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Abstract
We introduce a new class of symmetric algebras, which we call hybrid algebras. This class
contains on one extreme Brauer graph algebras, and on the other extreme general weighted
surface algebras.We show that hybrid algebras are precisely the blocks of idempotent algebras
of weighted surface algebras, up to socle deformations. More generally, for tame symmet-
ric algebras whose Gabriel quiver is 2-regular, we show that the tree class of an arbitrary
Auslander–Reiten component is Dynkin or Euclidean or one of the infinite trees A∞, A∞∞ or
D∞.

Keywords Periodic algebra · Self-injective algebra · Symmetric algebra · Surface algebra ·
Tame algebra · Auslander–Reiten component
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1 Introduction

We are interested in the representation theory of tame self-injective algebras. In this paper,
all algebras are finite-dimensional basic associative and indecomposable K -algebras over an
algebraically closed field K of arbitrary characteristic.

In the modular representation theory of finite groups representation-infinite tame blocks
occur only over fields of characteristic 2, and their defect groups are dihedral, semidihedral,
or (generalized) quaternion 2-groups. Such blocks were studied in amore general setting: this
led to algebras of dihedral, semidihedral and quaternion type, over algebraically closed fields
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of arbitrary characteristic, which were introduced and investigated in [5]. These algebras are
quite restrictive, for example the number of simple modules can be at most 3, and one would
like to know how these fit into a wider context.

Recently cluster theory has led to new directions. Inspired by this, we study in [8], [10],
[14] and [3] a class of symmetric algebras defined in terms of surface triangulations, which
we call weighted surface algebras. They are periodic as algebras of period 4 (with a few
exceptions). All but one of the algebras of quaternion type occur in this setting. Furthermore,
most algebras of dihedral type, and of semidihedral type occur naturally as degenerations of
these weighted surface algebras. As well, Brauer graph algebras, which includes blocks of
finite type, appear. This places blocks of finite or tame representation type into a much wider
context, which also connects with other parts of mathematics.

In this paper, we present a unified approach. We introduce a new class of algebras, which
we call hybrid algebras. At one extreme it contains all Brauer graph algebras, and at the other
extreme it contains all weighted surface algebras, which are almost all periodic as algebras,
of period four (see [8] and [10]). Furthermore, the class contains many other symmetric
algebras of tame or finite representation type. In particular it contains all blocks of group
algebras, or type A Hecke algebras, of tame or finite type, up to Morita equivalence.

Consider tame symmetric algebras more generally. One observes that being tame is a
strong restriction on the Gabriel quiver of the algebra. At any given vertex there are not too
many arrows starting or ending, and also not too few, avoiding finite type. The situation when
one can expect larger classes of algebras occurs when the Gabriel quiver is 2-regular. We ask
whether all tame symmetric algebra with a 2-regular Gabriel quiver are hybrid algebras, up
to some small list of exceptions, and up to derived equivalence. Our result on the tree class of
stable AR components holds for any tame symmetric algebra with 2-regular Gabriel quiver,
and could be thought of as some evidence.

A motivation is that various basic tame, or finite type, symmetric algebras studied in
recent years have a unified description, of the form � = K Q/I with (Q, I ) satisfying
certain combinatorial restrictions. Namely, the quiver Q is 2-regular, that is, there are two
arrows starting and two arrows ending at each vertex. Here I may contain arrows of Q, so
that the Gabriel quiver can be seen as a subset of Q. The fact that Q is 2-regular, gives rise to
symmetry. There is a permutation f of the arrows such that t(α) = s( f (α)) for each arrow α.
This determines uniquely a different permutation g where t(α) = s(g(α)) but f (α) �= g(α).
Such permutations have been studied for Brauer graph algebras: the permutation g describes
the cyclic order in the Brauer graph, and the permutation f has been called the ’Green walk’.
Here we will see that these permutations f and g exist more generally.

The permutation f encodes minimal relations, and the permutation g describes, roughly
speaking, a basis for the indecomposable projective modules. Consider ei�, and let α, ᾱ be
the arrows starting at i . Then ei� has a basis consisting of monomials along the g-cycles of
α and of ᾱ, and the socle of ei� is spanned by Bα (or Bᾱ), where Bα is the longest monomial
starting with α which is non-zero in �. Let also Aα be the submonomial of Bα such that
Bα = Aαγ where γ is the arrow with g(γ ) = α.

For each arrow α there is a minimal relation determined by f , either ’biserial’, or ’quater-
nion’:

(B) α f (α) ∈ I , or
(Q) α f (α) − cᾱ Aᾱ ∈ I

(where the cᾱ are non-zero scalars constant on g-cycles). With these data, together with
suitable zero relations, and up to socle deformations, the following hold.
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The algebra � is a Brauer graph algebra if all minimal relations are biserial. If f 3 = 1
and all minimal relations are quaternion, then the algebra A is a weighted surface algebra
(as in [8, 10, 14]). When f 3 = 1, and some but not all minimal relations are biserial, we
get algebras generalizing algebras of semidihedral type, as in [5] (see also [16]). As well
algebras of finite type can occur naturally (which we also call tame in this context).

The known structure of tame local symmetric algebras should be further motivation. As
one can find in [5], section III, up to socle deformations, only relations of the form (B) and
(Q) occur. This suggests that ’generally’ it should be sufficient to incorporate these types of
relations. Cycles of f of length 3 (or 1) play a special role in the algebras studied in [5]. A
relation (Q) only occurs if α belongs such a cycle. Namely we have Aᾱg−1(ᾱ) = Bᾱ and
g−1(ᾱ) = f −1(α) therefore α f (α) f −1(α) is a cyclic path, so the arrow α occurs in some
triangle.

We call the set of arrows in an f -cycle of length 3 or 1 a triangle. Describing a hybrid
algebra H in broad terms, we fix a set T of triangles in Q. Then H = HT = K Q/I where

(i) an arrow α ∈ T satisfies the quaternion relation, and
(ii) an arrow α /∈ T satisfies the biserial relation.

In addition there are zero relations.
We start with a hybrid algebra where the quiver Q for the definition is the Gabriel quiver,

this is introduced and studied in Sect. 2. We call the algebras regular hybrid algebras. This
is extended in Sect. 3. Our first main result is the following.

Theorem 1.1 (i) Assume � is a weighted surface algebra and e is an idempotent of �, then
every block component of e�e is a hybrid algebra (up to socle equivalence).

(ii) Assume H is a hybrid algebra. Then there is a weighted surface algebra � and an
idempotent e of � such that H is isomorphic to a block component of e�e.

The second part of this theorem generalises [15] where we prove that every Brauer graph
algebra occurs as an idempotent algebra of a weighted surface algebra. For the second part,
given a hybrid algebra H , to construct the weighted surface algebra�with H as a component
of e�e, we use the ∗ construction introduced in [15].

Idempotent algebras of weighted surface algebras include many local algebra, therefore
our definition of hybrid algebras must included these. In our general construction of weighted
surface algebras [10], we have allowed virtual arrows, with the benefit of essentially enlarging
the class of algebras. The price to pay is that zero relations have to be treated with care (see
[14]), and naturally this is also the case for hybrid algebras. In particular we need to exclude
a few small algebras (see Assumption 3.4).

All local symmetric algebras of tame or finite type, and almost all algebras of dihedral,
semidihedral or quaternion type as in [5] are hybrid algebras. There is one family of algebras
of quaternion type which are not hybrid algebras, but are derived equivalent to algebras of
quaternion type (algebras Q(3C)k,s , see [19]).

Hybrid algebras place blocks into a wider context; in [9] we define algebras of generalized
quaternion type, as tame symmetric algebras with periodic module categories, that is, gen-
eralizing quaternion blocks, and show that the ones with 2-regular Gabriel quiver are almost
all weighted surface algebras. As well in [13] we define algebras of generalized dihedral
type, in terms of homological properties generalizing dihedral blocks, and show that almost
all are the biserial weighted surface algebras as in [8]. One would like a similar homological
description of the hybrid algebras which generalize semidihedral blocks.

In order to understand the representation theory for all these algebras, the structure of
the stable Auslander–Reiten quiver is essential. Our second main result is more general, it
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describes its graph structure for arbitrary tame symmetric algebras with 2-regular Gabriel
quiver:

Theorem 1.2 Assume � is a tame symmetric algebra with a 2-regular Gabriel quiver. Then
the tree classes of stable Auslander–Reiten components of � are one of the infinite trees
A∞, A∞∞ or D∞, or Euclidean or Dynkin.

It would be interesting to know whether a component with tree class A∞ of a tame
symmetric algebra is necessarily a tube.

We describe the organisation of the paper. In Sect. 2, we present and study a simplified
version of hybrid algebras, which we call regular. For such an algebra, Q is the Gabriel
quiver. In this case we prove a weaker version of Theorem 1.1, which will show how virtual
arrows occur.

In Sect. 3 we give the general definition, and discuss exceptions for the zero relations. The
details for consistency and bases are refinements of results in Sect. 2 and are therefore only
given in an “Appendix”. Originally we had incorporated socle deformations into the general
definition of a hybrid algebras. This is not done here, as it has caused further technical work.
Note however that socle deformations can occur but are easy to identify.

In Sect. 4 we discuss algebras with few simple modules and small multiplicities. In Sect. 5
we prove Theorem 1.1, extending the version in Sect. 2. Section6 is valid more generally,
for arbitrary tame symmetric algebras with 2-regular Gabriel quiver. The main result is
Theorem 1.2 on stable Auslander–Reiten components. In the case of hybrid algebras, we
identify components containing simple modules, and see in particular that the infinite trees
in the list all occur.

For further background and motivation, we refer to [1, 2], and to the introductions of [8,
10], or [15].

2 Preliminaries and regular hybrid algebras

2.1 The setup

Recall that a quiver is a quadruple Q = (Q0, Q1, s, t) where Q0 is a finite set of vertices,
Q1 is a finite set of arrows, and where s, t are maps Q1 → Q0 associating to each arrow
α ∈ Q1 its source s(α) and its target t(α). We say that α starts at s(α) and ends at t(α). We
assume throughout that any quiver is connected. The quiver Q is 2-regular if at each vertex,
two arrows start and two arrows end.

Denote by K Q the path algebra of Q over K . The underlying space has basis given by
the set of all paths in Q, in particular for each vertex i , let εi be the path of length zero at
i in K Q. We will consider algebras of the form � = K Q/I for some ideal I of K Q. Let
ei = εi + I , then the ei are pairwise orthogonal idempotents, and their sum is the identity
of �. We assume that the ideal I contains all paths of length ≥ N for some N ≥ 2, so that
the algebra is finite-dimensional and basic. The Gabriel quiver Q� of � has by definition
the same vertices as Q and its arrows are in bijection with a basis for J/J 2 where J is the
radical of �. Usually, Q� can be taken as a subquiver of Q.
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2.2 Notation

Recall that a biserial quiver is a pair (Q, f ) where Q is a 2-regular quiver, and f is a
permutation of the arrows such that for each arrow α we have s( f (α)) = t(α). This was
defined in [15], but here we also allow the quiver Q with only one vertex. Moreover, we have
an involution (−) on the arrows, taking ᾱ to be the arrow �= α with the same starting vertex.
Given f , this uniquely determines the permutation g on arrows, defined by g(α) = f (α).

Let O be the set of g-orbits on Q1. We fix a weight function (or multiplicity function),
that is, a function m• : O(g) → N, and we fix a parameter function, that is, a function
c• : O(g) → K ∗. Moreover, nα is the size of the g-orbit of α ∈ Q1.

For an arrow α of Q, let Bα be the monomial along the g-cycle of α which starts with α,
of length mαnα , and let Aα be the submonomial of Bα starting with α of length mαnα − 1,
so that Bα = Aαg−1(α).

For a path p in K Q we write |p| for the length of p. We will sometimes write p ≡ q if
p and q are paths in K Q such that p = λq in some algebra K Q/I for 0 �= λ ∈ K .

2.3 Regular hybrid algebras

The arrows in f -orbits of length 3 or 1 play a special role, we refer to these as triangles. Note
that any set of triangles is invariant under the permutation f . The regular hybrid algebra is
defined so that it has Q as its Gabriel quiver, this is ensured by the following:

(*) We assume mαnα ≥ 2 for any arrow α, and mαnα ≥ 3 if ᾱ ∈ T .

Definition 2.1 Let (Q, f ) be a biserial quiver with the data m•, c• as in 2.2, and let T be
a set of distinguished triangles. The regular hybrid algebra H = HT = HT (Q, f , m•, c•)
associated to T , with assumption (*), is the algebra H = K Q/I where I is generated by the
following elements:

(1) α f (α) − cᾱ Aᾱ for α ∈ T and α f (α) for α /∈ T .
(2) α f (α)g( f (α)) and αg(α) f (g(α)) for any arrow α of Q.
(3) cα Bα − cᾱ Bᾱ for any arrow α of Q.

Let i be a vertex and α, ᾱ the arrows starting at i . We say that i is biserial if α and ᾱ are
both not in T . We call the vertex i a quaternion vertex if α and ᾱ are both in T . Otherwise,
we say that i is hybrid.

The conditions (*) imply that arrows are not contained in I , so that Q is the Gabriel
quiver of H . If T = ∅, then the algebra H is special biserial and symmetric, that is, a Brauer
graph algebra (BGA). At the other extreme, if T = Q1 then H is a weighted surface algebra
(WSA), as defined in [8], if Q has at least three vertices, or it occurs amongst the algebras
of quaternion type in [5].
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Example 2.2 Consider the quiver

i

τ
α

k

β

ω
y

ξ

ρ

j η

δ

x

γ

σ

As the permutation f , we take

f = (α δ σ )(ρ γ ω)(ξ β τ)(η)

Then

g = (α η δ γ β)(τ ρ σ)(ξ ω)

We take mα = 1 = mτ and mξ = 2 and cα = c, cᾱ = d and cξ = 1.
The permutation f has four cycles, each of size 1 or 3, so there are several choices for the

set T of distinguished triangles.

(a) If T = Q1 then the algebra HT is a weighted surface algebra, as in [8].
(b) If T = ∅ then the algebra is special biserial and symmetric, hence a Brauer graph algebra.
(c) An example for an intermediate choice of T might be T = {α, δ, σ, η}. Then the relations

for the paths of length 2 between arrows of T are

αδ = d Aτ , δσ = cAη, σα = cAγ , η2 = cAδ;
and products of paths of length two along each other f -cycle are zero in HT . In this case,
vertices i and x are hybrid, vertex j is quaternion, and vertices k, y are biserial.

