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Abstract
The Bergman projection Pα , induced by a standard radial weight, is bounded and onto from
L∞ to the Bloch space B. However, Pα : L∞ → B is not a projection. This fact can be
emended via the boundedness of the operator Pα : BMO2(�) → B, where BMO2(�) is
the space of functions of bounded mean oscillation in the Bergman metric. We consider the
Bergman projection Pω and the space BMOω,p(�) of functions of bounded mean oscillation
induced by 1 < p < ∞ and a radial weight ω ∈ M. Here M is a wide class of radial
weights defined by means of moments of the weight, and it contains the standard and the
exponential-type weights. We describe the weights such that Pω : BMOω,p(�) → B is
bounded. They coincide with the weights for which Pω : L∞ → B is bounded and onto.
This result seems to be new even for the standard radial weights when p �= 2.
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1 Introduction andmain results

It is well-known that the Bergman projection Pα , induced by the standard weight (α+1)(1−
|z|2)α , is bounded and onto from L∞ to theBloch spaceB [6, Section 5.1]. This is a very useful
result with a large variety of applications in the operator theory on spaces of analytic functions
on D. However, the operator Pα : L∞ → B is in fact not a projection because of the strict
inclusion H∞

� B. This downside can be emended by replacing L∞ by the space BMO2(�)

of functions of bounded mean oscillation in the Bergman metric [6, Section 8.1]. It is known
that the analytic functions in BMO2(�) constitute the Bloch space B [6, Theorem 8.7], and it
is a folklore result that Pα : BMO2(�) → B is bounded. Professor Kehe Zhu kindly offered
us the following proof:

If f ∈ BMO2(�), then the big Hankel operators Hα
f (g) = (I − Pα)( f g) and Hα

f
(g) =

(I − Pα)( f g) are both bounded on the Bergman space A2
α by [6, Section 8.1], and therefore

so are the little Hankels hα
f (g) = Pα( f g) and hα

f
(g) = Pα( f g). Now that hα

f
= hα

Pα( f )
, and

the little Hankel operator hα
ϕ , induced by an analytic symbol ϕ, is bounded on A2

α if and only
if ϕ ∈ B by [6, Section 8.7], it follows that Pα( f ) ∈ B, whenever f ∈ BMO2(�). Since
this argument preserves the information on the norms, it follows that Pα : BMO2(�) → B
is bounded.

In this paper we are interested in understanding the nature of a space X of complex-valued
functions such that X ∩ H(D) = B, and radial weights ω for which the Bergman projection
Pω : X → B is bounded. Here, as usual, H(D) stands for the space of analytic functions
in the unit disc D = {z ∈ C : |z| < 1}. We proceed towards the statements via necessary
notation.

For a non-negative function ω ∈ L1([0, 1)), its extension to D, defined by ω(z) = ω(|z|)
for all z ∈ D, is called a radial weight. For 0 < p < ∞ and such an ω, the Lebesgue space
L p

ω consists of complex-valued measurable functions f on D such that

‖ f ‖p
L p

ω
=

∫
D

| f (z)|pω(z) d A(z) < ∞,

where d A(z) = dx dy
π

is the normalized Lebesgue area measure on D. The corresponding
weighted Bergman space is Ap

ω = L p
ω ∩ H(D). Throughout this paper we assume ω̂(z) =∫ 1

|z| ω(s) ds > 0 for all z ∈ D, for otherwise Ap
ω = H(D). For a radial weight ω, the

orthogonal Bergman projection Pω from L2
ω to A2

ω is

Pω( f )(z) =
∫
D

f (ζ )Bω
z (ζ ) ω(ζ )d A(ζ ),

where Bω
z are the reproducing kernels of the Hilbert space A2

ω. It has been recently shown
in [5, Theorems 1-2-3] that the Bergman projection Pω, induced by a radial weight ω, is
bounded from L∞ to the Bloch space B if and only if ω ∈ D̂, while the Bloch space is
continuously embedded into Pω(L∞) if and only if ω ∈ M. Therefore, Pω : L∞ → B is
bounded and onto if and only ω ∈ D = D̂ ∩ M. Recall that a radial weight ω belongs to
the class D̂ if there exists a constant C = C(ω) > 1 such that ω̂(r) ≤ Cω̂( 1+r

2 ) for all
0 ≤ r < 1, while ω ∈ M if ωx ≥ CωKx , for all x ≥ 1, for some C = C(ω) > 1 and
K = K (ω) > 1. Here and from now on ωx = ∫ 1

