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Abstract
The Sierpinski gasket K has three line segments constituting a regular triangle as its border.
This paper studies what will happen if one of them, which is called the bottom line and is
denoted by I , is removed from K . At a glance, “the Sierpinski gasket minus the bottom line”
K\I has a structure of a tree of Sierpinski gaskets. This observation leads us to the results
showing that the boundary of K\I is not the line segment I but a Cantor set from viewpoints
of geometry and analysis. As a by-product, we have an explicit expression of the jump kernel
of the trace of the Brownian motion of K on the bottom line I .
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1 Introduction

This paper concerns a tree structure of “the Sierpinski gasket minus its bottom line” shown
in the left-hand side of Fig. 2 and its consequences from the viewpoints of both geometry and
analysis.

The Sierpinski gasket is defined as the unique non-empty compact set satisfying

K = F0(K ) ∪ F1(K ) ∪ F2(K ),

where Fi : R2 → R
2 is given by

Fi (x) = 1

2
(x − pi ) + pi

for x ∈ R
2 with p0 = (0, 0), p1 = (1, 0) and p2 = ( 12 ,

√
3
2 ). The bottom line I of the

Sierpinski gasket K is I = p0 p1 = [0, 1] × {0}, which is naturally identified with the unit
interval [0, 1]. See Fig. 1.
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Fig. 1 The Sierpinski gasket and its bottom line

Once the bottom line I is removed from the Sierpinski gasket K , the resulting set has
infinitely many cuts at every dyadic rational point in I and one can observe a tree structure
illustrated in the left-hand side of Fig. 2, where the horizontal scale is modified to visualize
the cuts. In other words, K\I has infinitely many “loose ends” towards I . More precisely,
for example, let pi j be the midpoint of pi and p j . Originally, the line segments p20 p01 and
p21 p01 have the same end p01 but they will not meet without p01 ∈ I . See the right-hand
side of Fig. 2. The same phenomena happen at every dyadic rationals.

Geometrically, the tree structure of K\I becomes clearer by introducing the shortest path
metric ˜D on K\I defined as follows: for x, y ∈ K\I ,

˜D(x, y) = inf{L(γ )|γ is a rectifiable curve between x and y in K\I },
where L(γ ) is the length of a rectifiable curve γ with respect to the Euclidean metric d∗. Let
γi : [0, 1

2 ] → p2i p01 be a curve starting from p2i and converging to p01 as t → 1
2 for i = 0, 1.

See Fig. 2 for a graphic representation of γ1 and γ2. Then limt→ 1
2

˜D(γ0(t), γ1(t)) = 3
2 , while

limt→ 1
2
d∗(γ0(t), γ1(t)) = 0. This shows that the geometry of K\I under ˜D and that under

d∗ are essentially different because the shortest path metric ˜D captures the tree structure of
K\I but the Euclidean metric does not. Indeed, Theorem 2.15 shows that the “boundary”
of K\I under ˜D is not I but a Cantor set �T = {0, 1}N, where T is an infinite binary tree
illustrated in Fig. 5. This corresponds to the well-known fact that the hyperbolic boundary of
T is the Cantor set �T .

Analytically, the tree structure is reflected in the resistance metric ˜R associated with a
resistance form (˜E, ˜F) on K\I defined in Sect. 4. In fact, it will be shown in Sect. 5 that the
resistance form (˜E, ˜F) is a suitable extension of the standard resistance form (E,F) on K ,
which corresponds to the Brownian motion on K .

Analysis on the Sierpinski gasket was initiated by Goldstein [3], Kusuoka [13], and
Barlow-Perkins [1]. They have constructed and studied the Brownian motion of the Sier-
pinski gasket. Later the associated Dirichlet form (E,F), which is now called the standard
resistance form, was constructed in [8].

After the removal of I , the paths of the Brownian motion exhibit a similar nature as the
paths γ0 and γ1 above. Namely, consider two paths approaching to p01 ∈ I , one from inside
F0(K ) and the other from inside F1(K ). They will not meet after the removal of I . The
extended resistance form (˜E, ˜F) on K\I reflects such phenomena of the limits of paths. In
fact, Theorem 4.5 shows that the resistance metric ˜R is biLipschitz equivalent to a power of
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Fig. 2 Tree structure of K\I and loose ends

the shortest path metric ˜D, i.e. there exist c1, c2 > 0 such that

c1˜D(x, y)α ≤ ˜R(x, y) ≤ c2˜D(x, y)α (1.1)

for any x, y ∈ K\I , where α = log 5−log 3
log 2 . Consequently, the resistance form (˜E, ˜F) is

naturally regarded as a resistance form on (K\I ) ∪ �T .
As a by-product of the above results, we will show an exact expression of the jump kernel

J∗ of the trace (E|I ,F |I ) of (E,F) on the bottom line I , which is defined as

FI = { f |I | f ∈ F} and E|I (ψ,ψ) = E(h(ψ), h(ψ))

for ψ ∈ FI , where h(ψ) ∈ F is the harmonic function on K with the boundary value ψ on
I . See Appendix 1 for the exact definitions. The map h : F |I → F gives the solution of the
Dirichlet problem of the Poisson equation on K with the boundary I , which is

� f = 0 on K\I ,
f |I = ψ.

From the probabilistic point of view, the trace (E|I ,F |I ) corresponds to the jump process
on I that only sees the hits of the Brownian motion on I , i.e. let {Xt }t≥0 be the Brownian
motion. Define {ti }i≥0 inductively as t0 = 0 and tn+1 = inf{t |t > tn, Xt ∈ I }. Roughly
speaking, the trace on I is the process given by {Yt }t≥0 defined as Yt = Xtn for any t ∈
[tn, tn+1).

The first study on the trace (E|I ,F |I ) was due to A. Jonsson who identified F |I with
a Besov space B2,2

β (I ) where β = 1
2 (α + 1) in [6]. Also, R. Stricharz obtained an exact

expression of the harmonic map h in [16]. Moreover, one can find detailed study of boundary
values problems of harmonic functions on certain domains of the Sierpinski gasket in [15]
and [5].

In this paper, we obtain an expression of the jump kernel J∗(x, y) of (EI ,FI ) as follows:

Theorem 1.1 [Corollary 6.2] For x, y ∈ I , if the binary expressions of x and y are 0.i1i2 . . .

and 0. j1 j2 . . . respectively, where i1i2 . . . and j1 j2 . . . are infinite sequences of 0 and 1,
define

n∗(x, y) = min{n|n ≥ 1, in 	= jn} − 1
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and

J∗(x, y) = 35

16

(

14

17

(20

3

)n∗(x,y) + 3

17

)

.

Then

F |I =
{

f

∣

∣

∣

∣

f ∈ C(I , d∗),
∫

I×I
J∗(x, y)( f (x) − f (y))2dxdy < ∞

}

,

where d∗ is the Euclideanmetric on I andC(I , d∗) is the collection of real-valued continuous
functions on I , and

E|I ( f , f ) =
∫

I×I
J∗(x, y)( f (x) − f (y))2dxdy

for any f ∈ F |I .

Moreover, using this exact expression, we will obtain an upper and a near-diagonal lower
estimates of the transition density of the associated jump process in Corollary 6.2.

The exact expression of J∗ above is made possible by three ingredients. First, we will
show that the resistance form (˜E, ˜F) on (K\I ) ∪ �T can be reduced to that on T ∪ �T

associated with a random walk on T . Second, applying the results in [11], we will obtain an
exact expression of the jump kernel of the trace of the random walk on its “boundary” �T .
Third, using the fact that (˜E, ˜F) is an extension of (E,F), we identify the jump kernel J∗
with what is obtained in the second step.

The organization of this paper is as follows. In Sect. 2, we give the exact definition and
the fundamental properties of the Sierpinski gasket. Also, later in Sect. 2, we identify the
“boundary” of K\I with respect to the shortest path metric ˜D with the Cantor set �T . In
Sect. 3, we introduce the definition and the basic properties of the standard resistance form
(E,F) on the Sierpinski gasket K . In Sect. 4, we introduce the resistance form (˜E, ˜F) on
K\I and show (1.1). In Sect. 5, we characterize the standard resistance form (E,F) on the
Sierpinski gasket by means of the resistance form (˜E, ˜F) on K\I . As a consequence, (˜E, ˜F)

is shown to be an extension of (E,F). Finally in Sect. 6, we show an explicit expression
of the jump kernel of the trace (˜E|�T , ˜F |�T ). Then through the results in Sect. 5, we show
results on the trace (E|I ,F |I ) including Theorem 1.1. Finally, in Appendix A, we review
the definitions and the fundamental facts about resistance forms, their traces, and weighted
graphs.

Remark In this paper, we often define a quadratic formQ, which would be a resistance form
or a Dirichlet form, on a vector space V only on the diagonal values, i.e.Q( f , f ) for f ∈ V .
As a quadratic form, Q( f , g) is always given by the following polarizing identity

Q( f , g) = 1

4
(Q( f + g, f + g) − Q( f − g, f − g)).

2 Geometry of the Sierpinski gasket

In this section, we study the geometries of the Sierpinski gasket and “the Sierpinski gasket
minus the bottom line”. As mentioned in the introduction, they are the same under the
Euclidean metric but become quite different under the shortest path metrics.
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First, we give an explicit definition of the Sierpinski gasket. The points p0, p1, and p2
and the maps F0, F1, and F2 are those given in the introduction. By [9, Theorem 1.1.4], we
have the following theorem.

Theorem 2.1 There exists a unique non-empty compact set satisfying

K = F0(K ) ∪ F1(K ) ∪ F2(K ). (2.1)

The non-empty compact set K is called the Sierpinski gasket. Let d∗ be the restriction of the
Euclidean metric on K . Then the Hausdorff dimension of (K , d∗) is log 3

log 2 .

Other than the (restriction of) the Euclidean metric d∗, we often use the shortest path
metric D on the Sierpinski gasket.

Definition 2.2 Define the shortest path metric D(·, ·) on K as

D(x, y) = inf{L(γ )|γ is a rectifiable curve in K between x and y}
for x, y ∈ K , where L(γ ) is the length of a rectifiable curve. A rectifiable curve between x
and y attaining the above infimum is called a shortest path between x and y.

It is easy to see that the Euclidean metric and the shortest path metric are biLipschitz
equivalent.

Proposition 2.3 There exists a constant c > 0 such that

d∗(x, y) ≤ D(x, y) ≤ cd∗(x, y)

for any x, y ∈ K. Moreover, a shortest path between x and y exists for any x, y ∈ K.

The followings are standard notations regarding word and shift spaces.

Definition 2.4 (1) Let S = {0, 1, 2}. For any m ≥ 0, define

Wm = Sm = {w1 . . . wm |w1, . . . , wm ∈ S},
where W0 = {φ}, and

W∗ =
⋃

m≥0

Wm

For i ∈ S and n ≥ 1, set (i)n = i . . . i
n-times

∈ Wn .