Lemma 2.3 The conditions (1) to (3) in Definition 2.1 are consistent. In particular Bα is
non-zero on H.

Proof We show that the condition for α f (α) from (1) and the conditions for g−1(α)α f (α)

and α f (α)g( f (α)) from (2) agree. This is clear when α /∈ T since then condition (1) requires
α f (α) = 0 in H .

Assume now that α /∈ T , then we substitute α f (α) = cᾱ Aᾱ . We should have that
g−1(α)Aᾱ = 0 in H . By the definition of the permutations, we have g−1(α) = f −1(ᾱ), and
by the assumption (*), the monomial Aᾱ has length at least 2 and therefore f −1(ᾱ)Aᾱ =
f −1(ᾱ)ᾱg(ᾱ)p for some monomial p ∈ K Q of length ≥ 0. Now condition (2) gives that
this is zero in H . Similarly, Aᾱg( f (α)) = qg−1(β)β f (β) where β = g−2(ᾱ) is the last
arrow of Aᾱ and q ∈ K Q a monomial of length ≥ 0, and this is zero in H by condition (2).
Similarly one verifies that conditions (1) and (3) agree. 
�
Lemma 2.4 For each vertex i and arrow α starting at i , we have Bα J = 0 and J Bα = 0
where J is the radical of H. In particular Bα �= 0 belongs to the socle of ei H.

Proof We have Bαα = αBg(α) ≡ αB ¯g(α) = αB f (α) = α f (α)g( f (α))p where p is some
monomial of length ≥ 0 and this is zero by condition (2). Then we have as well that Bαᾱ ≡
Bᾱ ᾱ = 0. 
�
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We write (Bα) j for the initial submonomial αg(α) . . . g j−1(α) of Bα of length j .

Lemma 2.5 Let α ∈ Q1, and let Bα :={(Bα) j | 1 ≤ j ≤ |Bα|} be the set of all initial
submonomials of Bα .

(a) The set Bα is linearly independent in H.
(b) Assume that α, ᾱ are both in T , then Bα ∪ Aᾱ also is linearly independent.

Proof (a) Let

|Bα |∑

j=1

a j (Bα) j = 0 (a j ∈ K ).

Premultiplying with Ag−1(α) gives 0 = a1Ag−1(α)α = a1Bg−1(α) and hence a1 = 0. Suppose
we have a1 = · · · = ar−1 = 0. We premultiply with the submonomial q of Bα such that
q(Bα)r is equal to Bγ for the appropriate γ . This annihilates all terms except one, leaving
only ar Bγ = 0 and so ar = 0.

(b) Let
∑|Bα |

j=1 a j (Bα) j + bAᾱ = 0 with a j and b in K . We premultiply with f −1(ᾱ) =
g−1(α). By condition (2) of Definition 2.1, using also that |Aᾱ| ≥ 2 we get f −1(ᾱ)Aᾱ = 0,
and this leaves

|Bα |∑

j=1

a j (Bg−1(α)) j+1 = 0.

Hence a1 = · · · = a|Bα |−1 = 0, by (a), and we are left with a|Bα | Bα + bAᾱ = 0. Using that
Bα ≡ Bᾱ , we have linear combination of two initial submonomials of Bᾱ , and by part (a)
(applied to ᾱ), the coefficients are zero. 
�
Lemma 2.6 The module ei H has basis {ei }∪Bα∪Bᾱ\{Bᾱ}. Hencedim ei H = mαnα+mᾱnᾱ .

Proof Suppose we have

|Bα |∑

j=1

a j (Bα) j +
|Bᾱ |−1∑

t=1

āt (Bᾱ)t = 0. (*)

(a) Assume first that (say) ᾱ is not in T . We premultiply (*) with f −1(ᾱ), this annihilates
the second sum. Recall f −1(ᾱ) = g−1(α), therefore the first sum becomes

0 =
∑

a j (Bg−1(α)) j+1,

and by Lemma 2.5, a j = 0 for all j < |Bα|. Then (*) becomes

0 = a|Bα | Bα +
|Bᾱ |−1∑

t=1

āt (Bᾱ)t = 0.

Since Bα ≡ Bᾱ we can again apply Lemma 2.5 and deduce that all coefficients are zero.
(b) Assume α, ᾱ are both in T . We premultiply with γ = f −1(ᾱ). We have γ ᾱ = cγ̄ Aγ̄

but γ ᾱg(ᾱ) = 0 and there is only one non-zero term from the second sum, namely a multiple
of Aγ̄ . The first sum is a linear combination of elements (Bγ ) j since γ = g−1(α). We apply
part (b) of Lemma 2.5 and deduce that all scalar coefficients are zero. 
�
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2.4 Idempotent algebras ofWSA’s

In [8] we have studied weighted surface algebras whose Gabriel quiver is 2-regular (with
at least three vertices). One may ask whether an idempotent algebra of such a WSA is a
regular hybrid algebra. We will investigate this, and determine when exactly this is the case,
and at the same time it will illustrate why we should allow virtual arrows for general hybrid
algebras. Examples can be found in 2.8 below.

Proposition 2.7 Assume � is a WSA with a 2-regular Gabriel quiver. Let � be a subset of
Q0 and e = ∑

i∈� ei , and let R = e�e.

(i) The idempotent algebra R satisfies conditions (1) to (3) of Definition 2.1.
(ii) R satisfies the multiplicity condition (*) unless for some i ∈ � and α starting at i we

have

(*1) mα = 1 and the g-cycle of α intersects � only in i (with no repetition); or
(*2) mα = 1 and ñα̃ = 2, and � contains both s(g−1(α)) and t(ᾱ).

Proof Let� be aWSAwith 2-regular Gabriel quiver, that is it has a presentation� = K Q/I
of a (regular) hybrid algebra such that T = Q1. In particular we have then mαnα ≥ 3 for all
α. The only additional assumption in [8] is that the quiver has at least three vertices (see the
text following [8, Theorem 1.4]). Take a subset � of Q0, and let e = ∑

i∈� ei and R:=e�e.
(i) We compute the basic algebra for R. Let Q̃ be the quiver with vertices corresponding

to the primitive idempotents of R, that is the ei (= eei e) with i ∈ �. For α ∈ Q1 and
s(α) = i ∈ �, let α̃ be the shortest path in Q along the g-cycle of α, starting with α, and
ending at a vertex in �. We define Q̃ by taking the set

Q̃1 = {̃α ∈ K Q | α ∈ Q1, α = eiα for i ∈ �}
as its set of arrows. The set Q̃ is a generating set for the radical of R, and hence we have a
surjective algebra map ψ : K Q̃ → R, and R ∼= K Q̃/ Ĩ where Ĩ is the kernel of ψ .

(a) We observe that the quiver Q̃ is 2-regular: We have two arrows starting at each vertex,
and also two arrows ending at each vertex (write Bα, Bᾱ as a product of elements in Q̃1, then
Bα and Bᾱ end with distinct arrows of Q̃).

We define a permutation f̃ . Let α̃ = αg(α) . . . g p(α) and β:= f (g p(α)), then

f̃ (̃α):=β̃.

With this, each connected component of (Q̃, f̃ ) is a biserial quiver. Furthermore, the permu-
tation g̃ is obtained from the cycles of g in Q, by factorizing them at each vertex in �. In
particular if ñα̃ is the length of the cycle of α̃, then 1 ≤ ñα̃ ≤ nα . The multiplicity function
m̃ for Q̃ must be taken as m̃α̃ = mα , and the parameter function c̃ is taken as c̃α̃ = cα for
each arrow α̃. Note that we may view the path algebra K Q̃ as a subspace of K Q, and if so
then Bα̃ is equal to Bα .

(b) There is a canonical set T̃ of distinguished triangles of Q̃. Let

T̃ :={̃α | α = α̃ and f̃ (α) = f (α)}
Note that if α = α̃ and also f (α) = f̃ (α) then both s(α) and t( f (α)) are in �, and hence

f 2(α) = f̃ 2(α). Therefore T̃ is closed under under the permutation f̃ . Furthermore, the
arrows in T̃ satisfy the relations (1) of Definition 2.1.
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(c) We show now that for α̃ /∈ T̃ we have α̃ f̃ (̃α) = 0. With the notation as in (a) we have

α̃ f̃ (̃α) = αg(α) . . . g p(α) f (g p(α))q (*)

for some monomial q ∈ K Q. If p ≥ 1 this is zero in �, by condition (2) of Definition 2.1.
Suppose now that p = 0, so that α̃ = α, then f̃ (̃α) �= f (α) since α̃ /∈ T̃ . Therefore q has
length ≥ 1 and (*) has a factor α f (α)g( f (α)) which is zero in �.

(d) So far we have verified that condition (1) of Definition 2.1 holds. Condition (3) is
also satisfied, from analogous conditions in �. We can also see that condition (2) holds: For
example consider

α̃ f̃ (̃α)g̃( f̃ (̃α)). (**)

If α̃ is not in T̃ then already the product of the first two terms is zero. Suppose α̃ ∈ T , then
(**) is equal to α f (α)g̃( f (α)), which has a factor α f (α)g( f (α)) and is zero in�. Similarly
one obtains the other identity.

(ii) We investigate when R satisfies the condition (*), that is

m̃α̃ ñα̃ ≥ 2 and m̃α̃ ñα̃ ≥ 3 if ¯̃α ∈ T̃ .

Recall m̃α̃ = mα , hence if mα ≥ 3 then this condition holds. Assume now that mα = 2, then
the first part of (*) holds. Suppose that we have mα ñα̃ = 2, then we need to show that then
¯̃α is not in T̃ .

Write α̃ = α . . . g p(α), then Bα = α̃2, of length ≥ 3 as an element of K Q (by the
assumption on �), and hence p ≥ 1. So we have t(g p(α)) = i but s(g p(α)) is not in �.
Assume for a contradiction that ¯̃α is in T̃ , then ¯̃α = ˜̄α = ᾱ and the vertices between ᾱ, f (ᾱ)

and f 2(ᾱ) belong to �. Now, f 2(ᾱ) = g−1(α) = g p(α) and therefore s(g p(α)) is in �, a
contradiction. We have shown that when mα = 2 for an arrow α starting at i , the condition
(*) holds for α.

Assume now that mα = 1. It is possible that ñα̃ = 1 so that already the first part of (*)
fails. (For example, take Bα = α̃ of length ≥ 3 and s(α) is the only vertex along Bα which
is in �. This is the exception (*1).) We continue with mα = 1, and we assume now ñα̃ = 2,
in this case the first part of (*) holds.

We write Bα = (α . . . g p(α))(g p+1(α) . . . gr (α)) where (α . . . g p(α)) = α̃, so that we
have g̃(̃α) = (g p+1(α) . . . gr (α)). Then i = s(α) and j = s(g p+1(α)) are the only vertices
along the g-cycle of α which belong to �. The condition (*) fails in this case if and only if
¯̃α belongs to T̃ .

We observe that ¯̃α = ˜̄α, and this belongs to T̃ if and only if all the vertices between
ᾱ, f (ᾱ) and f 2(ᾱ) belong to �, that is, each of i and t(ᾱ) and s( f 2(ᾱ)) is in �.

We have f 2(ᾱ) = g−1(α) = gr (α), and therefore by the construction r = p + 1 and
the vertex s(gr (α)) is what we called j . In addition we have t(ᾱ) in �. We have arrived at
condition (*2). 
�
Example 2.8 We take the quiver and the weighted surface algebra � as in Example 2.2, that
is we take � = HT with T = Q1. The following examples illustrate that the arrows of Q̃
need not be a minimal generating set, that is, Q̃ may not be the Gabriel quiver of the algebra
e�e.

(a) Let � = {i}. The algebra R = e�e has the quiver with vertex i and two loops, α̃ and
τ̃ . We have mα = 1 and ñα̃ = 1 since α̃ = Bα . This is an example for the exception (*1)
of Proposition 2.7. In fact we also have that m τ̃ = 1 and ñτ̃ = 1. Here Q̃ is not the Gabriel
quiver of R.
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(b) Let � = {i, k, y}. Then again ñα̃ = 2. Now T̃ = {τ, ξ, β} and τ = ᾱ. The quiver of
R is triangular,

k
β

ω

i
α̃

τ

y

ξ

ρ̃

here α̃ = αηδγ and ρ̃ = ρσ . The permutation g̃ is the product of three 2-cycles,

(̃α β)(ξ ω)(τ ρ̃).

The arrow ¯̃α = τ is in T̃ and we have an example for the exception (*2) of Proposition 2.7.
Note that mρ̃ = 1 and mα̃ = 1.

(c) Let � = {i, j, k, y}. The algebra R has quiver

i
α

g̃τ

y

τ

ω

j η

f̃ α
k

ξ

β

and g̃ = (ξ ω)(τ ρ̃)(β α η δ̃) with multiplicities mξ = 2, mτ = 1 and mβ = 1. We have

f̃ = (ω ρ̃ α δ̃)(τ ξ β)(η)

In this case the set of distinguished arrow is T̃ = {τ, ξ, β, η}. We can see directly using
identity (2) of Definition 2.1 that products of arrows in the 4-cycle of f are zero. We observe
that mρ̃ ñρ̃ = 2. and ¯̃ρ = ξ ∈ T̃ , that is the multiplcitiy condition is not satisfied. Indeed, we
have s(g−1(ρ)) = i ∈ � and t(ξ) = k ∈ � and we have again an example for the exception
(*2) of Proposition 2.7.

3 General hybrid algebras

We present now the general definition. The multiplicity condition (*) in 2.3 is replaced by the
weaker requirement (**). This has the effect that the quiver Q need not be the Gabriel quiver
of the algebra, and therefore we get many more algebras. However now there are exceptions
for the zero relations, and they are the main reason for much of the work.

We use the notation as in 2.2, in particular T is a fixed set of triangles (see 2.3). The
condition (*) in 2.3 is replaced by the following.

(**) We assume mαnα ≥ 2 for all α ∈ Q1, except that mαnα = 1 is allowed when α, ᾱ

are both not in T .
Then sometimes an arrow may not be part of the Gabriel quiver, and this motivates our

definition of virtual arrows:

Definition 3.1 Let i be a vertex, and let α be an arrow starting at i . Then α is a virtual arrow
if one of the following holds:

(a) mαnα = 1 and α, ᾱ /∈ T ; or
(b) mαnα = 2 and ᾱ ∈ T . That is, |Aα| = 1 and ᾱ ∈ T .
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For the general definition of a hybrid algebra, there are exceptions for the zero relations.
To spell these out explicitly, we will use the term ’critical’ as in the following definition.