0 r xω(r) dr , for all x ≥ 0.
Let β(z, ζ ) denote the hyperbolic distance between the points z and ζ inD, and let�(z, r)

stand for the hyperbolic disc of center z ∈ D and radius 0 < r < ∞. Further, let ω be a
radial weight and 0 < r < ∞ such that ω (�(z, r)) > 0 for all z ∈ D. Then, for f ∈ L p

ω
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with 1 ≤ p < ∞, write

MOω,p,r ( f )(z) =
(

1

ω(�(z, r))

∫
�(z,r)

| f (ζ ) − f̂r ,ω(z)|pω(ζ ) d A(ζ )

) 1
p

,

where

f̂r ,ω(z) =
∫
�(z,r) f (ζ )ω(ζ ) d A(ζ )

ω(�(z, r))
, z ∈ D.

The space BMO(�)ω,p,r consists of f ∈ L p
ω such that

‖ f ‖BMO(�)ω,p,r = sup
z∈D

MOω,p,r ( f )(z) < ∞.

It is known by [4, Theorem 11] that for each ω ∈ D there exists r0 = r0(ω) > 0 such that

BMO(�)ω,p,r = BMO(�)ω,p,r0 , r ≥ r0. (1.1)

We call this space BMO(�)ω,p whenever (1.1) holds, and assume that the norm is always
calculated with respect to a fixed r ≥ r0. However, in contrast to the classD, for each prefixed
r > 0, the quantity ω(�(z, r))may equal to zero for some z arbitrarily close to the boundary
if ω ∈ D̂, by Proposition 3 below. Therefore the space BMO(�)ω,p,r is not necessarily
well-defined if ω ∈ D̂, and consequently, we consider the class D in the main results of this
paper.

It is clear that the space BMO(�)ω,p depends onω ∈ D, but forω ∈ Inv, straightforward
calculations show that for each r1, r2 ∈ (0,∞), we have BMO(�)ω,p,r1 = BMO(�)ν,p,r2
where ν(z) ≡ 1. Thereforewe call this spaceBMO(�)p . Recall thatω is invariant, denoted by
ω ∈ Inv, if for some (equivalently for all) r ∈ (0,∞) there exists a constant C = C(r) ≥ 1
such that such that C−1ω(ζ ) ≤ ω(z) ≤ Cω(ζ ) for all ζ ∈ �(z, r). That is, an invariant
weight is essentially constant in each hyperbolically bounded region. The classR of regular
weights, which is a large subclass of smooth weights in D, satisfies R ⊂ Inv ∩ D by [1,
Section 1.3]. The space BMO(�)ω,p certainly depends on p as is seen by considering the

function f (z) = |z|− 2
p which satisfies f ∈ BMO(�)q \ BMO(�)p for q < p.

We recall one last thing before stating the main result of this paper. Namely, an analytic
function f belongs to B if and only if it is Lipschitz continuous in the hyperpolic metric [6,
Theorem 5.5]. Therefore B ⊂ BMO(�)ω,p,r for each 1 ≤ p < ∞, 0 < r < ∞ and a radial
weight ω such that ω (�(z, r)) > 0 for all z ∈ D.

Theorem 1 Let 1 < p < ∞ and ω ∈ M. Then the following statements are equivalent:

(i) There exists r0 = r0(ω) ∈ (0,∞) such that BMO(�)ω,p,r does not depend on r,
provided r ≥ r0. Moreover, Pω : BMO(�)ω,p → B is bounded;

(ii) Pω : L∞ → B is bounded;
(iii) ω ∈ D̂.

As far as we know, the statement in Theorem 1 is new even for the standard weights when
p �= 2. The class M is a wide class of radial weights containing the standard radial weights
as well as exponential-type weights [1, Chapter 1]. It is also worth observing that weights
in M may admit a substantial oscillating behavior. In fact, a careful inspection of the proof
of [5, Proposition 14] reveals the existence of a weight ω ∈ M such that BMO(�)ω,p,r is
not well-defined for any r > 0 and 1 < p < ∞, and therefore we cannot get rid of the
first statement in the case (i) in Theorem 1. However, each weight ω in the class D∧

has the

123



   19 Page 4 of 9 J. A. Peláez, J. Rättyä

property that ω(�(z, r)) > 0 for all z ∈ D and for all r sufficiently large depending on ω.
The class D∧

consists of radial weights ω for which there exist constants K = K (ω) > 1
and C = C(ω) > 1 such that ω̂(r) ≥ Cω̂