(2) Define

�(S) = SN = {ω1ω2 . . . | ωi ∈ S for any i ∈ N}.
For simplicity, we use � in place of �(S). For i ∈ S, set (i)∞ = i i . . . ∈ �, which is also
denoted by i in Fig. 3. For ω = ω1ω2 · · · ∈ � and i ∈ S, define σ(ω) and σi (ω) by

σ(ω) = ω2ω3 . . . and σi (ω) = iω.

The map σ is called the shift map.
(3) For w ∈ W∗ and v ∈ W∗ ∪ �(S), the concatenation of w and v is denoted by wv. For
w ∈ W∗ ∪ �,

|w| =
{

the unique m satisfying w ∈ Wm if w ∈ W∗,
∞ if w ∈ �(S).
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Fig. 3 Graph approximation of the Sierpinski gasket

For w ∈ W∗ ∪ � and n ≤ |w|, we define [w]n as the unique u ∈ Wn satisfying w = uv for
some v ∈ W∗ ∪ �. For w, v ∈ W∗ ∪ � with w 	= v, define

n(w, v) = min{i |1 ≤ i ≤ min{|w|, |v|}, [w]i 	= [v]i } − 1

and

w ∧ v = [w]n(w,v),

which is called the confluence of w and v. If w = v, we define w ∧ v = w.

Note that {σi }i∈S is the collection of branches of the inverse of σ .
Using n(ω, τ), we define a family of metrics on �.

Proposition 2.5 [9, Theorem 1.2.2] For ω, τ ∈ � and r ∈ (0, 1), define

δr (ω, τ) =
{

rn(ω,τ) if ω 	= τ ,

0 if ω = τ .

Then δr is a metric on � and the metric space (�, δr ) is a Cantor set, i.e. it is compact,
totally disconnected and perfect. Moreover σ and σi are continuous maps. In particular,

δr (σi (ω), σi (τ )) ≤ rδr (ω, τ)

for any ω, τ ∈ �.

Definition 2.6 For w = w1 . . . wm ∈ W∗, define

Fw = Fw1 ◦ . . . ◦Fwm and Kw = Fw(K ).

Furthermore, define V0 = {p0, p1, p2},
Vm =

⋃

w∈Wm

Fw(V0) and V∗ =
⋃

m≥0

Vm

The followings are the basic properties of the Sierpinski gasket. See [9, Chapter 1] ([9,
Examples 1.2.8 and 1.3.15] in particular) for details.

Proposition 2.7 (1) For any m ≥ 0, Vm ⊆ Vm+1. Moreover, V∗ is a dense subset of K .
(2) Let μ∗ be the normalized log 3

log 2 -dimensional Hausdorff measure on (K , d∗). Then

μ∗(Kw) =
(1

3

)|w|
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for any w ∈ W∗. In particular, μ∗ is the self-similar measure with weights ( 13 ,
1
3 ,

1
3 ).

(3) For any ω ∈ � and m ≥ 0, K[ω]m ⊇ K[ω]m+1 and
⋂

m≥0

K[ω]m

is a single point. Let π(ω) be the single point. Then π : � → K is a continuous surjection
satisfying

π(σi (ω)) = Fi (π(ω))

for any ω ∈ � and i ∈ S. In particular, π((i)∞) = pi for any i ∈ S and

π(i( j)∞) = Fj (pi ) = Fi (p j ) = π( j(i)∞) (2.2)

if i, j ∈ S and i 	= j . Moreover, π−1(x) is not a single point if and only if x = Fw j (pi ) for
some w ∈ W∗ and i 	= j ∈ S when π−1(x) = {wi( j)∞, w j(i)∞}.

See Fig. 3 for an illustration of (2.2), where (i)∞ is denoted by i .
Hereafter in this section, we consider the geometry of K\I where I is the line segment

p0 p1. One of the notable properties of K\I is that it has the structure of a binary tree. To
give further explanations, we need to introduce several notions.

Definition 2.8 (1) For n ≥ 0, define

Tn =
n

⋃

m=1

{0, 1}m−1,

where T1 = {φ}. Furthermore, define

T =
⋃

n≥1

Tn and �T = {0, 1}N = {i1i2 . . . |i j ∈ {0, 1} for any j ∈ N}

(2) Define I = [0, 1] × {0}.
See Fig. 5 for an illustration of T3.
We naturally identify I with the unit interval [0, 1]. Under this identification,

π(i1i2 . . .) =
∑

n≥1

in
2n

.

for any i1i2 . . . ∈ �T . This is exactly the binary expansion of x = π(i1i2 . . .) ∈ [0, 1]. In
particular, π(�T ) = I .

The next proposition states that K\I can be regarded as a tree of Sierpinski gaskets.

Proposition 2.9

K\I =
⋃

w∈T
Kw2.

Moreover, for w, v ∈ T , define E = {(w, v)|w, v ∈ T , w 	= v, Kw2 ∩ Kv2 	= ∅}. Then
(T , E) is a binary tree with the root φ.

Note that �T equipped with the metric δr |�T ×�T is a Cantor set, which is the “boundary”
of the binary tree (T , E).
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28 Page 8 of 32 J. Kigami, K. Takahashi

Proof Note that (w, v) ∈ E if and only if there exists u ∈ T such that (w, v) ∈
{(u, ui), (ui, u)} for some i ∈ {0, 1}. So, every w ∈ T has two children w0 and w1. So
(T , E) is exactly the infinite binary tree as defined. ��

Geometrically, the shortest path metric on K\I introduced below reflects this structure
of the binary tree (T , E). As we will see in Theorem 2.15, the Cantor set �T appears as the
boundary of K\I under the shortest path metric.

Definition 2.10 (1) Define ˜D as the shortest path metric on K\I , i.e. for x, y ∈ K\I ,
˜D(x, y) = inf{L(γ )|γ is a rectifiable curve between x and y in K\I },

where the rectifiability and the length of a curve are with respect to the Euclidean metric.
(2) For w ∈ T and ω ∈ �T , define p(w) = Fw(p2) and pm(ω) = p([ω]m).

Topologically, there is no difference between D and ˜D.

Proposition 2.11 The identity map ι : K\I → K\I is a homeomorphism between (K\I , D)

and (K\I , ˜D).

To show this proposition, we need several lemmas.

Lemma 2.12 diam(K , D) = 1.

Proof Claim: D(pi , x) ≤ 1 for any x ∈ K and i ∈ S.
Proof of Claim: Without loss of generality, we may assume that i = 0. Choose ω ∈ �

such that x = π(ω). Define {qm}m≥0 inductively as follows: let q0 = p0 and let qm+1

be the unique element in F[ω]m+1(V0) which attains min{d∗(qm, q)|q ∈ F[ω]m+1(V0)}. Then
⋃

m≥0 qmqm+1 ∪ {x} is a rectifiable curve between p0 and x and its length is no greater than
∑

m≥0

L(pm pm+1) ≤
∑

m≥0

2−(m+1) ≤ 1.

Thus we have obtained the claim.
Let x, y ∈ K with x 	= y. Then there exist n ≥ 1 and w, v ∈ Wn such that w 	= v,

Kw ∩ Kv 	= ∅, x ∈ Kw and y ∈ Kv . Let {q} = Kw ∩ Kv . Then by the above claim,
D(x, p) ≤ 2−n and D(y, p) ≤ 2−n . Hence D(x, y) ≤ D(x, p) + D(y, p) ≤ 1. ��
Lemma 2.13 For any w ∈ W∗ and x, y ∈ Kw, there exists a rectifiable curve γxy between x
and y included in Kw such that

L(γxy) = D(x, y).

Proof Let γxy be a shortest path between x and y. Then γxy does not have any loop. So,
once it get out from Kw at some point in Fw(V0), it returns to Kw at a different point in
Fw(V0). So, if γxy is not included in Kw, then it must pass two distinct points of Fw(V0) and
L(γxy) > 2−|w|. On the other hand, Lemma 2.12 yields that diam(Kw, D) = 2−|w|, so that
L(γxy) ≤ 2−|w|. Therefore, γxy is included in Kw. ��
Lemma 2.14 For any w ∈ T and x, y ∈ Kw2,

˜D(x, y) = D(x, y).

Proof By Lemma 2.13, there exists a rectifiable curve γxy between x and y included in Kw2

such that L(γxy) = D(x, y). Hence ˜D(x, y) = D(x, y) = L(γxy). ��
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Proof of Proposition 2.11 Since D(x, y) ≤ ˜D(x, y) for any x, y ∈ K\I , the identity map
from (K\I , ˜D) to (K\I , D) is continuous. Conversely, suppose that {xn}n≥1 ⊆ K\I , x ∈
K\I and D(xn, x) → 0 as n → ∞. If x ∈ Kw2\Fw2(V0) for some w ∈ T , then xn ∈ Kw2

for sufficiently large n. Hence by Lemma 2.14, we see that ˜D(xn, x) = D(xn, x) → 0 as
n → ∞. Otherwise, x = Kw2 ∩ Kwi2 for some w ∈ T and i ∈ {0, 1}. Then it follows that
{xn, x} ⊆ Kw2 or {xn, x} ⊆ Kwi2. In either case, Lemma 2.14 shows ˜D(xn, x) = D(xn, x)
and hence D(xn, x) → 0 as n → ∞. Thus we have shown that the identity map from
(K\I , D) to (K\I , ˜D) is continuous as well. ��

Although ˜D gives the same topology as the restriction of D to K\I , they are not biLipshitz
equivalent. For example, D(p(0(1)n), p(1(0)n)) = 2−n while ˜D(p(0(1)n), p(1(0)n)) =
3/2− 2−n . This discrepancy is due to the lack of the point ( 12 , 0) ∈ I . The same phenomena
happens at a point ( i

2m , 0) ∈ I for any m ≥ 1 and i ∈ {1, . . . , 2n − 1}, so that we have the
following fact.

Theorem 2.15 The completion of (K\I , ˜D) is (homeomorphic to) (K\I )∪�T . In particular,
˜D|�T ×�T = 3

2 δ 1
2
|�T ×�T .

