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Abstract
This paper is a sequel to T-structures and twisted complexes on derived injectives by the same
author withW. Lowen andM. Van den Bergh. We define a dg-category of unbounded twisted
complexes on a dg-category, which is particularly interesting in the case of dg-categories
of derived injectives or derived projectives associated to a t-structure. On such unbounded
twisted complexes we define a natural “injective” and dually a “projective” t-structure. This
is intended as a direct generalization of the homotopy categories of injective or projective
objects of an abelian category.
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Introduction

If A is an abelian category (typically, the category of modules over a ring or the category
of quasi-coherent sheaves on a scheme), we can define its derived category D(A) by taking
complexes of objects of A and formally inverting quasi-isomorphisms.

If A has enough injectives, it is well known that the bounded above derived category
D+(A) can be described as the homotopy category of bounded below complexes of injective
objects K+(Inj(A)):

D+(A) ∼= K+(Inj(A)). (0.1)

We have a dual analogous result if A has enough projectives:

D−(A) ∼= K−(Proj(A)). (0.2)

More recently, the (unbounded) homotopy category of injectives and the homotopy cate-
gory of projectives K(Inj(A)) and K(Proj(A)) have been studied, in particular when A is the
category of modules over some suitable ring. Basic references are [15, 16, 20, 24, 26, 27,
32].

An example of a result achieved by those investigations is as follows: if R is a Noetherian
commutative ring admitting a dualizing complex, we can interpret Grothendieck duality as
an equivalence of triangulated categories

K(Proj(R)) ∼= K(Inj(R)), (0.3)

cf. [15, Theorem 4.2]. Both categories are compactly generated (see [20, Proposition 2.3] and
[16]), and the above equivalence restricts to an equivalence between the compact objects:

Db(mod(R))
op ∼= Db(mod(R)), (0.4)

where mod(R) is the category of finitely presented R-modules.
Moreover, acyclic objects in K(Inj(R)) or K(Proj(R)) contain information about the sin-

gularities of the ring R (cf. [20]). In a nutshell, such homotopy categories carry pieces of
relevant geometric information.

We would like to set the above discussion in a broader framework. It is clear from recent
work [11, 12] that the “correct” way of generalizing results and constructions of abelian
categories (and their derived categories) is to consider (enhanced) triangulated categories
endowed with t-structures1, instead of plain triangulated categories: t-structures provide the
necessary “bridge” between the classical (abelian) framework and the derived (higher) frame-
work, and allow for direct generalizations of concepts such as injective or projective objects
or results such as the Gabriel-Popescu theorem.

We will work with differential graded (dg-) categories as enhancements of triangulated
categories (cf. [7]). Following the above philosophy, the t-exact quasi-equivalence

A + ∼= Tw+(DGInj(A )), (0.5)

was proven in [11], where A is a suitable pretriangulated dg-category with a t-structure and
enough derived injectives, and Tw+(DGInj(A )) is the dg-category of bounded below twisted
complexes of derived injectives, endowed with a suitable t-structure. There is a dual result
when A has enough derived projectives:

A − ∼= Tw−(DGProj(A )). (0.6)

1 Or, à la Lurie, prestable ∞-categories [23, §C].
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It is clear that the above results directly generalize (0.1) and (0.2), which can be recovered
by taking A = Ddg(A) to be the derived dg-category of a suitable abelian category A,
endowed with the canonical t-structure with heart A.

The goal of this paper is to find a suitable generalization of the unbounded homotopy
categories of injectives or projectives in this broader framework of t-structures. It turns
out that we can define a nicely behaved dg-category of unbounded twisted complexes
Tw(A) over a suitable dg-category A (which will be, in most real life applications, a dg-
category of derived injectives or projectives of some given t-structure, namely, of the form
DGInj(A ) or DGProj(A )). The main result (Theorem 3.5) will allow us to “extend” the
t-structure onTw+(DGInj(A )) (dually, onTw−(DGProj(A )) to a uniquely determined injec-
tive t-structure on Tw(DGInj(A )) (dually, a uniquely determined projective t-structure on
Tw(DGProj(A ))). In particular, we will be able to speak of the cohomology of a twisted
complex of derived injectives or derived projectives, and we will have a natural notion of
acyclicity.

This work is a direct sequel (or perhaps a spin-off) of [11] and is completely foundational.
It is the necessary basis of an upcoming project where the properties of dg-categories of the
form Tw(DGInj(A )) or Tw(DGProj(A )) are investigated.

For example, we expect—under suitable assumptions—compact generation. Moreover,
if R is a dg-algebra cohomologically concentrated in nonpositive degrees, we have dg-
categories of derived injectives and derived projectives DGInj(R) and DGProj(R) associated
to the canonical t-structure on the derived dg-category Ddg(R); under suitable assumptions
on R, the Grothendieck duality (0.3) should hopefully be generalized to a quasi-equivalence

Tw(DGProj(R)) ∼= Tw(DGInj(R)).

Nonpositive dg-algebras are essentially affine derived schemes; we believe that the “homo-
topy category of derived injectives” described by such unbounded twisted complexes could
also play a role in general derived algebraic geometry – for instance, can we find a geomet-
ric interpretration of the subcategory of acyclic twisted compexes of derived injectives or
projectives? This and possibly more will be addressed in future work.

Structure of the paper

In Sect. 1 we deal with the background and preliminary results on dg-categories which we
will need throughout the rest of the paper. In Sect. 1.1 we provide a concise survey on the
basic concepts of dg-category theory. In Sect. 1.2 we discuss shifts of objects and cones
of closed degree 0 morphisms in dg-categories. There, we prove the technical Lemma 1.4,
which deals with induced isomorphisms between cones and will be used in later results in the
paper. Sections 1.3 and 1.4 deal with adjoining strict zero objects, direct sums and products
to a given dg-category. In particular, we prove Lemma 1.8, where we check that we can
replace a dg-category with “homotopy products” (or coproducts) with a dg-category with
strict products (or coproducts). After dealing with sequential homotopy (co)limits in Sect.
1.5 and truncations in Sect. 1.6, we introduce the key notions of t-structure and co-t-structure
on pretriangulated dg-categories in Sect. 1.7.

In Sect. 2 we introduce the main object of our work, namely, twisted complexes over
a given dg-category. After discussing the basic definitions in Sect. 2.1, we show in Sect.
2.2 how a twisted complex can be reconstructed by taking suitable (homotopy) limits or
colimits along suitable (left or right) brutal truncations, see Corollary 2.11. Sect. 2.3 is
devoted to proving Proposition 2.16, which tells us that isomorphisms of twisted complexes
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can be characterized as “componentwise isomorphisms”. In Sect. 2.4 we carefully check that
taking twisted complexes preserves quasi-fully faithful dg-functors and quasi-equivalences
(Lemma 2.18 and Proposition 2.19). Finally, in Sect. 2.5 we deal with closure of the dg-
category of twisted complexes under cones, products or coproducts.

The last section of the paper (Sect. 3) is devoted to the main result of the article. As
mentioned above, our main goal is to prove that the dg-category of unbounded twisted com-
plexes over a suitable dg-category is endowed with both a natural co-t-structure (discussed
in Sect. 3.1) and a natural t-structure, “extending” either the t-structure on bounded below
twisted complexes or the one on bounded above twisted complexes, already known from [11]
and revisited in Sect. 3.2.

Theorem (See Proposition 3.1 andTheorem3.5)LetA be a dg-categorywith suitable proper-
ties. The dg-categoryTw(A)of unbounded twisted complexes is endowedwith a co-t-structure
(Tw(A)w≥0,Tw(A)w≤0), where Tw(A)w≥0 is essentially given by the twisted complexes concen-
trated in nonnegative degrees and Tw(A)w≤0 is essentially given by the twisted complexes
concentrated in nonpositive degrees.

Suppose that our assumptions on A guarantee that the dg-category Tw−(A) of bounded
above twisted complexes is endowed with the t-structure described in [11] (see also Propo-
sition 3.3). Then, there is a unique t-structure (Tw(A)

proj
≤0 ,Tw(A)

proj
≥0 ) on Tw(A), called the

projective t-structure, such that

Tw(A)
proj
≤0 = Tw−(A)≤0 = Tw(A)w≤0

and the inclusion Tw−(A) ↪→ Tw(A) is t-exact. The heart of such t-structure is equivalent
to mod(H0(A)), the category of finitely presented right H0(A)-modules.

Dually, suppose that our assumptions on A guarantee that the dg-category Tw+(A) of
bounded below twisted complexes is endowed with the t-structure described in [11] (see also
Proposition 3.3). Then, there is a unique t-structure (Tw(A)

inj
≤0,Tw(A)

inj
≥0) on Tw(A), called

the injective t-structure, such that

Tw(A)
inj
≥0 = Tw+(A)≥0 = Tw(A)w≥0

and the inclusion Tw+(A) ↪→ Tw(A) is t-exact. The heart of such t-structure is equivalent
to mod(H0(Aop))

op
.

A few words on the “suitable assumptions” on A in the Theorem above. The existence
of the natural co-t-structure on Tw(A) is very general and follows if A is cohomologically
concentrated in nonpositive degrees, with H0(A) being also additive. On the other hand,
the existence of the projective t-structure on Tw(A) follows essentially if A is a dg-category
of derived projectives (Definition 3.2); dually, the existence of the injective t-structure on
Tw(A) follows essentially if A is a dg-category of derived injectives.

For completeness, we discuss in Appendix A the notions of derived projective and derived
injective objects in triangulated categories with t-structures, and we explain how such con-
cepts are strictly related to co-t-structures interacting nicely with the given t-structures
(Theorem A.6). This result is not original, but is essentially a reinterpretation of already
known facts in silting and cosilting theory; we include it in the paper in order to emphasize
the connections of our main result to that theoretical framework.
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1 Preliminaries on dg-categories

We fix a base commutative ring k. Unless otherwise specified our constructions are in the
k-linear context, although we do not always say it.

We also fix a Grothendieck universe U; unless otherwise specified, all categories will be
locally U-small. We also fix another universe V � U, so that even locally U-small categories
will be V-small: this will be useful when we need to take categories of functors. That said,
we will essentially disregard such set-theoretical issues.

1.1 Basics

We recall the definition of differential graded (dg) category and some basic constructions.
We assume the reader to have some familiarity with the theory. See also [18, 34].

Definition 1.1 A dg-category A is a category enriched over the closed symmetric monoidal
category of chain complexes over k. Concretely, it consists of a collection of objects Ob(A ),
and for any pair of objects A, B ∈ Ob(A ) a complex of morphisms A (A, B), with unital
and associative compositions:

A (B,C) ⊗ A (A, B) → A (A,C).

Dg-functors between dg-categories are defined in the obvious way.

• If A is a dg-category, we can define the opposite dg-category A op.
• IfA is a dg-category, we have the homotopy category H0(A ) and the graded homotopy

category H∗(A ). They are obtained by taking the same set of objects and then zeroth
cohomology or graded cohomology of the complexes of morphisms.

• Complexes of k-modules form a dg-category dgm(k).
• Let A and B be dg-categories. There is a tensor product A ⊗ B and a dg-category of

dg-functors Fundg(A ,B).
• Let A be a dg-category. We denote by

dgm(A ) = Fundg(A
op, dgm(k))

the dg-category of rightA -dg-modules. TheYoneda Lemma holds and yields the Yoneda
embedding:

h = hA : A ↪→ dgm(A ),

A �→ A (−, A).

• Let A be a dg-category. Its derived category D(A ) is defined as the Verdier quotient of
H0(dgm(A )) by the subcategory of acyclic dg-modules. Dg-enhancements ofD(A ) can
be described using h-projective of h-injective dg-modules (see [22] for details). Namely:

H0(h-proj(A )) ∼= D(A ), H0(h-inj(A )) ∼= D(A ).

We remark that the Yoneda embedding factors through h-proj (A ):

A ↪→ h-proj (A ),

hence it induces a derived Yoneda embedding

H0(A ) ↪→ D(A ).
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Quasi-functors

We have a category dgCat of (small with respect to some universe) dg-categories and dg-
functors. By formally inverting the quasi-equivalences, we obtain the homotopy category of
dg-categories

Hqe = dgCat[Qe−1].
The tensor product of dg-categories can be derived, yielding a symmetric monoidal structure

− L⊗− in Hqe. An important result (see [10, 33]) is that the resulting symmetric monoidal

category (Hqe,
L⊗) is closed.Namely, for (small) dg-categoriesA andB there is a dg-category

RHom(A ,B) and a natural isomorphism

Hqe(C
L⊗A ,B) ∼= Hqe(C ,RHom(A ,B)).

The dg-category RHom(A ,B) can be described in terms of quasi-functors (see [10]).
For our purposes, a quasi-functor F : A → B is a dg-functor F : A → dgm(B) such that
F(A) is quasi-isomorphic to B(−,�F (A)) for some �F (A) ∈ B.

Any quasi-functor F : A → B induces a graded functor H∗(F) : H∗(A ) → H∗(B).
We say that F is invertible, or (with a little abuse of terminology) a quasi-equivalence, if
H∗(F) is an equivalence. In that case, we may conclude thatA andB are isomorphic in the
homotopy category Hqe.

1.2 Pretriangulated dg-categories

Let A be a dg-category. We denote by pretr(A ) the pretriangulated hull of A , namely, the
closure of the image of the Yoneda embedding A ↪→ dgm(A ) in dgm(A ) under taking
shifts and mapping cones. We remark that the full dg-subcategory h-proj(A ) of h-projective
dg-modules in dgm(A ) contains the image of the Yoneda embedding and is closed under
shifts and mapping cones. Hence, the Yoneda embedding factors as follows:

A ↪→ pretr(A ) ↪→ h-proj(A ) ↪→ dgm(A ).

Definition 1.2 (cf. [7]) Let A be a dg-category. We say that A is strongly pretriangulated
if A ↪→ pretr(A ) is a dg-equivalence. We say that A is pretriangulated if A ↪→ pretr(A )

is a quasi-equivalence.

