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Abstract
Every cotilting module over a ring R induces a t-structure with a Grothendieck heart in
the derived category D(Mod-R). We determine the simple objects in this heart and their
injective envelopes, combining torsion-theoretic aspects withmethods from themodel theory
of modules and Auslander-Reiten theory.

1 Introduction

The notion of a t-structure τ on a triangulated category T appears in the work of Beilinson,
Bernstein, and Deligne [10] as a means to associate to T an abelian category, which then
arises as the heart Hτ of the t-structure. For example, if the triangulated category is the
derived category D(A) of an abelian category A, an appropriately chosen t-structure τ will
recover, according to this process, the given abelian category Hτ

∼= A. Other choices of
t-structure on D(A) will give rise to hearts that may be derived equivalent to A.

The primary aimof [10]was to introduce the abelian category of perverse sheaves (see [25,
Ch 8]) on a topological pseudomanifold X of even dimension, equipped with a stratification
with no odd-dimensional strata. The triangulated category was the bounded derived category
of sheaves on X and the t-structure was chosen to yield the perverse sheaves on X as the
objects of the heart Hτ . As these perverse sheaves were seen to have finite length, attention
naturally turned to the simple ones, which were determined [10, Theorem 4.3.1] by the
intersection homology of the connected strata, appropriately shifted (see also [25, Theorem
8.1.8]).
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In the same spirit, our interest in this paper are the simple objects of the heart of the HRS
tilt of a torsion pair (T ,F) in the category Mod-R of modules over a ring. The HRS tilt of
(T ,F) is a t-structure τ introduced byHappel, Reiten, andSmalø [21] on the derived category
D(Mod-R). The objects of the heart Hτ need not all be of finite length, but Happel, Reiten
and Smalø showed that Hτ contains a torsion pair (F, T [−1]) whose constituent classes
are equivalent to those of (T ,F), with the roles reversed. When viewed with regard to the
torsion pair (F, T [−1]), every simple object ofHτ is evidently either torsion or torsionfree.

We provide a torsion theoretic description of the simple objects of Hτ using the notion
of an almost torsionfree module (Definition 3.1) and its dual, that of an almost torsion
module. Every torsionfree module is almost torsionfree, but there may be others, which are
necessarily torsion. The dual statement also holds and we characterise in Theorem 3.6 the
torsionfree simple objects of Hτ to be those of the form T [−1] where TR ∈ T ⊆ Mod-R is
an almost torsionfree torsion module, and the torsion simples of the heart to be the objects
that correspond to almost torsion torsionfree modules.

If C ∈ Mod-R is a 1-cotilting module, then the cotilting class C = ⊥1C = Cogen(C) is
a torsionfree class in Mod-R and we call the heart of the HRS tilt of the torsion pair (Q, C)

a cotilting heart. Every cotilting heart is a Grothendieck category [14] whose subcategory
Inj(Hτ ) of injective objects is known to be equivalent to Prod(C) ⊆ C.As such, the injective
objects of Hτ are torsion, but when Prod(C) ⊆ C ⊆ Mod-R is regarded as a subcategory
of R-modules, it consists of torsionfree modules. As cotilting modules are pure-injective, so
are all the objects of Prod(C).Corollary 5.12 makes use of the notion of a neg-isolated inde-
composable pure-injective module (§5.5) from the model theory of modules to characterise
the injective envelopes of simple objects of the heart, when they are considered as modules
in the definable subcategory C ⊆ Mod-R. It states that they are precisely the neg-isolated
indecomposable pure-injectives of C that belong Prod(C).

Among the neg-isolated indecomposable pure-injective modules of a definable sub-
category of Mod-R such as C, there is the distinguished class of critical neg-isolated
indecomposable pure-injectives U , determined by the property that every monomorphism
U → V in Mod-R with V ∈ C is a split monomorphism (Proposition 5.16). These are the
torsionfree modules that correspond to the injective envelopes of torsion simple objects of
the heart. It is a general fact about definable subcategories that there exist enough critical
neg-isolated indecomposables, in the sense that every torsionfree module F ∈ C may be
embedded—not necessarily purely—into a direct product of critical neg-isolated indecom-
posables in C. It follows that no 1-cotilting module is superdecomposable.

The characterisations of the torsionfree and torsion simple objects of a cotiliting heart in
terms of almost torsionfree and almost torsion modules are categorically dual and seem to
give the two kinds of simple object equal status. The question of existence however does not.
We call the neg-isolated indecomposable pure-injectives of C that correspond to injective
envelopes of torsionfree simple objects of the heart special. In stark contrast to the critical
neg-isolated indecomposables, there is a 1-cotilting module C� over the Kronecker algebra
� (Example 6.2) whose cotilting class contains no special neg-isolated indecomposable
pure-injectives. In other words, every simple object of the cotilting heart of C� is torsion.

All of our characterisations of the simple objects of a cotilting heart may be regarded
as part of Auslander-Reiten theory, but only the last makes direct appeal to almost split
morphisms in the module category. This final description relies on the approximation theory
of the complete cotorsion pair (C, C⊥).The almost split morphisms that appear are left almost
split morphisms that enjoy the strong uniqueness property (Definition 2.6). It is included in
the following summary of all our results on the torsion simple objects of a cotilting heart.
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Theorem A (Theorems 3.6 and 4.2, Proposition 4.1, Corollary 5.18)
The following statements are equivalent for a module N .

(1) N is isomorphic to the injective envelope of a torsion simple S in Hτ .
(2) N is a critical neg-isolated module in C.
(3) There exists a short exact sequence

0 S
a

N
b

N̄ 0

inMod-R, where S is torsionfree, almost torsion, a is a C⊥1 -envelope, and b is a strong
left almost split morphism in C.

A strong left almost split morphism is either a monomorphism or epimorphism (Lemma 4.3).
Theorem A includes a characterisation of the torsion simple objects of the heart as the
torsionfree modules that appear as kernels of strong left almost split morphisms in C, while
its dual, the next Theorem B, characterises the torsionfree simple objects as shifts of torsion
modules that arise as cokernels of strong left almost split morphisms in C.

Theorem B (Theorems 3.6 and 4.2, Proposition 4.1, Proposition 5.19)
The following statements are equivalent for a module N .

(1) N is isomorphic to the injective envelope of a torsionfree simple S[−1] in Hτ .
(2) N is a special neg-isolated module in C.
(3) There exists a short exact sequence

0 N
a

N̄
b

S 0

inMod-R,where S is torsion, almost torsionfree, a is a strong left almost split morphism
in C, and b is a C-cover.

The simple objects in cotilting hearts are crucial to understanding the phenomenon of
mutation and to describe the lattice tors-R of torsion classes in the category mod-R of finite
dimensional modules over a finite dimensional algebra R. Indeed, the simple objects in the
heart Hτ correspond to the arrows in the Hasse quiver of tors-R which are incident to the
torsion classQ∩mod-R, or equivalently, to the irreducible mutations of the cotilting module
C , cf. [7, 16, 24]. In a forthcoming paper [5], we will employ Theorems A and B to obtain
an explicit description of mutation of cotilting (or more generally, cosilting) modules. This
will allow us to interpret mutation as an operation on the Ziegler spectrum of R which will
amount to replacing critical neg-isolated summands by special ones, or viceversa.

2 Background

2.1 Notation

In this section we fix our basic notations and conventions.
Let R be a unital associative ring. We denote the category of right R-modules by Mod-R

and the category of left R-modules by R-Mod. The full subcategories of finitely presented
modules are denoted mod-R and R-mod respectively. The derived category of Mod-R is
denoted D(Mod-R). We abbreviate the Hom-spaces in D(Mod-R) in the following way:

HomD(R)(X , Y ) := HomD(Mod-R)(X , Y )
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for all complexes X , Y .
All subcategories will be strict (i.e. closed under isomorphisms) and, for a full subcategory

B, we will use the notation B ∈ B to indicate that B is an object of B.
LetX be a set of objects in an additive categoryAwith products. Then we use the notation

Prod(X ) for the set of direct summands of products of copies of objects contained inX . In the
case whereA is Grothendieck abelian, we will use Cogen(X ) to denote the set of subobjects
of objects contained in Prod(X ). We will write Inj(X ) for the class of injective objects in
the category A that are contained in X . We will consider the following full perpendicular
subcategories determined by a subset I ⊆ {0, 1}:

X⊥I := {M ∈ A | ExtiA(X , M) = 0 for all X ∈ X and i ∈ I }
⊥IX := {M ∈ A | ExtiA(M, X) = 0 for all X ∈ X and i ∈ I }.

In the case where X = {X}, we will use the notation X⊥I for X⊥I and Prod(X) for Prod(X )

etc. Furthermore, we will often just write X⊥0 instead of X⊥{0} etc.

2.2 Torsion pairs and HRS-tilts

In this subsection we introduce the notion of an HRS-tilt, due to Happel, Reiten and Smalø.
The idea of their work is to produce a t-structure in the derived category D(Mod-R) from
a given torsion pair in Mod-R. More details about the construction and properties of this
t-structure can be found in [21].

Torsion pairs, first introduced by Dickson [17], will be a central object of study in the
latter sections of this article. The following is the definition of a torsion pair in an abelian
category A.

Definition 2.1 Apair of full subcategories (T ,F)ofA is called a torsionpair if the following
conditions hold.

(1) For every T ∈ T and F ∈ F , we have that HomA(T , F) = 0.
(2) For every X in A, there exists a short exact sequence

0 → t(X) → X → X/t(X) → 0

where t(X) ∈ T and X/t(X) ∈ F .

We call T the torsion class and F the torsionfree class. If, in addition, the class T is closed
under subobjects, then the torsion pair is called hereditary.

We extend the above terminology to objects: the objects T in T are called torsion and the
objects F in F are called torsionfree.

The next result shows that such a torsion pair in Mod-R yields a t-structure in D(Mod-R),
in the sense of [10]. Note that we define our t-structure to consist of two Hom-orthogonal
classes; this differs from the original definition by a shift.

Proposition 2.2 ([21, Prop. I.2.1]) Let τ = (T ,F) be a torsion pair in D(Mod-R). The two
full subcategories

Uτ = {X ∈ D(Mod-R) | H0(X) ∈ T , Hi (X) = 0 for i > 0}
Vτ = {X ∈ D(Mod-R) | H0(X) ∈ F, Hi (X) = 0 for i < 0}

of D(Mod-R) form a t-structure.
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We will refer to this t-structure as the HRS-tilt of (T ,F). It is shown in [10] that the
heart Hτ := Uτ [−1] ∩ Vτ of the t-structure (Uτ ,Vτ ) is an abelian category whose short
exact sequences 0 → X → Y → Z → 0 are given by the triangles X → Y → Z → X [1]
of D(Mod-R) such that X , Y and Z are contained in Hτ . For any two objects X and Y in
Hτ , there are functorial isomorphisms

HomD(R)(X , Y [i]) ∼= ExtiHτ
(X , Y ) for i = 0, 1.

Moreover, (F, T [−1]) is a torsion pair in Hτ by [21, Cor. I.2.2].

We will make use of the following lemma in Sect. 3.

Lemma 2.3 Let τ = (T ,F) be a torsion pair inMod-R.

(1) Let f : X → Y be a morphism inHτ , and let Z be the cone of f inD(Mod-R). Consider
the canonical triangle

K → Z → W → K [1]
where K ∈ Uτ and W ∈ Vτ . Then

KerHτ ( f ) = K [−1], CokerHτ ( f ) = W .

(2) Let h : Y → X be an R-homomorphism with Y , X ∈ F . The morphism h is a monomor-
phism in Hτ if and only if Ker (h) = 0 and Coker(h) ∈ F , and h is an epimorphism in
Hτ if and only if Coker(h) ∈ T .

(3) Let h : Y → X be a R-homomorphism with Y , X ∈ T . The morphism h[−1] is a
monomorphism inHτ if and only if Ker (h) ∈ F , and h[−1] is an epimorphism inHτ if
and only if Coker(h) = 0 and Ker (h) ∈ T .

