.

To simplify the contribution of the non-zero eigenvalues in (12) use that

2d∞(A − λ)d∞(A + λ) ≤
(
d∞(A − λ) + d∞(A + λ)

)2

2

and that for a1, ..., ak positive integers, a2
1 + · · · + a2

k ≤ (a1 + · · · + ak)
2. ��

This estimate is wasteful since the solution set could be empty. However, this will suffice
for us.

The proof of Theorem 1.6 When l = 1 the bound for N∗(C, C; p) follows from Theorem 1.5
together with exact formulae in Proposition 3.1 which gave Corollaries 4.8 and 4.14.

To see this, note that we may decompose C (over the ground field Fp) as a block matrix
with one block invertible of size r∞ and one block nilpotent of size n − r∞.

For the invertible part we have the upper bound 2r∞ pr2∞/2 using Corollary 4.8 for each
irreducible factor �= X of the minimal polynomial of C2, noting that there at most r∞ such
factors, and applying a2

1 + · · · + a2
k ≤ (a1 + · · · + ak)

2 for positive integers a1, ..., ak .
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The nilpotent block has rank r − r∞ and so by Corollary 4.14 we have the upper bound
p(n−r)2+(r−r∞)2 from which

N∗(C, C; p) ≤ 2r∞ p(n−r)2+(r−r∞)2+r2∞/2. (22)

This proves the first statement in case l = 1. Whenever l > 1 we use Lemma 5.1 inductively
to get that

N∗(C, C; pl) ≤ 2r∞ pe(l,n,r ,r∞)

where

e(l, n, r , r∞) = (n − r)2 + (r − r∞)2 + r2∞/2 + (l − 1)
(
(n − r)(n − r∞) + r2∞/2

)
.

In order to prove the second statement, note that unless N∗(A, B; pl) = 0, we find a
common value C := AX0 = X−1

0 B such that N∗(A, B; pl) = N∗(C, C; pl) and put
r∞ := r∞(C). Moreover, from Lemma 4.1 the value of r∞ is the same for any of the C-s
that arise. So we are bound to estimate e(l, n, r , r∞).

To simplify the exponent assume first that n/2 ≤ r ≤ n. A calculation shows that the
maximum of the function

(1 − x)2 + (x − y)2 + y2/2 + (l − 1)
(
(1 − x)(1 − y) + y2/2

)

on the domain
D = {(x, y) | 1/2 ≤ x ≤ 1, 0 ≤ y ≤ x}. (23)

is l/2, proving the claim in this case.
For r < n/2 we use that (n − r)(n − r∞) + r2∞/2 ≤ n(n − r), and so

e(l, n, r , r∞) ≤ ln(n − r)

in view of (n − r)2 + r2 − n(n − r) = r(2r − n) ≤ 0.
This establishes both bounds in (7).
Finally to prove the universal bound N∗(A, B; pl) ≤ 2n pl(n2−n) note that it holds trivially

for l ≥ 2, since n2 − n ≥ n2/2.
For N∗(A, B; p) start with the bound in (22). Note that if r = n then also r∞ = n and so

it is enough to prove that, for 0 ≤ r∞ ≤ r , 1 ≤ r ≤ n − 1, we have

(n − r)2 + (r − r∞)2 + r2∞/2 ≤ n2 − n.

However since 0 ≤ r∞ ≤ r we have

(r − r∞)2 + r2∞/2 ≤ r2

and for 1 ≤ r ≤ n − 1

(n − r)2 + r2 ≤ n2 − 2n + 2.

Finally n2 − 2n + 2 ≤ n2 − n holds since n ≥ 2. ��

5.2 Gauss sums of matrices

There are various ways exponential sums with quadratic functions of the entries of an n × n
matrix arise. For example in the theory of Siegel modular forms Q(X) = Tr Xt AX , and the
associated Gauss sums play an important role see e.g [18]. These have a very different flavor
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than ours, as the tensor properties allow one to diagonalize A, which immediately yields
a diagonalization of the quadratic form Q(x11, x12, . . . , xnn). This approach is not directly
applicable to our situation since we have Q(X) = Tr T X2 for some matrix T . While this
case appeared in the literature, see e.g. [7] our treatment is based directly on Proposition 3.5
and its corollary 3.6.

The proof of Proposition 1.8 We have to estimate the sum

SA,B(X; p) =
∑

U mod p

ψ((SU + T U 2)/p),

where X is such that AX ≡ X−1B mod pl , and where S = (AX − X−1B)/pl and T =
AX mod p. This is clearly a general Gauss sum. To apply Corollary 3.6 let B(U , Y ) =
Q(U + Y ) − Q(U ) − Q(Y ) = Tr((T Y + Y T )U ) be the associated bilinear form.

We have that either SA,B(X; p) = 0 or there exists Y such that Tr SU = B(U , Y ) for
some Y in which case

SA,B(X; p) =
(
det(Q1)

p

)
e−2π i Q(Y )/p pn2−R

where R is the rank of the quadratic form Q(X) = Tr(T X2).
Whether there exists Y such that Tr SU = B(U , Y ) for all U is again determined by the

solubility of a Sylvester equation

T Y + Y T = S.

Moreover it implies that the rank of Q is R = n2 − K , where K = #{Y : T Y + Y T ≡ 0
mod p}. This is estimated as in Lemma 5.1 using Lemma 3.3 which gives the claim.

5.3 Bounding Kn(A, B; pk)

The proof of Theorem 1.9 The case of k = 1 was handled in [6].
When k = 2 l we have |Kn(A, B; pk)| ≤ pln2 N∗(A, B; pl) by Proposition 1.1 noting

that any mod pl solution of the matrix equation AX ≡ X−1B (mod pl) has exactly pln2

lifts to GLn(Z/pk
Z).

Similarly, in case k = 2 l + 1 (l ≥ 1) we deduce |Kn(A, B; pk)| ≤ pln2 N∗(A, B; pl)

maxX |SA,B(X; p)| from Proposition 1.1. The estimate for the Gauss sum SA,B(X; p) is
given in Proposition 1.8 while the estimate for N∗(A, B; pl) is in Theorem 1.6 both in the
general case and under the stronger assumption gcd(det A, det B, p) = 1.
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