(
1 − 1−r

K

)
for all 0 ≤ r < 1. Recall that

D = D̂ ∩ D∧= D̂ ∩ M but D∧

� M by [5, Proof of Theorem 3 and Proposition 14].
As for the proof of Theorem 1, the equivalence between (ii) and (iii) is already known

by [5, Theorem 3], so our contribution here consists of showing that (iii) implies (i). Our
approach to this implication does not involve the Hankel operators, is direct and based on the
decomposition BMO(�)ω,p = BA(�)ω,p + BO(�), provided in [4, Theorem 11(ii)]. For
continuous f : D → C and 0 < r < ∞, we define


r f (z) = sup{| f (z) − f (ζ )| : β(z, ζ ) < r}, z ∈ D,

and let BO(�) denote the space of those f such that

‖ f ‖BO(�) = sup
z∈D


r f (z) < ∞.

It is known that the definition of BO(�) is independent of the choice of r by [6, Lemma 8.1].
Further, if ω is a radial weight such that ω (�(z, r)) > 0 for all z ∈ D, then, for 0 < p < ∞,
the space BA(�)ω,p,r consists of f ∈ L p

ω such that

‖ f ‖BA(�)ω,p,r = sup
z∈D

(
1

ω(�(z, r))

∫
�(z,r)

| f (ζ )|pω(ζ ) d A(ζ )

) 1
p

< ∞.

If ω ∈ D, then the space BA(�)ω,p,r depends on p and ω but, by [4, Lemma 10], there
exists an r0 = r0(ω) ∈ (0,∞) such that it is independent of r as long as r ≥ r0, so
we write BA(�)ω,p for short. With these definitions and observations the decomposition
BMO(�)ω,p = BA(�)ω,p + BO(�) gets explained.

The rest of the paper consists of the proof of Theorem1.But before getting to that, wefinish
the section with couple of words about the notation used. The letter C = C(·) will denote an
absolute constant whose value depends on the parameters indicated in the parenthesis, and
may change from one occurrence to another. We will use the notation a � b if there exists a
constant C = C(·) > 0 such that a ≤ Cb, and a � b is understood in an analogous manner.
In particular, if a � b and a � b, then we write a � b and say that a and b are comparable.

2 Preliminary results on radial weights

We begin with a known characterization of weights in D̂, proved in [2, Lemma 2.1].

Lemma A Let ω be a radial weight. Then, ω ∈ D̂ if and only if there exist C = C(ω) > 0
and β = β(ω) > 0 such that

ω̂(r) ≤ C

(
1 − r

1 − t

)β

ω̂(t), 0 ≤ r ≤ t < 1.

The following simple lemma is useful for our purposes. It reveals that D is closed under
multiplication by a suitably small negative power of the hat of another weight in D̂.

Lemma 2 Let ω ∈ D and ν ∈ D̂. Then there exists γ0 = γ0(ω, ν) > 0 such that, for each
γ ∈ (0, γ0], we have (̂ν)−γ ω ∈ D, and

∫ 1

r

ω(s)

ν̂(s)γ
ds � ω̂(r)

ν̂(r)γ
, 0 ≤ r < 1. (2.1)
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Proof By [5, (2.27)], ω ∈ D∧

if and only if there exist constants C = C(ω) > 0 and
α0 = α0(ω) > 0 such that

ω̂(t) ≤ C

(
1 − t

1 − r

)α

ω̂(r), 0 ≤ r ≤ t < 1, (2.2)

for all α ∈ (0, α0]. Let γ = γ (ω, ν) ∈ (0, α0/β), where β = β(ν) > 0 is that of Lemma A.
Then

lim
s→1−

ω̂(s)

ν̂(s)γ
� lim

s→1−
(1 − s)α0

ν̂(s)γ
= 0.