Proof The shortest path between pm(ω) and pm+n(ω) is the union of line segments
∪n−1
i=0 pm+i (ω)pm+i+1(ω) and so ˜D(pm(ω), pm+n(ω)) = 2−m(1 − 2−n). This shows that

{pm(ω)}m≥1 is a Cauchy sequence with respect to ˜D. Through the correspondence between
the equivalence class of {pm(ω)}m≥0 and ω ∈ �T , we identify �T as a subset of the
completion. At the same time, the shortest path between pm(ω) and ω ∈ �T is the com-
bination of infinite line segments {pi (ω)pi+1(ω)}i≥m , which is denoted by pm(ω), and
˜D(pm(ω), ω) = 2−m . Moreover, let ω, τ ∈ �T . Then the shortest path between ω and
τ consists of pk+1(ω), the line segment pk+1(ω)pk+1(τ ), and pk+1(τ ), where k = n(ω, τ).
Hence we see that ˜D(ω, τ) = 3 ·2−n(ω,τ)−1 = 3

2 δ 1
2
(ω, τ). The rest of arguments are entirely

the same as in Sect. 4, where we will show that the completion of K\I with respect to the
resistance metric ˜R equals (K\I ) ∪ �T , if we replace the exponent

( 3
5

)|w| by
( 1
2

)|w|. In fact,
some of the arguments become even simpler because it is easier to handle the shortest path
metric rather than the resistance metric. ��

3 Standard resistance form on the Sierpinski gasket

From this section on, we study the difference between K and K\I from the viewpoint of
analysis, in particular, resistance forms, whose very basics are given in Appendix A. First of
all, in this section, we introduce the standard resistance form (E,F) on the Sierpinski gasket,
which is the local regular Dirichlet form on L2(K , μ∗) associated with the Brownian motion
on the Sierpinski gasket.

The standard resistance form (E,F) is defined as the limit of a compatible sequence of
weighted graphs, {(Vm,Cm)}m≥1, defined below. See Appendix A for the definitions and the
basic facts on weighted graphs.

Definition 3.1 For m ≥ 0, define Cm : Vm × Vm → [0,∞) by

Cm(x, y) =
⎧

⎨

⎩

(5

3

)m
if (x, y) ∈ {(Fw(pi ), Fw(p j ))|w ∈ Wm, i, j ∈ S, i 	= j},

0 otherwise.
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28 Page 10 of 32 J. Kigami, K. Takahashi

Notation For a set A, we define

�(A) = { f | f : A → R}.

The pair (Vm,Cm) is a connectedweighted graph defined inDefinitionA.5. For simplicity,
we denote the energy ECm associated with (Vm,Cm) by Em . Then we have

Em+1( f , f ) = 5

3

∑

i∈S
Em( f ◦Fi , f ◦Fi )

for any f ∈ �(Vm+1). A straightforward calculation shows

Em( f , f ) = min{Em+1(g, g)|g ∈ �(Vm+1), g|Vm = f }
for any m ≥ 0 and f ∈ �(Vm). See [9, Example 3.1.5] for details. This shows that
{(Vm,Cm)}m≥0 is a compatible sequence, so that Theorems A.9 and A.2 yield the following
theorem.

Notation Let (X , d) be a metric space. Define C(X , d). as the collection of real-valued
continuous functions on (X , d). Moreover, define Bd(x, r) = {y|y ∈ X , d(x, y) < r} for
x ∈ X and r > 0.

Theorem 3.2 Define

F =
{

f

∣

∣

∣

∣

f ∈ �(V∗), lim
m→∞ Em( f |Vm , f |Vm ) < ∞

}

and

E( f , f ) = lim
m→∞ Em( f |Vm , f |Vm )

for f ∈ F .
(1) F is naturally identified as a subset of C(K , d∗) and (E,F) is a resistance form on K .
Let R be the resistance metric on K associated with (E,F). Set α = log 5−log 3

log 2 . Then there
exist c1, c2 > 0 such that

c1d∗(x, y)α ≤ R(x, y) ≤ c2d∗(x, y)α (3.1)

for any x, y ∈ K.
(2) For any i ∈ S and f ∈ F , f ◦ Fi ∈ F and

E( f , f ) = 5

3

∑

i∈S
E( f ◦ Fi , f ◦ Fi ).

(3) For any Radon measure on K satisfying ν(O) > 0 for any non-empty open subset of K ,
(E,F) is a local regular Dirichlet form on L2(K , ν).

(E,F) is called the standard resistance form on the Sierpinski gasket. The diffusion process
associated with the local regular Dirichlet form (E,F) on L2(K , μ∗) is called the Brownian
motion on the Sierpinski gasket, which was originally introduced and studied by [1, 3, 13].
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4 Resistance form on “the Sierpinski gasket minus the bottom line”

As is observed in the latter half of Sect. 2, once we remove the bottom line I from the
Sierpinski gasket K , then the limits of the paths towards the bottom line I form the Cantor
set �T instead of the line segment I . In association with this phenomenon, we can extend
the standard resistance form (E,F) on K to a resistance form on K\I whose associated
resistance metric reflects the geometry of (K\I , ˜D). To construct such an extension, we
replace the original compatible sequence {(Vm,Cm)}m≥1 by a new one {(˜Vm, ˜Cm)}m≥1,
which is illustrated in Fig. 4, as follows.

Definition 4.1 Define ˜Vm = Vm\(Vm ∩ I ) and ˜V∗ = ∪m≥0˜Vm . Define ˜Cm = Cm |
˜Vm×˜Vm

and let ˜Rm be the resistance metric on ˜Vm associated with (˜Vm, ˜Cm). Moreover, define
ρm : ˜Vm → Vm as the natural inclusion map.

The following lemma is straightforward.

Lemma 4.2 {(˜Vm, ˜Cm)}m≥0 is a compatible sequence.

By the above lemma and TheoremA.9, we have the following counterpart of Theorem 3.2.

Theorem 4.3 Define

˜F =
{

f

∣

∣

∣

∣

f ∈ �(˜V∗), lim
m→∞

˜Em( f |
˜Vm , f |

˜Vm ) < ∞
}

and

˜E( f , f ) = lim
m→∞

˜Em( f |
˜Vm , f |

˜Vm )

for f ∈ ˜F . Then (˜E, ˜F) is a resistance form on ˜V∗. Furthermore, let ˜R be the associated
resistance metric on ˜V∗ and let (˜K , ˜R) be the completion of (˜V∗, ˜R). Then f ∈ ˜F is naturally
extended to a continuous function on ˜K, and (˜E, ˜F) is regarded as a resistance form on ˜K
whose associated resistance metric is ˜R.

The resistance form (˜E, ˜F) will be shown to be an extension of (E,F) in the next sec-
tion. More precisely, the inequality (4.2) in the next lemma is upgraded to an equality in
Theorem 5.4.

Lemma 4.4 There exists a continuous map ρ : ˜K → K such that ρ|
˜Vm = ρm for any m ≥ 0,

R(ρ(x), ρ(y)) ≤ ˜R(x, y) (4.1)

Fig. 4 Graph approximation of K\I
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28 Page 12 of 32 J. Kigami, K. Takahashi

for any x, y ∈ ˜K and, for any f ∈ F , f ◦ ρ ∈ ˜F and

˜E( f ◦ ρ, f ◦ ρ) ≤ E(u, u). (4.2)

Proof By the definition of ˜Cm ,

˜Em( f ◦ ρm, f ◦ ρm) ≤ Em(u, u) (4.3)

for any m ≥ 0 and f ∈ �(Vm). Define ρ : ˜V∗ → V∗ as ρ|Vm = ρm . For any x, y ∈ ˜V∗,
choose m such that x, y ∈ ˜Vm . Then by (4.1), for any f ∈ F ,

| f (ρm(x)) − f (ρm(y))|2
E( f , f )

≤ | f (ρm(x)) − f (ρm(y))|2
˜E( f ◦ ρm, f ◦ ρm)

This shows that

Rm(ρm(x), ρm(y)) ≤ ˜R(x, y).

for any x, y ∈ ˜Vm . Hence we see that (4.1) is satisfied for any x, y ∈ ˜V∗. This shows that ρ
can be naturally extended to a map from ˜K to K and it satisfies (4.1) for any x, y ∈ ˜K .

Finally, by (4.3), if f ∈ F , then

lim
m→∞

˜Em( f ◦ ρm, f ◦ ρm) ≤ lim
m→∞ Em( f , f ).

Hence f ◦ ρ ∈ ˜F and (4.2) holds. ��
The next theorem is one of the main results of this paper. It concerns the geometry of K\I

under the resistance metric ˜R.

Theorem 4.5 (1) ˜K is homeomorphic to (K\I ) ∪ �T . Furthermore, there exists c1, c2 > 0
such that

c1˜D(x, y)α ≤ ˜R(x, y) ≤ c2˜D(x, y)α (4.4)

for any x, y ∈ ˜K, where α is the exponent appearing in Theorem 3.2.
(2) The map ρ : ˜K → K is surjective and

ρ(x) =
{

x if x ∈ K\I ,
π(x) if x ∈ �T .

The rest of this section is filled with a proof of Theorem 4.5. The arguments seem lengthy
but are indispensable as we have to deal with the equivalence classes of the collection of
Cauchy sequences. Nevertheless, the essence is the tree structure of K\I illustrated in Fig. 5.
Definition 4.6 Define

G =
⋃

w∈T
Fw2(V0)

and

Gn =
n

⋃

m=1

⋃

w∈{0,1}m−1

Fw2(V0)

for n ≥ 1.
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Fig. 5 Tree structures behind K\I

Remark By (2.2) and Definition 2.10

Fw2(V0) = {Fw2(p2), Fw2(p0), Fw2(p1)} = {Fw(p2), Fw0(p2), Fw1(p2)}
= {p(w), p(w0), p(w1)}.

Hence

G = {p(w)|w ∈ T } and Gn = {p(w)|w ∈ ∪n
k=0{0, 1}n}.

The next lemma is a collection of immediate observations concerning Gn and G.

Lemma 4.7 (1) For any m ≥ 1, Gm ⊆ ˜Vm.
(2) For any x ∈ ˜V∗\G, there exists a unique w ∈ T such that x ∈ Kw2.

First, we are going to show that R and ˜R are uniformly biLipschitz equivalent on Kw2 for
any w ∈ T .

Lemma 4.8 There exists c∗ > 0 such that, for any w ∈ T and x, y ∈ Kw2 ∩ V∗,

R(x, y) ≤ ˜R(x, y) ≤ c∗R(x, y)

Remark For anyw ∈ T andm ≥ 0, Kw2∩Vm = Kw2∩˜Vm and hence Kw2∩V∗ = Kw2∩˜V∗.

Proof Let x, y ∈ Kw2 ∩ Vm . Then
(5

3

)|w|+1
Em−|w|−1( f ◦ Fw2, f ◦ Fw2) ≤ ˜Em( f , f )

for any f ∈ �(˜Vm). Hence

| f (x) − f (y)|2
˜Em( f , f )

≤
(5

3

)|w|+1 | f ◦Fw2
(

(Fw2)
−1(x)

) − f ◦Fw2
(

(Fw2)
−1(y)

)|2
Em−|w|−1( f ◦Fw2, f ◦Fw2)

.

This implies

˜Rm(x, y) ≤
(5

3

)|w|+1
Rm−|w|−1((Fw2)

−1(x), (Fw2)
−1(y)).