The dg-categories dgm(A ), h-proj(A ), h-inj(A ), pretr(A ) are all strongly pretriangulated.
If A is pretriangulated, we can replace it up to quasi-equivalence by pretr(A ), which is
strongly pretriangulated.

The homotopy category H0(A ) of a pretriangulated dg-category A has a “canonical”
structure of triangulated category. The crucial property of pretriangulated dg-categories is
that, unlike triangulated categories, they have functorial shifts and cones.

We can check that a dg-category A is strongly pretriangulated if and only if it is closed
under pretriangles, namely, sequences of the form

A B C( f ) A[1],f pj

s i
(1.1)

where f : A → B is a closed (that is, d f = 0) degree 0 morphism in A . C( f ) is called the
cone of f and A[1] is called the 1-shift of A. In general, the m-shifts A[m] of A come with
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closed invertible degree n − m morphisms (“shifted identity morphisms”)

1(A,n,m) : A[n] → A[m],
such that 1(A,m,n) ◦ 1(A,n,m) = 1(A,n,n) = 1A[n]. The morphisms j, p, i, s in the pretriangle
(1.1) are of degree 0 and characterize C( f ) as the biproduct A[1] ⊕ B in the underlying
graded category of A . Moreover, they satisfy the following equations:

d j = 0, dp = 0, di = j f 1(A,1,0), ds = − f 1(A,1,0) p.

We refer to [8, §4.3] for more details.
We remark that a dg-categoryA is strongly pretriangulated if and only if its oppositeA op

is strongly pretriangulated. A pretriangle in A op corresponds to a “rotated pretriangle” in
A , namely, a sequence of the form:

A[−1] → C( f )[−1] → A
f−→ B.

Clearly, some shifts and cones (hence, some pretriangles) may exist in a given dg-category
A even if A is not strongly pretriangulated.

Remark 1.3 Let A be a strongly pretriangulated dg-category. Consider the following (not
necessarily commutative) diagram:

A B

A′ B ′,

f

u

f ′

vh

where f , f ′ are closed degree 0 morphisms, u, v are degree n morphisms and h is a degree
n − 1 morphism. We can find a morphism

w : C( f ) → C( f ′)

determined by the triple (u, v, h), such that the central and the right squares of the following
diagram are (strictly) commutative:

A B C( f ) A[1]

A′ B ′ C( f ′) A′[1].

f

u

f ′

v

j p

j ′ p′
w u[1]

The rows are pretriangles and j, j ′, p, p′ are the natural morphisms associated to them.
In matrix notation, with respect to the biproduct decompositions C( f ) = A[1] ⊕ B and
C( f ′) = A′[1] ⊕ B ′, the morphism w and its differential dw are given by:

w =
(

u[1] 0
h1(A,1,0) v

)
, dw =

(
(−du)[1] 0

(dh + f ′u − (−1)nv f )1(A,1,0) dv

)
.

We now prove a technical lemma:
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Lemma 1.4 Let A be a dg-category. Consider the following diagram of objects and mor-
phisms in A :

A B C( f ) A[1]

A′ B ′ C( f ′) A′[1],

f

u

f ′

vh

j

j ′

p

p′
u[1]w

where the rows are pretriangles and all morphisms are closed and of degree 0, except h
which is of degree −1 and such that

dh = v f − f ′u.

The middle and right squares of the above diagram are strictly commutative. The morphism
w is expressed in matrix notation as

w =
(

u[1] 0
h1(A,1,0) v

)
.

If u and v have inverses u′ and v′ in H0(A ), then there is a degree−1morphism h′ : A′ →
B such that

dh′ = v′ f ′ − f u′

and such that the morphism

w′ =
(

u′[1] 0
h′1(A′,1,0) v′

)
: C( f ′) → C( f )

is an inverse of w in H0(A ). The morphism w′ automatically fits in the following diagram:

A′ B ′ C( f ′) A′[1]

A B C( f ) A[1].

f ′

u′

f

v′h′

j ′

j

p′

p
u′[1]w′

The middle and right squares of the above diagram are strictly commutative.

Proof We first deal with the inverses in H0(A ), which is the most interesting case. From the
equality

[v f ] = [ f ′u]
in H0(A ), and the invertibility of [u] and [v], we deduce that there exists a degree −1
morphism h0 : A′ → B such that

v′ f ′ − f u′ = dh0.

The invertibility of u and v in H0(A ) is expressed explicitly as follows:{
u′u = 1A − dũ,

v′v = 1B + d ṽ,
,

{
uu′ = 1A′ − dũ′,
vv′ = 1B′ + d ṽ′.
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for suitable maps ũ, ũ′, ṽ, ṽ′ of degree −1. We are going to find closed morphisms

z′0, z′1 : A′ → B

such that [(
u′[1] 0

(h0 + z′0)1(A′,1,0) v′
)]

will be a left inverse of [w], and[(
u′[1] 0

(h0 + z′1)1(A′,1,0) v′
)]

will be a right inverse of [w]. Closedness of z′0 and z′1 implies that the above matrices yield
closedmorphisms, so that we get well definedmorphisms in H0(A ). In the end, such left and
right inverses will coincide (in H0(A )) and we may take h′ to be either h0 + z′0 or h0 + z′1.
We start by setting

r := f ũ + ṽ f − h′u − v′h,

r ′ := f ′ũ′ + ṽ′ f ′ − hu′ − vh′.

A simple computation gives dr = 0, dr ′ = 0. We define:

z′0 := ru′,
z′1 := v′r ′.

z′0 and z′1 are indeed closed; we have [z′0u] = [r ] and [vz′1] = [r ′] in H0(A ), namely

(h′ + z′0)u + v′h = dh̃ + f ũ + ṽ f

hu′ + v(h′ + z′1) = dh̃′ + f ′ũ′ + ṽ′ f ′,

for suitable maps h̃, h̃′. Finally, we obtain(
u′[1] 0

(h0 + z′0)1(A′,1,0) v′
) (

u[1] 0
h1(A,1,0) v

)

=
(
1A[1] 0
0 1B

)
+

(
(−dũ)[1] 0

(dh̃ + f ũ + ṽ f )1(A,1,0) d ṽ

)

= 1C( f ) + d

(
ũ[1] 0

h̃1(A,1,0) ṽ

)
.

and analogously(
u[1] 0

h1(A,1,0) v

)(
u′[1] 0

(h0 + z′1)1(A′,1,0) v′
)

=
(
1A′ [1] 0
0 1B′

)
+

(
(−dũ′)[1] 0

(dh̃′ + f ′ũ′ + ṽ′ f ′)1(A′,1,0) d ṽ′
)

= 1C( f ′) + d

(
ũ′[1] 0

h̃′1(A′,1,0) ṽ′
)

.

Hence, the proof is completed in the case of inverses in H0(A ).
The case where u and v have strict inverses (in Z0(A )) is easier. We may just set

h′ = v−1hu−1
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and a direct computation yields the result. ��
Remark 1.5 The proof of the above Lemma 1.4 in the case of inverses in H0(A ) actually
yields a more precise result, as follows. In the same setting and notations as above, we obtain
closed degree 0 morphisms

wr , wl : C( f ′) → C( f ),

which fit in the diagram

A′ B ′ C( f ′) A′[1]

A B C( f ) A[1],

f ′

u′

f

v′

j ′

j

p′

p
u′[1]wl wr

where the middle and right squares are strictly commutative. Moreover, there exist degree
−1 morphisms

hl : C( f ) → C( f ),

hr : C( f ′) → C( f ′),

such that

wl ◦ w = 1C( f ) + dhl ,

w ◦ wr = 1C( f ′) + dhr ,

and hl and hr fit (respectively) in the following diagrams:

A B C( f ) A′[1]

A B C( f ) A[1],

f ′

ũ

f

ṽ

j

j

p

p
ũ[1]hl

A′ B ′ C( f ′) A′[1]

A′ B ′ C( f ′) A′[1],

f ′

ũ′

f ′

ṽ′

j ′

j ′

p′

p′
ũ[1]hr

where the middle and right squares are strictly commutative.

1.3 Formally adding zero objects

Let A be a dg-category. We define a dg-category A{0} as follows:

• Ob(A{0}) = Ob(A )
∐{0}.

• Morphisms are described as follows:

A{0}(A, B) =
{
A (A, B) if A, B ∈ Ob(A )

0 if A = 0 or B = 0

with the obvious compositions.
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Clearly, A{0} can be identified with the full dg-subcategory of dgm(A ) containing the
image of the Yoneda embedding A ↪→ dgm(A ) and the zero dg-module

0(A) = 0 ∈ dgm(k), A ∈ A .

If u : A → B is a dg-functor, there is an induced dg-functor

u{0} : A{0} → B{0},

defined by

u{0}(A) =
{
u(A) if A ∈ Ob(A ),

0 if A = 0.

We get a functor

(−){0} : dgCat → dgCat,

A �→ A{0}.
(1.2)

The following result is straightforward.

Proposition 1.6 Let A be a dg-category. There is a fully faithful dg-functor

A ↪→ A{0},

which is natural in A ∈ dgCat.
Moreover:

• If u : A → B is quasi-fully faithful (respectively a quasi-equivalence), the same is true
for u{0} : A{0} → B{0}.

• If A is such that H0(A ) has zero objects, the dg-functor A ↪→ A{0} is a quasi-
equivalence.

1.4 Adjoining strict direct sums or products

Let A be a dg-category. If A has (finite or infinite) cohomological direct sums or products,
we would like to replace it with a quasi-equivalent dg-category which has strict direct sums
or products.

In the case of finite direct sums (which are the same as finite products) this is not too
difficult:

Lemma 1.7 Let A be a dg-category. We define the dg-category A ⊕ as the closure of A in
dgm(A ) under finite direct sums (including zero objects), namely, the full dg-subcategory of
dgm(A ) whose objects are finite direct sums of representables A (−, A). Clearly, A ⊕ has
strict finite direct sums and zero objects.

If H0(A ) is additive, then the inclusion dg-functor

A ↪→ A ⊕

is a quasi-equivalence.

Proof We just need to show essential surjectivity of H0(A ) → H0(A ⊕). Let

M = A (−, A1) ⊕ A (−, A2)

123
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be a binary product inA ⊕.We are going to show that this is isomorphic to some representable
A (−, A) in H0(A ⊕); the case of any finite direct sum will be obtained by a straightforward
induction. So, let A be a direct sum of A1 and A2 in H0(A ). This is actually a biproduct, so
we have degree 0 morphisms

ji : Ai → A, pi : A → Ai , i = 1, 2,

such that

[pi ji ] = [1Ai ], [i1 p1 + i2 p2] = [1A], [p2 j1] = [0], [p1 j2] = [0].
We can use the pi and ji to define morphisms(

j1∗
j2∗

)
: A (−, A) → A (−, A1) ⊕ A (−, A2)

and

(p1∗, p2∗) : A (−, A1) ⊕ A (−, A2) → A (−, A).

It is then immediate to see that these morphisms are inverse to each other when viewed in
H0(A ⊕).

To conclude, we show that if Z is a zero object in H0(A ), thenA (−, Z) ∼= 0 in H0(A ⊕).
Indeed, the identity morphism 1Z : Z → Z is such that [1Z ] = [0] in H0(A ). This implies
that the same is true for

[1A (−,Z)] : A (−, Z) → A (−, Z).

in H0(A ⊕). This means that A (−, Z) is a zero object in H0(A ⊕). ��
Adjoining infinite strict direct sums or products is a little trickier. We first deal with

products; the case of coproducts will be dual and easily dealt with later afterwards. The goal
is to prove the following:

Lemma 1.8 LetA be a dg-category such that the graded cohomology H∗(A ) has coproducts
indexed by sets of cardinality ≤ κ , where κ is an infinite regular cardinal. Then, we can find
a dg-category A � which has strict coproducts indexed by sets of cardinality ≤ κ , which is
quasi-equivalent to A .

Dually, let A be a dg-category such that the graded cohomology H∗(A ) has coproducts
indexed by sets of cardinality ≤ κ , where κ is an infinite regular cardinal. Then, we can find
a dg-category A � which has strict coproducts indexed by sets of of cardinality ≤ κ , which
is quasi-equivalent to A .

Proof We prove only the first claim, the other being obtained by duality, namely, by replacing
A with A op. Let {Ai : i ∈ I } be a family of objects in A indexed by a set I of cardinality
≤ κ . Let A = ∏

i Ai be a product of the Ai in H∗(A ). This implies that the morphism

A (−, A) →
∏
i

A (−, Ai )

is a quasi-isomorphism in dgm(A ). Naively, we would take the closure of A in dgm(A )

under such products, but this will not work: quasi-isomorphisms are not isomorphisms in
H0(dgm(A )). Hence, we need to take resolutions. h-injective resolutions (cf. [22, §4.1.1])
are the ones we need, because the product of h-injective dg-modules is again h-injective.

123
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Technically, we argue as follows: consider the full dg-subcategory Ã of dgm(A ) of dg-
modules of the form RA (−, A), where in general M → R(M) is an h-injective resolution
of any dg-module M ∈ dgm(A ). The inclusion

Ã ↪→ dgm(A )

is actually a quasi-functor Ã → A . Indeed, every RA (−, A) is quasi-isomorphic to
A (−, A), being an h-injective resolution. Moreover, this quasi-functor has an inverse in
graded cohomology:

H∗(A ) → H∗(Ã ),

A �→ RA (−, A).

We may conclude that it is an invertible quasi-functor, hence Ã is indeed quasi-equivalent
to A .

Now,wemay defineA � as the smallest full dg-subcategory of h-inj(A )which contains Ã
and it is closed under strict products (indexed by sets of cardinality≤ κ). It is straightforward
to check that A � is the full dg-subcategory of h-inj(A ) spanned by{∏

i∈I
Ãi : Ãi ∈ Ã , |I | ≤ κ

}
.