Two integrations by parts together with (2.2) and Lemma A yield

ω̂(r)

ν̂(r)γ
≤

∫ 1

r

ω(s)

ν̂(s)γ
ds = ω̂(r)

ν̂(r)γ
+ γ

∫ 1

r

ω̂(s)

ν̂(s)γ+1 ν(s) ds

� ω̂(r)

ν̂(r)γ
+ ω̂(r)

(1 − r)α0
γ

∫ 1

r
(1 − s)α0

ν(s)

ν̂(s)γ+1 ds

� ω̂(r)

ν̂(r)γ
+ ω̂(r)

(1 − r)α0

∫ 1

r

(
(1 − s)β

ν̂(s)

)γ

(1 − s)α0−1−γβ ds

� ω̂(r)

ν̂(r)γ
+ ω̂(r)

(1 − r)α0

(
(1 − r)β

ν̂(r)

)γ ∫ 1

r
(1 − s)α0−1−γβ ds � ω̂(r)

ν̂(r)γ
, 0 ≤ r < 1.

Therefore (2.1) is satisfied, and standard arguments show that (̂ν)−γ ω ∈ D.

We finish the section by showing that the space BMO(�)ω,p,r is not necessarily well-
defined for all r ∈ (0, 1) if ω ∈ D̂ \ D. This serves us as a justification for the initial
hypotheses on ω in our study.

Proposition 3 Let ψ : [0, 1) → [(log 3)/4,∞) be arbitrary. Then there exist an ω =
ωψ ∈ D̂ \ D and a sequence {rn}∞n=1 of points on (0, 1) depending on ψ only such that
limn→∞ rn = 1 and ωψ(�(rn, ψ(rn−1)) = 0 for all n ∈ N.

Proof Let us consider the increasing sequence {tn}∞n=1 ∈ [0, 1) defined inductively by
the identities t1 = 0 and β(tn, tn+1) = 2ψ(tn) for all n ∈ N. Since the range of ψ is
[(log 3)/4,∞), we have

e4ψ(r) − 1

e4ψ(r) + 1
≥ 1

2
≥ 1

2 + r
, r ∈ [0, 1).

Therefore tn+1 ≥ 1+tn
2 , and consequently, limn→∞ tn = 1. Then, for n ≥ 2, the annu-

lus {z ∈ D : tn ≤ |z| ≤ tn+1} contains �(sn, ψ(sn−1)), where sn is the hyperbolic
midpoint of (tn, tn+1). Define ω = ∑∞

n=1 anχ{z:t2n≤|z|≤t2n+1}, where {an}∞n=1 are chosen
such that an(t2n+1 − t2n) = 2−n for all n ∈ N. Then ω̂(t2n) = ∑∞

j=n 2
− j = 21−n for

all n ∈ N, and it follows that ω ∈ D̂ because β
(
r , 1+r

2

) � 1 for all 0 ≤ r < 1, and
β(t2n, t2(n+1)) = 2(ψ(t2n) + ψ(t2n+1)) → ∞, as n → ∞. Further, by setting rn = s2n+1,
we have ω(�(rn, ψ(rn−1))) = 0 for all n ∈ N. This also implies that ω /∈ D.

3 Proof of Theorem 1

The statements (ii) and (iii) are equivalent by [5, Theorem 1], and the fact that (i) implies (ii)
is an immediate consequence of the continuous embedding L∞ ⊂ BMO(�)ω,p . Assume
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now (iii), that is, ω ∈ D. In the proof we will use the fact that f ∈ BMOω,p(�) if and
only if it can be decomposed as f = f1 + f2, where f1 ∈ BA(�)ω,p and f2 ∈ BO(�)

such that ‖ f1‖BA(�)ω,p + ‖ f2‖BO(�) � ‖ f ‖BMO(�)ω,p . This statement follows from [4,
Theorem 11(ii)] and its proof. Consequently, it is enough to prove that Pω : BA(�)ω,p → B
and Pω : BO(�) → B are bounded operators.

We first show that Pω : BA(�)ω,p → B is bounded. To do this, choose 0 < r0 < ∞
such that BA(�)ω,p,r = BA(�)ω,p is independent of r as long as r ≥ r0. Further, let
f1 ∈ BA(�)ω,p and r ≥ r0, and let {ak}∞k=1 be an r -lattice. Then Hölder’s inequality and
the definition of BA(�)ω,p yield

| (Pω( f1))
′ (z)| ≤

∫
D

| f1(ζ )||(Bω
ζ )′(z)| ω(ζ ) d A(ζ )

≤
∞∑
k=1

∫
�(ak ,r)

| f1(ζ )||(Bω
ζ )′(z)| ω(ζ ) d A(ζ )

≤
∞∑
k=1

(∫
�(ak ,r)

| f1(ζ )|p ω(ζ ) d A(ζ )