Proof Recall that the cone of a morphism h in Mod-R has homologies Ker (h) in degree −1,
Coker(h) in degree 0, and zero elsewhere.

(1) This is a standard property of t-structures. See, for example, [18, pp.281].
(2) We know from (1) that KerHτ (h) = 0 if and only if the cone of h belongs to Vτ . This

means Ker (h) = 0 and Coker(h) ∈ F . Similarly, CokerHτ (h) = 0 if and only if the
cone of h belongs to Uτ , which means that Coker(h) ∈ T .

(3) The cone of h[−1] belongs to Vτ if and only if Ker (h) ∈ F , and it belongs to Uτ if and
only if Coker(h) = 0 and Ker (h) ∈ T .

�	

2.3 Cotiltingmodules and cotorsion pairs

In this paper we will focus on HRS-tilts of torsion pairs induced by cotilting modules. We
now introduce these modules and collect together some of their important properties. The
definition of a (possibly infinitely generated) cotiltingmodule first appeared in [13], dualising
the definition of [12].

Definition 2.4 A right R-module C is called a cotilting module if the following three state-
ments hold.

(1) InjdimRC ≤ 1.
(2) Ext1R(Cκ ,C) = 0 for all cardinals κ .
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(3) There exists a short exact sequence 0 → C1 → C0 → I → 0 where Ci ∈ Prod(C) for
i = 0, 1 and I is an injective cogenerator of Mod-R.

We say that cotilting modules C and C ′ are equivalent if Prod(C) = Prod(C ′).

In [13, Prop. 1.7], the authors show that Cogen(C) = ⊥1C and,moreover, that this equality
characterises cotilting modules. We call this class C := Cogen(C) = ⊥1C the cotilting class
associated to C and it follows that τ = (Q, C) := (⊥0C,Cogen(C)) is a (faithful) torsion
pair. We call the heart of the HRS-tilt of τ the associated cotilting heart.

We know from [14] that a cotilting heart Hτ is a Grothendieck category with injective
cogenerator C so, in particular, we have Inj(Hτ ) = Prod(C).

Remark 2.5 Often the term cotilting module is used for the more general notion of an n-
cotilting module, which was first defined in [1]. In that context, the modules specified in
Definition 2.4 are called 1-cotilting modules. Since we will not be considering n-cotilting
modules for n > 1, we will use the term cotilting module to refer to a 1-cotilting module.

It was shown in [8] that every cotilting module is pure-injective and every cotilting class is
definable (see Sects. 5.3 and 5.4 for definitions of these terms). As a consequence, the class C
is closed under direct limits, and the cotorsion pair (C, C⊥1) = (⊥1C, (⊥1C)⊥1) cogenerated
by C is a perfect cotorsion pair. In particular, for every module M in Mod-R, there exist
special approximation sequences

0 −→ X −→ Y
a−→ M −→ 0

0 −→ M
b−→ X ′ −→ Y ′ −→ 0

such that X , X ′ ∈ C⊥1 and Y , Y ′ ∈ C. In particular, a is a C-cover and b is a C⊥1 -envelope.
Moreover, we have that C ∩ C⊥1 = Prod(C). For more details on covers, envelopes and
cotorsion pairs, we refer the reader to [19].

2.4 Injective envelopes of simples and left almost split morphisms

In this section we will prove some preliminary results connecting simple objects in a cotilting
heart to left almost split morphisms. Our considerations are inspired by [15].

Definition 2.6 Let X be an additive category. A morphism f : X → Y in X is called a left
almost split morphism if it is not a split monomorphism and, for any g : X → Z that is
not a split monomorphism, there exists a morphism h : Y → Z such that g = h f . If the
morphism h is unique for every such g, then we call f a strong left almost split morphism.

We begin with the following general result about Grothendieck abelian categories.

Proposition 2.7 Let G be a Grothendieck abelian category and, for any object M in G, let
E(M) denote the injective envelope of M.

(1) If S is a simple object, then the canonical morphism E(S) → E(E(S)/S) is a left almost
split morphism in Inj(G).

(2) If f : E → E+ is a left almost split morphism in Inj(G), then the kernelKer ( f ) is simple
and the canonical embedding Ker ( f ) → E is the injective envelope of Ker ( f ).

(3) If f : E → E+ is a left almost split morphism in Inj(G), then the canonical epimorphism
g : E → Im( f ) is a strong left almost split morphism in G.
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(4) If g : E → Ẽ is a left almost split morphism in G with E in Inj(G), and e : Ẽ → E(Ẽ)

is the injective envelope of Ẽ , then f := eg is a left almost split morphism in Inj(G).

Proof (1) Consider the morphism f given by the composition of the quotient
E(S) → E(S)/S with the injective envelope E(S)/S → E(E(S)/S). This morphism is
not a split monomorphism. Any other morphism g : E(S) → F in Inj(G) that is not a split
monomorphism must have a non-trivial kernel K and so K necessarily contains S because
S is essential in E(S). It follows that g factors through f as required.

(2) Consider the kernel 0 → K
k→ E

f→ E+ of f in G. We will show that K = Ker ( f )
is simple. Clearly K �= 0 because f is not a split monomorphism. Moreover, every non-zero
subobject G ⊂ K coincides with K , because the composition of the quotient E → E/G
with the injective envelope E/G → E(E/G) of E/G is not a split monomorphism and thus
factors through f .

Let e : K → E(K ) be the injective envelope of K . Since k : K → E is a monomorphism
and E is injective, there exists a split epimorphismm : E → E(K ) such that e = mk. Ifm is
not a monomorphism, then there exists a morphism g : E+ → E(K ) such that g f = m. This
implies that 0 = g f k = mk = e, which is a contradiction. Therefore m is an isomorphism.

(3) By (2), we have an exact sequence 0 → S
i→ E

f→ E+ where i is the injective
envelope of S and S is simple. Consider the short exact sequence

0 → S
i→ E

g→ E/S → 0.

Wewill show that g is a strong left almost split morphism in G. Note that g is not a monomor-
phism and so cannot be a split monomorphism. Consider a morphism a : E → M that is not
a split monomorphism. If ai �= 0, then ai must be a monomorphism because S is simple.
Then a is a monomorphism because i is an essential monomorphism. This implies that a
splits because E is injective, but this is a contradiction. Thus ai = 0 and therefore a factors
uniquely through the cokernel E/S ∼= Im( f ) of i , as required.

(4) Consider f := eg where e : Ẽ → E(Ẽ) is the injective envelope of Ẽ . We will show
that f is a left almost split morphism in Inj(G). Firstly, f is not a split monomorphism because
otherwise g is a monomorphism and therefore split (since E is injective). Let a : E → E ′ be
a morphism in Inj(G) that is not a split monomorphism. As g is a left almost split morphism
in G, we have that there exists a morphism b : Ẽ → E ′ such that a = bg. Moreover, since E ′
is injective and e is a monomorphism, we have that there exists a morphism c : E(Ẽ) → E ′
such that a = c(eg) = c f , as required. �	
Remark 2.8 Following all the notation of Proposition 2.7, assume that the Grothendieck
category G = Hτ is a cotilting heart with respect to the cotilting torsion pair τ = (Q, C).
Then, in the argument for Proposition 2.7(3), the object ImHτ ( f ) is in C because C is a torsion
class. Hence g is a strong left almost split morphism in the subcategory C. Moreover, the
argument for Proposition 2.7(4) only requires that g is a left almost split morphism in C since
the injective objects in Inj(Hτ ) = Prod(C) are contained in C. So, every left almost split
morphism E → Ẽ in C with E ∈ Prod(C) induces a left almost split morphism in Inj(Hτ ).

Corollary 2.9 Let G be a Grothendieck abelian category and let Inj(G) denote the full sub-
category of injective objects in G. The following statements are equivalent for an object E of
Inj(G).

(1) E is isomorphic to the injective envelope E(S) of a simple object S in G.
(2) There exists a left almost split morphism f : E → E+ in Inj(G).
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(3) There exists a strong left almost split morphism g : E → Ẽ in G.
(4) There exists a left almost split morphism g : E → Ẽ in G.

Proposition 2.7 and Remark 2.8 yield the following corollary in the special case where G
is a cotilting heart.

Corollary 2.10 Let τ = (Q, C) be a cotilting torsion pair in Mod-R and let Inj(Hτ ) denote
the full subcategory of injective objects in Hτ . The following statements are equivalent for
an object E of Inj(Hτ ).

(1) E is isomorphic to the injective envelope E(S) of a simple object S in Hτ .
(2) There exists a left almost split morphism f : E → E+ in Inj(Hτ ).
(3) There exists a (strong) left almost split morphism g : E → Ẽ in Hτ .
(4) There exists a (strong) left almost split morphism g : E → Ē in the torsion class C.

2.5 Localisation in abelian Grothendieck categories

A torsion pair (T ,F) in an abelian category ishereditary if the torsion classT is closed under
subobjects. If the abelian category is Grothendieck, this is equivalent to the torsionfree class
being closed under injective envelopes. In that case, the torsion pair (T ,F) is cogenerated by
its torsionfree injective objects.Define the localisationG/T ofG atT to be the categorywhose
objects are the same as the objects X of G, but denoted by XT . The morphisms between two
objects are given by the set HomG/T (XT , YT ) := lim−→ HomG(X ′, Y/Y ′) where X ′ ranges
over the subobjects of X such that X/X ′ ∈ T and Y ′ ranges over the subobjects of Y such
that Y ′ ∈ T . The work of Gabriel shows that the localisation functor LT : G → G/T ,

X �→ XT , is the left adjoint of an adjunction

G

LT

⊥ G/T .

RT

(2.1)

The adjoint property allows us to calculate hom groups in the localisation: if X ∈ G and
YT ∈ G/T , then HomG/T (XT , YT ) ∼= HomG(X , RT (YT )).

The left adjoint LT is exact and the right adjoint RT : G/T → G is fully faithful. We
may therefore identify the localisation category G/T with the full subcategory of G given by
the image of RT . We note that G/T is contained in F . Because the right adjoint of an exact
functor preserves injective objects, we may regard Inj(G/T ) under this identification as a
subcategory of Inj(G); it is precisely the subcategory Inj(G/T ) = Inj(G) ∩ F of torsionfree
injective objects.

As the right adjoint RT is left exact, we may identify the entire localisation G/T with
the equivalent subcategory Cogen2(Inj(G/T )) ⊆ G consisting of the objects in G with a
copresentation by torsionfree injectives. For more details on localisation in Grothendieck
categories, we refer the reader to [29, Ch. 4].

3 Simple objects in the heart

In this section we consider the simple objects in the heartHτ of the HRS-tilt of a torsion pair
τ = (T ,F) in Mod-R. Since (F, T [−1]) is a torsion pair in Hτ , it follows that any simple
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object S inHτ is either of the form S = F for some F in F or S = T [−1] for some T in T .
In other words, the simple objects in Hτ correspond to certain modules in Mod-R. The aim
of this section is to identify these modules. We remark that our results remain valid when
replacing Mod-R by an arbitrary abelian category.

Definition 3.1 Let τ = (T ,F) be a torsion pair in Mod-R.
A non-zero module T is called almost torsionfree if the following conditions are satisfied.

(ATF1) Every proper submodule of T is contained in F .
(ATF2) For each short exact sequence 0 → A → B → T → 0, if B is in T , then A is in T .

A non-zero module F is called almost torsion if the following conditions are satisfied.

(AT1) Every proper quotient of F is contained in T .
(AT2) For each short exact sequence 0 → F → A → B → 0, if A is in F , then B is in F .

Remark 3.2 Any torsionfree module is trivially almost torsionfree and any torsion module is
trivially almost torsion. The condition (ATF1) implies that if an almost torsionfree module is
not torsionfree, then it must be torsion. Similarly, any almost torsion module is either torsion
or torsionfree. We will consider the non-trivial cases: the module contained in T that are
almost torsionfree and the module contained in F that are almost torsion. These module are
also known as torsion, almost torsionfree and torsionfree, almost torsion respectively.