If H∗(A ) has such indexed products, we can prove that the inclusion

Ã ↪→ A �

is a quasi-equivalence. Indeed, let {Ai : i ∈ I } be a family of objects inA (with |I | ≤ κ), and
let A be a product of the Ai in H∗(A ). Taking h-injective resolutions, we get a morphism

RA (−, A) →
∏
i∈I

RA (−, Ai )

in h-inj(A ). We know that it is a quasi-isomorphism; but quasi-isomorphisms between h-
injective dg-modules are actually isomorphisms in H0(h-inj(A )). We conclude that

H0(Ã ) → H0(A �)

is essentially surjective, hence Ã ↪→ A � is indeed a quasi-equivalence. We conclude that
our original A is quasi-equivalent to A �, the latter having strict products. ��
Remark 1.9 By construction, both A � and A � have strict zero objects (obtained as empty
products or coproducts) and strict finite direct sums.

1.5 Homotopy (co)limits

We will discuss the definition and some properties of sequential homotopy (co)limits in dg-
categories, which we will need in this work. Such homotopy (co)limits are understood as
“Milnor (co)limits” using mapping telescopes, as follows.

Definition 1.10 Let A be a dg-category. Let (An+1
an+1,n−−−→ An)n≥0 be a sequence of closed

degree 0 morphisms in A . A homotopy limit of this sequence is an object holim←−n
An ∈ A

together with a quasi-isomorphism of right A -dg-modules:

A (−, holim←−
n

An)
∼−→ holim←−

n

A (−, An),

123
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where holim←−n
A (−, An) sits in the following rotated pretriangle of right A -dg-modules (by

“rotated pretriangle” we just mean “pretriangle in the opposite category”):

holim←−
n

A (−, An) →
∏
n≥0

A (−, An)
1−ν−−→

∏
n≥0

A (−, An).

The morphism ν is induced by
∏
n≥0

A (−, An)
prn+1−−→ A (−, An+1)

(an+1,n)∗−−−−−→ A (−, An).

Homotopy colimits are understood as homotopy limits in the opposite dg-category A op.

LetA be a pretriangulated dg-category, and assume moreover that H0(A ) has countable
products. Since A is pretriangulated, this implies that H∗(A ) has countable products, and
moreover that for any countable family {An : n ≥ 0} we have a quasi-isomorphism of right
A -dg-modules:

A (−,
∏
n≥0

An)
≈−→

∏
n≥0

A (−, An),

namely, A has homotopy products.

In this setup, let (An+1
an+1,n−−−→ An)n≥0 be a sequence of closed degree 0 morphisms in

A . We can take the following distinguished triangle in H0(A ):

holim←−
n

An →
∏
n≥0

An
1−ν−−→

∏
n≥0

An, (1.3)

where ν is the morphism in H0(A ) induced by∏
n≥0

An
prn+1−−−→ An+1

an+1,n−−−→ An .

We obtain the following commutative diagram in D(A ):

A (−, holim←−n
An) A (−,

∏
n≥0 An) A (−,

∏
n≥0 An)

holim←−n
A (−, An)

∏
n≥0 A (−, An)

∏
n≥0 A (−, An).

(1−ν)∗

≈
1−ν

≈≈

The rows are distinguished triangles, and the vertical morphisms are all quasi-isomorphisms.
We abused notation and wrote ν for both the morphism

∏
n≥0 An → ∏

n≥0 An and the
morphism

∏
n≥0 A (−, An) → ∏

n≥0 A (−, An). We conclude that the object holim←−n
An ∈

A , together with the quasi-isomorphism

A (−, holim←−
n

An)
≈−→ holim←−

n

A (−, An),

is a homotopy limit of our given sequence.
Dually, assume thatA is pretriangulated and H0(A ) has countable coproducts (which we

denote as direct sums). Let (An
an,n+1−−−→ An+1)n≥0 be a sequence of closed degree morphisms

in A . We can take the following distinguished triangle in H0(A ):
⊕
n≥0

An
1−μ−−→

⊕
n≥0

An → holim−→
n

An, (1.4)
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where μ is the morphism in H0(A ) induced by

An
an,n+1−−−→ An+1

incln+1−−−−→
⊕
n≥0

An .

Reasoning as above, we find a quasi-isomorphism of left A -dg-modules:

A

(
holim−→

n

An,−
)

≈−→ holim←−
n

A (An,−),

which exhibits holim−→n
An as the homotopy colimit of the given sequence.

Comparison with ordinary limits and colimits

Let A be a dg-category, and let (An+1
an+1,n−−−→ An)n≥0 be a sequence of closed degree 0

morphisms in A . We may define the limit of this sequence as an object lim←−n
An ∈ A

together with an isomorphism of right A -dg-modules

A

(
−, lim←−

n

An

)
∼−→ lim←−

n

A (−, An).

We may describe lim←−n
A (−, An) as the following kernel taken in dgm(A ):

0 → lim←−
n

A (−, An) →
∏
n≥0

A (−, An)
1−ν−−→

∏
n≥0

A (−, An).

This sequence is not in general exact, namely, 1− ν is not in general surjective. It will be so
under suitable additional assumptions, such as in the following proposition:

Proposition 1.11 In the above setup, assume that the morphism of complexes

(an+1,n)∗ : A (Z , An+1) → A (Z , An)

is surjective for all Z ∈ A . Then, the morphism 1 − ν is surjective and we have an exact
sequence:

0 → lim←−
n

A (−, An) →
∏
n≥0

A (−, An)
1−ν−−→

∏
n≥0

A (−, An) → 0.

Proof Surjectivity of 1 − ν as a morphism of dg-modules is equivalent to surjectivity of its
components

(1 − ν)p :
∏
n≥0

A (Z , An)
p →

∏
n≥0

A (Z , An)
p

as homomorphisms of abelian groups. Then, the result is well known (see, for instance, [35,
Lemma 3.53]). ��
Corollary 1.12 Assume the setup of the above Proposition 1.11, in particular that

(an+1,n)∗ : A (Z , An+1) → A (Z , An)

is surjective for all Z ∈ A . Then, there is an isomorphism

lim←−
n

A (−, An)
≈−→ holim←−

n

A (−, An)
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in the derived category D(A ).

Moreover, assume that the limit of (An+1
an+1,n−−−→ An)n≥0 exists in A . Then, the object

lim←−n
An ∈ A , together with the quasi-isomorphism

A

(
−, lim←−

n

An

)
∼−→ lim←−

n

A (−, An)
≈−→ holim←−

n

A (−, An)

is a homotopy limit of the given sequence. In particular, we have an isomorphism

lim←−
n

An ∼= holim←−
n

An

in H0(A ).

Proof This follows directly from Proposition 1.11, since short exact sequences of complexes
(and also of A -dg-modules) yield distinguished triangles in the derived category. ��
Applying the above arguments to the opposite dg-categoryA op yields analogue results about
colimits and homotopy colimits. The details are left to the reader.

Corollary 1.12 is relevant, because it allows us (at least in good cases) to work with
homotopy limits and colimits by using the ordinary limits and colimits, which are easier to
deal with.

1.6 Truncations of dg-categories

Let V be a chain complex. The (left) truncation τ≤0V is defined as the chain complex such
that:

(τ≤0V )i = 0, i > 0,

(τ≤0V )0 = Z0(V ),

(τ≤0V )i = V i , i < 0,

with the induced differential.
We notice that Hi (τ≤0V ) = Hi (V ) for all i ≤ 0 and Hi (τ≤0V ) = 0 for all i > 0.

Moreover, there is natural (injective) chain map

τ≤0V → V .

Lemma 1.13 The left truncation of complexes is compatible with direct sums and direct
products. Namely, we have natural isomorphisms

τ≤0

∏
i

Vi
∼−→

∏
i

τ≤0Vi ,

⊕
i

τ≤0Vi
∼−→ τ≤0

⊕
i

Vi ,

for any family {Vi : i ∈ I } of chain complexes.

Proof This follows from the fact that direct sums and direct products of complexes are exact.
��
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Definition 1.14 Let A be a dg-category. We define the truncation of A as the dg-category
τ≤0A with the same objects of A and hom complexes defined by:

(τ≤0A )(A, B) = τ≤0(A (A, B)),

using the left truncation of complexes.
We denote by

i≤0 : τ≤0A → A

the natural dg-functor, which is the identity on objects and given by the inclusions
τ≤0A (A, B) → A (A, B) on hom complexes.

We now check the compatibility of truncations with the closures under zero objects, finite
or infinite direct sums or products which we discussed in Sects. 1.3 and 1.4.

Lemma 1.15 Let A be a dg-category. There is an isomorphism

τ≤0(A{0}) ∼= (τ≤0A ){0},

which we will interpret as an identification, dropping parentheses and writing just τ≤0A{0}.
Similarly, for a given dg-functor u : A → B, we may identify

τ≤0(u{0}) = (τ≤0u){0}
and write just τ≤0u{0}.

In particular: if A has strict zero objects, the same is true for τ≤0A .

Proof Straightforward. ��
Lemma 1.16 Let A be a dg-category. There is an isomorphism

τ≤0(A
⊕) ∼= (τ≤0A

⊕),

which we will interpret as an identification, dropping parentheses and writing just τ≤0A
⊕.

In particular: if A has strict finite direct sums (and zero objects) the same is true for
τ≤0A .

Proof Straightforward. ��
Lemma 1.17 Let A be a dg-category and let κ be a regular cardinal. If A has strict direct
products indexed by sets of cardinality ≤ κ , the same is true for τ≤0A . Dually, if A has
strict coproducts indexed by sets of cardinality ≤ κ , the same is true for τ≤0A .

Proof We prove the first assertion, the other one following from the same argument applied
to A op.

Let {Ai : i ∈ I } be a family of objects in A , with |I | ≤ κ . Let A be a product of the Ai ,
together with the isomorphism of right A -dg-modules

A (−, A)
∼−→

∏
i∈I

A (−, Ai ).

Taking truncations and using Lemma 1.13, we find an isomorphism of right τ≤0A -dg-
modules:

τ≤0A (−, A)
∼−→ τ≤0

∏
i∈I

A (−, Ai )
∼−→

∏
i∈I

τ≤0A (−, Ai ).

This exhibits A as a product of the Ai in τ≤0A . ��
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1.7 T-structures and co-t-structures

A t-structure on a triangulated category gives a formal way of truncating objects and also
yields a cohomology theory. T-structures on (pretriangulated) dg-categories are defined just
as t-structures on their (triangulated) homotopy categories.

Definition 1.18 Let A be a pretriangulated dg-category. A t-structure on A is a t-structure
on H0(A ) in the sense of [6].

We shall denote a given t-structure as a pair (A≤0,A≥0). In general,A≤n andA≥n denote
the full dg-subcategories respectively spanned by the objects of the left and right aisles
H0(A )≤n and H0(A )≥n , for n ∈ Z.

The intersection H0(A )≤0 ∩ H0(A )≥0 is a full abelian subcategory of H0(A ) denoted
by H0(A )♥ and called the heart of the t-structure. We denote by

H0
t : H0(A ) → H0(A )♥ (1.5)

the cohomological functor associated to the t-structure. We also set

Hn
t (−) = H0

t (−[n]).
We will say that a given t-structure is non-degenerate if A ∼= 0 in H0(A ) is equivalent to
Hn
t (A) ∼= 0 in H0(A )♥ for all n ∈ Z.
The inclusion of the left aisle i≤n : H0(A )≤n ↪→ H0(A ) has a right adjoint

τ≤n : H0(A ) → H0(A )≤n . (1.6)

Analogously, the inclusion of the right aisle i≥n : H0(A )≥n → H0(A ) has a left adjoint

τ≥n : H0(A ) → H0(A )≥n . (1.7)

Moreover, for any A ∈ H0(A ) and n ∈ Z, there is a distinguished triangle

i≤nτ≤n A → A → i≥n+1τ≥n+1A; (1.8)

the arrows are given respectively by the counit of the adjunction i≤n � τ≤n and by the unit
of the adjunction τ≥n+1 � i≥n+1. We will sometimes ease notation and write τ≤n A instead
of i≤nτ≤n A, or τ≥n+1A instead of i≥n+1τ≥n+1A.

We will need the following easy lemma:

Lemma 1.19 LetA be a pretriangulated dg-category with a t-structure (A≤0,A≥0). For any
A ∈ A≤n and B ∈ A (with n ∈ Z), the morphism τ≤n B → B induces an isomorphism

τ≤0A (−, τ≤n B)
≈−→ τ≤0A (−, B),

in the derived category D(τ≤0A≤n).
Analogously, for any B ∈ A , the morphism B → τ≥n B induces an isomorphism

τ≤0A (τ≥n B,−)
≈−→ τ≤0A (B,−),

in the derived category D(τ≤0A
op
≥n).

Proof We prove only the first assertion; the argument for the second one is analogous. Let
i ≥ 0. The cohomology

H−i (A (A, τ≤n B)) → H−i (A (A, B))
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can be identified with

H0(A )(A[i], τ≤n B) → H0(A )(A[i], B). (∗)
Now, A[i] lies in A≤n because left aisles are closed under nonnegative shifts. Hence, the
result follows by observing that (∗) is an isomorphism, since τ≤n B → B is the counit of the
adjunction involving the left truncation τ≤n . ��

In order to completely determine a t-structure onA , it is often enough to specify just one
of the subcategories A≤0 or A≥0:

Proposition 1.20 [19, Proposition 1.1] Let A be a pretriangulated dg-category. Let A≤0 be
a full dg-subcategory of A such that:

• H0(A≤0) is strictly full, additive and stable under extensions in H0(A ).
• H0(A≤0) is stable under positive shifts in H0(A ).
• The inclusion functor H0(A≤0) ↪→ H0(A ) has a right adjoint.