) 1
p

×
(∫

�(ak ,r)
|(Bω

ζ )′(z)|p′
ω(ζ ) d A(ζ )

) 1
p′

≤ ‖ f ‖BA(�)ω,p

∞∑
k=1

(ω (�(ak, r)))
1
p

(∫
�(ak ,r)

|(Bω
ζ )′(z)|p′

ω(ζ ) d A(ζ )

) 1
p′

≤ ‖ f ‖BA(�)ω,p

∞∑
k=1

ω (�(ak, r)) sup
ζ∈�(ak ,r)

|(Bω
ζ )′(z)|, z ∈ D,

from which the subharmonicity and standard estimates give

| (Pω( f1))
′ (z)| � ‖ f ‖BA(�)ω,p

∞∑
k=1

ω (�(ak, r))

∫
�(ak ,2r)

|(Bω
ζ )′(z)| d A(ζ )

(1 − |ak |)2

� ‖ f ‖BA(�)ω,p

∞∑
k=1

∫
�(ak ,2r)

|(Bω
ζ )′(z)|ω (�(ζ, 3r))

(1 − |ζ |)2 d A(ζ )

� ‖ f ‖BA(�)ω,p

∫
D

|(Bω
ζ )′(z)|ω (�(ζ, 3r))

(1 − |ζ |)2 d A(ζ ), z ∈ D.

(3.1)

Next, for each a ∈ D \ {0}, consider the interval Ia =
{
eiθ : | arg(ae−iθ )| ≤ (1−|a|)

2

}
, and

let S(a) = {z ∈ D : |z| ≥ |a|, eit ∈ Ia} denote the Carleson square induced by a. Then
Fubini’s theorem yields

∫
S(a)

ω(�(ζ, 3r))

(1 − |ζ |)2 d A(ζ )

=
∫

{z∈D:S(a)∩�(z,3r)�=∅}

(∫
S(a)∩�(z,3r)

d A(ζ )

(1 − |ζ |)2
)

ω(z) d A(z)

≤
∫
S(b)

(∫
�(z,3r)

d A(ζ )

(1 − |ζ |)2
)

ω(z) d A(z) � ω(S(b)), |a| > R′,
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where R′ = R′(r) ∈ (0,∞) and b = b(a, r) ∈ D satisfies arg b = arg a and 1−|b| � 1−|a|
for all a ∈ D \ D(0, R′). Since ω ∈ D̂ by the hypothesis, we have ω(S(b)) � ω(S(a)) by
Lemma A. Therefore (3.1) and [2] [Theorem 3.3] imply

| (Pω( f1))
′ (z)| � ‖ f ‖BA(�)ω,p

∫
D

|(Bω
ζ )′(z)|ω(ζ ) d A(ζ ), z ∈ D.

Since [3, Theorem 1] yields

∫
D

|(Bω
ζ )′(z)|ω(ζ ) d A(ζ ) � 1 +

∫ |z|

0

dt

(1 − t)2
� 1

1 − |z| , z ∈ D,

we deduce that Pω : BA(�)ω,p → B is bounded.
It remains to show that Pω : BO(�) → B is bounded. Let f2 ∈ BO(�). First, observe

that an application of Lemma 2 yields

|(Pω( f2)(z)| ≤ | f2(0)|ω(D) +
∫
D

| f2(ζ ) − f2(0)|Bω
z (ζ )|ω(ζ ) d A(ζ )

≤ | f2(0)|ω(D) + ‖ f2‖BO(�)

∫
D

log
1

1 − |ζ | |B
ω
z (ζ )|ω(ζ ) d A(ζ )

≤ | f2(0)|ω(D) + Cz‖ f2‖BO(�)

∫
D

log
1

1 − |ζ |ω(ζ ) d A(ζ ) < ∞, z ∈ D.

Further, since 1 = 〈1, Bω
z 〉A2

ω
and 0 = 〈1, (Bω

z )′〉A2
ω
, we have

(Pω( f2))
′ (z) = 〈 f2, (Bω

z )′〉A2
ω

= 〈 f2, (Bω
z )′〉A2

ω
− f2(z)〈1, (Bω

z )′〉A2
ω

=
∫
D

z

ζ
( f2(ζ ) − f2(z)) (Bω

ζ )′(z)ω(ζ ) d A(ζ ), z ∈ D.