Definition 3.2 Let α be an arrow. We say that α is critical if |Aα| = 2 and α ∈ T , and
moreover f (α) is virtual (so that |A f (α)| = 1 and g(α) ∈ T ).

In Sect. 3.1 we present diagrams showing the quiver near a virtual arrow, or near a critical
arrow.

Definition 3.3 Let (Q, f ) be a biserial quiver with the data m•, c• as in 2.2, and let T be
a set of distinguished triangles. The hybrid algebra H = HT = HT (Q, f , m•, c•), with
assumption (**), is the algebra H = K Q/I where I is generated by the following elements:

(1) α f (α) − cᾱ Aᾱ for α ∈ T and α f (α) for α /∈ T .
(2) α f (α)g( f (α)) unless α, ᾱ ∈ T , and ᾱ is either virtual, or is critical.
(2’) αg(α) f (g(α)) unless α, g(α) ∈ T , and f (α) is either virtual, or is critical.
(3) cα Bα − cᾱ Bᾱ for any arrow α of Q.
(4) If all arrows of Q are virtual, then we require Bαα ∈ I and αBg(α) ∈ I for each arrow

α.

If T = Q1 and |Q0| ≥ 2 this is the same as the definition of a weighted surface algebra
in [10], but there we did not use the term ’critical’. If T = ∅ then the algebra HT is special
biserial (by (1)), and identities (2) and (2’) hold automatically.Wewillmainly discuss algebras
where T �= ∅.

The details for the definition of a hybrid algebra are chosen to ensure that they are precisely
the idempotent algebras of weighted surface algebras, up to socle equivalence. Furthermore,
we require that hybrid algebras are symmetric, and finite-dimensional. Therefore a few small
algebras need to be excluded, which actually are the same which were excluded for weighted
surface algebras:

Assumption 3.4 We exclude four algebras, they are not symmetric.
(1) |Q0| = 2, T = Q1, with a virtual loop, and the 3-cycle of g has multiplicity m = 1

(see 4.2(2a)).
(2) |Q0| = 3, T = Q1, the singular algebra with a triangular quiver (see 4.3(3)), or the

singular algebra with a linear quiver (see 4.4).
(3) |Q0| = 3 with a triangular quiver, T = Q1 and m ≡ 1 (see 4.3(1)).
(4) |Q0| = 6, T = Q1 when H is the singular spherical algebra as in [10, 3.6] (see 4.7).

In [10, 2.7], we had formulated a slightly different assumption, this is covered by the
above (modulo minor changes). One would have liked to have that the Gabriel quiver of H is
obtained from Q by removing the virtual arrows. There is however one exception of a local
algebra, which is a hybrid algebra (it occurs as an idempotent algebra of a weighted surface
algebra, see Example 2.8(a)).

Remark 3.5 In the following there will be computations using the permutations f and g, we
describe some basic properties. We will use these freely.

(1) We always have that f −1(α) = g−1(ᾱ). If α ∈ T then f −1(α) = f 2(α) (which may
be α).

(2) Assume i is a quaternion vertex. Then we have, exactly as in [8, 10],

α f (α) f 2(α) = cᾱ Aᾱ f 2(α) = cᾱ Bᾱ = cα Bα = ᾱ f (ᾱ) f 2(ᾱ).
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Lemma 3.6 Assume H = K Q/I is a hybrid algebra. Then the Gabriel quiver Q H of H is
obtained from Q by removing the virtual arrows, except when H is local with two virtual
loops.

Proof Suppose i is a vertex with arrows α, ᾱ starting at i . If they are not virtual then they are
part of the Gabriel quiver. As well, if (say) α is virtual but ᾱ is not virtual then ᾱ is part of
the Gabriel quiver but α is not. Suppose now that α, ᾱ are both virtual.

(1) Suppose (say) α is a virtual loop and ᾱ is virtual but not a loop. Then ᾱ must be virtual
of type (b) as in Definition 3.1, and mᾱnᾱ = 2 which shows g(ᾱ) : t(ᾱ) → i , and α ∈ T .
The arrow f (α) starts at i , so we have either f (α) = α, or f (α) = ᾱ. In the first case we
would have g(α) = ᾱ = g2(ᾱ) and α = g(ᾱ), so that t(ᾱ) = i and ᾱ is a loop, which is
not the case. Therefore we can only have f (α) = ᾱ, and since f 2(α) must end at i we have
f 2(α) = f (ᾱ) : t(ᾱ) → i and it follows that f (ᾱ) = g(ᾱ), a contradiction. So this cannot
happen.

(2) Suppose that α and ᾱ are virtual but not loops, then they are both in T (and they cannot
be double arrows since then g would consist of two 2-cycles, and Q would have only two
vertices, hence the arrows cannot be in 3-cycles of f ). Then Q has a subquiver of the form

3
g(ᾱ)

i
ᾱ

α
2

g(α)

with mα = 1 = mᾱ . By definition of virtual, α and ᾱ are in T , hence they must lie in 3-cycles
of f . Then f 2(α) ends at vertex 1, so it is either g(α) or g(ᾱ). Since f ( f 2(α)) = α = g(g(α))

it follows that f 2(α) �= g(α), hence it is equal to g(ᾱ). Therefore, f (α) must be an arrow
2 → 3. Similarly f (ᾱ) is an arrow 3 → 2. That is, Q is the triangular quiver, with three
vertices, and g is a product of 2-cycles. We have mα = 1 = mᾱ and we have excluded in
Assumption 3.4(3) that m ≡ 1. It follows that m f (α) ≥ 2 and f (α), f (ᾱ) are not virtual.
We will see in Lemma 4.2 that such an algebra has finite type, and that the Gabriel quiver is
obtained by removing the virtual arrows.

(3) Assume both α, ᾱ are virtual loops. First, suppose (say) that α is in T , then both α, ᾱ

are virtual of type (b). We have f = (α)(ᾱ) and g = (α ᾱ) with mα = 1. This algebra is
dealt with in 4.1(2a), and we will see that H ∼= K . Hence the Gabriel quiver of H is obtained
by removing the virtual arrows.

If α, ᾱ are not in T , that is they are virtual of type (a) in Definition 3.1, thenmα = mᾱ = 1.
We see that H ∼= K [x]/(x2), and that its Gabriel quiver is not obtained from Q by removing
the virtual arrows. 
�
Corollary 3.7 The only hybrid algebras for which all arrows are virtual are local algebras
4.1 (2a) and 4.1(1) with m• ≡ 1.

Proof Assume α is virtual of type (a), then α, ᾱ are not in T . Since we also assume ᾱ is virtual
it must also be of type (a). By (3) of the above proof, H is as stated. Suppose now all arrows
are virtual of type (b). Thenwe can proceed as in part (2) of the proof of Lemma 3.6, and get H
is the algebra with triangular quiver andm ≡ 1. But this is excluded (see Assumption 3.4(3)).


�

3.1 The exceptions in relations (2) and (2’)

The exceptions in (2) and (2’) of Definition 3.3 create special cases in various proofs to come.
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First we show that there is a unique algebra with two vertices where a critical arrow occurs
in a g-cycle with a loop (see Lemma 3.8 below). Otherwise the exceptions always arise in
specific subquivers of the same kind, for which we will now fix notation, to be used later.
We write ζα = α f (α)g( f (α)) and ξα = αg(α) f (g(α)). We always have α, ᾱ ∈ T , hence
all virtual arrows are of type (b).

We take care of critical arrows whose g-cycle contains a loop.

Lemma 3.8 Assume τ is critical.
(a) The g-cycle of τ contains a loop if and only if |Q0| = 2 and H is the algebra in

4.2(2c).
(b) Assume the g-cycle of τ does not contain a loop, then f (τ ) cannot be a loop.

Proof Assume τ is critical, then |Agi (τ )| �= |A f (τ )| and hence f (τ ) does not belong to the
g-cycle of τ .

(a) For H as in 4.2(2c) one checks directly that the arrow τ :=γ is critical and its g-cycle
contains a loop. For the converse, assume τ is critical. If g(τ ) = τ then H cannot be local

(if so then τ would be in a 2-cycle of f ). Hence Q contains iτ

f (τ )

j
f 2(τ )

but then since

f (τ ) is virtual we have g( f (τ )) = f 2(τ ) = f ( f (τ )) which is a contradiction. It follows
that the g-cycle of τ has length 3 and is a subquiver of Q of the form i j .

Now, f (τ ) is not part of this subquiver but τ is in T . It follows that f (τ ) is a loop at j
and τ is the arrow i → j . In particular Q has three vertices and H is the algebra in 4.2(2c)
with γ as the critical arrow.

(b) Suppose τ : j → y, and assume f (τ ) is a loop. Then since τ ∈ T we must have that
f 2(τ ) : y → j . But as well the arrow g(τ )(�= f (τ )) starts at y. Since Q is 2-regular, we
deduce g(τ ) = f 2(τ ) and since g3(τ ) = τ it follows that g2(τ ) is a loop at j , a contradiction.


�
In the following, we exclude the algebra 4.2(2c). That is we assume that a critical arrow

does not occur in a g-cycle with a loop, and that the g-cycle with a critical arrow has size 3.

3.1.1 The subquiver around a critical arrow

We will see that in the exceptional cases

ζα ≡ Aα and ξα ≡ Aα.

Let τ be a critical arrow, in a g-cycle of length three, then by definition τ and f (τ ) belong
to T . In order to study the paths ζα and ξα near τ in the exceptional cases, we also assume
that g2(τ ) belongs to T . Then by Lemma 3.8 the quiver near τ has the following form

j

τ

i
ω

y
ξ

k

x
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The permutation f has 3-cycles through vertices j, y, i and y, x, i and j, k, x . At vertex k
the quiver there is at least one other arrow, to have a 2-regular quiver. We assume that τ is
critical, so that mτ = 1 and moreover ξ = f (τ ) is virtual. Since all f -cycles shown belong
to T , the arrow ω is also virtual.

(a) We study the path ζα = α f (α)g( f (α)) when ᾱ is critical, using the above diagram.
That is we take for α the arrow j → k, so that ᾱ = τ . Then we have

ζα = cᾱ Aᾱg( f (α)) = cτ τg(τ ) f (g(τ )) = cτ cξ τξ = cτ cξ cα Aα.

This must be non-zero since we require that Aα �= 0. We note that Aα = α ·C · f (α)g( f (α))

where C is a monomial of positive length.
(b)We study the path ξα = αg(α) f (g(α))when f (α) is critical, using the above diagram.

Here we take for α the arrow i → j . Then

ξα = α · cτ Aτ = cτ ατg(τ ) = cτ cωωg(τ ) = cτ cωcα Aα

which again must be non-zero. We note that Aα = α · C · f (g(α)) where again C is a
monomial of length ≥ 1.

Remark (a) It is not possible that α and ᾱ are both critical. Suppose τ = ᾱ and α : j → k
is also critical, then f (α) : k → x is virtual, so there must be an arrow x → k and three
arrows start at x , a contradiction.

(b) If τ is critical in a g-cycle of length three then in general g(τ ) need not be in T .

3.1.2 Subquivers around a virtual arrow

We will see that in the exceptional cases

ζα ≡ Aα and ξα ≡ Aᾱ .

(1) Assume first that the virtual arrow is not a loop, then there is a pair ξ, ω of virtual arrows,
and the quiver contains

i

j
ω

x
ξ

k

The arrows shown form two 3-cycles of f , and belong to T . First we assume |Q0| > 3, that
is i �= k. We assume ξ, ω are virtual, then the other arrows in the diagram are not virtual.

(a) Consider ζα = α f (α)g( f (α)) for ᾱ virtual, then ᾱ is one of ξ or ω.
Consider the case ᾱ = ξ , then we take for α the arrow x → k. Then

ζα = cξ ξg( f (α)) = cξ cα Aα

and this must be non-zero. One can write Aα = α · C where C is a monomial of length ≥ 1.
When ᾱ = ω then we take for α the arrow x → i and we get similarly

ζα = cωcα Aα

123



Hybrid algebras Page 15 of 40 75

and we can write Aα = αC with C a monomial of length ≥ 1.
(b) Consider ξα = αg(α) f (g(α)) for f (α) virtual, that is f (α) = ξ or ω. If f (α) = ξ

then we take for α the arrow i → j , and

ξα = αcξ ξ = cξ cᾱ Aᾱ

and this must be non-zero. We can write Aᾱ = C f (g(α)) where C is a monomial of positive
length. Suppose f (α) = ω, then we take for α the arrow k → x , and weget

ξα = cωcᾱ Aᾱ

which must be non-zero. We can write Aᾱ = C f (g(α)) for a monomial C of positive length.
(2) Now assume i = k so that |Q0| = 3. By 4.3(2) we can assume the multiplicities are

not (m, 1, 1) (as this gives a Nakayama algebra), and in 4.3(3) we deal with multiplicities
(2, 2, 1). This leaves multiplicities (m1, m2, 1) where (m1, m2) �= (2, 2) and mi ≥ 2. This
case is similar to the above, we omit details.

(3) Now we consider a virtual loop, and analyze the exceptions. Here we can use the
quiver

iω k

where ω is virtual. Consider ζα = α f (α)g( f (α)) when ᾱ is virtual using this diagram, that
is ω = ᾱ. We take for α the arrow i → k. By assumption ω = g(ω) and therefore f has
cycle (ω α f (α)). Moreover g( f (α)) = α. We have

ζα = cωωα = cωcα Aα.

Now consider ξα = αg(α) f (g(α)) when f (α) is virtual, using this diagram. That is f (α) =
ω. We take for α the arrow j → i . Then g(α) : i → j and g(α) = f 2(α) and f (g(α)) = α.
We have

ξα = α f 2(α)α = αcωω = cωcᾱ Aᾱ


�
As in 3.1.1, we can deduce a general description of a path of type ζ or ξ in a subquiver of

the above forms (allowing also for arrows at i or k): The following Corollary gives already
Lemma 7.1

Corollary 3.9 Consider any path of length three of the form ζσ or ξσ in the subquiver of 3.1.1
or 3.1.2 shown.

(a) If the path does not contain ξ or ζ then it must be non-zero in H.
(b) If the path contains ξ or ζ then it is zero in H.

Part (a) is implicitly part of the discussion. Part (b) can be seen using the relations (2) and
(2’) of Definition 3.3.