Then, if A≥0 is the full dg-subcategory of A spanned by the objects of H0(A≤0)
⊥[1], we

conclude that (A≤0,A≥0) is a t-structure on A .
Dually, let A≥0 be a full dg-subcategory of A such that:

• H0(A≥0) is strictly full, additive and stable under extensions in H0(A ).
• H0(A≥0) is stable under negative shifts in H0(A ).
• The inclusion functor H0(A≥0) ↪→ H0(A ) has a left adjoint.

Then, if A≤0 is the full dg-subcategory of A spanned by the objects of ⊥H0(A≥0)[−1], we
conclude that (A≤0,A≥0) is a t-structure on A .

Alongside t-structures, wemay endow a pretriangulated dg-categorywith a co-t-structure:

Definition 1.21 Let A be a pretriangulated dg-category. A co-t-structure on A is a co-
t-structure on the homotopy category H0(A ) in the sense of [9, Definition 1.1.1], [29,
Definition 2.4]. See also [17] for a more recent survey.

We shall denote a given co-t-structure as a pair (A w≥0,A
w≤0). In general, A w≥n and A w≤n

denote the full dg-subcategories respectively spanned by the objects of the right and left
coaisles H0(A )w≤n and H0(A )w≥n , for n ∈ Z.

The intersection H0(A )w≥0 ∩ H0(A )w≤0 is called the co-heart of the co-t-structure.

Let (A w≥0,A
w≤0) be a co-t-structure on A and let A ∈ A . For n ∈ Z, we have a distin-

guished triangle in H0(A )

σ≥n A → A → σ≤n−1A, (1.9)

where σ≥n A ∈ A w≥n and σ≤n−1A ∈ A w≤n−1. It is worth remarking that, in contrast to the
truncations with respect to a t-structure, σ≥n A and σ≤n−1A do not in general yield functors.

Sometimes, we have both a t-structure and a co-t-structure on a given dg-category which
interact nicely with each other:

Definition 1.22 Let A be a pretriangulated dg-category. Moreover, let (A≤0,A≥0) be a t-
structure on A and let (A w≥0,A

w≤0) be a co-t-structure on A . We say that the co-t-structure
is left adjacent (respectively right adjacent) to the t-structure if A≥0 = A w≥0 (respectively if
A≤0 = A w≤0).

This notion of compatibility between t-structures and co-t-structures is related to “approxi-
mations” with derived injective or projective objects: this is dealt with in Appendix A.
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2 Twisted complexes

2.1 Basics

We now define the main object of this article, namely, twisted complexes on a given dg-
category.

Definition 2.1 Let A be a dg-category, strictly concentrated in nonpositive degrees and with
strict zero objects. We define the dg-category Tw(A) of (one-sided, unbounded) twisted
complexes on A as follows:

• An object X• = (Xi , x j
i ) of Tw(A) is a sequence (Xi )i∈Z of objects of A together with

morphisms

x j
i : Xi → X j ,

each of degree i − j + 1, such that the following equation holds:

(−1) j dx j
i +

∑
k

x j
k x

k
i = 0. (2.1)

Notice that x j
i = 0 whenever i − j + 1 > 0.

• A degree p morphism f : (Xi , x j
i ) → (Y i , y j

i ) is a family of morphisms

f j
i : Xi → Y j ,

each of degree i − j + p. Notice that f j
i = 0 whenever i − j + p > 0. The differential

of f is given by

(d f ) ji = (−1) j d f j
i +

∑
k

(y j
k f ki − (−1)p f j

k x
k
i ). (2.2)

• Given morphisms f : (Xi , x j
i ) → (Y i , y j

i ) and g : (Y i , y j
i ) → (Zi , z ji ), its composition

is given by:

(g ◦ f ) ji =
∑
k

g j
k f ki . (2.3)

Identities are the obvious ones.

Checking that Tw(A) is indeed a dg-category is a little tedious but straightforward. Finally,
if B is any dg-category (without any additional hypothesis), we set:

Tw(B) = Tw(τ≤0B{0}), (2.4)

recalling Lemma 1.15.

Remark 2.2 The “one-sidedness” of both twisted complexes (Xi , x j
i ) and morphisms

f : (Xi , x j
i ) → (Y i , y j

i ) (namely, x j
i = 0 for i − j + 1 > 0 and f j

i = 0 for i − j + p > 0)

implies that the sums
∑

k x
j
k x

k
i and

∑
k(y

j
k f ki − (−1)p f j

k x
k
i ) are finite, and everything is

well-defined.
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Notation 2.3 We will sometimes use the Einstein summation convention – always after an
explicit warning. Under that convention, an expression like

akb
k,

actually means ∑
k

akb
k,

that is, we sum over the index k ∈ Z which appears precisely twice, both as a subscript and
a superscript. The summation runs over all integers k, but of course it will not make sense
unless the product of ak and bk is 0 for all but a finite set of indices, which will always
implicitly be the case. More complicated expressions are possible, for example:

aikb
k
j c

j
s =

∑
k, j

aikb
k
j c

j
s .

As a more interesting example, we use this convention to write down the relations (2.1),
(2.2) and (2.3) involved in the definition of twisted complexes:

(−1) j dx j
i + x j

k x
k
i = 0,

(d f ) ji = (−1) j d f j
i + y j

k f ki − (−1)p f j
k x

k
i ,

(g ◦ f ) ji = g j
k f ki .

Remark 2.4 Let A be a dg-category strictly concentrated in nonpositive degrees and with
strict zero objects. Then, there is a natural dg-functor

A → Tw(A), (2.5)

which sends an object of A ∈ A to the following twisted complex concentrated in degree 0:

· · · → 0 → A → 0 → · · · .

It is easy to show that A → Tw(A) is fully faithful.
If A is strictly concentrated in nonpositive degrees but does not necessarily have zero

objects, we still have a fully faithful dg-functor:

A ↪→ A{0} ↪→ Tw(A).

If A is cohomologically concentrated in nonpositive degrees and has cohomological zero
objects, we have a diagram of dg-functors:

A
≈←− τ≤0A

≈−→ τ≤0A{0} ↪→ Tw(A).

The arrows marked with
≈−→ are quasi-equivalences, hence we may find a quasi-functor

A → Tw(A), again mapping any object A ∈ A to the correspondent twisted complex
concentrated in degree 0, which is fully faithful after taking H∗(−). Therefore, the full
dg-subcategory of Tw(A) spanned by twisted complexes concentrated in degree 0 is quasi-
equivalent to A.

From this discussion, it is clear that the definition of Tw(A) is meaningful only for dg-
categories concentrated in nonpositive degrees, strictly or cohomologically. The addition of
formal strict zero objects to A is useful in order to deal with bounded twisted complexes.
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Remark 2.5 We can picture a twisted complex as follows:

· · · Xi Xi+1 Xi+2 Xi+3 Xi+4 · · ·xi+3
i+2xi+2

i+1 xi+4
i+3xi+1

i

x i+2
i

x i+3
i

x i+4
i

x i+3
i+1 xi+4

i+2
xi+4
i+1

xi+4
i+1

To simplify notation, we shall often avoid picturing the “higher twisted differentials”
xi+2
i , xi+3

i , . . . (i ∈ Z).
To better understand morphisms of twisted complexes, it is worth visualizing a degree−1

morphism:

· · · Xi · · ·

· · · Y i−2 Y i−1 Y i Y i+1 · · ·
−10 −2 ···

and also a degree 1 morphism:

· · · Xi · · ·

· · · Y i Y i+1 Y i+2 Y i+3 · · ·
0 −1 −2

···

We pictured only nonzero components, and listed their degrees on the labels.

If X• = (Xi , x j
i ) is an object in Tw(A), we may always define its shift X•[n] =

(X [n]i , x[n] ji ) as follows, for all n ∈ Z:

X•[n]i = Xi+n,

x[n] ji = (−1)nx j+n
i+n .

(2.6)

We can easily check:

HomTw(A)(X
•, Y •[n]) ∼= HomTw(A)(X

•[−n], Y •) ∼= HomTw(A)(X
•, Y •)[n]. (2.7)

The construction Tw(−) is functorial. Namely, if u : A → B is a dg-functor between
dg-category strictly concentrated in nonpositive degrees, we can define a dg-functor

Tw(u) : Tw(A) → Tw(B) (2.8)

as follows:

• For any object X• = (Xi , x j
i ) in Tw(A), we set

Tw(u)(Xi , x j
i ) = (u(Xi ), u(x j

i )). (2.9)

• If f : (Xi , x j
i ) → (Y i , y j

i ) is a degree p morphism in Tw(A), we define:

Tw(u)( f ) : (u(Xi ), u(x j
i )) → (u(Y i ), u(y j

i )),

Tw(u)( f ) ji = u( f j
i ).

(2.10)
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It is easy to see that Tw(1A) = 1Tw(A) and that Tw(vu) = Tw(v)Tw(u), for composable
dg-functors u and v.

If u : A → B is a dg-functor between any dg-categories, we set:

Tw(u) = Tw(τ≤0u{0}). (2.11)

In the end, we obtain a functor

Tw(−) : dgCat → dgCat. (2.12)

We may also define dg-categories of twisted complexes which are bounded from above
or below:

Definition 2.6 Let A be a dg-category. We define Tw+(A) to be the full dg-subcategory of
Tw(A) of twisted complexes (Xi , x j

i ) such that Xn = 0 for n � 0.
Similarly, we define Tw−(A) to be the full dg-subcategory of Tw(A) of twisted complexes

(Xi , x j
i ) such that Xn = 0 for n � 0.

The mappings A �→ Tw−(A) and A �→ Tw+(A) are functorial in the obvious way.

Twisted complexes are quite nicely behaved with respect to taking opposites. Namely, we
can directly prove the following isomorphisms, which we will view as identifications:

Tw(Aop)
op ∼= Tw(A),

Tw−(Aop)
op ∼= Tw+(A),

Tw+(Aop)
op ∼= Tw−(A).

(2.13)

2.2 Brutal truncations of twisted complexes

Throughout this part, we fix a dg-categoryA strictly concentrated in nonpositive degrees and
with strict zero objects.

Definition 2.7 Let X• = (Xi , x j
i ) be an object in Tw(A). For all N ∈ Z, we define a twisted

complex (σ≥N X)• = ((σ≥N X)i , (σ≥N x)
j
i ) as follows:

(σ≥N X)i =
{
Xi i ≥ N ,

0 otherwise,

(σ≥N x)
j
i =

{
x j
i i, j ≥ N ,

0 otherwise.

(2.14)

We also defined a twisted complex (σ≤N X)• = ((σ≤N X)i , (σ≤N x)
j
i ) as follows:

(σ≤N X)i =
{
Xi i ≤ N ,

0 otherwise,

(σ≤N x)
j
i =

{
x j
i i, j ≤ N ,

0 otherwise.

(2.15)
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Remark 2.8 We shall sometimes use the following notations, for a given twisted complex
X• ∈ Tw(A) and for integers n ≤ m:

X•≥n = σ≥n X
•,

X•≤m = σ≤m X•,
X•[n,m] = σ≥nσ≤m X• = σ≤mσ≥n X

•.

Remark 2.9 If f : X• → Y • is a closed degree 0 morphism in Tw(A), we have induced
closed degree 0 morphisms

σ≤m f = f≤m : X•≤m → Y •≤m,

σ≥n f = f≥n : X•≥n → Y •≥n,

σ≥nσ≤m f = σ≤mσ≥n f = f[n,m] : X•[n,m] → Y •[n,m],

Moreover, such brutal truncations are functorial in Z0(Tw(A)). Namely, we have identi-
ties:

(g f )≤m = g≤m f≤m, 1≤m = 1X•≤m
,

(g f )≥n = g≥n f≥n, 1≥n = 1X•≥n
,

(g f )[n,m] = g[n,m] f[n,m], 1[n,m] = 1X•[n,m] ,

whenever f : X• → Y • and g : Y • → Z• closed degree 0 morphisms in Tw(A). The proof
of the above identities is straightforward even if a little tedious, and is left to the reader.

For all N ∈ Z, there is a closed degree 0 morphism

jN ,N−1 : (σ≥N X)• → (σ≥N−1X)•,

( jN ,N−1)
j
i =

{
1Xi i = j, i ≥ N ,

0 otherwise.

(2.16)

Moreover, there is a closed degree 0 morphism

jN : (σ≥N X)• → X•,

( jN )
j
i =

{
1Xi i = j, i ≥ N ,

0 otherwise.

(2.17)

Analogously, for all N ∈ Z there is a closed degree 0 morphism

pN ,N−1 : (σ≤N X)• → (σ≤N−1X)•,

(pN ,N−1)
j
i =

{
1Xi i = j, i ≤ N − 1,
0 otherwise.

(2.18)

Moreover, there is a closed degree 0 morphism

pN : X• → (σ≤N X)•,

(pN )
j
i =

{
1Xi i = j, i ≤ N ,

0 otherwise.

(2.19)
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We can picture the above morphisms with the following diagrams:

(σ≥N X)• · · · 0 XN XN+1 · · ·

(σ≥N−1X)• · · · 0 XN−1 XN XN+1 · · ·

X• · · · XN−2 XN−1 XN XN+1 · · ·

jN ,N−1

jN−1

jN

(2.20)

and

X• · · · XN−2 XN−1 XN XN+1 · · ·

(σ≤N X)• · · · XN−2 XN−1 XN 0 · · ·

(σ≤N−1X)• · · · XN−2 XN−1 0 · · ·

pN

pN ,N−1

pN−1

(2.21)

It is immediate to see that

jN = jN−1 ◦ jN ,N−1,

pN−1 = pN ,N−1 ◦ pN ,

for all N ∈ Z.
We now go on to check that any twisted complex X• is both direct limit of

((σ≥−k X)•
j−k,−k−1−−−−−→ (σ≥−k−1X)•))k and inverse limit of ((σ≤k X)•

pk,k−1−−−→ (σ≤k−1X)•))k .
We are actually going to prove a stronger statement:

Proposition 2.10 Let X• ∈ Tw(A) be a twisted complex. Let Z• ∈ Tw(A) be any twisted
complex. Then, there are short exact sequences of chain complexes

0 → Tw(A)(X•, Z•)
( j∗−k )k−−−→

∏
k≥0

Tw(A)((σ≥−k X)•, Z•) 1−μ−−→
∏
k≥0

Tw(A)((σ≥−k X)•, Z•) → 0,

0 → Tw(A)(Z•, X•)
(pk∗)k−−−→

∏
k≥0

Tw(A)(Z•, (σ≤k X)•) 1−μ′
−−−→

∏
k≥0

Tw(A)(Z•, (σ≤k X)•) → 0,

natural in Z•. The morphisms μ and μ′ are defined by:

μ(( f−k)k) = ( f−k−1 ◦ j−k,−k−1)k,

μ′((gk)k) = (pk+1,k ◦ fk+1)k .