Example 3.3 Suppose that the torsion pair τ = (T ,F) in Mod-R is hereditary. If T is a
torsion, almost torsionfree module, then (ATF1) implies that T is simple. Conversely, if
T ∈ T is simple, then (ATF1) is clearly satisfied, and (ATF2) follows from the hereditary
property of T .

Next, we show that the torsionfree, almost torsion modules are precisely the modules
in Cogen2(Inj(F)) ∼= Mod-R/T which become simple in the localisation. To see that a
torsionfree, almost torsion module F belongs to Cogen2(Inj(F)), take the injective envelope
of F,

0 F
a

E(F) �−1(F) 0, (3.1)

which is torsionfree by the hereditary property. Condition (AT2) implies that �−1(F) too is
torsionfree; ifwe take its injective envelope,weget a copresentation of F = FT by torsionfree
injective modules. Conversely, any module F in Cogen2(Inj(F)) satisfies condition (AT2).
For, suppose w.l.o.g. that there is a short exact sequence 0 → F → A → B → 0 with A in
F and B �= 0 in T . Then we have a commutative diagram with exact rows

0 F A B

h

0,

0 F E(F) �−1(F) 0,

(3.2)

where�−1(F) ∈ F and thus h = 0.But then the upper row is split exact, a contradiction.Now
it is easy to see that a module in Cogen2(Inj(F)), regarded as an object of the localisation,
contains no proper subobjects, andmust therefore be simple, if and only if it satisfies condition
(AT1).

Finally, observe that the torsionfree, almost torsionmodule F is uniform, for ifM1∩M2 =
0 are two nonzero submodules of F, then, by (AT1), the direct sum F/M1⊕F/M2 is a torsion
module. As F embeds in a canonical way into this direct sum, the hereditary property would
give the contradiction that F was also torsion. We conclude that E(F) is indecomposable
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and, because �−1(F) also belongs to F, the injective envelope a : F → E(F) in the short
exact sequence (3.1) is a special F⊥1 -envelope of F in Mod-R (cf. Theorem 4.2(2)).

The following proposition is essentially a rephrasing of [38, Lem. 2.3].

Proposition 3.4 Let τ = (T ,F) be a torsion pair in D(Mod-R).

(1) The following statements are equivalent for a non-zero module T .

(a) T is almost torsionfree.

(b) For every exact sequence 0 → X → Y
g→ T with X in F , either

(i) Y is in F; or
(ii) g is a split epimorphism.

(2) The following statements are equivalent for a non-zero module F.

(a) F is almost torsion.

(b) For every exact sequence F
g→ X→Y → 0 with Y in T , either

(i) X is in T ; or
(ii) g is a split monomorphism.

Proof We will prove (1), the argument for (2) is completely dual.
(1) [(a)⇒(b)] Assume T is almost torsionfree and consider an arbitrary exact sequence

0 → X → Y
g→ T with X in F . The case where g is an epimorphism is covered by the

dual of [38, Lem. 2.3] (noting that the argument does not require T to be in T ). It remains to
consider the case where g is not an epimorphism. Then Im(g) is in F by (ATF1), so Y is in
F because F is closed under extensions.

[(b)⇒(a)] Suppose T satisfies (1)(b). By the dual of [38, Lem. 2.3] (noting again that the
argument does not require T to be in T ), it suffices to show that every proper subobject of T
is in F . But this follows immediately if we consider the exact sequence 0 → 0 → Y → T .

�	
Remark 3.5 Almost torsionfree and almost torsionmodules are closely related to theminimal
(co)extending modules over finite-dimensional algebras introduced in [7], and also the brick
labelling given in [6] for functorially finite torsion pairs and in [16] for general torsion pairs.
The precise connections between these concepts are made clear in [38].

If τ = (Q, C) is a cotilting torsion pair, then C is closed under direct limits, hence all
torsion, almost torsionfree modules are finitely generated. On the other hand, there may be
torsionfree, almost torsion modules which are not finitely generated, as Example 6.1 will
show.

Theorem 3.6 Let τ = (T ,F) be a torsion pair inMod-R. The simple objects S in the heart
Hτ of the HRS-tilt of (T ,F) are precisely those of the form S = T [−1] with T torsion,
almost torsionfree and S = F with F torsionfree, almost torsion.

Proof Using the canonical exact sequence 0 → F → S → T [−1] → 0 in Hτ with F ∈ F
and T ∈ T , we see that a simple object S is either of the form S = F or S = T [−1]. Let
us show that an object of the form S = F with F ∈ F is simple if and only if F is almost
torsion. The other case is proven dually.

For the only-if part, we start by considering a proper submodule U of F . Then, since
F = S is simple in Hτ , the map h : U → F gives rise to an epimorphism h : U → F = S
in Hτ , hence the module F/U = Coker(h) is contained in T by Lemma 2.3. So, (AT1) is
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verified. To prove (AT2), we consider a short exact sequence 0 → F
h→ A → B → 0 in

Mod-R with A ∈ F . Here h : F = S → A is a monomorphism in Hτ , and so the module
B = Coker(h) is contained in F again by Lemma 2.3.

Conversely, we show that (AT1) and (AT2) imply that S = F is simple. To this end, we
claim that every morphism 0 �= f : S → A in Hτ is a monomorphism. Since f factors
through the torsion part of A with respect to the torsion pair (F, T [−1]), we can assume that
A = C for some C ∈ F . Then f is a morphism in Mod-R, and f is a monomorphism (by
(AT1))with cokernel inF (by (AT2)). But then it follows fromLemma2.3 thatKerHτ ( f )=0,
and the claim is proven. �	
Corollary 3.7 Let τ = (T ,F) be a torsion pair inMod-R.

(1) Assume that T , T ′ are both torsion, almost torsionfree. If g : T → T ′ is non-zero, then
g is an isomorphism.

(2) Assume that F, F ′ are both torsionfree, almost torsion. If f : F → F ′ is non-zero, then
f is an isomorphism.

In particular, we have shown that the torsion, almost torsionfree modules and the torsion-
free, almost torsion modules are bricks (i.e., their endomorphism rings are division rings).

4 Injective envelopes in a cotilting heart

In this sectionwewill consider the casewhere our torsion pair τ = (Q, C) is a cotilting torsion
pair. We know from [14] that the associated cotilting heart Hτ is a Grothendieck category
and so, in particular, has enough injectives. Next we relate the injective envelopes of simple
objects in Hτ to the special approximation sequences induced by the perfect cotorsion pair
(C, C⊥1) = (⊥1C, (⊥1C)⊥1).

Proposition 4.1 Let τ = (Q, C) be a cotilting torsion pair with associated cotilting module
C and cotilting heart Hτ .

(1) Let M ∈ Q and consider a short exact sequence 0 → X
a→ Y

b→ M → 0 in Mod-R.
Let

X
a→ Y

b→ M
c→ X [1]

be the corresponding triangle in D(Mod-R). The following statements are equivalent.

(a) The morphism b : Y → M is a special C-cover of M inMod-R.
(b) The morphism c[−1] : M[−1]→X is an injective envelope of M[−1] in Hτ .

(2) Let M ∈ C and consider a short exact sequence 0 → M
a→ X

b→ Y → 0 in Mod-R.
The following statements are equivalent.

(a) The morphism a : M → X is a special C⊥1 -envelope of M inMod-R.
(b) The morphism a : M→X is an injective envelope of M in Hτ .

Proof (1) [(a)⇒(b)] Since C is closed under submodules and b is a special C-cover,
X ∈ C ∩ C⊥1 = Prod(C), so X is injective in Hτ . Moreover, it follows from Lemma
2.3 that there is an exact sequence

0 → M[−1] c[−1]→ X
a→ Y → 0
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in Hτ .
It remains to check that c[−1] is left minimal. Consider an endomorphism h ∈ EndHτ (X)

with h◦c[−1] = c[−1]. Then there is g ∈ EndHτ (Y ) yielding a commutative diagramwhose
rows are given by triangles

M[−1] c[−1]
X

h

a
Y

g

b
M

M[−1] c[−1]
X

a
Y

b
M

It follows that b = b ◦ g and hence g is an isomorphism by the minimality of b. As g is an
isomorphism, we conclude that h is an isomorphism as desired.

[(b)⇒(a)] Let X ′ a′→ Y ′ b′→ M
c′→ X ′[1] be the triangle in D(Mod-R) induced by a

special C-cover b′ of M . We have already seen that c′[−1] is an injective envelope of M[−1]
inHτ . Since injective envelopes are unique up to isomorphism, there exists an isomorphism
h : X → X ′ and a commutative diagram:

X
a

h∼=

Y

f

b
M

c
X [1]

h[1]∼=

X ′ a′
Y ′ b′

M
c′

X ′[1]
where the induced morphism f must also be an isomosrphism. It follows that b is a C-cover
of M in Mod-R.

(2) [(a)⇒(b)] Since M and Y are in C, we have X ∈ C ∩ C⊥1 = Prod(C), so X
is injective in Hτ . Moreover, it follows from Lemma 2.3 that there is an exact sequence

0 → M
a→ X → Y → 0 in Hτ . Finally, a is left minimal in Hτ since so is a in Mod-R.

[(b)⇒(a)] Let a′ : M → X ′ be a special C⊥1 -envelope of M . We have seen that a′ is
an injective envelope of M in Hτ . Since injective envelopes are unique up to isomorphism,
there exists an isomorphism h : X → X ′ such that ha = a′. It follows that a is a special
C⊥1 -envelope of M . �	
Theorem 4.2 Let τ = (Q, C) be a cotilting torsion pair with associated cotilting module C.

Consider a short exact sequence 0 → L
a→ M

b→ N → 0 in Mod-R.

(1) The following statements are equivalent.

(a) The module N is torsion, almost torsionfree and the morphism b is a special C-cover
of N in Mod-R.

(b) Themodule L is in Prod(C) and themorphism a is a strong left almost split morphism
in C.

(2) The following statements are equivalent.

(a) The module L is torsionfree, almost torsion and the morphism a is a special C⊥1 -
envelope of L inMod-R.

(b) Themodule M is inProd(C) and themorphismb is a strong left almost split morphism
in C.

Proof (1)[(a)⇒(b)] By Theorem 3.6, the object N is simple in the heart Hτ and by
Proposition 4.1, we have that c[−1] : N [−1] → L is an injective envelope, where
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L! →!M ! →!N c→ L[1] is the completion of the exact sequence to a triangle in D(Mod-R).
In particular, this means that L is injective in Hτ and hence L ∈ Prod(C). It follows from

Lemma 2.3, that 0 → N [−1] c[−1]→ L
a→ M → 0 is a short exact sequence in Hτ . Then

Remark 2.8 tells us that a is a strong left almost split morphism in C.
[(b)⇒(a)] It follows from our assumptions that L is injective in Hτ . By Proposition 2.7

and Remark 2.8, the kernel S := KerHτ (a) is simple and the inclusion 0 → S
c→ L is an

injective envelope. Moreover, since strong left almost split morphisms starting at an object
are unique up to isomorphism, a is an epimorphism in Hτ . By Lemma 2.3, we have that N
is in Q and also that N [−1] ∼= S. By Theorem 3.6 we have that N is almost torsionfree.
Finally, since c is an injective envelope, it follows from Proposition 4.1 that b is a C-cover of
N .

(2)[(a)⇒(b)] By Theorem 3.6, we have that L is simple in Hτ and by Proposition 4.1
the morphism a is an injective envelope in Hτ . In particular, we have that M is contained

in Prod(C) and the sequence 0 → L
a→ M

b→ N → 0 is exact in Hτ . By Remark 2.8 and
Proposition 2.7(1) we have that b is a strong left almost split morphism in C.

[(b)⇒(a)] Since M is in C and C is closed under submodules, we have that L is also in C.
Therefore 0 → L

a→ M
b→ N → 0 is a short exact sequence inHτ . By our assumption, we

have that b is a strong left almost split morphism in C and so, by Remark 2.8 and Proposition
2.7(2),wehave that L is simple anda is an injective envelope.ByTheorem3.6 andProposition
4.1, we have shown that condition (a) holds. �	

Next we show that the strong left almost split morphisms arising in Theorem 4.2 are the
only strong left almost split morphisms in C with domain contained in Prod(C).