3.2 Consistency, bases and dimensions

This is an update for the case done in Sect. 2, when virtual arrows are allowed. This may be
found in the “Appendix”.
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4 Some hybrid algebras with at most three simple modules

In [8] and [10] we have excluded small quivers, to avoid technical problems obscuring the
general structure. However, here one of the main aims is characterize hybrid algebras as
idempotent algebras of weighted surface algebras. This forces us to include small algebras
as well.

In this section we consider some hybrid algebras whose quiver has at most four vertices.
We will mainly discuss algebras where T �= ∅, and which can have virtual arrows of type
(b), for small multiplicities. Note that given (Q, f ) and T , together with m•, c•, the algebra
is completely determined, and we will usually not write down relations explicitly.

4.1 Local algebras

Here Q consists of one vertex and two loops, denoted by α and β. There are two possibilities
for f and g, and if f is the identity permutation there are three possibilities, depending on
T .

(1) Consider an algebra where f = (α β) and g = (α)(β), then we must have T = ∅.
We may assume mα ≥ mβ .

If mβ = 1 then H ∼= K [x]/(xmα+1). Otherwise it is an algebra of dihedral type as in [5,
III.1(a)]:

The relations are:

αβ = 0 = βα, cα Bα = cααmα = cββmβ = cβ Bβ .

If mβ = 1 so that β is virtual (of type (a) of Definition 3.1), then H ∼= K [x]/(xmα+1). This
also holds when mα = 1; in this case the Gabriel quiver of H is not obtained from Q by
removing the virtual arrows (see also Lemma 3.6). If mβ ≥ 2 then H is special biserial, of
infinite type and is a (commutative) algebra of dihedral type, as defined in [5, III.1(a)].

(2) Consider hybrid algebras where f = (α)(β) and g = (α β), so mαnα ≥ 2.
(2a) Assume first that T = Q1. If mα = 1 then H ∼= K , and if mα ≥ 2 then H is an

algebra as in [5, III.1(e)] of quaternion type:
Assume that mα = 1, we may assume that cα = 1. The relations are

α2 = Aβ = β and β2 = Aα = α,

that is, both arrows are virtual. By condition (4) of Definition 3.3 we have that Bαα = 0 =
αBg(α). Relation (3) gives Bα = αβ = Bβ = βα. and hence α2β = 0 and therefore

0 = α4 = β2 = α

and similarly β = 0. We have shown that H ∼= K . On the other hand, when mα ≥ 2 then we
see directly that we get an algebra of quaternion type, as in [5, III.1.(e)]. The algebras where
H ∼= K cannot occur as an idempotent algebra of a WSA �, since ei�ei has at least two
independent elements: the idempotent ei and the generator of the socle of ei�.

(2b) Assume T = {β}. If mα = 1 then H ∼= K [x]/(x4). Otherwise H is an algebra as in
[5, III.1(d)] (of semidihedral type):

We may assume cα = 1, and we have the relations

β2 = Aα = (αβ)mα−1α, α2 = 0.

If mα ≥ 2, this gives precisely the algebras in [5, III.1(d)]. Suppose mα = 1 so that the
arrow α is virtual. Then we see β3 ≡ Bα and β4 = 0 which shows that H is isomorphic
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to K [x]/(x4). In this case the Gabriel quiver is obtained from Q by removing the virtual
arrows.

(2c) Assume T = ∅. Then H is an algebra as in [5, III.1(b)]. For mα = 1 it is four-
dimensional commutative: This is seen directly from the relations. 
�

4.2 Hybrid algebras with two simplemodules

Let H be a hybrid algebra with two simple modules, then H = K Q/I where the quiver Q
is of the form

1α

β

2
γ

σ

We consider only the cycle structures of f , g for which T can be non-empty and the algebra
can have virtual arrows of type (b).

(1) Consider algebras with

f = (α)(βγ )(σ ) with g = (α β σ γ ).

Suppose T �= ∅, then T consists of one or two loops, and there are no virtual arrows. The
algebras look similar to algebras of semidihedral type in [5], however they have always
singular Cartan matrices, which was excluded for semidihedral type.

(2) Consider algebras where

f = (α β γ )(σ ) with g = (α)(β σ γ ).

For hybrid algebras with T �= ∅, the possibilities for T are either Q1, or T = {σ }, or
T = {α, β, γ }.

4.2(2a) The case T = Q1 and (t, m) = (2, 1) This is excluded in Assumption 3.4(1). In
[10] it was excluded because the algebras appeared to be of finite type. However the argument
was based on the incorrect relations. Here we review this algebra, with amended relations.

We may take c• = (1, c). Note that α is virtual and γ is critical. The associated hybrid
algebra is given by the relations

βγ = α, γ α = cσγ, αβ = cβσ, σ 2 = cγβ,

αβσ = 0, γ α2 = 0, σγ α = 0, α2β = 0

These imply that the algebra is not symmetric. Alternatively, there is a quick way to get
a contradiction. Namely

0 = βσ 2 ≡ βγβ = αβ

and α /∈ T .
4.2 (2b) The case T = Q1 and t = 3 and m = 1. This was dealt with in [10, Example

3.1(1)], the algebra is called disc algebra, and is denoted by D(λ). Viewed in the context of
periodicity, it has a singular version: when the scalar parameter λ = 1 it is not periodic, but
it is a hybrid algebra. In that case rad(e1H)/S1 ∼= rad(e2H)/S2 and is indecomposable, and
the simple modules belong to an Auslander–Reiten component of type D. The algebra is of
semidihedral type, part of the family SD(2B)3 in [5] and it is a hybrid algebra.

4.2 (2c)Algebras with T = {α, β, γ } and (t, m) = (2, 1). This is the only algebra where
the g-cycle of a critical arrow has a loop (see Lemma 3.8). However the algebra is seen below
to be special biserial and we do not have to consider it further. The arrow α is virtual, and γ
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is critical. We may take cα = 1, and we set cβ = c. Then the associated hybrid algebra is
given by the relations:

βγ = α, γ α = cσγ = γβγ, αβ = cβσ = βγβ, σ 2 = 0,

βγβσ = 0, (γβ)2γ = 0, (βγ )2β = 0, σ 2γ = 0, βσ 2 = 0, σγβγ = 0.

Note that γβσ = σγβ = c−1(γβ)2 and Bβ J = 0 = Bγ J .

Lemma 4.1 The algebra H is special biserial. More precise, letσ ′:=(cσ−γβ). Thenσ ′γ = 0
and βσ ′ = 0.
Then H has presentation k Q̃/ Ĩ where Q̃ is the quiver

1
β

2
γ

σ

and Ĩ = 〈σγ, βσ, σ 2 − (γβ)2〉.
Proof Rewriting the relations gives that σ ′γ = 0 and βσ ′ = 0. Note that σ ′ may be taken
as an arrow. We have σ ′σ = cσ 2 − γβσ and it is non-zero in the socle of e2A. We have
σ ′γβ = c(σγβ − (γβ)2) = 0, hence

(σ ′)2 = −(γβ)2

We may rescale σ ′ and then obtain the presentation as stated. 
�
One may introduce a virtual loop at 1, which gives a presentation of a hybrid algebra.
4.2 (2d) Algebras with T = {σ } and t = m = 1.
Here α is virtual of type (a) (note that α and ᾱ = β are not in T ). We can take cα = 1 and

we set cβ = c. Then the relations are

αβ = 0, βγ = 0, γ α = 0, σ 2γ = 0,

βσ 2 = 0, σ 2 = cγβ, α = c(βσγ ), cBγ = cBσ .

This algebra occurs in (3.6) of [22], with a slightly different presentation. It is an algebra of
finite (Dynkin) type D.

We consider now some algebras with three simple modules.
In total there are five possible quivers for which f has at least one 3-cycle. We will discuss

algebras with ’triangular’ and ’linear’ quiver in some detail first, and will briefly consider
the other three later.

4.3 Algebras with triangular quiver

Let Q be the quiver

1
α1

β3

2
β1

α2

3

α3

β2

The only cycle structure forwhich T can be non-empty is given by f = (α1 α2 α3)(β1 β3 β2),
so that g = (α1 β1)(α2 β2)(α3 β3). We write mi = mα1 and ci = cαi .
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4.3 (1) Algebras with T = Q1 and m• = (1, 1, 1). Such an algebra is excluded in
Assumption 3.4(3). It was excluded in [10, 4.4], though the argument was not correct. The
algebra is given by the relations

αiαi+1 = ci+2βi+2, βiβi−1 = ci−2αi−2

(indices modulo 3). As well Bαi = αiβi ≡ Bβi−1 = βi−1αi−1, and there are no zero relations
of types (2) or (2’). We observe that

α1β1 ≡ β3β2α2α3 ≡ β3α3β3α3 ≡ (α1β1)
2 = 0

and this is zero by condition (4) of Definition 3.3. Similarly all paths αiβi and βiαi are zero,
and then any cyclic path of positive length is zero in the algebra. Therefore the algebra is not
symmetric.

4.3 (2) Algebras with T = Q1 and m• = (m, 1, 1) and m ≥ 2.
Such an algebra was excluded in [10, 4.4], as it was said to be not finite-dimensional.

However this is not correct, it has even finite type, as we will now show. Note also that the
Gabriel quiver is obtained by removing the virtual arrows.

Lemma 4.2 With these conditions, H has finite type, it is isomorphic to the direct sum of a
Nakayama algebra

K Q/〈(αβ)m−1α, (βα)m−1β〉

with a copy of K , where Q is the quiver 1
α

2
β

.

Proof The relations are as follows.

α1α2 =c3β3, α2α3 =c1Aβ1 , α3α1 =c2β2

β1β3 =c2α2, β3β2 =c1Aα1 , β2β1 =c3α3,

α2α3β3 = 0, β3β2α2 = 0, α3β3β2 = 0, β2α2α3 = 0.

Moreover we have the consequences

c1Bα1 = c3Bβ3 , c1Bβ1 = c2Bα2 , c2Bβ2 = c3Bα3

(1) Starting with the relation 0 = α2α3β3(= α2Bα3) we show that β1α1α2 = 0: Namely

0 = α2Bα3 ≡ α2Bβ2 = Bα2α2 ≡ Bβ1α2 = (β1α1)
mα2.

Next we have

(β1α1)
mα2 = (β1α1)

m−1β1α1α2 ≡ (β1α1)
m−1β1β3 ≡ (β1α1)

m−1α2.

Repeating this reduction gives β1α1α2 = 0 and then α2 = 0. Similarly we have 0 = β3 =
β2 = α3. Hence the algebra has a direct summand spanned by e3 which is isomorphic to
K . Furthermore, from the relations we have Aβ1 = 0 and Aα1 = 0, and there are no further
restrictions. This shows that the subalgebra generated by e1, e2 and α1, β1 is the Nakayama
algebra as stated. 
�

4.3 (3) Algebras with T = Q1 and m• = (2, 2, 1).
They are called triangle algebras, as discussed in [10, Example 3.3 (1)], and denoted by

T (λ), where c• = (λ, 1, 1). The algebra with λ = 1 is not symmetric, as it was shown in
[10, 3.3], and therefore it is excluded in Assumption 3.4(2).
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4.3 (4) Algebras with T = {α1, α2, α3} and m• = (1, 1, 1). In this case, the arrows βi

are virtual, and the algebra HT is a Nakayama algebra of finite type: The relations are

αiαi+1 = ci+2βi+2 and βiβi−1 = 0.

There are no exceptions to the zero relations in (2) and (2’) since for any arrow α we have
α /∈ T or ᾱ /∈ T , and α /∈ T or g(α) /∈ T . It is straightforward to check that H is the
Nakayama algebra where the quiver is cyclic with three vertices, and where all paths of
length four are zero in the algebra.

4.4 Algebras with linear quiver

Consider algebras whose quiver is of the form

1α

β

2
γ

σ
3

δ

η

To have that T �= ∅ containing some virtual arrows of type (b), we have two possibilities for
the permutations f and g:

f = (α β γ )(σ η δ) and g = (α)(β σ δ γ )(η), or

f = (α β γ )(σ δ)(η) and g = (α)(β σ η δ γ ).

Formost of the hybrid algebraswith these cycle structures, virtual arrows donot lead to special
cases. We only discuss algebras with the first cycle structure and where m• = (2, 1, 2). This
has been considered in Example 3.4 of [10]. It is shown that we may assume c• = (1, λ, 1),
the algebra is called �(λ). Furthermore, it is proved (in Lemma 3.5 of [10]) that �(λ) is
isomorphic to the triangular algebra T (λ−2) introduced in 4.3. In particular this implies that
we must exclude λ = ±1, since then the algebra is not symmetric. We refer to this as a
singular algebras, which are excluded in Assumption 3.4(2).

4.5 Three other quivers with three vertices

The following three quivers also have each at least one 3-cycle of f which may or may not
belong to T :

1ε
α

2 η

β

3

μ

γ

1
α1

β1
2

α2

β2

3

α3

β3

1
α1,γ

2

α2

β

3

α3

ω

For the first two quivers, there are no virtual arrows of type (b) since there is just one g-orbit of
size 6. Consider the third quiverwhen f = (α1 α2 α3)(ω)(β γ ). Then g = (α1 β)(γ α2 ω α3).
We consider the case when m• ≡ 1, then the arrow β is virtual if T contains {α1, α2, α3}.
However this does not create complications: If β is virtual then relations γα2α3 and α2α3γ

are excluded in (2), (2’) of Definition 3.3. In this case they are, up to non-zero scalars, equal
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to γβ and βγ , which are zero since f has the cycle (β γ ). We note that the algebras are not
of semidihedral type, as the Cartan matrices are singular.

4.6 An exceptional algebra with four simple modules

Let H = K Q/I where Q is the quiver

1

α

ᾱ4

δ

η
2

ξ

γ

3

σ

β

with f = (ᾱ β)(α ξ δ)(γ σ η), and hence g = (α γ β)(ᾱ σ δ)(ξ η). Moreover, we take
m• = 1 and cα = c and cβ = cξ = 1. Let T = {α, ξ, δ, γ σ η}, and let H be the hybrid
algebra defined by these data. Then ξ and η are virtual arrows and the Gabriel quiver Q H is
obtained by removing ξ, η.