Proof Every claim, save for the surjectivity of 1− μ and 1− μ′, follows from the following
two facts:

• For any sequence of (degree p) morphisms f−k : (σ≥−k X)• → Z• such that f−k =
f−k−1 ◦ j−k,−k−1, there is a unique (degree p) morphism f : X• → Z•, such that
f ◦ j−k = f−k for all k.
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• For any sequence of (degree p) morphisms gk : Z• → (σ≤k X)• such that pk+1,k ◦ gk =
gk+1, there is a unique (degree p) morphism g : Z• → X•, such that pk ◦ g = gk for all
k.

Both facts can be proved directly.
Now, we prove surjectivity of 1 − μ and 1 − μ′. Recalling Proposition 1.11, this follows

by checking that the morphisms

Tw(A)((σ≥−k−1X)•, Z•)
j∗−k,−k−1−−−−−→ Tw(A)((σ≥−k X)•, Z•),

Tw(A)(Z•, (σ≤k+1X)•)
pk+1,k∗−−−−→ Tw(A)(Z•, (σ≤k X)•).

are surjective for all k ≥ 0. This follows once we see that j−k,−k−1 has a degree 0 (not
necessarily closed) left inverse s−k−1,−k , and pk+1,k has a degree 0 (not necessarily closed)
right inverse ik,k+1:

s−k−1,−k ◦ j−k,−k−1 = 1,

pk+1,k ◦ ik,k+1 = 1.

The definitions of s−k−1,−k and ik+1,k are clear after contemplation of diagrams (2.20) and
(2.21). Precomposition with s−k−1,−k and postcomposition with ik,k+1 yield right inverses
of respectively j∗−k,−k−1 and pk+1,k∗. ��

Corollary 2.11 In the setup of the above Proposition 2.10, we have isomorphisms:

Tw(A)(X•, Z•) ≈−→ lim←−
k≥0

Tw(A)((σ≥−k X)•, Z•), (2.22)

Tw(A)(Z•, X•) ≈−→ lim←−
k≥0

Tw(A)(Z•, (σ≤k X)•). (2.23)

Hence, we may write

X• ∼= lim−→
k

(σ≥−k X)•,

X• ∼= lim←−
k

(σ≤k X)•.

Moreover, we have quasi-isomorphisms:

Tw(A)(X•, Z•) ≈−→ holim←−
k≥0

Tw(A)((σ≥−k X)•, Z•), (2.24)

Tw(A)(Z•, X•) ≈−→ holim←−
k≥0

Tw(A)(Z•, (σ≤k X)•), (2.25)

natural in Z• ∈ Tw(A). These quasi-isomorphisms exhibit X• as the following homotopy
limit or colimit:

X• ∼= holim−→
k

(σ≥−k X)•,

X• ∼= holim←−
k

(σ≤k X)•.
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Proof The first part follows from the left exactness of the sequences of Proposition 2.10.
Let us deal with the second part. By definition,

holim←−
k≥0

Tw(A)((σ≥−k X)•, Z•) ∼= C(1 − μ)[−1],

holim←−
k≥0

Tw(A)(Z•, (σ≤k X)•) ∼= C(1 − μ′)[−1].

We conclude by recalling that short exact sequences of complexes yield distinguished trian-
gles in the derived category. ��
Corollary 2.12 Let f : X• → Y • be a closed degree 0 morphism in Tw(A). Then, we can
recover f by taking limits or colimits along its truncations:

f = lim−→
n

f≥−n,

f = lim←−
n

f≤n,

where f≥n and f≤−n are the brutal truncations of f , see also Remark 2.9.

Proof By definition of f≥−n and f≤n , we have (strictly) commutative diagrams:

X•≤−n X•≤−n−1 X•

Y •≤−n Y •≤−n−1 Y •,

j−n−1

f≤−n−1

j−n−1

f
j−n,−n−1

j−n,−n−1

f≤−n

jn

jn

X• X•≥n+1 X•≥n

Y • Y •≥n+1 Y •≥n .

pn+1,n

f≥−n
pn+1,n

f≥−n−1

pn+1

pn+1

f

pn

pn

��
We can use the brutal truncations to recover any twisted complex as the cone of a suitable

morphism. First, we discuss how to compute cones of morphisms of twisted complexes in
general.

Lemma 2.13 Let A be a dg-category. Let f : X• = (Xi , x j
i ) → (Y i , x j

i ) = Y • be a closed
degree 0morphism in Tw(A). Assume that the (strict) direct sums Xi+1⊕Y i exist inA. Then,
we may define the twisted complex C( f )• = (C( f )i , c( f ) ji ) as follows:

C( f )i = Xi+1 ⊕ Y i ,

c( f ) ji =
(

−xi+ j+1
i+ j+1 0

f ji+1 y j
i

)
.

(2.26)

The twisted complex C( f )• is the cone of f , and it fits in the following pretriangle

X• Y • C( f ) X•[1],f pj

s i

where the morphisms i, p, j, s are defined to be componentwise the canonical morphisms
associated to the biproduct X•[1] ⊕ Y •, for example the only non-zero components of p are
the pii , given by the natural projections

pii : Xi+1 ⊕ Y i → Xi+1.
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Proof This is a direct computation which is left to the reader. ��
Let X• = (Xi , x j

i ) be an object in Tw(A). For all n ∈ Z, we may use the x j
i to define a

closed degree 0 morphism:

x̃ : (σ≤n−1X
•)[−1] → σ≥n X

•,

x̃ j
i = x j

i−1.

Proposition 2.14 For any twisted complex X• there is a pretriangle in Tw(A):

(σ≤n−1X
•)[−1] x̃−→ σ≥n X

• jn−→ X• pn−1−−→ σ≤n−1X
•, (2.27)

where jn and pn are described in (2.20) and (2.21).
Moreover, if f : X• → Y • is a closed degree 0 morphism in Tw(A), there is a degree −1

morphism

h : (σ≤n−1X
•)[−1] → σ≥nY

•

which fits in the following diagram:

(σ≤n−1X•)[−1] σ≥n X• X• σ≤n−1X•

(σ≤n−1Y •)[−1] σ≥nY • Y • σ≤n−1Y •,

x̄ jn pn−1

f≤n−1f

pn−1

f≥n

jn

f≤n−1[−1]

ȳ

h

where f≥n and f≤n−1 are described in Remark 2.9. The middle and rightmost squares of the
diagram are strictly commutative; the left square is commutative in H0(Tw(A)) up to dh.

Proof The first claim follows from the above Lemma 2.13 by unwinding everything.
The second claim is tedious but straightforward. The morphism h is defined using suitable

components of f , and the homotopy commutativity of the left square (up to dh) can be proved
directly. ��

It is sometimes useful to construct twisted complexes by taking iterated cones and
(co)limits.

Construction 2.15 Let X•
0 be a twisted complex in Tw(A)which is concentrated in nonnega-

tive degrees (namely, Xi
0 = 0 for i < 0). Moreover, let (Xi : i < 0) be a sequence of objects

of A, which we view as twisted complexes concentrated in degree 0 abusing notation. We
assume we have a degree 0 morphism of twisted complexes

X−1 → X•
0.

We can directly check that the twisted complex X•−1 obtained from X•
0 by “adjoining” X−1

in degree −1:

X•−1 = · · · → 0 → X−1 → X0
0 → X1

0 → X2
0 → · · ·

fits in the following pretriangle:

X−1 → X•
0 → X•−1 → X−1[1],

with the obvious inclusion and projection morphisms.
We can iterate this, if we have another closed degree 0 morphism

X−2[1] → X•−1,
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where X−2 is an object in A. We can adjoin X−2 in degree −2 and define

X•−2 = · · · → 0 → X−2 → X−1 → X0
0 → X1

0 → X2
0 → · · ·

In general, wewill be able to construct twisted complexes X•−n concentrated in degrees≥ −n
and fitting in pretriangles:

X−n[n − 1] → X•−n → X•−n+1 → X−n[n].
By construction, we have strict identities σ≥−k X•−n = X•−k whenever n ≥ k.

It is also possible to define a twisted complex X• as “union” of the X•−i . In degree i we
will have the object Xi from the construction (i < 0) or Xi

0 (i ≥ 0). Abusing notation, we
will denote it by Xi in either case:

X• = · · · Xi → Xi+1 → Xi+2 → · · ·
The twisted differentials x j

i : Xi → X j are directly induced from the ones of X•−n for n
suitably large. One can directly check that everything is well defined and the formula

(−1) j dx j
i +

∑
k

xik x
k
j = 0

holds, by using that the X•−n are all twisted complexes. In particular, we have by construction
strict identities:

σ≥−n X
• = X•−n,

for n ≥ 0. Moreover, the twisted complex X• is the colimit (and also homotopy colimit) of
the system

X0 → X−1 → · · ·
This follows directly from Corollary 2.11.

Clearly, a “dual” construction can be made involving truncations σ≤n , the suitable
“rotated” pretriangles (i.e. pretriangles in the opposite category) and (homotopy) limits.
We leave the details to the reader.

2.3 Isomorphisms of twisted complexes

In this partwe give a characterization of isomorphisms in the homotopy category H0(Tw(A)).
The dg-category A will be strictly concentrated in nonpositive degrees and with strict zero
objects.

Proposition 2.16 Let f : X• → Y • be a closed degree 0 morphism in Tw(A). Then, f is
an isomorphism in H0(Tw(A)) (respectively in Z0(Tw(A))) if and only if the components
f ii : Xi → Y i are isomorphisms in H0(A) (respectively in Z0(A)), for all i ∈ Z.

Proof Proving that if f is an isomorphism in H0(Tw(A)) or Z0(Tw(A)) then its components
f ii are isomorphisms in H0(A) or Z0(A) is straightforward, and we shall concentrate on the
other implication. We shall deal with the case of inverses in H0(Tw(A)); the case of strict
inverses in Z0(Tw(A)) is proved along the same lines but with easier arguments, and is left
to the reader.

Step 1. We first construct, inductively, a system of both left and right homotopy inverses
to the truncated morphisms f[−p,0], for all p ≥ 0, keeping track of the homotopies. If p = 0,
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we have by definition that f[0,0] = f 00 : X[0,0] → Y[0,0], and X•[0,0] and Y •[0,0] are twisted

complexes concentrated in degree 0. Since f 00 is an isomorphism in H0(A), we can find
closed degree 0 morphisms of twisted complexes

gl[0,0], gr[0,0] : Y •[0,0] → X•[0,0]
such that

gl[0,0] ◦ f[0,0] = 1X0 + dhl[0,0],
f[0,0] ◦ gr[0,0] = 1Y 0 + dhr[0,0],

for suitably chosen degree −1 morphisms hl[0,0] and hr[0,0]. Inductively, we assume that we
have defined closed degree 0 morphisms

gl[−k,0], g
r[−k,0] : Y •[−k,0] → X•[−k,0]

and degree −1 morphisms

hl[−k,0] : X•[−k,0] → X•[−k,0],
hr[−k,0] : Y •[−k,0] → Y •[−k,0]

for k = 0, . . . , p − 1, with the following properties:

• The following diagrams are strictly commutative:

Y •[−k,0] Y •[−k−1,0]

X•[−k,0] X•[−k−1,0],
gl[−k,0] gr[−k,0] gl[−k−1,0] gr[−k−1,0]

X•[−k,0] X•[−k−1,0]

X•[−k,0] X•[−k−1,0],
hl[−k,0] hl[−k−1,0]

Y •[−k,0] Y •[−k−1,0]

Y •[−k,0] Y •[−k−1,0].
hr[−k,0] hr[−k−1,0]

for k = 0, . . . , p − 1, where Y •[−k,0] → Y •[−k−1,0] and X•[−k,0] → X•[−k−1,0] are the
natural inclusions, cf. (2.20).

• For k = 0, . . . , p − 1, we have:

gl[−k,0] ◦ f[−k,0] = 1 + dhl[−k,0],
f[−k,0] ◦ gr[−k,0] = 1 + dhr[−k,0].

We consider the following diagram, where the rows are pretriangles (cf. Proposition 2.14):

X•[−p,−p][−1] X•[−p+1,0] X•[−p,0] X•[−p,−p]

Y •[−p,−p][−1] Y •[−p+1,0] Y •[−p,0] Y •[−p,−p].
f[−p,−p][−1] f[−p+1,0] f[−p,−p]f[−p,0] (2.28)

We observe that the middle and the right squares of the above diagram are strictly commu-
tative. f[p,p] is invertible in H0(Tw(A)) and we may also apply the inductive hypothesis, so
we may find closed degree 0 morphisms
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gl[p,p], gr[p,p] : Y •[−p,−p] → X•[−p,−p],

gl[−p+1,0], gr[−p+1,0] : Y •[−p+1,0] → X•[−p+1,0]

and degree −1 morphisms

hl[−p,−p] : X•[−p,−p] → X•[−p,−p],
hr[−p,−p] : Y •[−p,−p] → Y •[−p,−p],

hl[−p+1,0] : X•[−p+1,0] → X•[−p+1,0],
hr[−p+1,0] : Y •[−p+1,0] → Y •[−p+1,0]

such that

gl[p,p] ◦ f[p,p] = 1 + dhl[p,p],
f[p,p] ◦ gr[p,p] = 1 + dhr[p,p],

gl[−p+1,0] ◦ f[−p+1,0] = 1 + dhl[−p+1,0],
f[−p+1,0] ◦ gr[−p+1,0] = 1 + dhr[−p+1,0].