Letting m → ∞, we obtain

˜R(x, y) ≤
(5

3

)|w|+1
R((Fw2)

−1(x), (Fw2)
−1(y)).

Finally, we have the desired inequality by [10, Theorem A.1]. ��
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Lemma 4.9 Let w ∈ T . Set ˜Kw2 be the closure of Kw2 ∩ V∗ with respect to the metric ˜R.
Then ρ(˜Kw2) = Kw2 and

R(ρ(x), ρ(y)) ≤ ˜R(x, y) ≤ c∗R(ρ(x), ρ(y)) (4.5)

for any x, y ∈ ˜Kw2, where c∗ is the same constant as in Lemma 4.8. In particular, ρ|
˜Kw2

:
˜Kw2 → Kw2 is a biLipschitz homeomorphism.

This lemma is a counterpart of Lemma 2.14 where we study shortest path metrics D and
˜D in place of R and ˜R.

Proof Let x ∈ Kw2. Then there exists {xn}n≥1 ⊆ Kw2∩V∗ = Kw2∩˜V∗ such that R(x, xn) →
0 as n → ∞. By Lemma 4.8,

˜R(xn, xm) ≤ c∗R(xn, xm)

for any n,m ≥ 1. This shows that {xn}n≥1 is a Cauchy sequence in (Kw2 ∩V∗, ˜R). Therefore
there exists y ∈ ˜Kw2 such that ρ(y) = x . Thus we have shown ρ(˜Kw2) ⊇ Kw2.

Next let y ∈ ˜Kw. Then there exists {yn}n≥1 ⊆ Kw2 ∩ ˜V∗ such that ˜R(yn, y) → 0 as
n → ∞. This implies that R(yn, ρ(y)) → 0 as n → ∞ and hence ρ(y) ∈ Kw. Thus we see
that ρ(˜Kw) = Kw.

Now by Lemma 4.8, we have (4.5) for any x, y ∈ ˜Kw2. The rest of the statements are
straightforward from (4.5). ��

Next, we are going to estimate ˜R(x, y) when x and y belongs distinct Kw2’s. In the
following lemmas, if we replace ˜R and the exponent 3

5 by
˜D and the exponent 1

2 respectively,
the statements and the proofs still hold with minor modifications of constants. Consequently,
they constitute parts of the proof of Theorem 2.15 as mentioned in its proof.

Lemma 4.10 Letw, v ∈ T . Assume that Kw ∩Kv = ∅. Then for any x ∈ ˜Kw2 and y ∈ ˜Kv2,

2

5

(3

5

)|w∧v|+1 ≤ ˜R(x, y) (4.6)

Proof Suppose that |w| ≤ |v|. First, assume that x ∈ Kw2 ∩ ˜V∗ and y ∈ Kv2 ∩ ˜V∗. Then
there exists m ≥ 0 such that x ∈ Kw2 ∩ ˜Vm and y ∈ Kv2 ∩ ˜Vm .
Case 1; |w ∧ v| = |w|.
In this case, w ∧ v = w and v = wi1 . . . ik for some k ≥ 2 and i1, . . . , ik ∈ {0, 1}. Without
loss of generality,wemay assume that i1 = i2 = 0.Now ifwe remove (Kw02∩˜Vm)\Fw02(V0)
from ˜Vm , then the connected graph (˜Vm, Em) is divided into three connected components.
U0,U1 and U2, where Fw02(pi ) ∈ Ui for each i = 0, 1, 2. Define

U = { f | f ∈ �(˜Vm), there exist a1, a2, a3 ∈ R

such that f |Ui ≡ ai for each i = 1, 2, 3.}
Then

sup
f ∈�(Kw02∩˜Vm )

| f (a2) − f (a0)|2
Em,Kw02∩˜Vm ( f , f )

= sup
f ∈U

|u(x) − u(y)|2
˜Em(u, u)

≤ sup
f ∈�(˜Vm ), f (x)	= f (y)

| f (x) − f (y)|2
˜Em( f , f )

= ˜R(x, y)
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On the other hand, for f ∈ �(Kw02 ∩ ˜Vm),

Em,Kw02∩˜Vm ( f , f ) =
(5

3

)|w|+2
Em−|w|−2( f ◦Fw02, f ◦Fw02)

Hence

sup
f ∈�(Kw02∩˜Vm )

| f (a2) − f (a0)|2
Em,Kw02∩˜Vm ( f , f )

=
(3

5

)|w|+2
sup

f ∈�(Vm−|w|−2), f (p0)	= f (p2)

| f (p0) − f (p2)|2
Em−|w|−2( f , f )

=
(3

5

)|w|+2
R(p0, p2) = 2

5

(3

5

)|w|+1
.

Thus we have obtained the desired inequality in this case.
Case 2; |w ∧ v| < |w|
Let u = w ∧ v. In this case, without loss of generality, we may assume that w = u0i1 . . . ik
and v = u1 j1 . . . jl . Then, exchangingw02 and a2 for u2 and a1 respectively in the arguments
of Case 1, we obtain

2

5

(3

5

)|u| ≤ ˜R(x, y),

so that (4.6) has been shown in this case as well.
Finally, taking the completion, we have (4.6) for any x ∈ Kw and y ∈ Kv . ��

Lemma 4.11 There exists c0 > 0 such that

sup
x∈˜Kw2,y∈˜Kv2

˜R(x, y) ≤ c0
(3

5

)|w∧v|

for any w, v ∈ T .

Proof Without loss of generality, we may assume that |w| ≤ |v|. By (4.5),

diam(˜Ku2, ˜R) ≤ c∗diam(Ku2, R) ≤ c∗
(3

5

)|u|
diam(K , R)

for any u ∈ T .
Case 1: |w ∧ v| = |w|.
In this case, w ∧ v = w and v = wi1 . . . ik . Thus

sup
x∈˜Kw,y∈˜Kv

˜R(x, y) ≤
k

∑

j=0

diam(˜Kwi1...i j ,
˜R) ≤ c∗

5

2

(3

5

)|w|
diam(K , R).

Case 2: |w ∧ v| < |w|.
In this case, let u = w ∧ v. Then w = ui1 . . . ik and v = u j1 . . . jl . This shows

sup
x∈˜Kw,y∈˜Kv

˜R(x, y)

≤
k

∑

m=1

diam(˜Kwi1...im , ˜R) + diam(˜Ku2, ˜R) +
l

∑

m=1

diam(˜Kw j1... jm , ˜R)

≤ 4c∗
(3

5

)|u|
diam(K , R).

So, combining the above two cases, we obtain the desired inequality with c0 =
4c∗diam(K , R). ��
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Finally, we start to deal with Cauchy sequences converging to the “boundary” of K\I .
Definition 4.12 (1) For x ∈ ˜V∗, define ξ(x) as the unique w ∈ T satisfying x ∈ (Kw2 ∩
V∗)\{Fw2(p0), Fw2(p1)}.
(2) Let C be the totality of Cauchy sequences of (˜V∗, ˜R). Define an equivalence relation ∼
on C in the following way: {xn}n≥1 ∼ {yn}n≥1 if limn→∞ ˜R(xn, yn) = 0. For {xn}n≥1 ∈ C,
we denote the equivalence class of {xn}n≥1 with respect to ∼ by [{xn}n≥1]. Set

C1 = {{xn}n≥1|{xn}n≥1 ∈ C,

there exists w ∈ T such that {i |i ≥ 1, w = ξ(xi )} is an infinite set.}
and C2 = C\C1.

Note that the completion of ˜K = C/∼.
In the followings, we are going to show that C1 is the collection of Cauchy sequences

converging to a point in K\I and that C2 is the collection of those converging to �T .

Lemma 4.13 Let {xn}n≥1 ∈ C. Set x = [{xn}n≥1]. If ρ(x) ∈ K\I , then {xn}n≥1 ∈ C1. In
particular, ρ−1(K\I ) ⊆ C1/∼.

Proof There exist w, v ∈ T such that Kw2 ∩ Kv2 	= ∅ and Kw2 ∪ Kv2 is a neighborhood
of ρ(x). Since R(xn, ρ(x)) ≤ ˜R(xn, x) → 0 as n → ∞, if follows that ξ(xn) ∈ {w, v} for
sufficiently large n. Thus {xn}n≥1 ∈ C1. ��
Lemma 4.14

C1/∼ =
⋃

w∈T
˜Kw2

Moreover, let ˜K1 = ⋃

w∈T ˜Kw2. Then ρ(˜K1) = K\I and ρ|
˜K1

: ˜K1 → K\I is a homeo-
morphism.

Proof Let {xn}n≥1 ∈ C1 and let x = [{xn}n≥1]. Then there exists w ∈ T such that {i |ξ(xi ) =
w} is an infinite set. So, there exists a subsequence {xn j } j≥1 such that ξ(xn j ) = w for any
j ≥ 1. Since lim j→∞ xn j = x , we see that x ∈ ˜Kw2 and hence C1/∼ ⊆ ˜K1.

If z ∈ ˜Kw2 for some w ∈ T , then there exists {zn}n≥1 ∈ C such that {zn}n≥1 ⊆ Kw2 ∩ ˜V∗
and z = [{zn}n≥1]. Obviously, {zn}n≥1 ∈ C1 and hence C1/∼ = ˜K1. NowLemma 4.9 suffices
to show ρ(˜K1) = K\I .

Suppose that ρ(x) = ρ(y) for x, y ∈ ˜K1. Then there exist w, v ∈ T and
{xn}n≥1, {yn}n≥1 ∈ C such that {xn}n≥1 ⊆ Kw2 ∩ ˜V∗, {yn}n≥1 ⊆ Kv2 ∩ ˜Kv2, x = [{xn}n≥1]
and y = [{yn}n≥1]. If w = v, then Lemma 4.9 shows that x = y. Assume that w 	= v. Let
z = ρ(x) = ρ(y). Then limn→∞ R(xn, z) = limn→∞ R(yn, z) = 0. Hence z ∈ Kw2 ∩
Kv2 = Fw2(V0)∩ Fv2(V0). By (4.5), we see that limn→∞ ˜R(xn, z) = limn→∞ ˜R(yn, z) = 0
and hence x = y = z. Thus ρ|

˜K1
is injective.