Lemma 4.3 The algebra H is special biserial. Let Q̄ be the quiver obtained from Q by
removing ξ and η, and adding virtual loops ε, ρ of type (a). Then H has a hybrid algebra
presentation with this quiver, and with T̄ = ∅, defined by by the data data

f̄ = (δ ᾱ′ σ ε)(α ρ γ β ′), ḡ = (δ α γ σ)(ᾱ′ β ′)(ρ)(ε)

with multiplicity ≡ 1 and parameter function ≡ 1. The loops ε, ρ are virtual of type (a).

Proof Starting with the given presentation, we replace β by β ′:=σδ − cβ, then β ′α = 0 and
γβ ′ = 0. We also replace ᾱ by ᾱ′:=αγ − ᾱ, and then ᾱ′σ = 0 and δᾱ′ = 0. We take ε

to be the socle monomial δαγ σ , and we take ρ to be the socle monomial γ σδα. Then it is
straightforward to show that the algebra has the stated presentation. 
�

4.7 Singular algebras

In addition to the singular disk, and triangle algebra as we have discussed above, there are
two further algebras which were called singular in [8] and [10]. Recall from [8] Example 6.1
the tetrahedral algebras. This family contains one algebra, with certain parameters, which
is not periodic, and therefore it was called singular in that context. However, it is a hybrid
algebra.

Furthermore, in Example 3.6 of [10] we have discussed spherical algebras, denoted by
S(λ) for λ ∈ K ∗. The quiver has six vertices, and with the smallest multiplicities the algebra
has four virtual arrows. When λ = 1, it is not symmetric and is therefore excluded in
Assumption 4.3(4).
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5 Hybrid algebras as idempotent algebras of weighted surface algebras

In the first part of this section we will prove that for a weighted surface algebra � and an
idempotent e of �, every block of e�e is a hybrid algebra. In the second part of this section
we will show that every hybrid algebra with T �= Q1 occurs in this way. The second part
generalizes the main results of [15], which dealt with the hybrid algebras where T = ∅, that
is, the Brauer graph algebras. Note that we start with a weighted surface algebra, which is
not a socle deformation.

Theorem 5.1 Assume � is a weighted surface algebra and let e ∈ � be an idempotent. Then
each block of the algebra e�e is a hybrid algebra.

Proof Wefix aweighted surface algebra�, and we proceed as in the proof of Proposition 2.7.
By general theory, we may assume that e = ∑

i∈� ei with � a subset of the vertices of Q, and
we set R = e�e, and we may assume that e is not the identity of �. We take the quiver Q̃
with vertices labelled by �. For α ∈ Q1, let α̃ be the shortest path in Q along the g-cycle of α
starting with α and ending at some vertex in �. We take the set Q̃1 of these α̃ as arrows for Q̃,
it is a generating set for R, and we have a surjective algebra mapψ : K Q̃ → R. As in 2.7, the
quiver Q̃ is 2-regular. When α̃ = α then we write for simplicity α. We define the permutation
f̃ , and the distinguished set T̃ of triangles, as in Proposition 2.7. The cycles of the associated
permutation g̃ are obtained from the cycles of g by replacing (αg(α) . . . g p(α)) by α̃. We
take the multiplicity and parameter functions as for �. Then we may write down elements
Bα̃ of R for each arrow α, and it is clear that these satisfy identity (3) of Definition 3.3. As
well we have elements Aα̃ such that Aα̃ γ̃ = Bα̃ where γ̃ is the last arrow in Bα̃ . Furthermore,
the exceptions in relations (2) and (2’) occur precisely when the arrows α, ᾱ (or α, g(α)) are
in T̃ .

We will show that the arrows in Q̃1 satisfy the identity (1) of Definition 3.3. For the arrows
in T̃ , this follows directly from identity (1) for �. Let α̃ be an arrow of Q̃ which is not in T̃ ,
and let p:=α̃ f̃ (̃α) We must show that this is zero in R, (possibly after some adjusting), or
possibly that it is a scalar multiple of a socle element, ie we have a socle deformation.

Since α̃ is not in T̃ , we know that p has length |p| ≥ 3 as a path in Q. If |p| ≥ 5 then it
is zero in �, this follows from Lemma 7.5. Suppose now that p is non-zero, then we must
have |p| = 3 or |p| = 4. For the following we exclude the algebras 4.3(2) (this can be done
by hand, using Lemma 4.2. Furthermore we exclude 4.2 and 4.3(3), they will be considered
below in 5.1.

(a) Assume first that |p| = 3, then p is of the form ζα of ξα , near a critical or virtual arrow.
We start with p near a critical arrow.

(a1) Assume p = ζα = α f (α)g( f (α)) and ᾱ is critical. That is we have α̃ = α and
f̃ (̃α) = f (α)g( f (α)). We use diagram 3.1.1, and set τ = ᾱ so that α : j → k. In this case �

contains vertices j, k, i but � does not contain x . Let β = f (α). The cycle of f̃ containing
α̃ is

(α β̃ ω̃γ ˜̄α)

where γ : i → j . Note that ω̃ = Bω and ˜̄α = Bᾱ and therefore products along the f̃ cycle
with these elements are zero. It remains to adjust the product of α̃ and β̃.

By 3.1.1 we have p = cᾱcξ cα Aα , and we see from the diagram that and Aα = αCβg(β)

where C is a monomial in the arrows of Q of positive length and therefore, as an element of
R, it belongs to the radical. We can replace the arrow α̃ by

α̃′:=α̃(1 − cᾱcξ cαC)
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and this has product zero with the arrow β̃.
(a2) Assume p = ξα = αg(α) f (g(α)) and f (α) is critical. Then we use the diagram of

3.1.1 again, now taking α : i → j and we set β = f (g(α)) so that p = αβ̃. In this case, �
contains i, k, x but not the vertex j . From this we see that the cycle of f̃ containing α̃ is

(̃α β f̃ (β) g(β) ω̃)

here f̃ (β) and ω̃ are socle elements and products with these along the cycle are zero, also
after any adjustment. It remains to deal with the product of α̃ and β.

We have

ξα = c f (αcωcα Aα

In this case, we see from the diagram that Aα = α̃ · C · β where C is a monomial of positive
length. We set α̃′ = α̃(1 − c f (α)cωcαC) and this can be taken as an arrow, and it satisfies
α̃′β = 0.

Now consider p near a virtual arrow.
(a3) Assume p = ζα so that α̃ = α, and assume ᾱ is virtual. We have α̃ = α. Then s(α)

and s( f (α)) are in � but t( f (α)) is not in �. In this case the virtual arrow ᾱ cannot be a
loop: Otherwise, using part (3) of 3.1.2, we have α : i → j and both i, j are in �. But then
f (α) : j → i is an arrow of Q̃ and f (α) = f̃ (̃α) �= f (α)g( f (α)).

Now we use the diagram (1) of 3.1.2. We can assume that the virtual arrow ᾱ is equal to
ξ , that is we take α : x → k. The set � contains x, k, i but does not contain j . Let β : k → i .
We see that f̃ has the cycle of length four, that is (α f̃ (̃α) β ξ̃ ). Moreover ξ̃ = ξω = Bξ

and it belongs to the socle. Therefore βξ̃ = 0 and ξ̃α = 0. The other two products need to
be adjusted. By 3.1.2 we have

α f̃ (̃α) = cξ cα Aα and f̃ (̃α)β = cωcg(α) Ag(α).

Now, we can write Aα = α · C for a monomial C of positive length between vertices in Q̃,
and luckily, we also have C · β = Ag(α), moreover cω = cξ and cα = cg(α). Hence we can
replace f̃ (̃α) by f̃ (̃α)′:= f̃ (̃α) − cξ cαC .

(a4) Assume p = ξα , so that α̃ = αg(α), and assume f (α) is virtual. As in (a3), the
virtual arrow cannot be a loop. We use the diagram (1) of 3.1.2 and we take α to be the arrow
k → j . Then we have the following arrows of Q̃

α̃ : k → i, β = f̃ (̃α) : i → x, ξ̃ : j → j, γ : x → k

and they belong to the cycle of f̃ of length four

(̃α β ξ̃ γ ).

Since ξ̃ = ξω = Bξ is in the socle, the products with β and γ are zero. We see from 3.1.2
that

α̃β = cωcᾱ Aᾱ , and γ α̃ = cξ cγ Aγ

Moreover Aγ = γ C and Cβ = Aᾱ and as well cγ = cᾱ and cξ = cω. We replace α̃ by
α̃′:=α̃ − cωcᾱC , then the remaining products along the cycle of f̃ are zero.

(b) The case when |p| = 4 and p �= 0 in �: Then by Lemma 7.5 we have p = α̃β̃ where
α̃ = αg(α) and β̃ = βg(β) for β = f (g(α)). That is we can write p = ξαg(β)(= αζg(α)),
and we must have that ξα �= 0. This means that the arrow f (α) is critical or virtual.
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(b1) Assume f (α) is a virtual loop. In this case we use the diagram (3) of 3.1.2, with
ω = f (α) so that α : i → j and g(α)(= f 2(α)) : j → i . Then β = α and therefore
α̃ = f̃ (̃α) and it is a loop fixed by f̃ . We compute

α̃2 = cαcω Bα

which is non-zero in the socle. This means that at α̃ we have a socle deformation.
(b2)Assume f (α) is virtual but not a loop.Thenwe use the diagram 3.1.2 with α : k → j ,

so that β : i → x . Then � contains k, i but does not contain j, x . We see that f̃ has a cycle
of length two, namely (̃α β̃). Using the formulae in 3.1.2 we compute

α̃β̃ = c f (α)cα Bα = c f (α)cαα̃C

where C is a monomial of positive length from i to k. Similarly

β̃α̃ = c f (β)cβ Bβ = c f (β)cβ̄ Bβ̄

using (3) of Definition 3.3. Now β̄ is in the g-orbit of α and we see cβ̄ = cα and moreover

Bβ̄ = C β̃. Furthermore c f (α) = c f (β) We replace β̃ by β̃ ′:=β̃ − cαc f (α)C .
(b3) Assume f (α) is critical. Then we use the diagram 3.1.1 with α : i → j , and

β = f (g(α) : k → x . Then i, k are in � but j, x are not in �. The f̃ -cycle of α̃ is

(̃α β̃ ω̃)

and ω̃ = Bω, hence the product of ω̃ with any arrow is zero.
Using the calculations in 3.1.1 we have

ξαg(β) = c f (α)cωcα Bα

We factorise Bα = α̃C β̃ and C is a monomial of positive length. We can replace α̃ by
α̃′:=α̃(1 − cαc f (α)cωC) and the α̃′β̃ = 0 (and ω̃α̃′ = 0).

(c) We determine now when the algebra R = e�e has only virtual arrows, and then verify
that Condition (4) of Definition 3.3 holds.

(i) We show first that in this case, R does not have a virtual arrow of type (b):
Suppose such an arrow α̃ say exists. Then mα ñα̃ = 2 and ¯̃α = ˜̄α ∈ T̃ . Then ˜̄α = ᾱ. This

must also be virtual and necessarily of type (b). Therefore also α̃ ∈ T̃ and then α̃ = α.
So we have two f -cycles of arrows in Q which all remain arrows of Q̃. If α, ᾱ are both

loops then � must be local and e = 1 which is excluded. So say α : i → j and i �= j . Then
i, j belong to �. Since ñα̃ ≤ 2, the g-cycle of α cannot pass through any other vertex of �

and g(α) is a path from j to i . However g−1(α) = f −1(ᾱ) and it starts at some vertex in �.
It follows that g(α) = f −1(ᾱ).

Assume (for a contradiction) that ᾱ is a loop: Then f (ᾱ) : i → j but Q is 2-regular and
then f (ᾱ) = α. But then f (α) must be a loop at j and Q has two vertices and moreover
Q = Q̃ and e = 1 which is excluded.

Then Q has subquiver with three vertices which has arrows α, ᾱ, f (ᾱ) and f 2(ᾱ). Now
we can use the same reasoning for ᾱ and see that f −1(α) which is g−1(ᾱ) is an arrow
k = t(ᾱ) → i . Then f (α) : j → k and Q is the triangular quiver. The algebra � has at least
four virtual arrows and this is excluded in 4.3(2).

(ii) We have shown that if R has only virtual arrows then all arrows are virtual of type
(a), and hence they are loops, and R is local. Then α̃ = Bα and ˜̄α = Bᾱ . In particular
g̃(̃α) = α̃ and therefore f̃ = (̃α ˜̄α). We see that R is the local algebra as in 4.1(1) with both
multiplicities equal to 1. We also see that condition (4) of 3.3 holds. 
�
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5.1 The proof of 5.1 in the special cases

We consider the algebras which were excluded in the above proof.

5.1.1 Idempotent algebras for a WSA as in 4.2

That is, � = K Q/I where the quiver Q is of the form

1α

β

2
γ

σ

and f = (α β γ )(σ ) so that g = (α)(β σ γ ). Let mα = t ≥ 2 and mβ = m, and we can take
cα = λ and cβ = 1. By 4.2 (2a) (and Assumption 3.4(1)), if t = 2 then m ≥ 2. Furthermore,
if (t, m) = (3, 1) then λ �= 1 (see 4.2(2b)). There are two idempotent algebras �= � to be
considered, and we describe the result:

(1) Let R = e1�e1. This gives a local algebra as in 4.1(1). In particular for m = 1 we
have R ∼= K [x]/(xt ).

(2) Let R = e2�e2, then T̃ = {σ } and we get the algebras as in 4.1(2b). When t > 2 it
is of semidihedral type, and if t = 2 it is a socle deformation of an algebra of semidihedral
type.

We omit details for (1), but we give details for (2), to show how a socle deformation
occurs. Hence let R:=e2�e2. This algebra has quiver

2γ̃ σ

where γ̃ = γβ. The permutations are

f̃ = (γ̃ )(σ ) and g̃ = (γ̃ σ ).

In this case we have T̃ = {σ }. We write down the type (1) relations of Definition 3.3. The
first one is

σ 2 = Aγ̃ = (γ̃ σ )m−1γ̃ .

Next, γ̃ 2 = γβγβ = 0 provided t > 2, by the zero relations for �. Assume now t = 2, then
using the relations for � we see

γβγβ = λγαβ = λγ Aβ = λBγ

which is non-zero and spans the socle of R. That is, we get an algebra as in 4.1(2b) when
t > 2. If t = 2 we get a socle deformation of such an algebra.

5.1.2 Idempotent algebras when3 is a WSA as in 4.3(3)

Then the quiver is triangular, and we have m• = (2, 2, 1) and c• = (λ, 1, 1). The arrows
α3, β3 are virtual, and up to labelling we have to consider four idempotent algebra. We
describe the result, the details are straightforward and are omitted.