Lemma 4.3 LetM be a full subcategory ofMod-R that is closed under subobjects. Then the
following are equivalent for a module M in M.

(1) There is a left almost split morphism f : M → M̃ in M that is not a monomorphism.
(2) There is a left almost split morphism g : M → M̄ in M that is an epimorphism.

Moreover, a strong left almost split morphism is either a monomorphism or an epimorphism.

Proof [(2) ⇒ (1)] is trivially true. To prove [(1) ⇒ (2)], observe that, if f : M → M̃ is a
left almost split morphism in M that is not a monomorphism, then g : M → Im( f ) is a left
almost split morphism in M that is an epimorphism because Im( f ) ∈ M by assumption.

The final statements follows immediately because strong left almost split morphisms are
unique up to isomorphism. �	
Define

NC := {N ∈ Prod(C) | ∃N → N̄ a (strong) left almost split morphism in C}.
Note that, by Proposition 2.7 and the subsequent corollaries, the set NC does not depend on
whether we choose to include the word strong or not. The previous lemma shows thatNC is
a disjoint union NC = MC 	 EC where

MC := {L ∈ Prod(C) | ∃L → L̄ a strong left almost split monomorphism in C} and

EC := {M ∈ Prod(C) | ∃M → M̄ a strong left almost split epimorphism in C}.
Note that MC consists of the modules L ∈ Prod(C) arising in Theorem 4.2(1) and EC
consists of the modules M ∈ Prod(C) arising in Theorem 4.2(2).
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Corollary 4.4 The following statements hold for a module N in Prod(C).

(1) N ∈ NC if and only if N is the injective envelope of a simple object in Hτ . In this case
N is isomorphic to an indecomposable direct summand of any cotilting module that is
equivalent to C.

(2) N ∈ MC if and only if N is the injective envelope of T [−1] inHτ where T is a torsion,
almost torsionfree module with respect to τ . In this case T is the cokernel of the strong
left almost split monomorphism N → N̄ in C.

(3) N ∈ EC if and only if N is the injective envelope of F in Hτ where F is a torsionfree,
almost torsion module with respect to τ . In this case F is the kernel of the strong left
almost split epimorphism N → N̄ in C.

Proof (1) The first statement follows immediately from Corollary 2.10. The latter statement
follows from the fact that the injective envelope of a simple object in a Grothendieck category
is indecomposable and the fact that the injective envelopes of simple objects arise as direct
summands of any injective cogenerator, up to isomorphism.

The statements (2) and (3) follow directly from Theorem 4.2 and Proposition 4.1. �	
In some cases, the heart Hτ turns out to be locally finitely generated and in this case we

have the converse of the second part of Corollary 4.4.

Corollary 4.5 Suppose Hτ is locally finitely generated.

(1) Let D ∈ Prod(C). Every N ∈ NC is isomorphic to a direct summand of D if and only if
D is a cotilting module that is equivalent to C.

(2) Let C̃ be a special C⊥1 -envelope of
⊕

N∈NC
N. Then C̃ is a cotilting module that is

equivalent to C and, moreover, C̃ is isomorphic to a direct summand of every other
cotilting module that is equivalent to C.

Proof We have already seen that every N ∈ NC arises as a direct summand of a cotilting
module D that is equivalent to C . The rest of the corollary follows from the corresponding
statements for locally finitely generated Grothendieck categories (see, for example, [27,
Prop. 3.17 and Cor. 3.18]). Note that the special C⊥1 -envelope of

⊕
N∈NC

N becomes the
injective envelope of

⊕
N∈NC

N in the heart by Proposition 4.1. �	
Example 4.6 There are some important cases where we know that the heart Hτ is locally
finitely generated and so we may apply Corollary 4.5.

(1) If C is a cotilting module of cofinite type, thenHτ is the heart of a compactly generated
t-structure by [3, Lemma 3.7] and [11, Thm. 2.3]. It follows from [37, Thm. 8.31] that
Hτ is locally finitely presented and hence locally finitely generated.

(2) A cotilting module C is an elementary cogenerator if and only ifHτ is locally coherent.
One implication follows from the description of the heart as a localisation of the functor
category given in [42], the other is shown in [28, Thm. 5.12].

(3) [19, Thm. 15.31], [36, Thm. 5.2] If R is a right noetherian ring, then (1) and (2) apply,
and the finitely presented objects in Hτ are precisely the objects which belong to the
bounded derived category Db(mod-R).

5 Neg-isolatedmodules

Let R be a ring and consider the category (R-mod,Ab) of additive functors from the category
R-mod of finitely presented left R-modules to the categoryAb of abelian groups. This functor
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category is a locally coherent Grothendieck category. We will use the notation (M,−) :=
HomR(M,−) for the representable objects in (mod-R,Ab), M ∈ mod-R, and we will write
[F,G] to denote the set Hom(R-mod,Ab)(F,G) of natural transformations from F to G.

5.1 Finitely generated subfunctors ofI

In this section, we study the subfunctors of themost important object of (mod-R,Ab), the for-

getful functor I : mod-R → Ab. There is a natural isomorphism I ι
(R,−) between

I and the functor represented by RR . For M ∈ mod-R, the M-component is given by the

morphism M
ιM

(R, M), m �→ ( fm : 1 �→ m) in Ab. This is actually a morphism of R-
moduleswhich induces an isomorphismof pointed R-modules (M,m) ((R, M), fm)

for each m ∈ M . So if φ ⊆ I is a subfunctor of the forgetful functor, then m ∈ φ(M) if
and only if fm ∈ φ(R, M). In this way we observe that the rule φ �→ φ(R,−) is a bijective
correspondence between the subfunctors of the forgetful functor and those of (R,−).

Associated to a pointed finitely presented module (M,m), is the finitely generated
subfunctor Im ( fm,−) ⊆ (R,−) induced by the natural transformation ( fm,−) :
(M,−) (R,−). It corresponds to the subfunctor HM,m of the forgetful functor
I which takes N ∈ mod-R to the finite matrix subgroup (or pp-definable subgroup)
HM,m(N ) = {h(m) | h ∈ HomR(M, N )}. On the other hand, if φ ⊆ (R,−) is a finitely
generated subfunctor, then there is a natural transformation η : (M,−) → (R,−)with image
Im η = φ. By Yoneda’s Lemma, there exists an R-linear morphism fm : R M such
that η = ( fm,−).Thus, every finitely generated subfunctor of I arises from a pointed finitely
presented module (M,m) in this way.

The finitely presented objects of (mod-R,Ab) admit a canonical extension to Mod-R that
respects direct limits. As all representable functors and their finitely generated subfunctors
are finitely presented, this pertains to the finitely generated subfunctors φ ⊆ I of the forgetful
functor.

Proposition 5.1 Let (M,m) be a pointed finitely presented module and φ = HM,m ⊆ I.
Then (M,m) is a free realisation of φ, in the sense that m ∈ φ(M), and whenever (N , n)

is a pointed module with n ∈ φ(N ), then there exists a morphism h : (M,m) → (N , n) of
pointed modules.

Proof The case when (N , n) is finitely presented is clear by definition of HM,m . For the
general case, use the fact that φ respects direct limits, so there exists a pointed finitely
presented module (N ′, n′) and a morphism (N ′, n′) → (N , n) of pointed modules with the
property that n′ ∈ φ(N ′). Now use again the definition of φ. �	

5.2 The pp-type of a pointedmodule

The finitely generated subobjects of I form a modular lattice. We will now use techniques
from the model theory of modules [30, 31, 44] to investigate this lattice. The model theoretic
approach allows us to represent the finitely generated subfunctors of I by formulas φ(x) in a
certain first-order language. The formula endows the corresponding subfunctor φ ⊆ I with
semantic content, so that if (M,m) is a pointed right R-module,wemay evaluate the statement
φ(m) as true in M, denoted by M |� φ(m), or not. In other words, the M-component of
the inclusion φ ⊆ I consists of the “solutions” in M to the formula φ(x). We refer to the
formulas φ(x) as pp-formulas, see [31, §12.2] for details.
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The pp-type, denoted by pp(N , n), of a pointed module (N , n) is the collection of
pp-formulas φ(x), for which N |� φ(n). Equivalently, we can think of pp(N , n) as the
collection of finitely generated subfunctors φ ⊆ I for which n ∈ φ(N ). As such, the pp-
type pp(N , n) may be regarded as a filter 	 in the lattice of finitely generated subfunctors
of the forgetful functor I ∈ (mod-R,Ab); we say that (N , n) is a realisation of 	. The
Completeness Theorem of first-order logic ensures that every filter 	 arises as the pp-type
	 = pp(N , n) of some pointedmodule. The functorial property of pp-formulas ensures that if
f : (M, n) → (N , n) is a morphism of pointed R-modules, then pp(M,m) ⊆ pp(N , n).

The general question thus arises of when an inclusion pp(M,m) ⊆ pp(N , n) of pp-types
is induced by a morphism of pointed modules. If M is finitely presented, it is easy to see
that pp(M,m) is the principal filter generated by the subfunctor HM,m ⊆ I. Proposition 5.1
therefore implies that every inclusion pp(M,m) ⊆ pp(N , n) is induced by a morphism
h : (M,m) → (N , n). Next we consider a condition on the module (N , n) that ensures the
existence of a morphism of pointed modules.

5.3 Pure-injective modules

The assignment M �→ (M ⊗R −) defines a fully faithful right exact functor

cY : Mod-R → (R-mod,Ab) (5.1)

which is called coYoneda embedding. It allows us to consider the exact structure of the
functor category inside the module category. This is known as the pure exact structure in
Mod-R.

Definition 5.2 A short exact sequence 0 N
f

M
g

L 0 in Mod-R
is called pure if

0 N ⊗R − f ⊗−
M ⊗R − g⊗−

L ⊗R − 0 (5.2)

is exact in (R-mod,Ab). In this case, we refer to f as a pure monomorphism and to g as a
pure epimorphism.

It is natural to consider the modules that are injective with respect to the pure exact
structure.

Definition 5.3 Amodule N is called pure-injective if every pure exact sequence of the form
(5.2) is a split exact sequence.

Clearly any module that becomes an injective object under the coYoneda embedding is
pure-injective and, in fact, all injective objects in (R-mod,Ab) arise in this way. That is, the
coYoneda embedding restricts to an equivalence

cY : Pinj(R)
∼

Inj(R-mod,Ab)

where Pinj(R) denotes the full subcategory of pure-injective objects in Mod-R and
Inj(R-mod,Ab) denotes the full subcategory of injective objects in (R-mod,Ab). Fur-
thermore, if MR is an R-module with pure-injective envelope ι : M → PE(M), then the
corresponding monomorphism ι ⊗ −: M ⊗R − → PE(M) ⊗R − is the injective envelope
of M ⊗R − in (R-mod,Ab).
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A pure monomorphism f : M → N may also be characterised [31, Proposition 2.1.6] in
terms of pp-formulas, which is equivalent to the condition that pp(M,m) = pp(N , f (m))

for every m ∈ M . So if 	 is a filter of finitely generated subfunctors of the forgetful functor
with realisation 	 = pp(N , n), then the pure-injective envelope 	 = pp(PE(N ), n) too is a
realisation of 	.

Remark 5.4 [44, Corollary 3.3 (1)] If N is pure-injective, then every inclusion
pp(M,m) ⊆ pp(N , n) is induced by a morphism f : (M,m) → (N , n).

5.4 Definable subcategories of modules

We are interested in localisating the functor category (R-mod,Ab) at hereditary torsion
classes associated to a particular kind of category of modules.

Definition 5.5 A full subcategory D of Mod-R is called definable if it is closed under prod-
ucts, pure submodules and directed colimits.