Suppose that {zn}n≥1 ⊆ K\I and limn→∞ R(z, zn) = 0 for some z ∈ K\I . Then there
exist w, v ∈ T such that zn ∈ Kw ∪ Kv for sufficiently large n, and hence z ∈ Kw ∩ Kv .
Applying (4.5) for both w and v, we see that ˜R(ρ−1(zn), ρ−1(z)) ≤ CR(zn, z) → 0 as
n → ∞. Thus it follows that (ρ|

˜K1
)−1 : K\I → ˜K1 is continuous. ��

Lemma 4.15 Let {xn}n≥1 ∈ C2 and set wn = ξ(xn). Then there exists a unique ω =
ω1ω2 . . . ∈ �T such that |ω ∧ wn | → ∞ as n → ∞. Moreover, if we define a map
ϕ̃ : C2 → �T by this correspondence, then ϕ̃({xn}n≥1) = ϕ̃({yn}n≥1) if and only if
{xn}n≥1 ∼ {yn}n≥1.
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Proof Since {xn}n≥1 ∈ C2, it follows that |wn | → ∞ as n → ∞. Therefore, for any N ≥ 1,

there exists MN ≥ 1 such that |wn | ≥ N and ˜R(xn, xm) < 2
5

( 3
5

)N+1 whenever n,m ≥ MN .
Suppose n ≥ MN . If KwMN 2 ∩ Kwn2 = ∅, then (4.6) implies that |wMN ∧ wn | ≥ N . If
KwMN 2 ∩ Kwn2 	= ∅, the fact that |wn | ≥ N and |wMN | ≥ N shows that |wMN ∧ wn | ≥ N .

So, we see that |wMN ∧wn | ≥ N for any n ≥ MN . Setw(N ) = [wMN ]N . Then [wn]N = w(N )

for any n ≥ MN . It follows that if N1 ≥ N2, then [w(N1)]N2 = w(N2). Thus there exists
ω ∈ �T such that [ω]N = w(N ). Since [wn]N = [ω]N for any n ≥ MN , we see that
|ω ∧ wn | → ∞ as n → ∞. The uniqueness of such an ω is obvious.

Let {xn}n≥1, {yn}n≥1 ∈ C2. Set ω = ϕ̃({xn}n≥1) and τ = ϕ̃({yn}n≥1). Assume that
ω 	= τ . Then for sufficiently large n, ξ(xn) ∧ ξ(yn) = ω ∧ τ , |ξ(yn)| > |ω ∧ τ | and
|ξ(xn)| > |ω ∧ τ |. By (4.6), we see that 2

5

( 3
5

)|ω∧τ |+1 ≤ ˜R(xn, yn) for sufficiently large n.
This implies [{xn}n≥1] 	= [{yn}n≥1]. Thus if {xn}n≥1 ∼ {yn}n≥1, then ω = τ . Conversely,
assume that ω = τ . Since limn→∞ |ω ∧ ξ(xn)| = limn→∞ |τ ∧ ξ(yn)| = ∞, it follows that
limn→∞ |ξ(xn) ∧ ξ(yn)| = ∞. By Lemma 4.11, we see that ˜R(xn, yn) → 0 as n → ∞. ��

By Lemma 4.15, the map ϕ̃ induces a natural bijection ϕ : C2/∼ → �T .

Lemma 4.16 The map ϕ : (C2/∼, ˜R) → (�T , δ 3
5
) is a biLipschitz homeomorphism.

Proof Let {xn}n≥1, {yn}n≥1 ∈ C2. Set x = [{xn}n≥1], y = [{yn}n≥1], ω = ϕ̃({xn}n≥1) and
τ = ϕ̃({yn}n≥1). Then for sufficiently large n, we see that ξ(xn) ∧ ξ(yn) = ω ∧ τ . Thus
Lemma 4.11 yields

˜R(xn, yn) ≤ c0
(3

5

)|ω∧τ | = c0δ 3
5
(ω, τ).

Taking n → ∞, we see that

˜R(x, y) ≤ c0δ 3
5
(ϕ(x), ϕ(y))

Assume that ω 	= τ . Then ˜Kξ(xn)2 ∩ ˜Kξ(yn)2 = ∅ for sufficiently large n. Hence by (4.6)

6

25
δ 3
5
(ω, τ) = 2

5

(3

5

)|ω∧τ |+1 ≤ ˜R(xn, yn).

Thus we have

6

25
δ 3
5
(ϕ(x), ϕ(y)) ≤ ˜R(x, y).

��
Through ϕ, we identify C2/∼ with �T .

Lemma 4.17 ρ|�T = π |�T . In particular, ρ(�T ) = I .

Proof Letω ∈ �T . For each n ≥ 1, choose xn ∈ ˜K[ω]n2. Then {xn}n≥1 ∈ C2 and [{xn}n≥1] =
ω. Now xn ∈ K[ω]n , it follows that

R(xn, π(ω)) ≤ diam(K[ω]n , R) → 0

as n → ∞. Hence ρ(ω) = π(ω). ��
Lemma 4.18 (˜K , ˜R) is compact.
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Proof Since (˜K , ˜R) is complete, it is enough to show that (˜K , ˜R) is totally bounded. Let
v ∈ W∗. Define ˜Kv as the closure of Kv ∩ ˜V∗ with respect to ˜R. Note that

˜K =
⋃

v∈Wn

˜Kv

for any n ≥ 1. If v /∈ T , then there exists w ∈ T such that Kv ⊆ Kw2 and hence ˜Kv ⊆ ˜Kw.
By (3.1) and (4.5), there exists a constant c′ which is independent of v such that

diam(˜Kv, ˜R) ≤ c∗diam(Kv, R) ≤ c′(3
5

)|v|
diam(K , R).

Next assume that v ∈ T . For any x, y ∈ Kv ∩ ˜V∗, it follows that ξ(x) ∧ ξ(y) = vi1 . . . ik for
some i1, . . . , ik ∈ {0, 1}. Thus by Lemma 4.11,

˜R(x, y) ≤ c0
(3

5

)|v|
,

so that diam(˜Kv, ˜R) ≤ c0
( 3
5

)|v|. Consequently, for any ε > 0, {˜Kv}v∈Wn is an ε-covering of
˜K for sufficiently large n. This shows that (˜K , ˜R) is totally bounded. ��

Now we are ready to give a proof of Theorem 4.5.

Proof of Theorem 4.5 (1) By Lemmas 4.14 and 4.16, it follows that ˜K = C/∼ is homeomor-
phic to (K\I ) ∪ �T . To show (4.4), we consider the following three cases:
Case A: x, y ∈ �T .
In this case,Theorem 2.15 and Lemma 4.16 suffice.
Case B: x, y ∈ K\I and Kξ(x)2 ∩ Kξ(y)2 = ∅.
Lemmas 4.10 and 4.11 show that

2

5

(3

5

)|ξ(x)∧ξ(y)|+1 ≤ ˜R(x, y) ≤ c0
(3

5

)|ξ(x)∧ξ(y)|
.

On the other hand, modifying the proofs of Lemmas 4.10 and 4.11, we see that there exist
c1, c2 > 0, which are independent of x and y, such that

c1
(1

2

)|ξ(x)∧ξ(y)| ≤ ˜D(x, y) ≤ c2
(1

2

)|ξ(x)∧ξ(y)|
.

Thus we have (4.4).
Case C: There exists w ∈ T such that x, y ∈ Kw2.
In this case, using Lemma 2.14, we have

D(x, y) = ˜D(x, y).

This equality with Proposition 2.3, (3.1) and (4.5) shows (4.4) in this case.
Case D: x, y ∈ K\I and Kξ(x)2 ∩ Kξ(y)2 	= ∅.
Without loss of generality, we may assume that ξ(x) = w and ξ(y) = w0 for some w ∈ T .
Then Kw2 ∩ Kw02 = {p(w0)}. If we remove p(w0), then K\I breaks up into two connected
components. Therefore,

˜D(x, y) = ˜D(x, p(w0)) + ˜D(p(w0), y) and ˜R(x, y) = ˜R(x, p(w0)) + ˜R(p(w0), y).

Now by Case C, we obtain (4.4) in this case.
Case E: x ∈ �T and y ∈ K\I .
Choose ω ∈ �T such that x = π(ω). Applying Case B for p([ω]m) and y and taking
m → ∞, we have (4.4) in this case.
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Thus we have (4.4) for any x, y ∈ (K\I ) ∪ �T .
(2) Since ˜K and K are compact and ρ(˜V∗) is dense in K , we see that ρ(˜K ) = K . The rest
follows from Lemmas 4.14 and 4.17. ��

5 Relation between two resistance forms

In this section, we give an alternative expression of the domain ˜F of the resistance form
(˜E, ˜F) on (K\I ) ∪ �T . Through the expression, we obtain a characterization of the domain
F of the resistance form (E,F) on (K\I ) ∪ I = K in terms of ˜F .

To start with, the following lemma shows a relation between continuous functions on K
and ˜K .

Lemma 5.1

C(K , R) = { f | f : K → R, f ◦ ρ ∈ C(˜K , ˜R)}
Proof Obviously C(K , R) ⊆ { f | f : K → R, f ◦ ρ ∈ C(˜K , ˜R)}. Conversely, let f : K →
R satisfying f ◦ ρ ∈ C(˜K , ˜R). Assume that {xn}n≥1 ⊆ K and R(xn, x) → 0 as n → ∞ for
some x ∈ K . Since ρ−1(x) consists of two points at most, let ρ−1(x) = {z1, z2}. Choose
yn ∈ ρ−1(xn) for each n ≥ 1. Suppose

lim sup
n→∞

min{˜R(yn, z1), ˜R(yn, z2)} > 0.

Then there exists a subsequence {yni } and z /∈ ρ−1(x) such that ˜R(yni , z) → 0 as i → ∞.
This contradicts the fact that ρ(yni ) = xni → x 	= ρ(z) as i → ∞. Hence

lim
n→∞min{˜R(yn, z1), ˜R(yn, z2)} = 0

Since ˜K is compact and f ◦ ρ is uniformly continuous, this implies

lim
n→∞min{| f ◦ ρ(yn) − f ◦ ρ(z1)|, | f ◦ ρ(yn) − f ◦ ρ(z2)|} = 0.

This immediately yields that limn→∞ | f (xn) − f (x)| = 0. Hence we have shown f ∈
C(K , R). ��

The following notions are used in an alternative expression of (˜E, ˜F).

Definition 5.2 Let

A = { f | f : K\I → R, f ◦ Fw2 ∈ F for any w ∈ T }.
For f ∈ A, define

̂E(n)( f , f ) =
n

∑

m=1

(5

3

)m ∑

w∈{0,1}m−1

E( f ◦ Fw2, f ◦ Fw2).

Theorem 5.3

˜F =
{

f

∣

∣

∣

∣

f ∈ A, lim
n→∞

̂E(n)( f , f ) < ∞
}

and

˜E( f , f ) = lim
n→∞

̂E(n)( f , f ) (5.1)
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for any f ∈ ˜F . Moreover, for any f ∈ ˜F and w ∈ T , f ◦ Fw ∈ ˜F and

˜E( f , f ) = ̂E(n)( f , f ) +
(5

3

)n ∑

w∈{0,1}n
˜E( f ◦ Fw, f ◦ Fw) (5.2)

Remark The above theorem shows that if f ∈ A and limn→∞ ̂E(n)( f , f ) < ∞, then f can
be extended to a continuous function on ˜K .