Recalling Lemma 1.4 and Remark 1.5, we find closed degree 0 morphisms

gl[−p,0], gr[−p,0] : Y •[−p,0] → X•[−p,0]

and degree −1 morphisms

hl[−p,0] : X•[−p,0] → X•[−p,0],
hr[−p,0] : Y •[−p,0] → Y •[−p,0].

The morphisms gl[−p,0] and gr[−p,0] fit in the following diagram:

Y •[−p,−p][−1] Y •[−p+1,0] Y •[−p,0] Y •[−p,−p]

X•[−p,−p][−1] X•[−p+1,0] X•[−p,0] X•[−p,−p].
gl[−p,−p][−1] gr[−p,−p][−1] gl[−p+1,0] gr[−p+1,0] gl[−p,−p] gr[−p,−p]gl[−p,0] gr[−p,0]

The middle and right squares of the above diagram are strictly commutative; we can draw
similar diagrams and conclusions for the degree −1 morphisms hl[−p,0] and hr[−p,0]. More-
over, we have

gl[−p,0] ◦ f[−p,0] = 1 + dhl[−p,0],
f[−p,0] ◦ gr[−p,0] = 1 + dhr[−p,0].

The induction is complete.
Step 2.We know from Corollary 2.12 that

f≤0 = lim−→
p

f[−p,0] : X•≤0 → Y •≤0.
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We may take the colimit of the systems of morphisms gl[−p,0] and gr[−p,0] defined in Step 1,
defining:

gl≤0 = lim−→
p

gl[−p,0] : Y •≤0 → X•≤0,

gr≤0 = lim−→
p

gr[−p,0] : Y •≤0 → X•≤0.

The homotopies hl[−p,0] and hr[−p,0] are themselves a direct system, by construction. Wemay
set:

hl≤0 = lim−→
p

hl[−p,0] : X•≤0 → X•≤0,

hr≤0 = lim−→
p

hr[−p,0] : Y •≤0 → Y •≤0,

By dg-functoriality of the direct limit, we have:

gl≤0 ◦ f≤0 = lim−→
p

(gl[−p,0] ◦ f[−p,0]) = 1 + d lim−→
p

hl[−p,0] = 1 + dhl≤0,

f≤0 ◦ gr≤0 = lim−→
p

( f[−p,0] ◦ gr[−p,0]) = 1 + d lim−→
p

hr[−p,0] = 1 + dhr≤0.

Step 3. Next, we construct inductively left and right homotopy inverses of f≤k for k ≥ 0,
again keeping track of the homotopies. Recalling Proposition 2.14, we have the following
diagram (here k ≥ 1):

X•[k,k] X•≤k X•≤k−1 X•[k,k][1]

Y •[k,k] Y •≤k Y •≤k−1 Y •[k,k][1].
f[k,k] f≤k f[k,k][1]f≤k−1 (2.29)

The rows are (“rotated”) pretriangles. The left and middle squares are strictly commutative
– compare with (2.28), where the middle and the right squares were strictly commutative.
The morphisms X•≤k → X•≤k−1 and Y •≤k → Y •≤k−1 are the projections described in (2.21).
Our precise goal is to define, inductively for all k ≥ 0, closed degree 0 morphisms:

gl≤k, g
r≤k : Y •≤k → X•≤k,

and degree −1 morphisms

hl≤k : X•≤k → X•≤k,

hr≤k : Y •≤k → Y •≤k

such that:

• The following diagrams are strictly commutative (k ≥ 1):

Y •≤k Y •≤k−1

X•≤k X•≤k−1,

gl≤k
gr≤k gl≤k−1 gr≤k−1
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X•≤k X•≤k−1

X•≤k X•≤k−1,

hl≤k hl≤k−1

Y •≤k Y •≤k−1

Y •≤k Y •≤k−1.

hr≤k hr≤k−1

• We have equalities, for k ≥ 0:

gl≤k ◦ f≤k = 1 + dhl≤k,

f≤k ◦ gr≤k = 1 + dhr≤k .

The base step of the induction is precisely the above Step 1. The inductive step is proved with
essentially the same argument as in Step 1, using straightforward variants of Lemma 1.4 and
Remark 1.5 (with “rotated” pretriangles). The details are left to the reader.

Step 4. We argue essentially as in Step 2. We now have inverse systems of left and right
homotopy inverses gl≤k, g

r≤k of f≤k , together with systems of homotopies hl≤k and h
r≤k . For

all k ≥ 0 we may define closed degree 0 morphisms:

gl = lim←−
k

gl≤k : Y • → X•,

gr = lim←−
k

gr≤k : Y • → X•,

and degree −1 morphisms:

hl = lim←−
k

hl≤k : X• → X•,

hr = lim←−
p

hr≤k : Y • → Y •.

We recall from Corollary 2.12 that f is the inverse limit of its truncations f≤k :

f = lim←−
k

f≤k .

Using dg-functoriality of inverse limits, we find:

gl ◦ f = lim←−
k

(gl≤k ◦ f≤k) = 1 + d lim←−
k

hl≤k = 1 + dhl ,

f ◦ gr = lim←−
k

( f≤k ◦ gr≤k) = 1 + d lim←−
k

hr≤k = 1 + dhr .

We conclude that f has both a left and right homotopy inverse. Hence, it yields an isomor-
phism in H0(Tw(A)), as claimed. ��

2.4 Twisted complexes and quasi-equivalences

Wewant to prove that Tw(A) depends only on the quasi-equivalence class ofA. We start with
an auxiliary technical lemma and then the preservation of quasi-fully faithful dg-functors.

Lemma 2.17 Let f : V • → W • be a chainmapof complexes. Then, f is a quasi-isomorphism
if and only if the following condition holds:
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• Let p ∈ Z and let y ∈ W p and x ′ ∈ Z p+1(V •) such that dy = f (x ′). Then, there is
x ∈ V p and z ∈ W p−1 such that:

dx = x ′,
y − dz = f (x).

Proof Let us assume that f is a quasi-isomorphism, and let y ∈ W p and x ′ ∈ Z p+1(V •)
such that dy = f (x ′). Since f (x ′) is a coboundary and f is injective in cohomology, we
find x0 ∈ V p such that dx0 = x ′. Now, we see that

d(y − f (x0)) = dy − f (dx0) = f (x ′) − f (x ′) = 0,

so y − f (x0) is a p-cocycle in W •. Since f is surjective in cohomology, we find x ′
0 ∈ V p

with dx ′
0 = 0 and z ∈ W p−1 such that

y − f (x0) = f (x ′
0) + dz.

Taking x = x0 + x ′
0 we conclude.

Conversely, assume that the above condition holds. We want to prove that, for p ∈ Z,
H p( f ) is an isomorphism. First, let x ′ ∈ Z p(V •) such that [ f (x ′)] = [0], namely

dy = f (x ′)

for some y ∈ W p−1. Then, from the hypothesis we find x ∈ V p−1 such that x ′ = dx , which
means that [x ′] = [0] and H p( f ) is injective. To prove surjectivity, let [y] ∈ H p(W •). y is
a cocycle, so we have

dy = 0 = f (0).

Applying the hypothesis with x ′ = 0, we find x ∈ V p such that dx = 0 and z ∈ W p−1 such
that

y − f (x) = dz,

namely [y] = [ f (x)]. ��

Lemma 2.18 Let u : A → B be a quasi-fully faithful dg-functor. Then, Tw(u) : Tw(A) →
Tw(B) is quasi-fully faithful.

Proof Throughout this proof, we will use Einstein summation convention (Notation 2.3).
Without loss of generality, we may assume that both A and B are strictly concentrated in

nonpositive degrees. Applying Lemma 2.17 and using shifts suitably, we reduce to prove the
following claim:

• Let A• = (Ai , a j
i ) and B• = (Bi , b j

i ) be objects in Tw(A). Let g : u(A•) → u(B•)
be a degree 0 morphism, and let h : A• → B• be a closed degree 1 morphism such
that dg = u(h). Then, there exist a degree 0 morphism f : A• → B• and a degree −1
morphism α : u(A•) → u(B•) such that:

d f = h,

g − dα = u( f ).
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We shall define f and α inductively, as follows. First, we set:

f ki = 0,

αk
i = 0,

for all i ∈ Z, for k < i . Next, we will define f ki and αk
i by induction on the number

n = k − i ≥ 0. Concretely, we suppose we have f i+p
i and α

i+p
i of the suitable degrees for

all p < n, for all i ∈ Z, such that:

(−1)i+pd f i+p
i + bi+p

k f ki − f i+p
k aki = hi+p

i , (∗1)

gi+p
i − ((−1)i+pdα

i+p
i + u(bi+p

k )αk
i + α

i+p
k u(aki )) = u( f i+p

i ), (∗2)
where we suppressed the summation symbols, adopting Einstein summation convention.
Notice that the summation indices in the above expressions run in such regions so that the
components f qp and α

q
p appearing above are the ones already known by inductive hypothesis:

for instance, in the summation f i+p
k aki , the index k runs between i + 1 and i + p.

First, we check that the element

hi+n
i − (bi+n

k f ki − f i+n
k aki )

is a cocycle. This is a direct computation, which uses the fact that (dh)i+n
i = 0 by hypothesis

and the inductive hypothesis (∗1):
d(bi+n

k f ki − f i+n
k aki ) = dbi+n

k f ki + (−1)k−i−n+1bi+n
k d f ki − d f i+n

k aki − (−1)k−i−n f i+n
k daki

= dbi+n
k f ki + (−1)−n−i+1bi+n

k (hki − bks f
s
i + f ks a

s
i )

− (−1)i+n(hi+n
k − bi+n

s f sk + f i+n
s ask)a

k
i − (−1)k−i−n f i+n

k daki

= (−1)i+n(−bi+n
k hki − hi+n

k aki )

= dhi+n
i .

Next, we try to define f i+n
i and αi+n

i satisfying the suitable relations. First, we compute:

u(h)i+n
i = (dg)i+n

i

= (−1)i+ndgi+n
i + u(bi+n

k )gki − gi+n
k u(aki ).

We may substitute gki using (∗2). We find:

u(h)i+n
i = (−1)i+n

i dgi+n
i + u(bi+n

k )u( f ki ) − u( f i+n
k )u(aki ) + Xi+n

i , (∗3)

where

Xi+n
i = u(bi+n

k )((−1)kdαk
i + u(bks )α

s
i + αk

s u(asi )) − ((−1)i+ndαi+n
k + u(bi+n

s )αs
k

+ αi+n
s u(ask))u(aki )

= (−1)ku(bi+n
k )dαk

i + u(bi+n
k )u(bks )α

s
i + u(bi+n

k )αk
s u(asi )

− (−1)i+ndαi+n
k u(aki ) − u(bi+n

s )αs
ku(aki ) − αi+n

s u(ask)u(aki ).
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The term u(bi+n
k )αk

s u(asi ) cancels out, and we may also use the formulas:

(−1)i+ndu(bi+n
k ) + u(bi+n

s )u(bsk) = 0,

(−1)sdu(asi ) + u(ask)u(aki ) = 0,

and we find that:

Xi+n
i = (−1)ku(bi+n

k )dαk
i − (−1)i+ndu(bi+n

s )αs
i − (−1)i+ndαi+n

k u(aki ) + (−1)sαi+n
s du(asi )

= (−1)i+n−1(du(bi+n
s )αs

i + (−1)k−i−n+1u(bi+n
k )dαk

i )

+ (−1)i+n−1(dαi+n
k u(aki ) + (−1)k−i−n+1αi+n

k du(aki )).

Applying the Leibniz rule, we finally find out that

Xi+n
i = −(−1)i+nd(u(bi+n

k )αk
i + αi+n

k u(aki )).

We substitute this in (∗3) and we find:
u(h)i+n

i = u(bi+n
k f ki − f i+n

k aki ) + (−1)i+nd(gi+n
i − u(bi+n

k )αk
i − αi+n

k u(aki )) (∗4)
Using that u is quasi-fully faithful, we deduce that

hi+n
i = (−1)i+ndφi+n

i + bi+n
k f ki − f i+n

k aki , (∗5)
for some φi+n

i . We apply u to the above equation and compare the result with (∗4). We find:

du(φi+n
i ) = d(gi+n

i − (u(bi+n
k )αk

i + αi+n
k u(aki ))).

Using again that u is quasi-fully faithful, we find xi+n
i such that dxi+n

i = 0 and

u(φi+n
i − xi+n

i ) = gi+n
i − ((−1)i+ndαi+n

i + u(bi+n
k )αk

i + αi+n
k u(aki )),

for a suitable αi+n
i . Finally, by setting f i+n

i = φi+n
i − xi+n

i and observing that dφi+n
i =

d f i+n
i , we finally deduce from (∗5) and the above equation that:

hi+n
i = (−1)i+nd f i+n

i + bi+n
k f ki − f i+n

k aki ,

u( f i+n
i ) = gi+n

i − ((−1)i+ndαi+n
i + u(bi+n

k )αk
i + αi+n

k u(aki )).

The induction is now complete. ��
Proposition 2.19 Let u : A → B be a quasi-equivalence. Then, Tw(u) is also a quasi-
equivalence.