(1) If e = e1 + e2 and R = e�e then R is a Brauer graph algebra with one virtual loop.
(2) If e = e1 + e3 then again R = e�e is a Brauer graph algebra. In this case, the virtual
arrows of � are not virtual as arrows of R,

(3) The algebra e1�e1 is a local hybrid algebra as in 4.1(1).
(4) The algebra e2�e2 is a 4-dimensional algebra of dihedral type, as in 4.1(1).
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Remark 5.2 (a) Suppose α̃ is an arrow of Q̃ starting at i . We must show that m̃α̃ ñα̃ = 1 only
occurs when the vertex is biserial and α̃ is a loop.

We have ñα̃ = 1 if and only if α̃ is the product of all arrows in the g-cycle of α, hence is
a loop. If in addition m̃α̃ = 1 then α̃ = Bα and clearly α̃˜̄α = 0 and ˜̄α˜̃α = 0. To see that i is
biserial we need ˜̄α is not in T̃ . This is clear if α is a loop since then α = Bα and α is virtual
of type (a). Suppose α is not a loop and α̃ = Bα . The last arrow in Bα is f 2(ᾱ) and it does
not start at a vertex of � and therefore ˜̄α cannot be in T̃ .

(b) The algebra e�e is symmetric, therefore the exceptions in Assumption 3.4 cannot
occur.

We will now show that every hybrid algebra, such that T �= Q1, occurs as an idempotent
algebra of some weighted surface algebra. This generalizes the main result of [15] where
this was done for the case of Brauer graph algebras. As in [15], our tool is the ∗-construction
which we will now introduce.

5.2 The ∗-construction

Let H be a hybrid algebra such that T �= Q1, say H = HT (Q, f , m•, c•), and let g be the
permutation associated to f . The ∗-construction gives a triangulation quiver (Q∗, f ∗)which
contains Q0, and furthermore, contains all arrows in T .

The idea is to keep the arrows of T as they are, but split each arrow which is not in T , and
add extra arrows in order to create triangles. With this, one has weighted surface algebras
with m∗, c∗ extending m, c. Explicitly, define

Q∗
0:=Q0 ∪ {xα}α∈Q1\T , Q∗

1:=T ∪ {α′, α′′, εα}α∈Q1\T

For β ∈ T we set s∗(β) = s(β) and t∗(β) = t(β). Let α be an arrow which is not in T .
Then we set

s∗(α′):=s(α), t∗(α′):=xα, s∗(α′′):=xα, t∗(α)′′:=t(α)

s∗(εα) = x f (α), t∗(εα) = xα.

Next we define the permutation f ∗ on Q∗. If β ∈ T then we take f ∗(β) = f (β), and define

f ∗(α′′):= f (α)′, f ∗( f (α)′):=εα, f ∗(εα):=α′′.

Then (Q∗, f ∗) is a triangulation quiver.
This determines the permutation g∗, explicitly it is as follows. First, if the arrow α of Q is

not in T then g∗(α′) = α′′. The arrows starting at t(α′′) in Q are f (α) and g(α), and g∗(α′′)
depends on whether or not g(α) is in T , that is

g∗(α′′) =
{

g(α)′ g(α) /∈ T ,

g(α) else.

Finally, g∗(εα) = ε f −1(α) for any α ∈ Q1 \ T . The cycles of g∗ are obtained from the cycles
of g by replacing each α in Q1 \ T by α′, α′′, together with cycles only containing arrows
of the form εα . On the cycles without ε-arrows, we take the same multiplicity function and
parameter function as for H . On the ε-cycles we may choose multiplicities and parameters
arbitrarily. We take them equal to 1 unless when some arrow εγ is required to be not virtual or
critical, then we choose mεγ ≥ 3, or when some non-zero scalar factor needs to be specified,
wemay choose cεγ differently, depending on the context. This defines then aweighted surface
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algebra � = �(Q∗, f ∗, m∗, c∗). In fact, this is a choice, we could equally well apply the ∗
construction also to triangles in T .

Note that when T = Q1, the construction does not do anything, and H is already a
weighted surface algebra as in [10]. The case when H is local and T = Q1 is discussed in
4.1(2a), and this is not a weighted surface algebra by the definition in [10].

Example 5.3 We illustrate the ∗-construction.
(1) A loop α in Q fixed by f which does not belong to T is replaced in Q∗ by the subquiver

xαεα

α′′

s(α)

α′

which is an orbit of f ∗.
(2) An f -cycle in Q which does not belong to T of the form

aα

β

b
γ

is replaced in Q∗ by the quiver

xβ

β ′′
εα

xα

α′′

εγ

a
α′

β ′

b

γ ′

xγ

γ ′′

εβ

with f ∗-orbits (α′′ β ′ εα), (γ ′′ α′ εγ ) and (β ′′ γ ′ εβ).
(3) Suppose f has a 4-cycle

1
α

2

β

4

σ

3
γ

Then the corresponding part of Q∗ is of the form

1 2

34

xα

xγ

xβxσ

α′ α′′

β ′

β ′′

γ ′γ ′′

σ ′

σ ′′
εα

εβεγ

εσ
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Theorem 5.4 Assume H is a hybrid algebra, such that T �= Q1. Then there is a weighted
surface algebra � and an idempotent e of � such that H is isomorphic to a block component
of e�e.

Proof Given H = HT (Q, f , m•, c•). We let (Q∗, f ∗) and � as constructed above. Now let
e be the idempotent e:=∑

i∈Q0
ei . We want to show that e�e is isomorphic to H .

We have three algebras, the given algebra is H = K Q/I , next we have the weighted
surface algebra � = K Q∗/I ∗ associated to the triangulation quiver (Q∗, f ∗) as introduced
above. Furthermore, we have the idempotent algebra e�e. By Theorem 5.1 we know that it
has a presentation K Q̃∗/ Ĩ ∗ and that it is a hybrid algebra.

Since e = ∑
i∈Q0

ei , the quiver Q̃∗ has vertices (Q̃∗)0 = Q0. The arrows of Q̃∗ are
obtained by contracting paths of Q∗ of shortest length between vertices in Q0. The arrows
of Q∗ are

(1) the arrows of T ,
(2) arrows α′, α′′ and εα for each arrow α ∈ Q1 \ T .

The arrows of Q∗ starting at some vertex in Q0 are therefore the α in T , and the α′ when
α /∈ T . If α ∈ T then α̃ = α, and if α /∈ T then α̃′ = α′α′′. So Q̃∗

1 is the set of α̃ for α ∈ T
and α̃′ for α ∈ Q1 \ T .

The set of triangles T̃ of the algebra K Q̃∗/ Ĩ ∗ consists therefore of the set {̃α | α ∈ T }
(see part (c) in the proof of Theorem 5.1).We define a surjective algebra mapψ : K Q̃∗ → H
by ψ(ei ) = ei and if γ̃ is an arrow of Q̃∗ then

ψ(γ̃ ) =
{

γ, if γ̃ = γ

α, if γ̃ = α′,

and extending to products and linear combinations.
We show now that ψ( Ĩ ) = 0 (that is ψ induces an algebra homomorphism from e�e to

H ). First we observe that ψ takes any submonomials of Bγ̃ starting and ending at vertices
in Q0 to its ’contraction’, replacing each subpath of the form α′α′′ by α, and leaving each
γ ∈ T unchanged.

(a) We consider relation (1) of Definition 3.3. Assume γ̃ ∈ T̃ , then we have γ̃ f̃ (γ ) =
γ̃ f̃ (γ ) = c ¯̃γ A ¯̃γ . By the above observation we see see that ψ preserves this identity. Now

consider an arrow of the form α̃′ for α ∈ Q1 and not in T . Then we have

α̃′ f̃ (α̃′) = α′α′′ · f (α)′ f (α)′′ (*)

By definition, ψ(α̃′)ψ( f̃ (α)′) = α f (α) = 0. By our convention, we can make sure that
ε f −1(α)(= f (α′)) is not virtual or critical. Then the pathα′α′′ · f (α)′ f (α)′′ is zero, by Lemma
7.1 (see “Appendix”).

(b) Next consider a loop of the form α̃′ for α ∈ Q1 and α̃′ not in T̃ , with α̃′ = f̃ (α̃′).
Then we have f (α) = α and α2 = 0. Now

α̃′2 = α′α′′ · α′α′′. (*)

By definition ψ(α̃′)2 = α2 = 0. The subquiver of Q∗ constructed from a loop α fixed by
f is shown in Example 5.3(1). We have

α′α′′α′α′′ = cα′ Aεαα′′ (†)
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where c = cεα �= 0. We may choose c and we may also choose mεα . We take mεα large
enough so that εα is not virtual or critical, and then (†) is zero.

(c) Now consider the relations (2) and (2’) of Definition 3.3 when α and ᾱ (respectively
g(α)) are in T . Then also f (α) is in T and this part of the quiver, the map ψ is an identifi-
cation, so the relations are preserved. Otherwise the elements are mapped to zero by (1) of
Definition 3.3. The socle relations (3) follow automatically.

To complete the proof it suffices to establish that e�e and H have the same dimensions.
For any vertex i , the dimension of ei H is mαnα +mᾱnᾱ , and it is the same as that of ei (e�e).


�
Example 5.5 Let � be the local algebra with arrows α, β and

f = (α)(β), g = (α β).

We take T = {β} with m• = 1 and c• = c so that α is virtual. The relations are

β2 = cAα, α2 = 0

and the zero relation αβα = 0. We apply the ∗ construction to α. This gives the algebra �∗
with quiver

xαεα

α′′
i

α′
β

Take mεα = 4. We may write down the relations defining �, for simplicity write ε = εα and
d = cε .

α′′α′ =d Aε, α′ε = cAβ, εα′′ = cAα′′ , β2 =cAα′

together with the zero relations, in particular α′α′′α′ = 0.
Now consider the idempotent algebra e�e, we want this to be isomorphic to H . By

Theorem 5.1 it has a presentation K Q̃/ Ĩ where Q̃ is the quiver with two loops α̃′ and β̃, and
α̃′ = α′α′′, and β̃ = β. This has relations

β̃2 = cAα̃′ , (α̃′)2 = 0

Remark 5.6 The algebra � in the proof of Theorem 5.4 is a WSA and hence is symmetric,
so it is not one of the exceptions in Assumption 3.4.

Lemma 5.7 Assume H is a hybrid algebra. Then H is tame and symmetric.

Proof We have proved that any hybrid algebra is an idempotent algebra of a (general)
weighted surface algebra. Weighted surface algebras are tame and symmetric (see [10]),
and it is well known that idempotent algebras of tame symmetric algebras are tame and
symmetric. 
�

6 Stable Auslander–Reiten components

This section is more general, here we assume � is a tame symmetric algebra such that
its Gabriel quiver is 2-regular. We can take � to be basic, with an admissible presentation
� = K Q/I and hence Q is 2-regular.

123



75 Page 30 of 40 K. Erdmann, A. Skowroński

For background we refer to Chapter 4 in [2].
The Auslander–Reiten (AR) quiver �� of an algebra � is the graph where the vertices

correspond to isomorphism types of indecomposable �-modules, and where the arrows are
labelled in terms of irreducible maps. For our context it is most relevant that this quiver
encodes Auslander–Reiten (AR) sequences, also known as almost split sequences.

A short exact sequence 0 → M → E
σ→ N → 0 is an AR sequence if M and N are

indecomposable, the map σ does not split, and moreover given any module N ′ and a map
ρ : N ′ → N which is not a split epimorphism, then ρ = ψ ◦σ for someψ : N ′ → E . It was
proved by Auslander and Reiten that for any indecomposable non-projective module N , such
a sequence exists, and it is unique up to isomorphism of short exact sequences. The module
M is denoted by τ(N ) and τ is known as Auslander–Reiten translation. The arrows in �� are
then as follows: For N indecomposable non-projective, the number of arrows X → N is the
multiplicity of X as a direct summand of E (which usually is ≤ 1). For M indecomposable
and not injective, there is an almost split sequence starting with M . Then the number of
arrows from M to X is the multiplicity of X as a direct summand of E .

We assume the algebra is symmetric, so that projectives and injectives are the same. In this
case we have τ ∼= �2. The only almost split sequence in which an indecomposable projective
Pi corresponding to the simple module Si can occur, is what we call standard sequence

0 → �(Si ) → Pi ⊕ rad(Pi )/Si → �−1(Si ) → 0

We assume that � is symmetric, then the stable AR-quiver s�� is obtained from �� by
removing the vertices corresponding to the indecomposable projective modules. The stable
AR quiver is a translation quiver, where �2 acts as translation. The graph structure of a
component of s�� is described by Riedtmann’s structure theorem.

For each component C of ��, its stable part is a component of s��, and for � of infinite
type, C is either a stable tube C ∼= ZA∞/(τ r ) (if it contains a periodic module [17]), or it is
an (acyclic) quiver of the form C = Z�.

The main tool to identify the graph structure of C are subadditive functions, by applying
the classification theorem of [17]. For the case of group algebras of finite groups, this was
done by Webb [24], and Okuyama presented a new approach [21]. We use the version from
Section 3 of [7] where this is generalized to selfinjective algebras. The identification method
is then described as follows.

We say that � has enough periodic modules if for each indecomposable non-projective
M there is a module W with W ∼= τ(W ), such that Hom�(W , M) is non-zero. Here
Hom�(X , Y ) = Hom�(X , Y )/P(X , Y ) where P(X , Y ) is the subspace of maps which
factor through some projective module. Note that τ -periodic is the same as �-periodic for
symmetric algebras.

Proposition 6.1 Assume � has enough periodic modules. Let � be the stable component
containing some indecomposable non-projective module M, let W be as above. Then
dW := dimHom(W ,−) defines an additive function on �, hence T is either Dynkin or
Euclidean or one of the infinite trees A∞, A∞∞, D∞.

When � contains a periodic module then T ∼= A∞ (for � of infinite type), see [17]. If �

contains no periodic modules then both M and its syzygy �(M) are not summands of W ,
and then dW is an additive function, by [7, Lemma 3.2]. The problem is how to find such
module W when modules in � are not periodic.
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6.1 FindingmodulesW

Assume � is tame and symmetric. Furthermore, we assume that the Gabriel quiver of � is
2-regular. This means that every component S of the separated quiver is of the form Ãn for
some n.