A definable subcategory D ⊆ Mod-R is closed under pure-injective envelopes, so that
its image under the coYoneda embedding cY(D) = D ⊗ − ⊆ (R-mod,Ab) is closed under
injective envelopes in (R-mod,Ab). It follows that the torsion pair (TD,Cogen(D ⊗ −)) in
(R-mod,Ab) cogenerated by D ⊗ −, is hereditary.

Notation 5.6 We will denote the localisation (R-mod,Ab)/TD by (R-mod,Ab)D and the
corresponding localisation functor by

(−)D : (R-mod,Ab) → (R-mod,Ab)D.

We will denote the Hom-spaces between two objects F,G in (R-mod,Ab)D by [F,G]D .

If D ⊆ Mod-R is a definable subcategory, then the hereditary torsion pair
(TD,Cogen(D ⊗ −)) in (R-mod,Ab) is of finite type in the sense of the following def-
inition. We refer the reader to [22] for more details on the theory surrounding hereditary
torsion pairs of finite type in locally coherent Grothendieck categories.

Definition 5.7 A torsion pair (T ,F) (not necessarily hereditary) in a Grothendieck category
G is said to be of finite type if the torsionfree class F is closed under directed limits in G.

The following theorem will be very important in what follows. For details, we refer to
[31, §12.3].

Theorem 5.8 The rule D �→ (TD,FD) is a bijective correspondence between the collection
of definable subcategoriesD ⊆Mod-R and hereditary torsion pairs in (R-mod,Ab) of finite
type, with inverse given by (T ,F) �→ D = {M ∈ Mod-R | M ⊗R − ∈ F }.

Consider the functor Mod-R → (R-mod,Ab)D given by the composition of the functor
(5.1)with the localisation functor (−)D . Since the injective objects in (R-mod,Ab)D coincide
with the injective objects in (R-mod,Ab) that are contained in the torsionfree class, this
functor restricts to an equivalence of categories

Pinj(D)
∼→ Inj ((R-mod,Ab)D)

where Pinj(D) denotes the full subcategory of pure-injective objects in D and
Inj ((R-mod,Ab)D) denotes the full subcategory of injective objects in (R-mod,Ab)D .
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Remark 5.9 In the proofs below we will use the following observation several times. If D is
a definable subcategory of (R-mod,Ab), then, for any M ∈ Pinj(D) and any R-module L ,
we have that

[ (L ⊗ −)D, (M ⊗ −)D ]D ∼= [(L ⊗ −), (M ⊗ −)] ∼= HomR(L, M). (5.3)

This follows directly from the fact that (M ⊗ −) is injective and torsionfree with respect to
the torsion pair (TD,FD) induced by D in (R-mod,Ab). In particular, we have

[ (R ⊗ −)D, (M ⊗ −)D ]D ∼= [(R ⊗ −), (M ⊗ −)] ∼= HomR(R, M) ∼= M . (5.4)

5.5 Neg-isolated pure-injective modules

Next we consider the pure-injective objects in a given definable subcategory that correspond
to injective envelopes of simple objects in the Grothendieck category (R-mod,Ab)D . They
will be characterised by a condition on pp-types.

A filter 	 in the lattice of finitely generated subfunctors of the forgetful functor in
(mod-R,Ab) will be called a D-filter if it admits a realisation pp(D, d) = 	 with D in
D. Recall that we can always choose D to belong to the full subcategory Pinj(D) of pure-
injective objects in D.

Theorem 5.10 Let D be a definable subcategory in Mod-R. The following statements are
equivalent for an indecomposable pure-injective module N in D.

(1) (N ⊗R −)D is the injective envelope of a simple object in (R-mod, Ab)D .
(2) There exists a left almost split morphism N → N+ in Pinj(D).
(3) If n ∈ N is a nonzero element and 	 = pp(N , n) is the associated pp-type, then there

exists aD-filter	+ ⊃ 	which properly contains	 such that whenever aD-filter
 ⊃ 	

properly contains 	, then 
 ⊇ 	+.

(4) N is the source of an almost split morphism in D.

Proof Notice that, since N is an indecomposable pure-injective module, the endomor-
phism ring of N is then local. This implies that every endomorphism of pointed modules
(N , n) → (N , n) with n ∈ N being nonzero is an automorphism. The equivalence

[(1)⇔ (2)] follows directly from Corollary 2.9 and the discussion following Notation 5.6.
[(2) ⇒ (3)] Let n ∈ N be nonzero and let f : N → N+ be a left almost split morphism in

Pinj(D). Set n+ = f (n) and consider the D-filters 	 = pp(N , n) and 	+ = pp(N+, n+).
Clearly 	+ ⊇ 	, and equality would imply by Remark 5.4 that there is a map of pointed
modules (N+, n+) → (N , n). Because f is not a split monomorphism, we get that	+ ⊃ 	

is strictly larger. On the other hand, if 
 ⊃ 	 is any strictly larger D-filter with realisation

 = (U , u) where U in Pinj(D), then there is a morphism g : (N , n) → (U , u) which is
not a split monomorphism. Then g factors through f , and pp(U , u) ⊇ pp(N+, n+), that is,

 ⊇ 	+.

[(3)⇒ (4)]Given a nonzero element n ∈ N , set	 = pp(N , n) and pickψ ∈ 	+\	with a
free realisation (M,m), i.e. a finitely presented pointedmodule (M,m) such thatψ = HM,m .
Consider the pushout of (N , n) with (M,m), postcomposed with aD-approximation (which
exists e.g. by [31, Proposition 3.4.39]) as in the middle row of
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(R, 1)
fm

fn

�

(M,m)

q

(N , n)
p

g

(K , k)
aK

(KD, aK (k)) =: (N+, n+)

(U , u)

Clearly, pp(N+, n+) contains both 	 and ψ , so it must contain 	+. Then the composition
aK ◦ p : (N , n) → (N+, n+) cannot be a split monomorphism. In fact, it must be a left almost
split morphism inD. For, suppose that we are given a morphism g : N → U inD that is not a
split monomorphism. Then there can’t be a morphism of pointed modules (U , u) → (N , n),
and we infer from Remark 5.4 that pp(U , u) ⊃ 	 is strictly larger. Thus ψ ∈ pp(U , u). By
Proposition 5.1 there exist a morphism (M,m) → (U , u) from the free realisation of ψ and
a factorisation through the pushout. As U ∈ D, this map from the pushout then factorises
through its D-approximation, as required.

[(4) ⇒ (2)] Suppose there exists a left almost split morphism h : N → N̄ in D and let
e : N̄ → PE(N̄ ) be the pure-injective envelope of N̄ . We will show that g := eh is a left
almost split morphism in Pinj(D). Let u : N → U be a morphism in Pinj(D) that is not a
split monomorphism. Then there exists some v : N̄ → U such that u = vh. Using that e is a
pure monomorphism and thatU is pure-injective, we have that there exists f : PE(N̄ ) → U
such that f g = f eh = vh = u as desired. �	
The theorem above is a relative version of results in [31, §5.3.5] for the case D = Mod-R.
Indeed, in that case condition (3) means precisely that 	 = pp(N , n) is a neg-isolated
pp-type. This suggests the following terminology.

Definition 5.11 Let D be a definable subcategory of Mod-R. A pure-injective module N in
D is called neg-isolated in D if it satisfies the equivalent conditions of Theorem 5.10.

We have seen that left almost split morphisms in a cotilting class are intimately related to
the injective envelopes of simple objects in the cotilting heart. Since cotilting classes C are
always definable subcategories, it is natural to ask how the results of Sect. 4 are related to the
neg-isolated modules in C.

Corollary 5.12 Let C be a cotilting module with torsion pair τ = (Q, C). The R-modules that
become injective envelopes of simple objects inHτ are precisely the neg-isolated modules in
C which lie in Prod(C).

Proof This follows immediately from Theorem 5.10 and Corollary 4.4. �	

5.6 Critical modules

Let (Q, C) be a cotilting torsion pair in Mod-R. The aim of this section is to investigate
the neg-isolated modules in C that are domains of left almost split morphisms in C that are
epimorphisms. In Lemma 4.3 we saw that these coincide with the domains of left almost split
morphisms in C that are not monomorphisms; these are the critical neg-isolated modules.
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Definition 5.13 Let D be a definable subcategory of Mod-R. We call a neg-isolated module
N in D critical in D if there exists a morphism h : N → N+ that is a left almost split
morphism in Pinj(D) such that h is not a monomorphism.

When the definable subcategory is a torsionfree class, we have the following alternative
characterisation of critical modules showing that they are exactly the neg-isolated modules
such that the associated strong left almost split morphism is an epimorphism.

Proposition 5.14 Let (T ,F) be a torsion pair inMod-R such that F is a definable subcate-
gory. The following statements are equivalent for a module N in F .

(1) N is a critical neg-isolated module in F .
(2) There exists a left almost split morphism f : N → N̄ in F that is an epimorphism. In

particular, f is a strong left almost split morphism.

Proof [(1) ⇒ (2)] Let h : N → N+ be a left almost split morphism in Pinj(F) that is not a
monomorphism. Note that Im(h) is contained in F because F is closed under submodules.
We will show that h̄ : N → Im(h) is a left almost split morphism in F . Since h is not a
monomorphism, it follows that h̄ is not a split monomorphism. Suppose u : N → U is a
morphism in F that is not a split monomorphism and consider eu : N → PE(U ) where e
is the pure-injective envelope of U . Then eu can’t be a split monomorphism. Since h is left
almost split in Pinj(F) and PE(U ) lies in F by [31, Thm. 3.4.8], there exists a morphism
f : N+ → PE(U ) such that eu = f h. Let k : Ker (h) → N be the kernel of h. Then
euk = f hk = 0 and, moreover, uk = 0 because e is a monomorphism. Using that h̄ is the
cokernel of k, we conclude that there exists a unique morphism g : Im(h) → U such that
u = gh̄.

[(2) ⇒ (1)] Let h : N → N̄ be a left almost split morphism in F that is an epimorphism.
Then N must belong to Pinj(F), since otherwise the pure-injective envelope e : N → PE(N )

would factor through h and h would be an isomorphism. In the proof of Theorem 5.10, we
showed that eh : N → N̄ → PE(N̄ ) is a left almost split morphism in Pinj(F). Since h is
an epimorphism, it is clear that eh is not a monomorphism. �	

We saw in Theorem 5.10 that neg-isolated modules in definable subcategories are in
bijection with injective envelopes of simple objects in the corresponding localisation of the
functor category. In the next lemma we identify which injective envelopes of simple objects
give rise to critical modules.

Lemma 5.15 Let D be a definable subcategory of Mod-R and suppose N is neg-isolated in
D. The following statements are equivalent.

(1) N is critical in D.
(2) (N ⊗R −)D is the injective envelope of a simple object S in (R-mod, Ab)D such that

[(R ⊗R −)D, S]D �= 0.

Proof Since N is neg-isolated inD, we have the following set up according to Sect. 5.3. There
exists a left almost split morphism h : N → N+ in Pinj(D) and, moreover, the morphism
(h⊗−)D : (N ⊗R −)D → (N+ ⊗−)D is a left almost split morphism in Inj(R-mod,Ab)D .
By Proposition 2.7, we see that the kernel of (h ⊗ −)D is isomorphic to the monomorphism
i : S → E(S) = (N ⊗R −)D .

[(1)⇒(2)] Suppose that Ker (h) �= 0. Consider an element k ∈ Ker (h) and consider
it as the morphism k : R → N that takes 1 �→ k. This yields a non-zero morphism
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(k ⊗ −) ∈ [(R ⊗R −), (N ⊗R −)], and it follows from Remark 5.9 that (k ⊗ −)D �= 0.
Moreover, we have that (h⊗−)◦(k⊗−) = (h(k)⊗−) = 0 and so (h⊗−)D ◦(k⊗−)D = 0.
Therefore, the morphism (k ⊗ −)D factors through the kernel of (h ⊗ −)D . Thus we
have a factorisation i ◦ g = (k ⊗ −)D and, in particular, we have a non-zero morphism
g : (R ⊗R −)D → S.