By Lemma 2 there exists ε0 = ε0(ω) > 0 such that for each ε ∈ (0, ε0], we have ω[−ε] =
(1 − |z|)−εω(z) ∈ D and ω̂[−ε] � ω̂[−ε] on D. Take 0 < ε < min

{
1

2+β
, ε0
1+ε0

}
, where β is

that from Lemma A. Since f2 ∈ BO(�), we have

| f2(z) − f2(ζ )| � (1 + β(z, ζ ))‖ f2‖BO(�) � |1 − ζ z|2ε
(1 − |z|)ε(1 − |ζ |)ε ‖ f ‖BO(�), z, ζ ∈ D.

Therefore Hölder’s inequality yields

∣∣(Pω( f2))
′ (z)

∣∣ � (1 − |z|)−ε

∫
D

|1 − ζ z|2ε
∣∣∣(Bω

ζ )′(z)
∣∣∣ ω[−ε](ζ ) d A(ζ )

≤ (1 − |z|)−ε I1(z)
ε I2(z)

1−ε, z ∈ D,

(3.2)

where

I1(z) =
∫
D

∣∣∣(1 − ζ z)(Bω
ζ )′(z)

∣∣∣2 ω(ζ ) d A(ζ ), z ∈ D,

and

I2(z) =
∫
D

∣∣∣(Bω
ζ )′(z)

∣∣∣
1−2ε
1−ε

ω[− ε
1−ε

](ζ ) d A(ζ ), z ∈ D.
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By Lemma 2, [3, Theorem 1], Lemma A and our choice of ε, we have

I2(z) � 1 +
∫ |z|

0

̂ω[− ε
1−ε

](t)(
ω̂(t)(1 − t)2

) 1−2ε
1−ε

dt � 1 +
∫ |z|

0

ω̂(t)
ε

1−ε

(1 − t)
2−3ε
1−ε

dt

� 1 +
(

ω̂(z)

(1 − |z|)β
) ε

1−ε
∫ |z|

0

dt

(1 − t)
2−(3+β)ε

1−ε

� 1 +
(

ω̂(z)ε

(1 − |z|)1−2ε

) 1
1−ε �

(
ω̂(z)ε

(1 − |z|)1−2ε

) 1
1−ε

, z ∈ D.

(3.3)

Let us now bound I1(z). To do this we first observe that

2(1 − ζ z)(Bω
ζ )′(z) = ζ

( ∞∑
n=1

n(ζ z)n−1

ω2n+1
−

∞∑
n=1

n(ζ z)n

ω2n+1

)

= ζ

(
1

ω3
+

∞∑
n=1

(n + 1)(ζ z)n

ω2n+3
−

∞∑
n=1

n(ζ z)n

ω2n+1

)

= ζ

(
1

ω3
+

∞∑
n=1

(ζ z)n

ω2n+3
+

∞∑
n=1

n(ω2n+1 − ω2n+3)

ω2n+1ω2n+3
(ζ z)n

)

= ζ
(
J1 + J2(z, ζ ) + J3(z, ζ )

)
, z, ζ ∈ D.

By [3, Theorem 1] we have

∫
D

|J2(z, ζ )|2ω(ζ ) d A(ζ ) =
∞∑
n=1

ω2n+1

ω2
2n+3

|z|2n �
∞∑
n=1

1

ω2n+1
|z|2n

� ‖Bω
z ‖2A2

ω
� 1

(1 − |z|)ω̂(z)
, z ∈ D.

Further, we have n(ω2n+1 − ω2n+3) = n
∫ 1
0 s2n+1(1 − s2)ω(s) ds � ω2n+1 for all n ∈ N

by [5, (1.3)]. Therefore another application of [3, Theorem 1] gives

∫
D

|J3(z, ζ )|2ω(ζ ) d A(ζ ) �
∞∑
n=1

1

ω2n+1
|z|2n � ‖Bω

z ‖2A2
ω

� 1

(1 − |z|)ω̂(z)
, z ∈ D,

and it follows that

I1(z) � 1

(1 − |z|)ω̂(z)
, z ∈ D.

This estimate, (3.2) and (3.3) yield

∣∣(Pω( f2))
′ (z)

∣∣ � (1 − |z|)−ε I1(z)
ε I2(z)

1−ε � 1

1 − |z| , z ∈ D.

Consequently, Pω : BO(�) → B is bounded. This finishes the proof of the theorem.
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