We recall the definition of the separated quiver of an algebra. If Q is the quiver of the
algebra and has vertices labelled by 1, 2, . . . , r then the separated quiver Qs has vertices
{1, 2, . . . , r , 1′, 2′, . . . , r ′}. The arrows of Qs are given by α : i → j ′ whenever α : i → j
is an arrow in Q. If Q is a 2-regular quiver then there are two arrows starting at each of
1, 2, . . . , r of Qs , and there are two arrows ending at each of 1′, 2′, . . . , r ′ of Qs . Hence each
component of Qs is isomorphic to Ãn for some n (possibly a Kronecker quiver).

By the well-known classification of indecomposables of such a quiver, there is a 1-
parameter family of KS-modules Wλ (for λ ∈ K ∗) of τ -period 1, all of dimension equal to
the number of vertices of S. Note that they have radical length two.

The modules Wλ can be viewed as �-modules (by letting the square of the radical act as
zero). By [4] they must be (almost all) periodic as �-modules since the algebra is tame, still
of τ -period 1, and therefore of �-period 2 for �. The same holds for an arbitrary component
of the separated quiver. There is some λ ∈ K ∗ such that the Wλ for each component are
periodic of period 2 as modules for �. Define

W0:= ⊕S Wλ,S and W :=W0 ⊕ ��(W0)

Then W is a periodic �−module with �(W ) ∼= W .
We take this module W , and let dW as above. By construction, W0 has radical length

= 2 and soc(W0) ∼= W0/radW0 ∼= ⊕i∈Q0 Si . We may take a set of minimal generators
{v1, . . . , vn} of W0 such that vi = vi ei . Then we can take a basis of soc(W0), of the form
w1, . . . , wn such that wi = wi ei . Then if for some i the arrows in Q starting at i are α, ᾱ

ending at j, k then viα and vi ᾱ are non-zero, and are scalar multiples of w j , wk respectively
(and we may have j = k).

Lemma 6.2 Assume M is indecomposable and not projective, and Hom(W0, M) = 0. Then
Hom(W0, M) ∼= soc(M).

Proof (a) We define a homomorphism φ : soc(M) → Hom�(W0, M). We fix a K -basis for
soc(M) of the form {mi,ν(i) | i ∈ Q0, 1 ≤ ν(i) ≤ ti } where mi,ν(i) = mi,ν(i)ei . Now define
a linear map

fiν(i) : W0 → M

by fiν(i)(v j ) = δi j miν(i) and fiν(i)(wx ) = 0. This defines a�-module homomorphism. Now
define φ(miν(i)) = fiν(i).

(b) We show that φ is injective: Suppose φ(m) = 0 where m = ∑
i,ν(i) ciν(i)miν(i) with

ciν(i) ∈ K , so φ(m) = ∑
i,ν ciν(i) fiν(i). Applying this to some generator of W0 gives

0 = φ(m)(v j ) =
∑

ν

c jν( j)m jν( j)

and since the m jν( j) are linearly independent it follows that all c jν( j) are zero. Hence m = 0.
(c) We show that φ is surjective. Suppose there is some homomorphism f : W0 → M .

It suffices to show that f (soc(W0)) = 0: if so then f factors through W0/soc(W0) which is
semisimple, and the image is contained in the socle. Then f (v j ) = ∑

ν c jν( j)m jν( j) with
c jν( j) ∈ K for each j and f = ∑

iν(i) ciν(i) fiν(i), which is in the image of φ.
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Assume false, thenwemay assume f (wr ) is non-zero for some r .We consider the diagram

0 −−−−→ W0
ι−−−−→ � −−−−→ �(W0) −−−−→ 0

f

⏐⏐�

M

where ι is the inclusion map. Since Hom(W0, M) = 0, it follows that f must factor through
ι, so there is h : � → M such that

f = h ◦ ι.

Now, ι(wr ) must span the socle of the copy of er� of � and we have f (w) = h(ι(w)) �= 0.
Therefore the restriction of h to er� is non-zero, and then it is a split monomorphism, since
er� is also injective. This is not possible since M is indecomposable and not projective. So
we have a contradiction. 
�

For the next part we will use an explicit injective hull of W0. Note that its socle is
multiplicity-free, and that every simple module occurs. We know that W0 ∼= �2(W0), hence
there is an exact sequence

0 → W0 → � → �(W0) → 0

and moreover since W0 has radical length = 2, it is contained in the second socle of �.

Lemma 6.3 Assume M is indecomposable and not projective, such that Hom(�(W0), M) =
0. Then Hom(�(W0), M) ∼= rad(M).

Proof (a) We show first that every f : �(W0) → M maps into the radical of M . Suppose
there is some f and f (x) is not in rad(M) for some x ∈ �(W0), then we may assume
f (x) = f (x)ei . Since f is zero in Hom(�(W0), M), there is h : � → M and f = h ◦ ι.
In particular there is z = zei ∈ � and h(z) = f (x). Then z must be a generator of �

and z� ∼= ei�. The restriction of h to z� must split since ei� is projective, and M has a
projective direct summand, a contradiction.

We identify Hom(�(W0), M) with the set of f : � → rad(M) which take W0 to zero.
(b) We claim that if f maps into the radical of M then f (soc2(�)) = 0, and hence

f (W0) = 0. Let f (ei ) = m = mei in the radical of M . Then we can write m = zβ + z∗β∗
where β, β∗ are the arrows of Q ending at i , and where z and z∗ are elements of M .

Suppose there is some element A in soc2(�) with m A �= 0, say zβ A �= 0. Then in
particular β A is non-zero in the socle of e j� (for j = s(β)). It follows that the submodule
z� of M is isomorphic to e j�. But e j� is injective, and hence is a direct summand of M .
This is a contradiction since M is assumed to be indecomposable and not projective (hence
injective).

(c) We define a homomorphism φ : rad(M) → Hom�(�(W0), M), as in the proof of
Lemma 6.2.

Take a basis of rad(M) of the form {miν(i) | i ∈ Q0, 1 ≤ ν(i) ≤ si } with miν(i) ∈ Mei .
Then define on the generators of �

fiν(i)(e j ) = miν(i)δi j

By (c), this factors through �(W0). Now define φ(miν(i)):= fiν(i). As in Lemma 6.2 the
map φ is injective. The map φ is surjective: By part (b), the set of all fiν(i) is a basis for
Hom�(�(W0), M). 
�
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Proposition 6.4 Assume M is indecomposable and not projective. AssumeHom(W , M) = 0.
Then top(M) ∼= soc(M).

Proof The modules W0 and �(W0) are cyclic since the tops are multiplicity-free. Write
W0 = �� and �(W0) = ��, here � and � are taken as elements in ⊕i∈Q0ei�.

Since �2(W0) ∼= W0 we have �� = 0 = ��, and there are exact sequences

0 → �� → � → �� → 0, and 0 → �� → � → �� → 0.

We apply the functor (−, M):=Hom�(−, M) to the first exact sequence, it takes it to an
exact sequence

0 → (��, M) → (�, M) → (��, M) → 0.

We identify the terms, as vector spaces. The middle is M . Furthermore

(��, M) ∼= {m ∈ M | m� = 0} and (��, M) ∼= {m ∈ M | m� = 0}
where we view � and � as linear maps M → M . Hence we have an exact sequence

0 → Ker(�) → M → Ker(�) → 0,

which shows that M/Ker(�) ∼= Ker(�).
By Lemma 6.3, Ker(�) ∼= radM , and by Lemma 6.2, we have Ker(�) ∼= soc(M). This

shows that top(M) = M/rad(M) ∼= soc(M) as vector spaces, as required. 
�

Corollary 6.5 If Hom(W , M) = 0 then M is �-periodic.

Proof We have Hom(W , M) ∼= Hom(W ,�n(M)) for all n ∈ Z since W ∼= �(W ). Hence
by Proposition 6.4, we have top(�n(M)) ∼= soc(�n(M)) for all n ∈ Z. Note that the top of
�r (M) is the socle of �r+1(M). It follows that the dimensions of the tops of the �n(M) are
constant and therefore the dimensions of the �n(M) are bounded.

Hence there is some integer d such that infinitely many �n(M) have dimension d . Now
we can apply [4] again which shows that some �m(M) has τ -period 1, that is, �-period 2.
Therefore M is �-periodic. 
�

We conclude that on a component of a module M which is not �-periodic the additive
function dW above must be non-zero. Hence by Proposition 6.1 we can deduce the graph
structure of a component.

6.2 Auslander–Reiten components of simple modules and of some arrowmodules

In this part we assume that H is a hybrid algebra (which may have virtual arrows), with
distinguished set of triangles T , and we exclude the local algebra with two virtual loops. We
investigate the position of simple modules, and of some modules generated by arrows, in the
stable AR quiver of H . We say that a component is of type A if its tree class is one of A∞∞
or A∞, or Ãn , or An for some n ≥ 2, and we say it is of type D if its tree class is one of
D∞ or D̃n or Dn . For a vertex i of Q we denote the module rad(ei H)/soc(ei H) by Mi (the
’middle’).
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6.2.1 Arrowmodules for arrows not inT

Take an arrow β /∈ T . Then it is easy to see that �r (β H) ∼= f r (β)H for r ≥ 1. Hence β H
has �-period equal to rβ where rβ is the length of the f -orbit of β. This is also true if some
f s(β) is virtual of type (a), inwhich case the correspondingmodule is simple. Furthermore all
�-translates are indecomposable and hence belong to ends of tubes in the stable AR-quiver.

6.2.2 Simple modules at biserial vertices, and at quaternion vertices

(a) Assume i is a biserial vertex. If there is a virtual loop at i then by the previous, the
simple module at i is periodic at the end of a tube. Now suppose the arrows starting at i are
not virtual. By Lemma 7.8 (see the “Appendix”), the ’middle’ Mi of ei H is the direct sum
of two indecomposable modules. Hence we have an almost split sequence 0 → �(Si ) →
Pi ⊕ Mi → �−1(Si ) → 0 and �(Si ) has two predecessors in its stable component. This
could be in the middle of some component of type A or possible in a component of type D
away from the edge. In fact, it might even be in some tube.

(b) If i is a quaternion vertex, with no singular relation close to i (eg excluding the singular
tetrahedral, disc, triangle algebra) then Si is periodic of period four. The proofs in [8], [10]
and [3] generalize. This also works for 4.2(2c) and for the algebra in 4.6.

6.2.3 Simple modules at hybrid vertices

Lemma 6.6 Assume H is a hybrid algebra but is not the algebra 4.2(2c) or the algebra
4.6. Let i be a vertex and α, ᾱ are arrows starting at i where α ∈ T and ᾱ /∈ T . Let
M :=Mi = rad(ei H)/soc(ei H).

(a) The module Mi is indecomposable and it occurs in two different AR-sequences as the
non-projective middle term.

(b) If H is not of finite type then the component of Si is of type D.

Remark 6.7 Consider the algebra 4.2(2c), this has a hybrid vertex. The algebra is special
biserial (see Lemma 4.1). Consider the simple module S2 at the hybrid vertex, by Lemma 4.1
we know thar rad(e2H)/S2 is the direct sum of two non-zero modules, and S2 belongs to
a component of tree class A∞∞. Similarly the algebra in 4.6 has hybrid vertices 1, 3 but the
modules rad(ei H)/Si for i = 1, 3 are decomposable.

Proof (a) Assume α ∈ T and ᾱ /∈ T . Note that then f (α) �= ᾱ. As a preliminary part, we
show that always f (α) f 2(α)ᾱ = 0.

If not, then by (2) of Definition 3.3 we have that f (α), g(α) ∈ T and g(α) is virtual or
critical. Suppose g(α) is virtual, then nα = ng(α) ≤ 2. We cannot have α = g(α) since this
would imply f (α) = ᾱ. So g must have a 2-cycle (α g(α)), but then f (g(α)) = ᾱ. This
gives a contradiction since with g(α) ∈ T also f (g(α)) ∈ T but ᾱ /∈ T . This shows that
g(α) is not virtual.

Suppose g(α) is critical, consider first the case when the g-cycle of g(α) does not have
a loop, then we use the diagram 3.1.1 with τ = g(α). Then ξ must be virtual and therefore
the arrow y → x must be in T , and then also ᾱ is in T , a contradiction. Similarly one gets a
contradiction in the other case, ie where H is the algebra 4.2(2c). Hence g(α) is not critical.

The module M is indecomposable by Lemma 7.8. Therefore it is the indecomposable
non-projective middle term of the AR-sequence starting with �(Si ). Moreover we have a

123



Hybrid algebras Page 35 of 40 75

non-split short exact sequence

0 → V → M → U → 0 (*)

where V = ᾱH/〈Bᾱ〉 and U = αH/〈Aᾱ〉 (we take M = (αH + ᾱH)/〈Bα〉, and then
V → M is the inclusion and M → U is the canonical surjection). Note that this is true also
when ᾱ is virtual. We show first V ∼= �2(U ), and next that Ext1(U , V ) ∼= K . With these, it
will follow that (*) is an AR-sequence. Let j = t(α) and y = t( f (α)).

(i) We claim that U is isomorphic to e j H/ f (α)H : Consider the projective cover π :
e j H → U given by π(x) = αx + 〈Aᾱ〉. Then π( f (α)) = 0 and hence f (α)H ⊆ Ker(π).
We can compare dimensions, applying Lemma 7.8. The dimension of U is mαnα −1 and we
have dim e j H = mαnα+m f (α)n f (α). Hence the kernel ofπ has dimension n f (α)m f (α)+1 =
dim f (α)H , and we have equality. This implies that �(U ) ∼= f (α)H .

(ii) We claim that �( f (α)H) ∼= f 2(α)ᾱH , and that it is isomorphic to V : Let π :
ey H → f (α)H be the projective cover, given by ey x �→ f (α)x . As we have shown in
the preliminary step, we always have f (α) f 2(α)ᾱ = 0, so f 2(α)ᾱH is contained in the
kernel of π . By comparing dimensions we see that it is equal. To show that this is isomorphic
to V , consider left multiplication with f 2(α) from ᾱH to f 2(α)ᾱH . This is a surjective
H -module homomorphism. By Lemma 7.8, f 2(α)ᾱH has dimension m f 2(α)n f 2(α) − 1 and
dim ᾱH = mᾱnᾱ = m f 2(α)n f 2(α) noting ᾱ = g( f 2(α)). So the kernel is equal to 〈Bᾱ〉.

(iii) It remains to show that Ext1(U , V ) is at most 1-dimensional (we know already that
it is non-zero). We have an exact sequence

V e j ∼= Hom(e j H , V )
ι∗→ Hom( f (α)H , V ) → Ext1(U , V ) → 0

where 0 → f (α)H
ι→ e j H is the inclusion map.