Proof For f ∈ �(˜Vm), it follows that

˜Em( f , f ) =
m

∑

k=1

(5

3

)k ∑

w∈{0,1}k−1

Em−k( f ◦ Fw2, f ◦ Fw2). (5.3)

Since Em(g, g) ≤ E(g, g) for any g ∈ F , the above equality implies

˜Em( f , f ) ≤ ̂E(m)( f , f ) (5.4)

for any f ∈ A and m ≥ 1. Assume that f ∈ A and limn→∞ ̂E(n)( f , f ) < ∞. Taking
m → ∞ in (5.4), we see that

˜E( f , f ) = lim
m→∞

̂E(m)( f , f ) < ∞.

Thus it follows that f ∈ ˜F . Again by (5.3), for a fixed n,

n
∑

k=1

(5

3

)k ∑

w∈{0,1}k−1

Em−k( f ◦ Fw2, f ◦ Fw2) ≤ ˜Em( f , f ).

This implies

n
∑

k=1

(5

3

)k ∑

w∈{0,1}k−1

E( f ◦ Fw2, f ◦ Fw2) ≤ ˜E( f , f ).

Therefore, we have (5.1).
Conversely, assume that f ∈ ˜F . Then by (5.3),

lim sup
n→∞

En( f ◦ Fw2, f ◦ Fw2) ≤ ˜E( f , f )

for any w ∈ T . Hence f ∈ A. The deduction of (5.1) is entirely the same as above.
Note that if w ∈ {0, 1}m−1 and m ≥ n + 1, then w = uv for some u ∈ {0, 1}n and

v ∈ {0, 1}k−1 with n + k = m. Hence

˜E( f , f ) = ̂E(n)( f , f ) +
∑

m≥n+1

(5

3

)m ∑

w∈{0,1}m−1

E( f ◦Fw2, f ◦Fw2)

= ̂E(n)( f , f ) +
∑

u∈{0,1}n

∑

k≥1

(5

3

)n+k ∑

v∈{0,1}k−1

E( f ◦Fuv2, f ◦Fuv2)

= ̂E(n)( f , f ) +
(5

3

)n ∑

u∈{0,1}n
˜E( f ◦Fu, f ◦Fu).

Hence we have (5.2). ��
The next characterization of (E,F) in terms of (˜E, ˜F) is one of the main results of this

paper.
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Theorem 5.4

F = { f | f : K → R, f ◦ ρ ∈ ˜F}
and

E( f , f ) = lim
n→∞

̂E(n)( f , f ) = ˜E( f ◦ρ, f ◦ρ)

for any f ∈ F .

Since ρ(x) = x on K\I , which is dense in (K , D) and in (˜K , ˜D), the above theorem says
that (E,F) is an extension of (˜E, ˜F), i.e. F ⊆ ˜F and E = ˜E|F×F .

To give a proof of the above theorem, we need the notion of energy measures associated
with a local regular Dirichlet form. For a moment, let (E,F) be a local regular Dirichlet
form on L2(X , μ). For simplicity, we assume that a metric space (X , d) is compact and
μ(X) < ∞. Then for any f ∈ F , it is known that there exists a Radon measure ν f on X
such that

∫

X
gdν f = 2E( f g, f ) − E( f 2, g)

for any g ∈ F . The measure ν f is called the energy measure of f . See [2, Sect. 3.2] for
details and the general theory. In our case, the energy measures associated with the standard
resistance form (E,F) were thoroughly studied initially by Kusuoka in [14]. It is known that
there exists a Radon measure ν∗, which is now called the Kusuoka measure, on K such that
ν f is absolutely continuous with respect to ν∗ for any f ∈ F .

Lemma 5.5 Define ν f as the energy measure of f ∈ F . Then ν f (I ) = 0 for any f ∈ F .

Proof As ismentioned above, for any f ∈ F , the energymeasure ν f is absolutely continuous
with respect to ν∗. So, it is enough to show that ν∗(I ) = 0. Furthermore, ν∗ = νh1 +
νh2 for some harmonic functions h1 and h2. See [7, (3.2) and Proposition 5.4] for details.
Consequently, if νh(I ) = 0 for any harmonic function h, then the lemma is shown. Note that
the space of harmonic functionsH is three-dimensional. Let ψi be the harmonic function of
K with ψi (pi ) = δi j , where δi j = 1 if i = j and δi j = 0 if i 	= j . Then

H = {a1ψ1 + a2ψ2 + a3ψ3|a1, a2, a3 ∈ R}.
Now for any h ∈ H with E(h, h) 	= 0,

E(h, h) = 5

3

(

E(h ◦ F0, h ◦ F0) + E(h ◦ F1, h ◦ F1) + E(h ◦ F2, h ◦ F2)
)

>
5

3

(

E(h ◦ F0, h ◦ F0) + E(h ◦ F1, h ◦ F1)
)

Let H1 = {h|h ∈ H, E(h, h) = 1, h(p1) = 0}. Then H1 is compact. Replacing h by
(h − h(p1))/

√
E(h, h) in the above inequality and taking the supremum of the right hand

side over h ∈ H1, we see that there exists c ∈ (0, 1) such that

5

3

(

E(h ◦ F0, h ◦ F0) + E(h ◦ F1, h ◦ F1)
) ≤ cE(h, h).

Iterating this, we obtain
(5

3

)m ∑

w∈{0,1}m
E( f ◦ Fw. f ◦ Fw) ≤ cmE(h, h)
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Set Im = ∪w∈{0,1}m Kw. Then the left-hand side of the above inequality coincideswith νh(Im).
Thus

νh(Im) ≤ cmνh(K ).

Letting m → ∞, we see that νh(I ) = 0. ��
One of the ingredients of our proof of Theorem 5.4 is the use of the energies associated

with G and G ∪ T , which are illustrated in Fig. 5. In particular, G ∪ T is a tree and hence the
calculation of effective resistances between points is straightforward.

Definition 5.6 (1) Define

E(n)
G ( f , f ) =

n
∑

k=1

(5

3

)k ∑

w∈{0,1}k−1

E0( f ◦ Fw2, f ◦ Fw2)

for f ∈ �(Gn).
(2) Define

E(n)
T∪G( f , f ) =

∑

w∈Tn

(5

3

)|w|
5

∑

i=0,1,2

( f (Fw2(pi )) − f (w))2

for f ∈ �(Gn ∪ Tn).

Lemma 5.7 (1) If m ≥ n, then ˜Em |Gn = E(n)
G .

(2) For any n ≥ 1, E(n)
T∪G |Gn = E(n)

G .
(3) Set qn,i = F(i)n−12(pi ). Let G

b
n = {p2, qn,0, qn,1}. Define

rn = 4

5
−

(3

5

)n
, Rn = rn + 2

5
, and Sn = 5rn Rn .

Then

E(n)
G |Gb

n
( f , f )

= 1

Rn

(

( f (p2) − f (qn,0))
2 + ( f (p2) − f (qn,1))

2) + 1

Sn
( f (qn,0) − f (qn,1))

2.(5.5)

Proof (1) Note that Em |V0 = E0 for any m ≥ 1. Therefore, (5.3) suffices.
(2) Applying �-Y transform ([9, Lemma 2.1.15]), we obtain the desired result.
(3) By (2), it follows that E(n)

G |Gb
n

= E(n)
T∪G |Gb

n
. Note that the weighted graph associated with

E(n)
T∪G is a tree. Let ˜Gb

n = Gb
n ∪ {φ}. Then

E(n)
T∪G |

˜Gb
n
( f , f )

= 5( f (p2) − f (φ))2 + 1

αn

(

( f (φ) − f (qn,0))
2 + ( f (φ) − f (qn,1)

2),

where αn = 1
5 + 2

5

( 3
5 +· · ·+ ( 3

5

)n−1) = rn . Applying the �-Y transform, we verify (5.5). ��
Lemma 5.8 For f : ˜K → R and w ∈ T , define

Qw( f , f )

= 5

6
(( f (Fw(p2)) − f (w0))2 + ( f (Fw(p2)) − f (w1))2) + 5

24
( f (w0) − f (w1))2.
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Then for any f ∈ ˜F ,

̂E(n)( f , f ) +
(5

3

)n ∑

w∈{0,1}n
Qw( f , f ) ≤ ˜E( f , f ).

In particular, for any f ∈ ˜F ,

˜En( f , f ) +
(5

3

)n ∑

w∈{0,1}n
Qw( f , f ) ≤ ˜E( f , f ). (5.6)

Proof By Lemma 5.7, ˜En |Gb
n

= E(n)
G |Gb

n
. Hence by (5.5),

˜En( f , f )

≥ 1

Rn

(

( f (p2) − f (qn,0))
2 + ( f (p2) − f (qn,1))

2) + 1

Sn
( f (qn,0) − f (qn,1))

2.

Letting n → ∞, we see that ˜E( f , f ) ≥ Qφ( f , f ) for any f ∈ ˜F . Combining this with
(5.2), we have the desired inequality. ��
Proof of Theorem 5.4 If f ∈ F , then by (5.3),

˜Em( f ◦ ρ, f ◦ ρ) =
m

∑

k=1

(5

3

)k ∑

w∈{0,1}k−1

Em−k( f ◦ Fw2, f ◦ Fw2) ≤ Em( f , f ).

Taking m → ∞, we see that

˜E( f ◦ ρ, f ◦ ρ) = lim
n→∞ E(n)( f , f ) ≤ E( f , f )

and hence f ◦ ρ ∈ ˜F . Define

K (n) =
n

⋃

m≥1

⋃

v∈{0,1}m−1

Kv2.

Then

̂E(n)( f , f ) =
∫

K (n)

ν f (dx).

Lemma 5.5 implies

E( f , f ) = ν(K ) = ν

⎛

⎝

⋃

n≥0

K (n)

⎞

⎠ = lim
n→∞

̂E(n)( f , f ).

Next assume f : K → R and f ◦ ρ ∈ ˜F . Then Lemma 5.1 implies that f ∈ C(K , R).
Define

Q0( f , f ) = 5

6
(( f (p2) − f p0)

2 + ( f (p2) − f (p1))
2) + 5

24
( f (p0) − f (p1))

2,

Then for any w ∈ T ,

Qw( f ◦ ρ, f ◦ ρ) = Q0( f ◦ Fw, f ◦ Fw).
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By (5.6)

5

24
Em( f , f ) ≤ ˜Em( f , f ) +

(5

3

)m ∑

w∈{0,1}m
Q0( f ◦ Fw, f ◦ Fw) ≤ ˜E( f ◦ ρ, f ◦ ρ).