Proof By Lemma 2.18, we already know that Tw(u) is quasi-fully faithful. We need to prove
that

H0(Tw(u)) : H0(Tw(A)) → H0(Tw(B))

is essentially surjective. We will sometimes abuse notation and write u instead of Tw(u).
Let B• = (Bi , b j

i ) ∈ Tw(B). Using that H0(u) is essentially surjective, we may choose an
isomorphism

f0,0 : B0 = B•[0,0] → u(A•
0,0)
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in H0(Tw(A)), where A•
0,0 = A0 is a twisted complex concentrated in degree 0. Consider

the following diagram:

B1[−1] B•[0,1] B•[0,0] B1

u(A1)[−1] u(A•
0,1) u(A•

0,0) u(A1).

f0,0f0,1 (∗)

The idea is: we find an isomorphism B1 → u(A1) in H0(B), for some object A1 ∈ A,
which we view as a twisted complex concentrated in degree 0. Then, wemay find amorphism
u(A•

0,0) → u(A1)whichmakes the rightmost square commutative in H0(Tw(B)).Wealready
know that Tw(u) is quasi-fully faithful, hence we can find a closed degree 0 morphism

A•
0,0 → A1

whose cohomology class maps to u(A•
0,0) → u(A1). The twisted complex A•

0,1 is defined
as

A0 → A1,

and it sits in the “rotated” pretriangle

A1[−1] → A•
0,1 → A•

0,0 → A1,

recall in particular Construction 2.15. In the above diagram (∗) both rows are “rotated” pre-
triangles; the bottom row is obtained by applying u = Tw(u). We may choose a degree
−1 homotopy B•[0,0] → u(A1) detecting the commutativity of the rightmost square in

H0(Tw(B)), and use this to define a morphism

f0,1 : B•[0,1] → u(A•
0,1),

which will be an isomorphism in H0(Tw(B)). In particular, its components ( f0,1)ii are iso-
morphisms in H0(B) (cf. Proposition 2.16). the middle and left squares of (∗) are strictly
commutative. We can iterate this construction and construct a twisted complex A•

0,n concen-
trated in degrees from 0 to n for all n ≥ 0, fitting in a diagram:

Bn[−n] B•[0,n] B•[0,n−1] Bn[−n + 1]

u(An)[−n] u(A•
0,n) u(A•

0,n−1) u(An)[−n + 1].
f0,n−1f0,n

The morphism f0,n is an isomorphism in H0(Tw(B)), and in particular its components
( f0,n)ii are isomorphisms in H0(B); the middle and left squares of the above diagram are
strictly commutative; the morphism u(A•

0,n−1) → u(An)[−n + 1] comes from a closed
degree 0 morphism A•

0,n−1 → An[−n + 1].
Now, again recallingConstruction 2.15, we can define a twisted complex A•

0, concentrated
in nonnegative degrees, such that σ≤n A•

0 = A•
0,n . In a similar fashion, the morphisms f0,n

can be directly used to define a closed degree 0 morphism

f0 : B•≥0 → u(A•
0),

namely f0 = lim←−n
f0,n . By construction, the components ( f0)ii are isomorphisms in H0(B),

hence it is an isomorphism in H0(Tw(B)) (Proposition 2.16).

123



18 Page 38 of 51 F. Genovese

Next, we use a similar iterative argument in order to construct a family of twisted com-
plexes A•−n , concentrated in degrees ≥ −n and fitting in the following diagram:

B−n[n − 1] B•≥−n+1 B•≥−n B−n[n]

u(A−n)[n − 1] u(A•−n+1) u(A•−n) u(A−n)[n].
f−n+1 f−n

The middle and right squares of the above diagram are strictly commutative, the leftmost
square is commutative in H0(Tw(B)). The vertical arrows are isomorphisms in H0(Tw(B)).
we may then define a twisted complex A• ∈ Tw(A) such that σ≥−n A• = A•−n (again, see
Construction 2.15). Hence, we may define a morphism

f : B• → u(A•),

such that f = lim−→n
f−n , and in particular the components f ii of f are isomorphisms in

H0(Tw(B)). By Proposition 2.16 we conclude that f is an isomorphism, and this finished
the proof. ��
Remark 2.20 It is clear that Lemma 2.18 and Proposition 2.19 are still true if we replace
Tw(−) with Tw+(−) or Tw−(−).

2.5 Products, coproducts and pretriangulated structure on twisted complexes

If A has finite direct sums, we can also form mapping cones of closed degree 0 morphisms
of twisted complexes:

Proposition 2.21 Let A be a dg-category which has strict finite direct sums (including zero
objects). Then, the dg-category Tw(A) is strongly pretriangulated.

Proof The dg-category Tw(A) is always closed under shifts. Cones and pretriangles are
described in Lemma 2.13, and they always exist thanks to the fact that A has strict finite
direct sums. ��
The dg-category Tw(A) is most interesting when A has finite direct sums (including zero
objects) and is also concentrated in nonpositive degrees. We can also require these properties
to hold cohomologically, namely:

• A is such that H0(A) is additive.
• A is cohomologically concentrated in nonpositive degrees.

Lemma 2.22 Let A be a dg-category such that H0(A) is additive and A is cohomologically
concentrated in nonpositive degrees. Then, there is a dg-category A′ strictly concentrated
in nonpositive degrees and having strict finite direct sums and zero objects, and a chain of
quasi-equivalences:

A′ ≈←− A′′ ≈−→ A,

for a suitable dg-category A′′. In particular, applying Proposition 2.19, we obtain a chain of
quasi-equivalences:

Tw(A′) ≈←− Tw(A′′) ≈−→ Tw(A), (2.30)
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Proof We take A′′ = τ≤0A, which is now strictly concentrated in nonpositive degrees. The
natural dg-functor

A′′ → A

is a quasi-equivalence. Then, we takeA′ = (A′′)⊕, namely, the closure ofA′ under strict finite
direct sums and strict zero objects. A′′ is still strictly concentrated in nonpositive degrees
(Lemma 1.16). There is an inclusion dg-functor

A′ → A′′

which is a quasi-equivalence, since H0(A′′) is additive (Lemma 1.7). ��
Corollary 2.23 LetA be a dg-category such that H0(A) is additive andA is cohomologically
concentrated in nonpositive degrees. Then, Tw(A) is a pretriangulated dg-category.

Proof Directly applying the above Lemma 2.22, we find a quasi-equivalence Tw(A) ∼=
Tw(A′), where A′ is strictly concentrated in nonpositive degrees and has strict finite direct
sums and zero objects. We know from Proposition 2.21 that Tw(A′) is strongly pretriangu-
lated. Hence, Tw(A) is pretriangulated. ��
Thanks to the above Lemma 2.22, we can work, without loss of generality, with twisted
complexes Tw(A) on a dg-category A which is strictly concentrated in nonpositive degrees
and has strict finite direct sums and zero objects.

If A has strict direct sums or products, then it is immediate to show that the same holds
for Tw(A):

Lemma 2.24 LetA be a dg-category strictly concentrated in nonpositive degrees and let κ be
a regular cardinal. Assume that A has strict direct sums (respectively, strict direct products)
indexed by sets of cardinality ≤ κ . Then, the same is true for Tw(A).

Proof Let us deal first with direct sums. Let {A•
s : s ∈ I } be a family of twisted complexes,

where we write A•
s = (Ai

s, (as)
j
i ). We claim that

⊕
s∈I A•

s = A• = (Ai , a j
i ) is described

termwise:

Ai =
⊕
s∈I

Ai
s,

a j
i =

⊕
s∈I

(as)
j
i .

To check that A• is a well-defined twisted complex and indeed the direct sum of the A•
s is

straightforward.
The case of direct products is completely analogous. ��
Having dealt with strict direct sums, products and cones, and using that taking twisted

complexesTw(−) preserves quasi-equivalences,wemayfinally prove cohomological closure
of twisted complexes under such constructions.

Proposition 2.25 Let A be a dg-category, and let κ be a regular cardinal. We assume that:

• A is cohomologically concentrated in nonpositive degrees.
• H0(A) is additive.
• The graded cohomology H∗(A) has direct sums (and/or direct products) indexed by sets

of cardinality ≤ κ .
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Then:

• Tw(A) is a pretriangulated dg-category.
• H∗(Tw(A)) has direct sums (and/or direct products) indexed by sets of cardinality ≤ κ .

Proof The fact that Tw(A) is pretriangulated has been already proven in Corollary 2.23.
Next, assume that H∗(A) has direct sums and/or direct product as in the hypothesis. In the

case of direct sums, wemay use Lemma 1.8 and replaceAwith the quasi-equivalent τ≤0(A�),
so that Tw(A) will be quasi-equivalent to Tw(A�) = Tw(τ≤0(A�)). From Lemma 1.17 we
know that τ≤0(A�) has strict direct sums, hence we may apply the above Lemma 2.24 and
see that Tw(A�) has strict direct sums. We conclude that H∗(Tw(A)) ∼= H∗(Tw(A�)) has
direct sums, as we claimed.

The case of direct products is dealt with similarly, by replacingAwith the quasi-equivalent
A�. ��

Remark 2.26 Clearly, Proposition 2.21 and the first part of Proposition 2.25 can be directly
adapted to twisted complexes bounded from above or below. Namely, Tw+(A) and Tw−(A)

are (respectively) strongly pretriangulated or pretriangulated, under the suitable (respectively)
strict or cohomological assumptions on A.

3 t-structures on twisted complexes

We will now deal with t-structure and co-t-structures on the category of twisted complexes.
We shall fix once and for all a dg-category A which is cohomologically concentrated in
nonpositive degrees and such that H0(A) is additive. We know from Corollary 2.23 that
Tw(A) is a pretriangulated dg-category. Thanks to Lemma 2.22, we will be able to assume
thatA is strictly concentrated in nonpositive degrees and has strict finite direct sums and zero
objects; in particular, Tw(A)will be a strongly pretriangulated dg-category (Proposition2.21).

3.1 The co-t-structure on Tw(A)

Unbounded twisted complexes always come with a “canonical” co-t-structure given by the
brutal truncations of twisted complexes.

Proposition 3.1 For n ∈ Z, we define σ≤n Tw(A) and σ≥n Tw(A) as the full dg-subcategories
of Tw(A) respectively spanned by twisted complexes X• such that Xi = 0 for i > n:

· · · → Xn−1 → Xn → 0 → · · · ,

and by twisted complexes X• such that Xi = 0 for i < n:

· · · → 0 → Xn → Xn+1 → · · · .

Next, we define Tw(A)w≤n and Tw(A)w≥n respectively as the closures of σ≤n Tw(A) and
σ≥n Tw(A) under isomorphisms in H0(Tw(A)). Then, the pair (Tw(A)w≥0,Tw(A)w≤0) is a
co-t-structure on Tw(A), which we will call the canonical co-t-structure. The intersection
Tw(A)w≥0 ∩ Tw(A)w≤0 is quasi-equivalent to A.

Proof We need to do the following:
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(1) First, we prove that Tw(A)w≤n is closed under positive shifts and that Tw(A)w≥n is closed
under negative shifts. Then, we check that both Tw(A)w≤n and Tw(A)w≥n are closed under
extensions, finite direct sums and direct summands in H0(Tw(A)).

(2) If X• ∈ Tw(A)w≥0 and Y • ∈ Tw(A)w≤−1, we prove that

H0(Tw(A))(X•, Y •) ∼= 0.

(3) If X• ∈ Tw(A), we prove the existence of a distinguished triangle

σ≥0X
• → X• → σ≤−1X

•

in H0(Tw(A)), where σ≥0X• ∈ Tw(A)w≥0 and σ≤−1X• ∈ Tw(A)w≤−1.

We may assume that A is strictly concentrated in nonpositive degrees and has strict finite
direct sums and zero objects, so that Tw(A) is strongly pretriangulated (Lemma 2.22 and
Proposition 2.21).

Step (1). Direct sums in Tw(A) are defined termwise, and mapping cones are described
in Proposition 2.21. Hence, the only slightly nontrivial claim to prove is closure of Tw(A)w≤n
and Tw(A)w≥n under direct summands.We assume n = 0 for simplicity, and we first deal with
Tw(A)w≤0. Let X

• ∈ Tw(A)w≤0 such that X
• ∼= X•

1 ⊕ X•
2 in H0(Tw(A)). Up to isomorphism

in that homotopy category, we may assume that X• is strictly concentrated in nonnegative
degrees, and that X•

1 ⊕ X•
2 is a strict direct sum in Tw(A). We immediately see that Xi

1
∼= 0

and Xi
2

∼= 0 in H0(A) for all i > 0. Then, consider the natural projections

X•
k → σ≤0X

•
k , k = 1, 2,

described in (2.19). Thanks to the characterization of isomorphisms of twisted com-
plexes (Proposition 2.16), we immediately see that those projections are isomorphisms in
H0(Tw(A)). We conclude that X•

1 and X•
2 lie in Tw(A)w≤0, as we claimed. The analogous

result for Tw(A)w≥0 is dealt with analogously, using the inclusions σ≥0X•
k → X•

k described
in (2.17) when needed.

Step (2). Clearly, we may assume that X• ∈ σ≥0 Tw(A) and Y • ∈ σ≤−1 Tw(A). Then,
from the very definition of the morphisms in Tw(A), it is clear that there are no nonzero
degree 0 morphisms X• → Y •. In particular, H0(Tw(A))(X•, Y •) ∼= 0.

Step (3). The existence of the distinguished triangle

σ≥0X
• → X• → σ≤−1X

•

with the desired properties follows directly from the pretriangle (2.27) (cf. Proposition 2.14).
Finally, the intersection Tw(A)w≥0∩Tw(A)w≤0 consists, up to isomorphism in H0(Tw(A)),

of the twisted complexes concentrated in degree 0. Recalling Remark 2.4, this is quasi-
equivalent to A. ��

3.2 T-structures on Tw+(A) or Tw−(A)

If the dg-categoryA has suitable properties, we know from [11] that twisted complexes which
are bounded from above or below (cf. Definition 2.6) are endowed with t-structures.

Definition 3.2 (See also [11, §5.1]) Let A be a dg-category. We say that A is a dg-category
of derived projectives if:

• A is cohomologically concentrated in nonpositive degrees, and H0(A) is additive.
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• H0(A) is right coherent, namely, the category mod(H0(A)) of finitely presented right
H0(A)-modules is an abelian subcategory of Mod(H0(A)).