[(2)⇒(1)] Now suppose that there exists a non-zero morphism f : (R ⊗R −)D → S and
consider i ◦ f : (R ⊗R −)D → (N ⊗R −)D . Then, by Remark 5.9, there exists a non-zero
morphism g : (R⊗R −) → (N ⊗R −) such that gD = i ◦ f . Since the coYoneda embedding
given in Sect. 5.3 is fully faithful, we can find a non-zero element n ∈ N that determines
a morphism n : R → N such that 1 �→ n and (n ⊗ −) = g. By definition, we have that
(n ⊗ −)D = i ◦ f and so we have

(h(n) ⊗ −)D = ((h ⊗ −) ◦ (n ⊗ −))D = (h ⊗ −)D ◦ (n ⊗ −)D = (h ⊗ −)D ◦ i ◦ f = 0.

By Remark 5.9, this implies that (h(n) ⊗ −) = 0 and hence 0 �= n ∈ Ker (h). �	
This characterisation of critical modules in a definable subcategory D allows us to show

in the next proposition that they cogenerateD. Moreover, it follows from this that the critical
modules in a definable subcategoryD are related to the split injectivemodules inD. Amodule
M in a full subcategoryM of Mod-R is called split injective inM if every monomorphism
M → M ′ with M ′ in M is a split monomorphism.

Proposition 5.16 Let D be a definable subcategory of Mod-R and let D0 denote the set of
critical modules in D.

(1) The subcategory D is contained in Cogen(D0).
(2) The split injective modules in D are contained in the set Prod(D0).
(3) A module L belongs to D0 if and only if it is neg-isolated and split injective in D.

Proof (1) The definable subcategory D is closed under pure-injective envelopes and so it
suffices to show that Pinj(D) ⊆ Cogen(D0). Let N ∈ Pinj(D) and let n ∈ N and consider

0 → K → (R ⊗ −)D
(n⊗−)D−→ (N ⊗ −)D

Write (n ⊗ −)D = jq where q : (R ⊗ −)D → (R ⊗ −)D/K is the canonical quotient
morphism and j is a monomorphism. Observe that the functor (R ⊗ −) ∼= HomR(R,−) is
finitely presented, and so is its localisation (R ⊗ −)D by [22, Prop. 2.15]. Then K must be
contained in a maximal subobject M , which induces an epimorphism r : (R ⊗ −)D/K →
(R⊗−)D/M such that p = rq where p is the quotientmorphism (R⊗−)D → (R⊗−)D/M .
Since S := (R ⊗ −)D/M is simple and there is a non-zero morphism (R ⊗ −)D → S, it
follows that there is a critical module Ln in D such that i : S → (Ln ⊗ −)D is an injective
envelope.

As (Ln ⊗ −)D is injective, there exists a morphism h : (N ⊗ −)D → (Ln ⊗ −)D such
that the following diagram is commutative.

(R ⊗ −)D

q

(n⊗−)D

p (R ⊗ −)D/K
j

r

(N ⊗ −)D

h

S
i

(Ln ⊗ −)D

123



   12 Page 22 of 34 L. A. Hügel et al.

The isomorphisms in Remark 5.9 yield that h ∼= (hn ⊗ −)D for some hn : N → Ln . The
commutativity of the above diagram yields that 0 �= (hn ⊗−)D ◦ (n⊗−)D ∼= (hn(n)⊗−)D
and it follows that hn(n) �= 0.

Applying this argument to every element of N , yields a monomorphism N → ∏
n∈N Ln

with components equal to hn .
(2) By (1), every split injective in D is contained in Cogen(D0) and hence in Prod(D0).
(3) Let m : L → N be a monomorphism in Mod-R with N ∈ D and L ∈ D0. If m is

not split then, the composition em is not split, where e : N → PE(N ) is the pure-injective
envelope of N . But then em must factor through the left almost split morphism h : L → L+
in Pinj(D). But this is not possible because h is not a monomorphism.

Conversely, if L is neg-isolated and split injective inD, then there exists a left almost split
morphism h : L → L+ in Pinj(D), and h cannot be a monomorphism. �	
Proposition 5.17 Now suppose (Q, C) is a cotilting torsion pair and let C0 denote the set of
critical modules in C. We fix an injective cogenerator I ofMod-R with a special C-cover

0 → C1 → C0
g→ I → 0

Then C0 is split injective in C and Prod(C0) = Prod(C0).

Proof First we show that C0 is split injective. Consider a monomorphism h : C0 → C ∈ C.
Since C is cogenerated byC0 and I is injective, there are a cardinal α and maps e : C ↪→ Cα

0
and f : Cα

0 →I such that f eh = g. As g is a C-cover, there is also f ′ : Cα
0 →C0 such that

f = g f ′. Now the right minimality of g yields that h is a split monomorphism.
Next we show that Prod(C0) = Prod(C0). By the first part of the proof and Proposition

5.16(2), we have that C0 ∈ Prod(C0) and hence Prod(C0) ⊆ Prod(C0). As in [2, Lem. 1.1],
we see that C0 is a cogenerator of C. Therefore, by Proposition 5.16(3), we have that C0 ⊆
Prod(C0). Thus we have that Prod(C0) = Prod(C0). �	

The proposition above shows in particular that every cotilting class contains critical
neg-isolated modules and torsionfree, almost torsion modules. In contrast, we will see in
Example 6.2 that torsion, almost torsionfree modules need not exist. Notice moreover that in
general the class of split injectives in C is properly contained in Prod(C0), cf. Example 6.3.

Corollary 5.18 The set of critical neg-isolated modules in C coincides with the set EC of
modules M ∈ Prod(C) admitting a strong left almost split epimorphism M → M̄ in C.

Proof The statement follows immediately from Propositions 5.14 and 5.17 since Prod(C0) ⊆
Prod(C). �	

5.7 Special modules

Let τ = (Q, C) be a cotilting torsion pair with cotilting module C . We saw in Corollary 4.4
that the injective envelopes of simple objects in the heart Hτ are exactly the objects in the
set

NC := {N ∈ Prod(C) | ∃N → N̄ a (strong) left almost split morphism in C}.
By Corollary 5.12 the elements of NC are the neg-isolated modules in C which belong to
Prod(C). Moreover, we showed in Lemma 4.3 that NC = EC 	 MC where

EC := {M ∈ Prod(C) | ∃M → M̄ a strong left almost split epimorphism in C} and

MC := {L ∈ Prod(C) | ∃L → L̄ a strong left almost split monomorphism in C}.
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By Corollary 5.18 we have that the elements of EC are the critical neg-isolated modules in
C. In this section we will identify which of the non-critical neg-isolated modules in C are
contained inMC . In other words, wewish to determine the non-critical neg-isolatedmodules
in C which are contained in Prod(C).

Proposition 5.19 Let τ = (Q, C) be a cotilting torsion pair. The following statements are
equivalent for a module N in C.

(1) N is contained in Prod(C) and is a non-critical neg-isolated module in C.
(2) N is contained in the setMC of modules in Prod(C) that admit a strong left almost split

monomorphism f : N → N̄ in C.
(3) There exists a strong left almost split monomorphism f : N → N̄ in C such that the

cokernel of f is torsion, almost torsionfree.
(4) There exists a left almost split morphism g : N → N+ in Pinj(C) such that the cokernel

of g is not contained in C.

Proof [(1)⇒(2)] By Theorem 5.10 and Proposition 5.18, if N ∈ Prod(C) is non-critical
neg-isolated, then N is contained in NC\EC = MC .
[(2)⇒(3)] This follows from Theorem 4.2(1).
[(3)⇒(4)] Let f : N → N̄ be as in (3) and let T := Coker f . By the proof of Theorem 5.10,
we have that the composition g := e f is a left almost split morphism in Pinj(C) where
e : N̄ → N+ := PE(N̄ ) is the pure-injective envelope of N̄ . We show that Z := Cokerg is
not contained in C. Thus we have a commutative diagram:

0 N
f

N̄

e

T

h

0

0 N
g

N+ Z 0

where h must be non-zero. Indeed, if h = 0, then e factors through g and f is a split
monomorphism, a contradiction. Since T ∈ Q, we conclude that Z is not in C = Q⊥0 .
[(4)⇒(1)]Let g : N → N+ be as in (4). Note that, by definition, themodule N is neg-isolated
in C. Set Z := Cokerg and consider the special C-cover 0 → X → Y → Z → 0 of Z . Note
that X ∈ C ∩ C⊥1 = Prod(C) ⊆ Pinj(C) because X is a subobject of Y ∈ C. Since N+ is in
C, we have the following commutative diagram:

0 Im g

k

i
N+ Z 0

0 X Y Z 0

where g = i p is the canonical factorisation of g through Im g. Then kp must be a split
monomorphism. Indeed, if kp is not a split monomorphism, then there exists a morphism
l : N+ → X such that kp = lg = li p. Since p is an epimorphism, it follows that k = li .
A standard argument shows that the bottom sequence splits, which is not possible because
Z would then be isomorphic to a summand of Y ∈ C. We have therefore shown that N
is contained in Prod(C) because it is isomorphic to a direct summand of X ∈ Prod(C).
Moreover, since kp = lg is a monomorphism, so is g and hence N is not critical. �	
Definition 5.20 Let τ = (Q, C) be a cotilting torsion pair. A neg-isolated module N in C is
called special if it satisfies the equivalent conditions of Proposition 5.19.
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Corollary 5.21 Let I be an injective cogenerator of Mod-R with a special C-cover

0 → C1 → C0
g→ I → 0. (5.5)

(1) Every critical neg-isolated module in C is a direct summand of C0.
(2) Every special neg-isolated module in C is a direct summand of C1.

Proof To prove the corollary we will use the following general property of neg-isolated
modules (see [30, Prop. 9.29]): if a neg-isolated module N in a definable subcategory D is
a direct summand of

∏
i∈I Mi where Mi ∈ D for all i ∈ I , then N is a direct summand of

Mi for some i ∈ I . Since C0 ⊕ C1 is a cotilting module equivalent to C , it follows from
Corollary 4.4(1) that every N ∈ NC is a direct summand ofC0⊕C1. By Proposition 5.16(3),
the neg-isolated summands of C0 are exactly the critical ones and so the special neg-isolated
modules are all direct summands of C1 by [30, Prop. 9.29]. �	
Corollary 5.22 If τ = (Q, C) is a cotilting torsion pair with cotilting module C, then
PE(⊕NC N ) is isomorphic to a direct summand of C .

Proof The argument used in the first part of the proof of Corollary 5.21 implies that every
N ∈ NC arises as a direct summand of C . Equivalently, the functor N ⊗R −, regarded
as an object in the localised functor category (R-mod,Ab)C, is a coproduct factor of the
injective object C ⊗R −. Since N is neg-isolated, the socle soc(N ⊗R −) is a simple object
in (R-mod,Ab)C . It follows that

∐
N∈NC

soc(N ⊗R −) ⊆ soc(C ⊗R −) and therefore that
the injective envelope

E(
∐

N∈NC

soc(N ⊗R −)) = E(
∐

NC

(N ⊗R −)) = E((⊕NC N ) ⊗R −) = PE(⊕NC N ) ⊗R −

is a coproduct factor of C ⊗R −, as required. �	

6 Examples

In this section, we discuss some examples that illustrate our results. We also study the special
case of cotiltingmodules induced by ring epimorphisms, where we establish some interesting
properties of special and critical neg-isolated modules.

6.1 The Kronecker algebra

Let� be the Kronecker algebra, i.e. the path algebra of the quiver •−→−→ • over an algebraically
closed field k. It is well known that the category of finite dimensional indecomposable mod-
ules admits a canonical trisection (p, t,q), where p and q denote the families given by the
preprojective and preinjective modules, respectively, and t = ⋃

x∈X tx is the tubular family
formed by the regular modules and indexed over the projective line X = P

1(k). Given a
simple regular module S, we denote by S∞ and S−∞ the Prüfer and the adic module on
the corresponding ray and coray, respectively. Further, we denote by G the generic module.
Recall from [34] that EndR G is a division ring, and G is the unique (up to isomorphism)
indecomposable module which has infinite length over �, but finite length over its endo-
morphism ring. Moreover, G cogenerates the class F = t⊥0 of all torsionfree modules, it
generates the class D = ⊥0 t of all divisible modules, and the intersection F ∩D = AddG is
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equivalent to the category of all modules over a simple artinian ring Q which is obtained as
universal localization of � at t and is Morita equivalent to EndR G.