Thus limm→∞ Em( f , f ) < ∞, so that f ∈ F . ��

6 Traces of two resistance forms on the boundaries

The main purpose of this section is to determine the jump kernel J∗(x, y) of the trace of
(E,F) on I . Due to Theorem A.4, (E|I ,F |I ) and (˜E|�T , ˜F |�T ) are resistance forms on
I and �T respectively. So by Theorem A.2, both resistance forms induce Hunt processes,
which are jump processes in fact, on I and �T respectively. In light of Theorem 5.4, we see
that

F |I = { f | f : I → R, f ◦ρ ∈ ˜F |�T }
and

E|I ( f , f ) = ˜E|�T ( f ◦ ρ, f ◦ ρ).

Hence to know (˜E|�T , ˜F |�T ) is to know (E|I ,F |I ), and we do know (˜E|�T , ˜F�T ) rather
well as follows.

Theorem 6.1 For ω, τ ∈ �T with ω 	= τ , define

J (ω, τ) = 35

16

(14

17

(20

3

)n(ω,τ) + 3

17

)

.

and let ν be the self-similar measure on �T with weight
( 1
2 ,

1
2

)

. Then

˜F |�T =
{

f

∣

∣

∣

∣

f ∈ L2(�T , μ),

∫

�T ×�T

J (ω, τ)( f (ω) − f (τ ))2ν(dω)ν(dτ) < ∞
}

and

˜E|�T ( f , f ) =
∫

�T ×�T

J (ω, τ)( f (ω) − f (τ ))2ν(dω)ν(dτ).

Moreover, let p�T : (0,∞)×�T ×�T → [0,∞) be the jointly continuous transition density
associated with the Dirichlet form (˜E|�T , ˜F |�T ) on L2(�T , ν). Then there exist c1, c2 > 0
such that

c1 min

{

t

δ 1
2
(ω, τ)α+2 , t−

1
α+1

}

≤ p�T (t, ω, τ ) ≤ c2 min

{

t

δ 1
2
(ω, τ)α+2 , t−

1
α+1

}

for any (t, ω, τ ) ∈ (0,∞) × �T × �T , where α = log 5−log 3
log 2 is the exponent appearing in

(3.1).

The existence of the transition density p�T is included in Theorem A.2.

Remark The same expression of J (ω, τ) was obtained in [17].
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Note that there exist c3, c4 > 0 such that

c3
1

δ 1
2
(ω, τ)α+2 ≤ J (ω, τ) ≤ c4

1

δ 1
2
(ω, τ)α+2

for any ω, τ ∈ �T . Moreover,

min

{

t

δ 1
2
(ω, τ)α+2 , t−

1
α+1

}

=

⎧

⎪

⎨

⎪

⎩

t

δ 1
2
(ω, τ)α+2 if t ≤ δ 1

2
(ω, τ)α+1,

t−
1

α+1 if t ≥ δ 1
2
(ω, τ)α+1.

A proof of the above theorem will be given later in this section. Meanwhile, we present
an expression of (E|I ,F |I ) as an immediate corollary of Theorems 5.4 and 6.1.

Corollary 6.2 Define J∗ : I × I → [0,∞) by

J∗(x, y) = max
ω∈π−1(x),τ∈π−1(y)

J (ω, τ)

for x, y ∈ I . Then

F |I =
{

f

∣

∣

∣

∣

f ∈ L2(I , ν∗),
∫

I×I
J∗(x, y)( f (x) − f (y))2ν∗(dx)ν∗(dy) < ∞

}

and

E|I ( f , f ) =
∫

I×I
J∗(x, y)( f (x) − f (y))2ν∗(dx)ν∗(dy).

for any f ∈ F |I . Moreover, let pI : (0,∞) × I × I → [0,∞) be the jointly continuous
transition density associated with the Dirichlet form (E|I ,F |I ) on L2(I , ν∗). Then there exist
c5, c6 > 0 such that

pI (t, x, y) ≤ c5 min

{

t

|x − y|α+2 , t−
1

α+1

}

(6.1)

for any (t, x, y) ∈ (0,∞) × I × I and

c6t
− 1

α+1 ≤ pI (t, x, y) (6.2)

if t ≥ |x − y|α+1.

Set B = { i
2n |n ≥ 0, 0 ≤ i ≤ 2n}. If both x and y do not belong to B, then π−1(x)

and π−1(y) consist of a single point and we do not need to take the minimus in the above
definition of J∗. Note that ν∗(B) = 0. So, even if we define

J∗(x, y) = J (π−1(x), π−1(y)),

J∗ makes sense as an element of L2(I × I , ν∗ × ν∗).

Proof of Corollary 6.2 The expressions of F |I and E|I are immediate from Theorems 5.3 and
6.1. The existence and the continuity of pI (t, x, y) is due to Theorem A.2. Since there exists
c > 0 such that

J∗(x, y) ≤ c

|x − y|α+2

for any x, y ∈ I , we obtain (6.1) by using [4, Theorem 6.13]. The lower estimate (6.2) follows
from [12, Theorems 15.6 and 15.13]. ��
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The rest of this section is devoted to a proof of Theorem 6.1. The main idea is to identify
the trace of (˜E, ˜F) on �T as that of a weighted tree and to use the results of [11].

Definition 6.3 Define

FG =
{

f

∣

∣

∣

∣

f : G → R, lim
n→∞ E(n)

G ( f , f ) < ∞
}

and

EG( f , f ) = lim
n→∞ E(n)

G ( f , f )

for f ∈ FG .

Note that

EG( f , f ) =
∞
∑

k=1

(5

3

)k ∑

w∈{0,1}k−1

E0( f ◦ Fw2, f ◦ Fw2).

Lemma 6.4 The closure of (G, ˜R) is G ∪�T . In particular, if f |G = g|G for f , g ∈ ˜F , then
f |�T = g|�T .

Proof For any ω ∈ �T , let xn = F[ω]n2(p2). Then ˜R(xn, ω) → 0 as n → ∞. Hence
G ⊇ G ∪ �T . Assume that there exists x ∈ G\G ∪ �T . Since x ∈ (K\I )\G, x belongs to
Kw2\G for some w ∈ T . So, Kw2\G is an open neighborhood of x and this contradicts the
fact that x is an accumulating point of G. Hence we have G = G ∪ �T . ��
Lemma 6.5 For any f : G → R, define hG( f ) : K\I → R as

hG( f ) ◦ Fw2 =
∑

i∈{0,1,2}
f (Fw2(pi ))ψi

for each w ∈ T . Then the following conditions (1), (2), and (3) are equivalent to each other:
(1) f ∈ FG,
(2) hG( f ) ∈ ˜F ,
(3) There exists g ∈ ˜F such that g|G = f .
Furthermore, if f = g|G for some g ∈ ˜F , then

EG( f , f ) = ˜E(hG( f ), hG( f )) = min{˜E(g, g)|g ∈ ˜F, g|G = f }. (6.3)

Proof (1) ⇔ (2); By the definitions of E(n)
G and ̂E(n), we have

E(n)
G ( f , f ) = ̂E(n)(hG( f ), hG( f )). (6.4)

This immediately shows the equivalence of (1) and (2).
(2) ⇒ (3): Since hG( f )|G = f , this is obvious.
(3) ⇒ (2): Since E0(g ◦ Fw2, g ◦ Fw2) ≤ E(g ◦ Fw2, g ◦ Fw2) for any w ∈ T , we see that

E(n)
G ( f , f ) ≤ ̂E(n)(g, g)

for any n ≥ 1. Letting n → ∞, we obtain

EG( f , f ) ≤ ˜E(g, g) < ∞. (6.5)

Hence f ∈ FG .
Finally, (6.4) and (6.5) suffice (6.3). ��
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By Lemmas 6.5, f = hG( f )|G for any f ∈ FG . Since hG( f ) ∈ ˜F , hG( f ) ∈ C(˜K , ˜R).
Hence f can be naturally regarded as an element of C(G ∪�T , ˜R). In this manner, we think
FG as a subspace of C(G ∪ �T , ˜R) hereafter.

Lemma 6.6 (˜E|G∪�T , ˜F |G∪�T ) = (EG ,FG).

Definition 6.7 Define

FG∪T =
{

f

∣

∣

∣

∣

f : G ∪ T → R, lim
n→∞ E(n)

G∪T ( f , f ) < ∞
}

and

EG∪T = lim
n→∞ E(n)

G∪T ( f , f ).

The structure of the graph G ∪ T is illustrated in Fig. 5.

Lemma 6.8 (EG∪T ,FG∪T ) is a resistance form on G ∪ T ∪ �T and

(EG∪T |G∪�T ,FG∪T |G∪�T ) = (EG ,FG).

Proof It is straightforward to see that (EG∪T ,FG∪T ) is a resistance form onG∪T . Moreover,
by the �-Y transform, it follows that (EG∪T |G ,FG∪T |G) = (EG ,FG). Hence let R0 be the
resistance metric on G ∪ T associated with (EG∪T ,FG∪T ). Then R0|G×G = ˜R|G×G . Since
G = G ∪�T . we see that G ∪ T ⊆ G ∪ T ∪�T . Assume that {xn}n≥1 is a Cauchy sequence
of (G∪T , R0) and that limn→∞ xn /∈ G∪T ∪�T . Then there exists a subsequence {xni }i≥1

such that xni ∈ T for any i ≥ 1 and |xni | → ∞ as i → ∞. Set yi = Fxni 2(p2). Then

R0(xni , yi ) ≤ 1
5

( 3
5

)|xni |+1. Therefore limi→∞ xni = limn→∞ yi and the limit belongs to
G ∪ �T because {yi }i≥1 ⊆ G and G = G ∪ �T . This contradiction shows that G ∪ T =
G ∪ T ∪ �T . Therefore, (EG∪T ,FG∪T ) is a resistance form on G ∪ T ∪ �T . ��
Definition 6.9 For f : T → R, define

ET ( f , f ) =
∑

w∈T

25

8

(5

3

)|w|(
( f (w) − f (w0))2 + ( f (w) − f (w1))2

)

,

whose value can be ∞. Moreover, define

FT = { f | f : T → R, ET ( f , f ) < ∞}.
The structure of the tree T is illustrated in Fig. 5.

Lemma 6.10 (EG∪T |T ,FG∪T |T ) = (ET ,FT ). Moreover,(ET ,FT ) is a resistance form on
T ∪ �T and (EG∪T |T∪�T ,FG∪T |T∪�T ) = (ET ,FT ).