Assume first that ᾱ is virtual. Then V is 1-dimensional and spanned by the coset of α f (α),
so it is isomorphic to the simple module Sy . In particular V ey = V is 1-dimensional, and
hence the quotient Ext1(U , V ) is at most 1-dimensional.

Now assume ᾱ is not virtual. We have Hom( f (α)H , V ) ∼= {v ∈ V ey | v f 2(α)ᾱ = 0}.
The space V ey is spanned by the (cosets of) initial submonomials of Aᾱ which end at vertex
y, that is which end in either f (α) or in β:=g−1( f 2(α)).

Suppose p is an initial submonomial of Aᾱ ending in f (α). By the preliminary fact, we
know that p f 2(α)ᾱ = 0, and we deduce that there is a homomorphism θp : f (α)H → V
taking f (α) to p.We claim that this is in the image of ι∗: Such amonomial p has a factorisation
p = p̃ · f (α)with p̃ a monomial of positive length. There is a homomorphism θ̃ : e j H → V
taking e j to p̃ and hence θ = θ̃ ◦ ι.

Now consider an initial submonomial p of Aᾱ ending in β. If p �= Aᾱ then p f 2(α)ᾱ is
again an initial submonomial of Aᾱ and is non-zero in the algebra. This means that we do not
have a homomorphism taking f (α) to p. This leaves only the case p = Aα so that the ext
space is at most 1-dimensional. (In fact, this last case gives rise to the non-split short exact
sequence).

(b) By assumption, ᾱH is�-periodic. Let W be the direct sum of the distinct�-translates
of ᾱH . Then W ∼= �(W ) and dW (−) is an additive function on any non-periodic component
onwhich it does not vanish. By assumption, H is of infinite type and then the summands of W
belong to tubes. On the other hand, since H has infinite type, by part (a) the component of Mi

cannot be a tube. The inclusion ᾱH → �(Si ) is nonzero in the stable category. Therefore
dW is non-zero on this component. We have dW (Mi ) = 2dW (�(Si )) �= 0 by exactness.
Comparing with a general additive function on components as described in [17], it follows
that the component is of type D. 
�
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Remark 6.8 We see from the proof that U or V can be simple, or even both. Consider the
algebra H with triangular quiver. We use the notation as in 4.3, and take T = {αi } and we
take m• = (2, 1, 1). Then β2 and β3 are virtual, and we have�(S1) ∼= �−1(S2). In this case,
all three simple modules are of type D, in fact they are all in the same component which has
tree class D̃5. Consider M3 = rad(e3H)/S3, in this case both U and V are simple.
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7 Appendix: Consistency, bases and dimensions

This extends to the general case what was done for regular hybrid algebras in Sect. 2.

7.1 Consistency

In this Section we assume throughout that H is a hybrid algebra, which is not local, and is
not an algebra considered in detail in Sect. 4. With this assumption, we can use the diagrams
in 3.1, see also Corollary 3.9.

Lemma 7.1 Assume ᾱ is a virtual arrow, and α, ᾱ ∈ T . If ᾱ is not a loop then there are six
relations of type ζ or ξ in which ᾱ occurs. If ᾱ is a loop then there are four relations of type
ζ or ξ in which ᾱ occurs. In both cases, each of these is zero in H.

The proof is the same as that of Lemma 3.3 in [14], using the diagrams displayed in 3.1.
See also Corollary 3.9.

Lemma 7.2 Assume |Aα| ≥ 2 but α is not critical. Let ζ = ζα :=α f (α)g( f (α)).
(a) If α, ᾱ ∈ T and ᾱ is virtual or critical, then ζ ≡ Aα . Moreover

ζ f 2(ᾱ) ≡ Bα, ζ g( f (ᾱ)) = 0, g−1(α)ζ ≡ Bg−1(α), f −1(α)ζ = 0.

Furthermore Bα J = 0 = J Bα and Bg−1(α) J = 0 = J Bg−1(α).
(b) Otherwise ζ = 0.

Proof Part (b) is a direct consequence of part (2) in Definition 3.3.
(a) By the assumptions, α is not virtual or critical.We know from 3.1.1 and 3.1.2 that ζ ≡ Aα .
It is clear that ζ f 2(ᾱ) ≡ Bα and g−1(α)ζ ≡ Bg−1(α). Furthermore, since ζ ≡ Aα ≡ ᾱ f (ᾱ),
any monomial of length three having this as a factor, and which has ’type ζ or type ξ ’ must be
zero in H , by Lemma 7.1.Wewill uses this throughout the proof (without further comments).

(i) ζ g( f ᾱ) = 0 and f −1(α)ζ = 0: By the preamble,

f −1(α)ζ = g−1(ᾱ)ζ ≡ g−1(ᾱ)ᾱ f (ᾱ) = 0 and ζ g( f (ᾱ)) ≡ ᾱ f (ᾱ)g( f (ᾱ)) = 0.
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Note that these imply Bg−1α · g( f ᾱ) = 0 and f −1(α)Bα = 0.
(ii) Bα J = 0 = J Bα: first we have

Bαᾱ ≡ Aαg−1(α)ᾱ = A′βg−1(α)ᾱ = A′ξβ = 0

where β = g−2(α) that is A′β = Aα (which has length ≥ 2 by assumption). Next, Bαα ≡
Bᾱα. If ᾱ is virtual we can write this as

Bᾱα = ᾱg(ᾱ)α = ᾱ f 2(α)α = ξᾱ = 0.

Suppose ᾱ is critical, then we have, since ξᾱ = 0,

Bᾱα = ᾱg(ᾱ)g2(ᾱ)α = ᾱg(ᾱ) f 2(α)α ≡ ᾱg(ᾱ)A f (gᾱ) = 0.

It remains to show g−1(α)Bα = 0 which is ≡ g−1(α)Bᾱ . If ᾱ is virtual we have

g−1(α)Bᾱ = g−1(α)ᾱg(ᾱ) = ζg−1(α) = 0

If ᾱ is critical

g−1(α)Bᾱ = g−1(α)ᾱg(ᾱ)g2(ᾱ) = ζg−1(α)g
2(ᾱ) = 0

(iii) Bg−1(α) J = 0 = J Bg−1(α): This is similar to (ii). We omit details. 
�
Lemma 7.3 Assume α is an arrow with |Aα| ≥ 2 but α not critical. Let ξ =
ξα :=αg(α) f (g(α)).
(a) Suppose α, ᾱ ∈ T and f (α) is virtual. Then ξ ≡ Aᾱ . Moreover

g−1(α)ξ = 0, f 2(α)ξ = B f 2(α), ξ f 2(α) = Bᾱ , ξ f 2(g(α)) = 0.

We have Bᾱ J = 0 = J Bᾱ and B f 2(α) J = 0 = J B f 2(α).
(b) Suppose α, ᾱ ∈ T and f (α) is critical. Then ξ ≡ Aα . Moreover

ξg−1(α) = Bα, ξg−1( f (α)) = 0, g−1(α)ξ = Bg−1(α), f 2(α)ξ = 0.

We have Bα J = 0 = J Bα and Bg−1(α) J = 0 = J Bg−1(α). (c) Otherwise ξ = 0.

Proof This is similar to the proof of Lemma 7.2. We omit the details. 
�
The following deals with another special case.

Lemma 7.4 Assume that either α is virtual and α ∈ T , or α is critical and α, g(α) ∈ T .
Then Aα J = 〈Bα, Aᾱ〉 and Aα J 2 = 〈Bα〉 and Bα J = 0.

Proof Assume first that α is virtual, that is α = Aα and ᾱ ∈ T . Then Aα J =
〈αg(α), α f (α)〉 = 〈Bα, Aᾱ〉. By considering the diagrams in 3.1.2 we see that ᾱ is
not virtual or critical. We apply Lemma 7.2 with α, ᾱ interchanged and get

Aᾱ ≡ ζᾱ, Aᾱ J = Bᾱ , Bᾱ J = 0.

Therefore Aα J 2 = 〈Aᾱ J 〉 = 〈Bᾱ〉 = 〈Bα〉.
Now assume α is critical with g(α) ∈ T . We have Aα = αg(α) and

Aα J = 〈αg(α)g2(α), αg(α) f (g(α))〉 = 〈Bα, ξα〉,
and we have ξα ≡ Aᾱ (see 3.1.2(1)(b)). By Lemma 7.3 we have that Aᾱ J = Bᾱ , and
Bᾱ J = 0 which implies the statement. 
�
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Lemma 7.5 Assume α is any arrow, then (i) Bα J = 0 and J Bα = 0. (ii) Bα is non-zero.

Proof (i) It suffices to show that for an arbitrary arrow α we have αBg(α), that is αB f (α) = 0.
Then part (i) follows using identity (3) of the definition 3.3, and an identity such as αBg(α) =
Bαα.

If α /∈ T then αB f (α) = 0 by identity (1) of Definition 3.3, so we assume now that α ∈ T .
Then f (α) cannot be virtual of type (a) and therefore |B f (α)| ≥ 2.

(1) Assume |B f (α)| = 2. Then αB f (α) = ζα . If f (α) is virtual then ζα = 0 by Lemma 7.1.
Assume now that f (α) is not virtual, it also is not critical (since |B f (α)| �= 3). Therefore
ζα = 0 by identity (2) of Definition 3.3.

(2) Assume |B f (α)| = 3, then αB f (α) = ζαg−1( f (α)). This is zero unless ᾱ ∈ T and ᾱ

is critical or virtual. Suppose ᾱ is critical or virtual. Note first that we see from 3.1.1, 3.1.2
that α is not a loop. Therefore αB f (α) is not a cyclic path. We also see from 3.1.1 and 3.1.2
that α cannot be virtual or critical. That is, the assumption of Lemma 7.2 holds. It follows
that ζαg−1( f (α)) is zero by 7.2 (it is not cyclic and cannot be ≡ Bα).

(3) Now assume |B f (α)| ≥ 4. Then αB f (α) = ζαC where C is a monomial of length
≥ 2. Suppose ᾱ is virtual or critical, then α is not virtual or critical (see 3.1.1 or 3.1.2). By
Lemma 7.2 we know ζα J = 〈Bα〉 and Bα J = 0 and hence αB f (α) = 0.

(ii)When the vertex i = s(α) is quaternion, the statement is proved in 4.5 of [10]. Suppose i
is biserial. From the relations, the only submonomials of Bα which occur in aminimal relation
are Bα itself and Aα and Ag(α). In general, Aα occurs in a relation ᾱ f (ᾱ)−cα Aα but this is not
the case when i is biserial. Similarly Ag(α) could occur in a relation f (α) f 2(α)− cg(α) Ag(α)

but not if i is biserial since in that case f (α) f 2(α) is zero (or a scalar multiple of B f (α)).
Hence Bα is non-zero in H .

Now assume that i is hybrid, say α ∈ T and ᾱ /∈ T . Then Aα does not occur in a defining
relation. We have the relation f (α) f 2(α) = cα Ag(α) but this does not give a relation which
forces Bα to be zero in H . 
�
Lemma 7.6 Consider a path of length four of the form p:=αg(α)βg(β) where β =
f (g(α)). (a). If f (α) is virtual or critical then p is a non-zero scalar multiple of Bα .
(b) Otherwise it is zero.

Proof We can write p = αζg(α) and also p = ξαg(β). By Lemma 7.2 we know αζg(α) �= 0
if and only if f (α) is virtual or critical and if so it is ≡ Bα (which is ≡ Bᾱ).

By Lemma 7.3 we have ξαg(β) �= 0 if and only if f (α) is virtual or critical, and if so then
p is a cyclic path of length four ≡ Bα . 
�

7.2 Bases and dimension

In the followingwrite |Aα | = � and |Aᾱ| = �̄.We alsowrite [Aα] j for the initial submonomial
of Aα of length j .

Lemma 7.7 Assume α is an arrow of Q. Then the set {[Aα] j | 1 ≤ j ≤ �, Bα} is linearly
independent.

This is similar to proofs in Sect. 2, we omit details.

Lemma 7.8 Assume i is a vertex which is either biserial or hybrid. Then
(a) ei H has basis consisting of all proper initial submonomials of Bα, Bᾱ together with

ei and Bα . (b) dim ei H = mαnα + mᾱnᾱ .
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(c) If α ∈ T then dim αH = mαnα +1, otherwise αH has dimension mαnα . The module
αg(α)H has dimension mαnα − 1.

(d) Let Mi = rad(ei H)/soc(ei H). If i is biserial and α, ᾱ are not virtual of type (a) then
Mi is the direct sum of two uniserial modules. If one of α, ᾱ is virtual of type (a) then Mi is
uniserial. If i is hybrid, and H is not the algebra in 4.2(2c) or 4.6 then Mi is indecomposable.

Proof We prove part (a), then parts (b) and (c) follow directly. We may assume ᾱ /∈ T . The
given set spans ei H by Lemmas 7.2 and 7.3. We show linear independence. Take a linear
combination

�∑

j=1

a j [Aα] j +
�̄∑

t=1

dt [Aᾱ]t + s Bα = 0. (*)

Let β = f −1(ᾱ) = g−1(α), then βᾱ = 0, unless possibly β = f (ᾱ), a loop, and βᾱ =
bβ Bβ . But then noting that α ∈ T it follows that |Q0| ≤ 2, which we have excluded.
Therefore we have βᾱ = 0. We premultiply (*) with β and obtain

∑�
j=1 a j [Aβ ] j+1 = 0,

and by Lemma 7.7 it follows that a j = 0 for 1 ≤ j ≤ �. Now applying Lemma 7.7 again
implies dt = 0 for all t , and s = 0.

(d) When i is biserial, the claim also follows from part (a). Now suppose i is a hybrid
vertex, so α /∈ T . If f (α) is not virtual then Mi can be viewed as a string module (see [5,
II.3]), hence it is indecomposable. If f (α) is virtual then by the assumption that H is not the
algebra in 4.2(2c) or 4.6 one checks that at least one of Aα and Aᾱ has length > 2, and then
one verifies directly that Mi is indecomposable. 
�
Lemma 7.9 Assume i is a periodic vertex so that α, ᾱ are both in T . Then the set {[Aα] j , ( j ≤
�), [Aᾱ]t , (t ≤ �̄), Bα} is linearly independent, except when H is the singular spherical
algebra, or H is the singular triangle algebra.

This is proved in [10] (see Proposition 4.9).
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