A complete description of the hearts of all cotilting �-modules is given in [32]. Let us
focus on two special cases.

Example 6.1 Consider the cotilting torsion pair τ = (T ,F) generated by t. It is cogenerated
by the cotilting module

C = G ⊕
∏

{all adic modules S−∞}.
The torsion, almost torsionfree modules coincide with the simple regular modules, while G
is the only torsionfree, almost torsion module. We refer to [32] for the first statement and
prove the second for the reader’s convenience.

(AT1) Let g : G → B be a proper epimorphism, and 0 → B ′ → B → B → 0 the
canonical exact sequence with B ′ ∈ T and B ∈ F . Then B lies in F ∩ D = AddG, so

G
g→ B → B is a morphism in AddG and is therefore zero or a split monomorphism. It

follows that B = 0 and B ∈ T .
(AT2) Let 0 → G → B → C → 0 be an exact sequence with B ∈ F . By applying the

functor Hom�(S,−) given by a simple regular module S, we obtain an exact sequence

Hom�(S, B) → Hom�(S,C) → Ext1�(S,G) ∼= DHom�(G, S)

where the first and third term are zero. Hence C ∈ F .
We have shown that G is almost torsion. For the uniqueness, observe that any other

torsionfree, almost torsion module X ∈ F is cogenerated by G, hence Hom�(X ,G) �= 0,
and X ∼= G by Corollary 3.7.

It follows thatG is simple injective in the heartHτ .Moreover, every simple regularmodule
S gives rise to a short exact sequence

0 → S−∞
a−→ S−∞

b−→ S → 0

as in Theorem B, and to a minimal injective coresolution

0 → S[−1]−→S−∞−→S−∞ → 0

of the simple torsionfree object S[−1] inHτ . We infer that G is the only critical neg-isolated
module in F , and the special neg-isolated modules coincide with the adic modules. These
are the neg-isolated modules in F which belong to Prod(C). Observe that also the modules
in p are neg-isolated in F , see Theorem 5.10.

Finally, let us remark that Hτ is not hereditary. Indeed, it is shown in [41, 5.2] that the
heart of a torsion pair is hereditary only if the torsion pair splits. But if Sx denotes the simple
regular in the tube tx , then by [35, Prop. 5] there is a non-split exact sequence

0 →
⊕

x∈X
Sx →

∏

x∈X
Sx → G(α) → 0

with
⊕

x∈X Sx ∈ T and G(α) ∈ F . This shows that (T ,F) is not a split torsion pair.

We have just seen that torsionfree, almost torsion modules may be infinite dimensional,
while this is not possible for torsion, almost torsionfree modules according to Remark 3.5.
The next example, however, exhibits a cotilting module without torsion, almost torsionfree
modules.
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Example 6.2 Consider now the torsion pair τ = (Q, C) in Mod-� generated by the set q. It
is cogenerated by the cotilting module

C = G ⊕
⊕

{all Prüfer modules S∞}.
The heartHτ is locally coherent and hereditary, and it is equivalent to the category of quasi-
coherent sheaves over X. In particular, all simple objects in Hτ are torsion. In other words,
there are no torsion, almost torsionfree modules, and the torsionfree, almost torsion modules
coincide with the simple regular modules. For details, we refer again to [32].

Every simple regular module S gives rise to a short exact sequence

0 → S
a−→ S∞

b−→ S∞ → 0

as in Theorem A, which can also be regarded as the minimal injective coresolution of the
simple torsion object S in Hτ . The critical neg-isolated modules in C thus coincide with the
Prüfer modules, and there are no special neg-isolated modules.

The last example also shows that in general the class ProdC0 in Proposition 5.16 does not
coincide with the class of split injectives in C.

Example 6.3 Let τ = (Q, C) be as in Example 6.2. Given an injective cogenerator I of
Mod-�, there is a short exact sequence

0 → C1 → C0
g→ I → 0 (6.1)

where g is a C-cover, C0 is a direct sum of Prüfer modules and C1 is a direct sum of copies
of G, see [33, Thm. 7.1]. Observe that C1 is a direct summand of a product of copies of C0

by [35, Prop. 3], but it is not split injective in C because the sequence (6.1) is not split.

6.2 Hereditary torsion pairs

In this section, we assume that τ = (Q, C) is a hereditary cotilting torsion pair with cotilting
module C . Equivalently, the torsionfree class C is closed under injective envelopes. If V ∈ C
is split injective, then its injective envelope V → E(V ) is a monomorphism in C, and must
therefore be an isomorphism. We conclude that the subcategory of split injective objects of C
is given by the category Inj(Mod-R) ∩ C of torsionfree injectivemodules, and that if C0 = EC
denotes the set of critical modules in C as in Proposition 5.16, then

Prod(C0) = C ∩ Inj(Mod-R).

Given a module M , we denote by C(M) a C-cover of M and by K(M) its kernel,

0 K(M) C(M) M 0.

If C is a cotilting module cogenerating C, then K(M) is an object of Prod(C) which is
uniquely determined by M , up to isomorphism. If F ∈ C is a simple torsionfree module,
then its injective envelope E(F) is also torsionfree and so serves as its own C-cover, but if
Q ∈ Q is a torsion simple module, then its injective envelope E(Q) is not torsionfree so its
C-cover is given by the epimorphism in

0 K(E(Q)) C(E(Q))
c

E(Q) 0, (6.2)

where K(E(Q)) �= 0.
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In Example 3.3, we elaborated on the equivalence of Theorem 4.2(2) for a hereditary
torsion pair, showing that the torsionfree, almost torsion modules correspond to the simple
objects of the localisation Mod-R/Q, and that their injective envelopes are the critical neg-
isolated indecomposable pure-injectives. The following elaborates on the equivalence given
by Theorem 4.2(1).

Theorem 6.4 Suppose that (Q, C) is a hereditary cotilting torsion pair and QR ∈ Q is a
torsion simple module. The C-cover of Q is given by the pullback of (6.2) along its injective
envelope

0 K(E(Q))
a

F
b

Q 0

0 K(E(Q)) C(E(Q))
c

E(Q) 0.

Consequently, F = C(Q), K(Q) = K(E(Q)) and C(E(Q)) = E(C(Q)). Furthermore,
a : K(Q) → C(Q) is a left almost morphism in C and K(Q) is a special neg-isolated
indecomposable pure-injective.

Proof As in the argument used in the proof of Proposition 5.17, the module C(E(Q)) must
be split injective and therefore, by the hereditary property, injective. Moreover, any inde-
composable summand of C(E(Q)) which does not intersect K(E(Q)) must be isomorphic
to E(Q), which is impossible as Q ∈ Q. We conclude that the kernel morphism of c is an
injective envelope. This also implies that the embedding of F into C(E(Q)) is an injective
envelope.

Furthermore, it follows that K(E(Q)) is indecomposable. For, suppose that
K(E(Q)) = K1 ⊕ K2 were a proper decomposition. Neither of the summands can be injec-
tive, since they are contained in the kernel of a C-cover. The injective envelope of K(E(Q))

as well as its cosyzygy would then be decomposable, contradicting the fact that E(Q) is not.
Because F is torsionfree andK(E(Q)) belongs to C⊥1 , b : F → Q is a special C-precover.

As such, it contains the C-cover C(Q) → Q as a direct summand, whose kernel would be
a direct summand of K(E(Q)). But K(E(Q)) is indecomposable, and Q is not torsionfree,
so the C-cover of Q must contain K(E(Q)), and properly so. As Q is simple, so we see that
b : F = C(Q) → Q is the C-cover of Q and K(Q) = K(E(Q)).

The last statement follows from Theorem 4.2(1). �	
Theorem 6.4 allows us to infer that the module PE(⊕NC N ) of Corollary 5.22 that arises

as a summand of any cotilting module C for C is itself cotilting. Because it is a summand of
a cotilting module, it certainly satisfies the first two conditions of being one. To verify the
third, consider the injective cogenerator I = ∏

Sim(Mod-R) E(S) of Mod-R, where the index
set runs over the set of all simple modules. It may be decomposed as

I =
∏

Q∈Sim(Q)

E(Q) ⊕
∏

F∈Sim(C)

E(F),

where the index set has been partitioned into the simple torsion and simple torsionfree
modules, respectively. Take the special C-precover of I given by the product of the respective
C-covers,

0
∏

Q∈Sim(Q) K(Q)
∏

Q∈Sim(Q) C(E(Q)) ⊕ ∏
F∈Sim(C) E(F) I 0.
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Because every K(Q) is neg-isolated, the kernel belongs to Prod(PE(⊕NC N )). On the other
hand, the middle term is injective and therefore belongs to C ∩ Inj(Mod-R) = Prod(C0).

Corollary 6.5 If (Q, C) is a hereditary cotilting torsion pair with cotilting module C, then
the module PE(⊕NC N ) = PE((⊕EC M) ⊕ (⊕MC L)), given more explicitly by

PE(
⊕

Q∈Sim(Q)

K(Q) ⊕
⊕

F∈Sim(Mod-R/Q)

E(F)),

is a 1-cotilting module for C that is isomorphic to a direct summand of C .

6.3 Commutative noetherian rings

Let now R be a commutative noetherian ring. It is shown in [23] that the cotilting torsion
pairs are precisely the hereditary torsion pairs in Mod-R with R being torsionfree. They are
parametrized by the subsets P ⊂ Spec(R) that are closed under specialization and satisfy
Ass R ∩ P = ∅. More precisely, P corresponds to the hereditary torsion pair (T ,F) given
by

T = {M ∈ Mod-R | SuppM ⊂ P}
F = {M ∈ Mod-R | AssM ∩ P = ∅}

where T contains all E(R/p) with p ∈ P , and F contains all E(R/q) with q ∈ Q =
Spec(R)\P .

We denote byMax(P) the set of all maximal ideals of R which lie in P and byMax(Q) =
{q ∈ Q | V (q)\{q} ⊂ P} the set of all prime ideals which are maximal in Q.

Proposition 6.6 The module

PE(
⊕

m∈Max(P)

K(R/m)) ⊕
⊕

q∈Max(Q)

E(R/q)

is a cotilting module cogenerating F which is isomorphic to a direct summand of any other
cotilting module cogenerating F .

Proof The torsion simple modules are precisely the modules of the form R/m with m ∈
Max(P). Further, since the ring is noetherian, the direct sum

⊕
F∈Sim(Mod-R/T ) E(F) is

(pure-)injective. By Corollary 6.5, it remains to show that the modules E(F) with F ∈
Sim(Mod-R/T ) are precisely the indecomposable injectives E(R/q) with q ∈ Max(Q), up
to isomorphism.

In order to verify this, recall first that any such E(R/q) is torsionfree and therefore
cogenerated by critical modules. In particular HomR(E(R/q), E(F)) �= 0 for some F ∈
Sim(Mod-R/T ). But E(F) is indecomposable injective and thus of the form E(R/p) for
some p ∈ V (q). Moreover p ∈ Q as E(F) ∈ F . It follows by assumption that p = q, hence
E(R/q) ∼= E(F).

For the converse implication, we employ [43, Theorem 5.2] which states that

C = K(
⊕

m∈Max(P)

E(R/m)) ⊕
⊕

q∈Max(Q)

E(R/q)

is a cotilting module with the stated properties. It follows that every E(F) is isomorphic to
a direct summand of C . Now observe that K(

⊕
m∈Max(P) E(R/m)) cannot have injective

summands by minimality, so E(F) must be isomorphic to some E(R/q) with q ∈ Max(Q).
�	
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We remark that the modules in Sim(Mod-R/T ) need not have the form R/q, as we are
going to see next.