Proof Note that Fw2(pi ) = Fwi2(p2) for any w ∈ T and i ∈ {0, 1}. So, we have
EG∪T ( f , f ) = 5( f (p2) − f (φ))2

+ 5
∑

w∈T

∑

i∈{0,1}

(5

3

)|w| (
( f (w) − f (Fw2(pi )))

2 + 5

3
( f (Fw2(pi )) − f (wi))2

)

≥ 5
∑

w∈T

∑

i∈{0,1}

(5

3

)|w| 5
8
( f (w) − f (wi))2 = ET ( f , f ),
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where the equality holds when f (p2) = f (φ) and f (Fw2(pi )) = 3
8 f (w) + 5

8 f (wi) for any
w ∈ T and i ∈ {0, 1}. This yields that (EG∪T |T ,FG∪T |T ) = (ET ,FT ). Since the closure of
G ∪ T with respect to R0 is G ∪ T ∪ �T , it follows that T ⊆ G ∪ T ∪ �T , where T is the
closure of T with respect to the metric R0. Let {w(n)}n≥1 be a Cauchy sequence in (T , R0).
If lim infn→∞ |w(n)| < ∞, then there exists w∗ ∈ T such that w(n) = w∗ for infinitely
many n. Therefore limn→∞ w(n) = w∗ ∈ T . In case |w(n)| → ∞ as n → ∞, the limit does
not belong to G ∪ T and hence it must belong to �T . Thus we have shown that T = T ∪�T .
This implies that (ET ,FT ) is a resistance form on T ∪ �T . ��

Proof of Theorem 6.1 By Lemmas 6.6, 6.8 and 6.10, we see that (˜E|�T , ˜F |�T ) = (ET ,FT ).
Note that (ET ,FT ) is a resistance form associated with a weighted tree (T ,C), where C :
T × T → [0,∞) given by

C(x, y) =
⎧

⎨

⎩

25
8

(

5
3

)|w|
if (x, y) ∈ {(w,wi), (wi, w)|w ∈ T and i ∈ {0, 1}},

0 otherwise.

This weighted tree coincides with a constant multiple of a self-similar binary tree CS with
(r1, r2) = ( 3

5 ,
3
5

)

studied in [11, Sect. 9]. More precisely, C = 15
8 CS . Set rw = ( 3

5

)|w|

for w ∈ T . Then
∑

n≥1 r[ω]n < ∞ for any ω ∈ �T . Therefore, by [11, Corollary 8.2],
we see that Cap({ω}) > 0 for any ω ∈ �T . Hence by [11, Theorem 8.3], it follows that
�T is identified as the Martin boundary of the random walk on T associated with the
weighted tree (T ,C). Moreover, let (E�T ,F�T )the natural quadartic form on the Martin
boundary associated with the random walk. Then (E�T ,F�T ) is a resistance form on �T

and (E�T ,F�T ) = (ET |�T ,FT |�T ). Consequently we have (E�T ,F�T ) = (˜E|�T , ˜F |�T ).
Using [11, Theorem 5.6], we may obtain an explicit expression of the jump kernel J (ω, τ)

associated with (E�T ,F�T ) as follows:

J (ω, τ) = 1

2

⎛

⎝λφ +
n(ω,τ)−1

∑

m=0

λ[ω∧τ ]m+1 − λ[ω∧τ ]m
ν(�[ω∧τ ]m )

⎞

⎠ ,

where ingredients λw and ν(�w) can be obtained from the results in [11, Sect. 9]. In fact, we
have

Rw = 8

35

(3

5

)|w|
, ν(�w) =

(1

2

)|w|
,

Dw = ν(�w)Rw = 8

35

( 3

10

)|w|
, and λw = 1/Dw = 35

8

(10

3

)|w|
.

As a result, we obtain the expression of J (ω, τ). The results on p�T (t, ω, τ ) are due to [11,
Theorems 7.3, 7.6 and 9.5]. ��
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Appendix: Resistance forms and weighted graphs

This section presents some of the basics of resistance forms and weighted graphs used in this
paper. First, we give the definition of resistance forms.

Definition A.1 Let X be a set. A pair (E,F) is called a resistance form on X if the following
conditions (RF1) through (RF5) are satisfied:
(RF1) F is a linear subspace of �(X) containing constants and E is a non-negative symmetric
quadratic form on F . E( f , f ) = 0 if and only if f is a constant function on X .
(RF2) Let ∼ be an equivalence relation on F defined by f ∼ g if and only if f − g is a
constant function on X . Then (F/∼, E) is a real Hilbert space.
(RF3) If x 	= y ∈ X , then there exists f ∈ F such that f (x) 	= f (y).
(RF4) For any x, y ∈ X ,

sup
f ∈F,E( f , f )	=0

| f (x) − f (y)|2
E( f , f )

< ∞.

(RF5) For any f ∈ F , f ∈ F and E( f , f ) ≤ E( f , f ), where f is given by

f (x) =

⎧

⎪

⎨

⎪

⎩

1 if f (x) ≥ 1,

0 if f (x) ≤ 0,

f (x) if 0 < f (x) < 1.

For a resistance form (E,F) on X , we denote the supremum in (RF4) by R(x, y) and call it
the resistance metric associated with (E,F).

The resistance metric R associated with a resistance form (E,F) on X is indeed a metric
on X . See [9, Chapter 2] for details. The following theorem is a collection of important facts
on resistance forms and associated Dirichlet forms given in [12, Part 1].

Theorem A.2 Let (E,F)be a resistance formona set X, and let R be the associated resistance
metric. Assume that (X , R) is compact. Letμ be a Borel regular measure on (X , R) satisfying
μ(BR(x, r)) > 0 for any x ∈ X and r > 0. Then (E,F) is a regular Dirichlet form
on L2(X , μ). Moreover, let ({Xt }t>0, {Px }x∈X ) be the Hunt process associated with the
Dirichlet form (E,F). Then there exists a jointly continuous transition density p(t, x, y),
i.e.

Ex ( f (Xt )) =
∫

X
p(t, x, y) f (y)μ(dy)

for any bounded measurable function f on X, x ∈ X, and t > 0. Furthermore, if (E,F) has
the local property, i.e. E( f , g) = 0 whenever supp( f ) ∩ supp(g) = ∅ for f , g ∈ F , then
(E,F) is a local regular Dirichlet form on L2(X , μ).
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One of the notions playing an important role in this paper is a trace of a resistance form.

Lemma A.3 [12, Lemma 8.2]Let (E,F) be a resistance form on X and let R be the associated
resistance metric. For a non-empty subset Y ⊆ X, define

F |Y = { f |Y | f ∈ F}.
Then for any f ∈ F |Y , there exists a unique f∗ ∈ F such that f∗|Y = f and

E( f∗, f∗) = min{E(g, g)|g ∈ F, g|Y = f }.
Moreover, if we define hY : F |Y → F be hY ( f ) = f∗, then hY is linear.

Theorem A.4 [12, Theorem 8.4] Let (E,F) be resistance form on X and let R be the asso-
ciated resistance metric. Define

E|Y ( f , g) = E(hY ( f ), hY (g))

Then, (E|Y ,F |Y ) is a resistance form on Y and the associated resistance metric is the
restriction of R to Y × Y . (E|Y ,F |Y ) is called the trace of the resistance form (E,F) on Y .

The rest of this appendix is devoted to a brief review ofweighted graphs, which correspond
to resistance forms on finite sets.

Definition A.5 Let V be a countable set and let C : V × V → [0,∞). (V ,C) is said to be a
weighted graph if C(x, y) = C(y, x) for any x, y ∈ V and C(x, x) = 0 for any x ∈ V . For
a weighted graph (V ,C), define

FC = { f | f ∈ �(V ),
∑

x,y∈V
C(x, y)( f (x) − f (y))2 < ∞}.

and

EC ( f , f ) = 1

2

∑

x,y∈V
C(x, y)( f (x) − f (y))2

for f ∈ FC . (EC ,FC ) is called the Dirichlet form associated with (V ,C). A weighted graph
(V ,C) is called connected if for any x, y ∈ V , there exist x1, . . . , xn ∈ V such that x1 = x ,
xn = y and C(xi , xi+1) > 0 for any i = 1, . . . , n − 1. Moreover, (V ,C) is locally finite if
{y|y ∈ V ,C(x, y) > 0} is a finite set for any x ∈ V .

Weighted graphs appearing in this paper are all connected and locally finite.
Verifying the conditions (RF1) through (RF5) in Definition A.1, we immediately obtain

the following proposition.

Proposition A.6 Let (V ,C) be a connected and locally finite weighted graph. Then

sup
f ∈FC ,EC ( f , f )	=0

| f (x) − f (y)|2
EC ( f , f )

< ∞

for any x, y ∈ V . If RC (x, y) is the above supremum, then RC is a metric on V . In particular,
(EC ,FC ) is a resistance form on K and RC is the associated resistance metric.

For the time being, we only deal with the case where V is a finite set. In such a case,
FC = �(V ) and (V ,C) is always locally finite.
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Remark Assume that V is a finite set. For a weighted graph (V ,C), define HC =
(HC (x, y))x,y∈V as the non-negative matrix satisfying

EC ( f , f ) = ( f , HC f )V

for any f ∈ �(V ), where (·, ·)V is the standard inner-product defined by ( f , g) =
∑

x∈V f (x)g(x). In [9], HC is called a Laplacian on V and the pair (V , HC ) is called a resis-
tance network on V . See [9, Definition 2.1.2]. In fact, the correspondence C ↔ EC ↔ HC

gives a natural one-to-one correspondence between weighted graphs, Dirichlet forms, and
Laplacians on a finite set. See [9, Sect. 2.1] for precise statements on the correspondence
between Laplacians and Dirichlet forms.

Definition A.7 (1) Let (U1,C1) and (U2,C2) be connected weighted graphs on finite sets.
We write (U1,C1) ≤ (U2,C2) if U1 ⊆ U2 and

EC1( f , f ) = min{EC2(g, g)|g ∈ �(U2), g|U1 = f }
for any f ∈ �(U1).

(2) Let {(Um,Cm)}m≥0 be a sequence of connected weighted graphs on finite sets. The
sequence {(Um,Cm)}m≥0 is said to be compatible if (Um,Cm) ≤ (Um+1,Cm+1) for any
m ≥ 0.

Proposition A.8 Let (U1,C1) and (U2,C2) be connected weighted graphs on finite sets. If
(U1,C1) ≤ (U2,C2), then

RC1(x, y) = RC2(x, y)

for any x, y ∈ U1.

Combining [9, Theorem 2.2.6] and [9, Theorem 2.3.10], we have the following theorem,
which is a principal tool to construct a resistance form out of a sequence of weighted graphs.

Theorem A.9 Let {(Um,Cm)}m≥0 be a compatible sequence of connected weighted graphs
on finite sets. Set U∗ = ∪m≥0Um. Define

F =
{

f

∣

∣

∣

∣

f ∈ �(U∗), lim
m→∞ ECm ( f |Um , f |Um ) < ∞

}

and

E( f , f ) = lim
m→∞ ECm ( f , f )

for f ∈ F . Furthermore, for x, y ∈ U∗, define R(x, y) = Rm(x, y), where we choose m
such that x, y ∈ Um. Then R is a metric on U∗ and if (X , R) be the completion of (U∗, R),
then any f ∈ F is extended to a continuous function on (X , R), (E,F) is a resistance form
on X, and the resistance metric associated with (E,F) is R.
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