Example 6.7 Let P = Max(Z) be the (specialization closed) set of all maximal ideals of
Z. Then Q = Max(Q) = {0}, and (T ,F) is the torsion pair formed by the torsion and
torsionfree abelian groups, respectively. So the only simple object in Mod-Z/T is Q, which
coincides with its injective envelope and is also the only module which is critical neg-isolated
in F .

6.4 Minimal cotiltingmodules

Throughout this section, we assume that C is a cotilting R-module with torsion pair τ =
(Q, C) and that there is an injective cogenerator I of Mod-R with a special C-cover

0 → C1 → C0
g→ I → 0 (6.3)

such that

(M1) The left perpendicular category Y = ⊥0,1C1 is closed under direct products;
(M2) HomR(C0,C1) = 0.

Cotilting modules with this property are called minimal and we call the associated class C a
minimal cotilting class.

Observe that condition (M1) amounts to the fact that the inclusion functor Y → Mod-R
has a left adjoint and a right adjoint. This is equivalent to the existence of a ring epimorphism
λ : R → S which is pseudoflat, i.e. TorR1 (S, S) = 0, such that Y is the essential image of
the functor λ∗ : Mod-S → Mod-R given by restriction of scalars.

In fact, minimal cotilting modules are closely related to pseudoflat ring epimorphisms.
Let k be a commutative ring such that R is a k-algebra, and let D = Homk(−, E) be
the duality induced by an injective cogenerator of Mod-k. Any injective ring epimorphism
λ : R → S with the property that Cogen D(RS) ⊂ ⊥1D(RS) is pseudoflat and induces a
minimal cotilting right R-module C = D(RS) ⊕ D(RS/R), for which the sequence (6.3)
can be chosen as

0 → D(RS/R) → D(RS)
g→ D(R R) → 0 (6.4)

We refer to [4, Section 4] for details. In particular, we have

Theorem 6.8 [4, Theorem 4.16, Corollaries 4.18 and 4.19] The map assigning to a ring
epimorphism λ : R → S the class Cogen D(RS) yields a bijection between

(i) epiclasses of injective ring epimorphisms λ : R → S with Cogen D(RS) ⊂ ⊥1D(RS),
(ii) minimal cotilting classes.

Moreover, the set in (i) equals the set of

(i’) epiclasses of injective pseudoflat ring epimorphisms,

provided that R has weak global dimension at most one or is a commutative noetherian ring.

Example 6.9 (1) Let � be the Kronecker algebra over a field k. Consider the pseudoflat
ring epimorphism λ : � → �t given by universal localization at t. We have a short exact
sequence

0 → �→�t ∼= G ⊕ G →
⊕

{all Prüfer modules S∞} → 0
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in �-Mod. Applying the duality D = Homk(−, k) we obtain a short exact sequence in
Mod-�

0 →
∏

{all adic modules S−∞} → D(G ⊕ G) → D(�) → 0

and a minimal cotilting module equivalent to the cotilting module in Example 6.1.
(2) [4, Example 4.10] The cotilting module in Example 6.2 is not minimal. In fact, it is

the only non-minimal cotilting �-module up to equivalence.
(3) [4, Example 4.22 (3)] Over a commutative noetherian ring of Krull dimension at most

one, all cotilting modules are minimal.

Let us collect some properties of minimal cotilting modules. In what follows we will
make use of the notation introduced before Corollary 4.4, noting that the set of neg-isolated
modules in C that are contained in Prod(C) coincides withNC , the set of critical neg-isolated
modules coincides with EC , and the set of special neg-isolated modules coincides withMC .
See Sect. 5.7 for more details.

Lemma 6.10 Let assumptions and notation be as above, and suppose that the heart Hτ is
locally finitely generated.

(1) Prod(C0) = Prod(EC ) and Prod(C1) = Prod(MC ).
(2) An indecomposablemodule X lies inProd(C) if andonly if it lies inProd(C0)orProd(C1),

and not in both.
(3) If C is a proper subcategory of Mod-R, then it contains special neg-isolated modules,

and Q contains torsion, almost torsionfree modules.

Proof The first statement in (1) and the inclusion Prod(C1) ⊇ Prod(MC ) are true in general,
see Proposition 5.17 and Corollary 5.21(2).

When Hτ is locally finitely generated, then the direct product of all injective envelopes
of simple objects is an injective cogenerator of Hτ . Hence Prod(C) = Prod(NC ) where
NC = EC ∪ MC is the set of all neg-isolated modules in C which belong to Prod(C). So,
every module X ∈ Prod(C) admits a split monomorphism ι : X ↪→ M0 ⊕ M1 where Mi is
a direct product of modules in Ci for i = 0, 1. Then we can write idX = π0ι0 + π1ι1 where
ιi and πi are the components of ι and of its left inverse π : M0 ⊕ M1 → X .

Now, if X ∈ Prod(C1), then it follows from condition (M2) that C0 ∈ ⊥0 X , hence by
condition (M1) we have Prod(C0) ⊆ ⊥0 X , which implies that π0 : M0 → X vanishes. Thus
idX = π1ι1 and X lies in Prod(MC ). This concludes the proof of statement (1).

Moreover, if X is an indecomposable module in Prod(C), then it is pure-injective and
therefore has a local endomorphism ring. This shows that πi ιi must be an isomorphism for
i = 0 or i = 1, that is, X lies in Prod(C0) or Prod(C1). Finally, X can’t lie in both, because
Prod(C0) ⊂ ⊥0C1 by conditions (M1) and (M2). This proves statement (2).

For statement (3), observe that the C-cover in (6.3) can’t be an isomorphism, so C1 �= 0
and C1 �= ∅. The existence of torsion, almost torsionfree modules then follows from Theorem
B. �	

Proposition 6.11 [39] Let assumptions and notation be as above, and suppose that R is right
artinian. Assume further that C is a proper subcategory ofMod-R, and letW be the class of
all modules with a finite filtration by torsion, almost torsionfree modules. Then the class of
all direct limits of modules inW coincides with the left perpendicular category ⊥0,1C0 of the
module C0 in (6.3).
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Theorem 6.12 Let R be a right artinian ring and let C be a minimal cotilting module with
associated ring epimorphism λ : R → S.

(1) Every indecomposable summand of a product of special neg-isolated modules in C is
special neg-isolated in C.

(2) S is a right coherent ring.
(3) C0 is an elementary cogenerator.

Proof (1) Suppose M is an indecomposable module in Prod(MC ) which is not special.
Recall that Y = ⊥0,1C1 is the essential image of λ∗. By [4, Proposition 4.15] there is an exact
sequence

0 → M
η→ M ⊗R S → M ′′ → 0

where M ′′ belongs to Q and HomR(η, Y ) is an isomorphism for every module Y ∈ Y . In
particular, HomR(η,C0) is an isomorphism. Furthermore, Ext1R(M ⊗R S,C0) = 0 because
M ⊗R S ∈ Y ⊆ ⊥1C1 = ⊥1C and C0 ∈ Prod(C). It follows that Ext1R(M ′′,C0) = 0, and of
course also HomR(M ′′,C0) = 0. But then M ′′ lies in the left perpendicular category of C0,
and by Proposition 6.11 it is a direct limit of modules in W , the class of all modules with a
finite filtration by torsion, almost torsionfree modules.

Consider now W ∈ W . We have HomR(W , M ⊗R S) = 0 because W is torsion and
M ⊗R S is torsionfree. Moreover, Ext1R(W , M) = 0, because M is an indecomposable,
non-special module in Prod(C), thus becomes indecomposable injective in Hτ and satisfies
Ext1R(S, M) ∼= HomHτ (S[−1], M) = 0 for all torsion, almost torsionfree modules S. We
conclude that HomR(W , M ′′) = 0.

In conclusion, we have shown that M ′′ = 0 and M ∼= M ⊗R S belongs to Y . But then
M ∈ ⊥0C1, which contradicts the assumption M ∈ Prod(MC ) = Prod(C1).

(2) By Example 4.6, the heart Hτ is a locally coherent Grothendieck category. Then
we know from [22], [26] that the (isoclasses of) indecomposable injective objects form a
topological space Spec(Hτ ), where a basis of open subsets is given by the collection

O(M) = {E ∈ Spec(Hτ ) | HomHτ (M, E) �= 0}, M ∈ Hτ ∩ Db(mod-R).

Moreover, there is a one-one-correspondence between the open subsets of Spec(Hτ ) and the
hereditary torsion pairs of finite type in Hτ , which maps a torsion pair (S,R) to the set of
indecomposable injectives which are not contained in R.

Let us now consider the set � = {S[−1] | S torsion, almost torsionfree} of all simple
torsionfree objects in Hτ . It generates a hereditary torsion pair (S,R) of finite type in Hτ ,
which is associated to the open set

O = {E ∈ Spec(H) | HomH(M, E) �= 0 for some M ∈ �} = MC

in Spec(Hτ ). Moreover, S is a localizing subcategory ofHτ , and the corresponding quotient
categoryHτ /S is again a locally coherent Grothendieck category whose spectrum is formed
by the indecomposable injective objects in R, that is, by the complement Oc of O, cf. [22,
Thm. 2.16 and Prop. 3.6].

We have seen in (1) that an indecomposable module in Prod(C) that is not in MC

can’t belong to Prod(MC ) and thus must lie in Prod(C0) by Proposition 6.10. That is,
every indecomposable injective in R is contained in Prod(C0). Since every injective in
R is a direct summand of a product of indecomposables, it follows that the injectives
in R coincide with Prod(C0). In other words, the class of injective objects of Hτ /S is
Prod(C0) = Prod(D(S)). Observe that these are precisely the indecomposable injective
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right S-modules. Since Grothendieck categories are determined up to equivalence by their
injective objects (cf. [42, p.81]), it follows that Hτ /S and Mod-S are equivalent, and in
particular, S must be right coherent.

(3) Recall that a module M is said to be fp-injective if every short exact sequence starting
at M and ending at a finitely presented module is split exact, or equivalently, if M is a pure
submodule of an injective module. Since S is right coherent, we know from [40] that the
class of fp-injective right S-modules is closed under direct limits. In other words, the class
Cogen∗(D(S)) of all pure S-submodules of products of copies of the injective cogenerator
D(S) is a definable subcategory of Mod-S. Observe that the functor λ∗ : Mod-S → Mod-R
takes Cogen∗(D(S)) to the class Cogen∗(C0) of all pure R-submodules of products of copies
of C0. Indeed, this is due to the fact that λ∗ commutes with direct products and direct limits,
and that pure-exact sequences are direct limits of split exact sequences. Conversely, any
module X in Cogen∗(C0) is an S-module, and any pure embedding of X in a product of
copies of C0 is also a pure embedding of S-modules by [31, Cor. 6.1.11], so that X lies in
Cogen∗(D(S)). Now we can conclude by [31, Thm. 6.1.11] that Cogen∗(C0) is a definable
subcategory of Mod-R, that is, C0 is an elementary cogenerator. �	

Remark 6.13 Let C be a minimal cotilting module with associated ring epimorphism
λ : R → S. Then S is right noetherian if and only if C0 is �-pure-injective. Indeed, the
only-if-part follows from the fact that C0 is an injective cogenerator of Mod-S and Prod(C0)

is thus closed under coproducts. Assume conversely that C0 is �-pure-injective. By [20]
there is a cardinal κ such that Prod(C0) ⊆ Add(M) where M is the direct sum of a set of
representatives of modules in Prod(C0) of cardinality at most κ . It is not difficult to see that
Prod(C0) then even equals Add(M) and is therefore closed under coproducts, which shows
that S is right noetherian.

Example 6.14 (1) If R is a commutative noetherian ring, then we know from Proposition 6.6
that C0 is injective and thus �-(pure-)injective.

(2) Consider the hereditary noetherian ring R =
(
Z Z

0 Z

)

. It is shown in [9, Example 4]

that the non-noetherian ring S =
(
Z(p) Q

0 Z(q)

)

, where p, q are two prime numbers, is a

universal localization of R at a set of matrices �. Hence for the minimal cotilting module C
given by the pseudoflat injective ring epimorphism R → S we have that C0 is not �-pure-
injective.
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