• For any A ∈ A and for any k ∈ Z, the right H0(A)-module Hk(A(−, A)) is finitely
presented (namely, it lies in mod(H0(A))).

• H0(A) is idempotent complete.

Dually, we say that A is a dg-category of derived injectives if Aop is a dg-category of
derived projectives.

The above terminology comes from the fact that, ifA is a dg-category of derived projectives,
then Tw−(A) has a t-structure with enough derived projectives, and its derived projectives
are quasi-equivalent to A (cf. [11, Theorem 7.1]). Dually, if A is a dg-category of derived
injectives, then Tw+(A) has a t-structure with enough derived injectives, and its derived
injectives are quasi-equivalent to A. The reader can find more informations on the definition
and properties of derived projectives or injectives in Appendix A; our main results will not
directly involve such notions.

The facts that we mentioned in the above discussion can be made a bit more precise:

Proposition 3.3 Let A be a dg-category of derived projectives. Then, the pretriangulated
dg-category Tw−(A) has a non-degenerate t-structure (Tw−(A)≤0,Tw−(A)≥0) such that

Tw−(A)≤0 = Tw(A)w≤0,

where Tw(A)w≤0 is the co-aisle of the canonical co-t-structure on Tw(A) discussed in Propo-

sition 3.1. The heart of such t-structure is equivalent to mod(H0(A)).
Dually, letA be a dg-category of derived injectives. Then, the pretriangulated dg-category

Tw+(A) has a non-degenerate t-structure (Tw+(A)≤0,Tw+(A)≥0) such that

Tw+(A)≥0 = Tw(A)w≥0,

where Tw(A)w≥0 is the co-aisle of the canonical co-t-structure on Tw(A) discussed in Propo-

sition 3.1. The heart of such t-structure is equivalent to mod(H0(Aop))
op
.

Proof We need to check only the first assertion, the other one being dual. The existence of a
t-structure on Tw−(A) follows from [11, Theorem 5.9]. The equality Tw−(A)≤0 = Tw(A)w≤0
is actually proven in [11, Lemma 5.12] and [11, Proposition 5.17]. ��

3.3 Extending t-structures to unbounded twisted complexes

Ourmain result dealswith extending the t-structure onTw−(A) (or dually Tw+(A)) described
in Proposition 3.3 to a t-structure on the dg-category of unbounded twisted complexes Tw(A).
The canonical co-t-structure on Tw(A) will be left adjacent (or dually right adjacent) to this
“extended” t-structure on Tw(A).

Remark 3.4 When viewing Tw−(A) and Tw+(A) as full dg-subcategories of Tw(A), we will
abuse notation and identify them with their closures under isomorphisms in H0(Tw(A)).

Theorem 3.5 Let A be a dg-category of derived projectives, and assume that τ≤0 Tw(A)w≤0
is closed under sequential homotopy limits as a dg-category concentrated in nonpositive
degrees, in the sense that, for any sequence (X•

n+1 → X•
n)n≥0 of closed degree 0 morphisms

in τ≤0 Tw(A)w≤0, there is an object holim←−n
X•
n in τ≤0 Tw(A)w≤0 together with an isomorphism

τ≤0 Tw(A)w≤0(−, holim←−
n

X•
n)

∼−→ τ≤0holim←−
n

τ≤0 Tw(A)w≤0(−, X•
n) (3.1)

123



T-structures on unbounded twisted complexes Page 43 of 51 18

in D(τ≤0 Tw(A)w≤0). Then, there is a unique t-structure (Tw(A)
proj
≤0 ,Tw(A)

proj
≥0 ) on Tw(A),

called the projective t-structure, such that

Tw(A)
proj
≤0 = Tw−(A)≤0 = Tw(A)w≤0

and the inclusion Tw−(A) ↪→ Tw(A) is t-exact. The heart of such t-structure is equivalent
to mod(H0(A)).

Dually, let A be a dg-category of derived injectives, and assume that τ≤0 Tw(A)w≥0 is
closed under sequential homotopy colimits as a dg-category concentrated in nonpositive
degrees, in the sense that, for any sequence (X•

n → X•
n+1)n≥0 of closed degree 0 morphisms

in τ≤0 Tw(A)w≥0, there is an object holim−→n
X•
n in τ≤0 Tw(A)w≥0 together with an isomorphism

τ≤0 Tw(A)w≥0(holim−→
n

X•
n,−)

∼−→ τ≤0holim←−
n

τ≤0 Tw(A)w≥0(X
•
n,−) (3.2)

in D(τ≤0(Tw(A)w≥0)
op). Then, there is a unique t-structure (Tw(A)

inj
≤0,Tw(A)

inj
≥0) on Tw(A),

called the injective t-structure, such that

Tw(A)
inj
≥0 = Tw+(A)≥0 = Tw(A)w≥0

and the inclusion Tw+(A) ↪→ Tw(A) is t-exact. The heart of such t-structure is equivalent
to mod(H0(Aop))

op
.

Proof We show the first claim, the other one being dual. Using Proposition 1.20, we will
obtain the desired t-structure once we show that the inclusion

H0(Tw−(A)≤0) ↪→ H0(Tw(A))

has a right adjoint τ≤0. More practically, for a given X• ∈ Tw(A), we want to find an object
τ≤0X• ∈ Tw−(A)≤0 and an isomorphism

τ≤0 Tw(A)(−, τ≤0X
•) ∼= τ≤0 Tw(A)(−, X•)

in the derived category D(τ≤0 Tw−(A)≤0).
The idea is to approximate X• with a sequence of twisted complexes in Tw−(A), then use

the left truncation in Tw−(A). More precisely, we may apply Corollary 2.11 and write

X• ∼= holim←−
k

(σ≤k X)•.

Then, (σ≤k X)• ∈ Tw−(A) for all k ≥ 0 and we may apply the left truncation τ≤0 of the t-
structure on Tw−(A) described in Proposition 3.3. Using the existence of homotopy colimits
in τ≤0 Tw−(A)≤0, we may define:

τ≤0X
• = holim←−

k

τ≤0(σ≤k X)•.

Then, we have isomorphisms in D(τ≤0 Tw−(A)≤0):

τ≤0 Tw(A)(−, τ≤0X
•) ∼= τ≤0holim←−

k

τ≤0 Tw
−(A)(−, τ≤0σ≤k X

•) (cf. (3.1))

∼= τ≤0holim←−
k

τ≤0 Tw
−(A)(−, σ≤k X

•) (cf. Lemma 1.19)

∼= τ≤0holim←−
k

Tw−(A)(−, σ≤k X
•) (cf. Lemma 3.6 below)

∼= τ≤0 Tw(A)(−, X•). (cf. Corollary 2.11)
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The second isomorphism above actually involves a comparison between homotopy limits. To
explain this in detail, we first notice that we have commutative diagrams in H0(τ≤0 Tw−(A))

for k ≥ 0:

τ≤0σ≤k+1X• σ≤k+1X•

τ≤0σ≤k X• σ≤k X•,

which, thanks to the (suitably restricted) derived Yoneda embedding, induce commutative
diagrams in D(τ≤0 Tw−(A)≤0):

τ≤0 Tw−(A)(−, τ≤0σ≤k+1X•) τ≤0 Tw−(A)(−, σ≤k+1X•)

τ≤0 Tw−(A)(−, τ≤0σ≤k X•) τ≤0 Tw−(A)(−, σ≤k X•),

∼

∼

where the horizontal arrows are isomorphisms.Hence,we obtain a (non unique) isomorphism
in D(τ≤0 Tw−(A)≤0) between the homotopy limits:

holim←−
k

τ≤0 Tw
−(A)(−, τ≤0σ≤k X

•) ∼−→ holim←−
k

τ≤0 Tw
−(A)(−, σ≤k X

•).

This projective t-structure on Tw(A) is uniquely determined by the left aisle Tw(A)
proj
≤0 :

the right aisle Tw(A)
proj
≥0 is obtained as the suitable orthogonal.

Next, we show that the inclusion Tw−(A) ↪→ Tw(A) is t-exact. Since Tw−(A)≤0 =
Tw(A)

proj
≤0 by construction, we only need to show the inclusion Tw−(A)≥0 ⊆ Tw(A)

proj
≥0 .

This is immediate: if X• ∈ Tw−(A)≥0, we have

H0(Tw(A))(Y •, X•) = 0

for any Y ∈ Tw−(A)≤−1 = Tw(A)
proj
≤−1. In turn, this implies that X• ∈ Tw(A)

proj
≥0 .

To conclude, we show that Tw−(A) ↪→ Tw(A) restricts to the identity on the hearts.
Indeed, we have an equality

Tw−(A)≤0 ∩ Tw−(A)≥0 = Tw(A)
proj
≤0 ∩ Tw(A)

proj
≥0

of full dg-subcategories of Tw(A). The inclusion ⊆ is clear. On the other hand, if X• ∈
Tw(A)

proj
≤0 ∩ Tw(A)

proj
≥0 , we have that X

• ∈ Tw−(A)≤0 and that for any Y • ∈ Tw(A)
proj
≤−1 =

Tw−(A)≤−1:

H0(Tw(A))(Y •, X•) = 0.

In particular, X• ∈ Tw−(A)≥0. ��
Here is the technical lemma we used in the above proof:

Lemma 3.6 Let A = τ≤0A be a dg-category strictly concentrated in nonpositive degrees,
and let (Mn+1 → Mn)n≥0 be a sequence of closed degree 0 morphisms of of right A -dg-
modules. Taking smart truncations, we have an induced sequence (τ≤0Mn+1 → τ≤0Mn)n≥0

of closed degree 0morphisms of rightA -dg-modules. The natural morphisms τ≤0Mn → Mn

induce an isomorphism

τ≤0holim←−
n

τ≤0Mn → τ≤0holim←−
n

Mn
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in D(A ).

Proof Wehave amorphismholim←−n
τ≤0Mn → holim←−n

Mn inD(A )which fits in the following
morphism of distinguished triangles:

holim←−n
τ≤0Mn

∏
n≥0 τ≤0Mn

∏
n≥0 τ≤0Mn

holim←−n
Mn

∏
n≥0 Mn

∏
n≥0 Mn .

1−ν

1−ν

Now, applying the five lemma to the induced diagram in cohomology we conclude that

H−k(holim←−
n

τ≤0Mn) → H−k(holim←−
n

Mn)

is an isomorphism for k ≥ 0. This implies our claim. ��
We now discuss some examples where the above Theorem 3.5 can be applied. The main

technical hurdle will usually be the closure under sequential homotopy limits or colimits.

Example 3.7 Let A be a dg-category of derived projectives such that H∗(A) has countable
direct products. Hence, H0(Tw(A)) has countable direct products (Proposition 2.25) and we
can prove that τ≤0 Tw(A)w≤0 is closed under sequential homotopy limits as a dg-category
concentrated in nonpositive degrees as in (3.1), concluding that Theorem 3.5 is applicable
and Tw(A) can be endowed with the projective t-structure.

To check this, we argue as follows. First, using Lemma 1.8, Lemma 1.17 and the fact that
Tw(−) preserves quasi-equivalences (Proposition 2.19), we may assume that A is strictly
concentrated in nonpositive degrees and has strict countable products. Now, let (X•

n+1 →
X•
n)n≥0 be a sequence of closed degree 0 morphisms in Tw−(A)≤0 = Tw(A)w≤0. Without

loss of generality, we may assume that the X•
n are all strictly concentrated in nonpositive

degrees. The homotopy limit of this sequence fits in the following (rotated) pretriangle:

holim←−
n

X•
n →

∏
n≥0

X•
n

1−ν−−→
∏
n≥0

X•
n .

The direct product
∏

n≥0 X
•
n is described termwise and it lies in Tw(A)w≤0 = Tw−(A)≤0,

hence we see that holim←−n
X•
n lies in Tw−(A). We may use the t-structure on Tw−(A) and

take the truncation τ≤0holim←−n
X•
n . We claim that this objects comes with an isomorphism

τ≤0 Tw(A)w≤0(−, τ≤0holim←−
n

X•
n)

∼= τ≤0holim←−
n

τ≤0 Tw(A)w≤0(−, X•
n)

in the derived category, satisfying (3.1), as desired. Indeed, we have isomorphisms in the
derived category:

τ≤0 Tw
−(A)≤0(−, τ≤0holim←−

n

X•
n)

∼= τ≤0 Tw
−(A)≤0(−, holim←−

n

X•
n) (cf. Lemma 1.19)

∼= τ≤0holim←−
n

Tw−(A)≤0(−, X•
n)

∼= τ≤0holim←−
n

τ≤0 Tw
−(A)≤0(−, X•

n). (cf. Lemma 3.6)

Clearly, we can dualize the above discussion and prove that, if A is a derived category of
derived injectives such that H∗(A) has countable under sums, Theorem 3.5 is applicable and
Tw(A) is endowed with the injective t-structure.
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Example 3.8 Let A be a pretriangulated dg-category endowed with a “Grothendieck-like”
t-structure as in [12, Setup 3.1.1]. In particular:

• The t-structure (A≤0,A≥0) is non-degenerate.
• H0(A ) is well-generated, has arbitrary direct sums and products (cf. [25, Proposition

8.4.6]) and the cohomology H0
t : H0(A ) → H0(A )♥ preserves direct sums.

• The heart H0(A )♥ is a Grothendieck abelian category andA has enough derived injec-
tives.

Thanks to the “reconstruction theorem” [11, Theorem 1.3], we have a t-exact quasi-
equivalence

A + ∼= Tw+(J),

where J is the full dg-subcategory of A spanned by the derived injective objects. J is a
dg-category of derived injectives (cf. [11, Lemma 6.10]), and Tw+(J) is endowed with the
t-structure described in Proposition 3.3.

We now prove that τ≤0 Tw(J)w≥0 is closed under sequential homotopy colimits as a dg-
category concentrated in nonpositive degrees, so that Theorem 3.5 is applicable and Tw(J)
is endowed with the injective t-structure.

To do so, let (X•
n → X•

n+1)n≥0 be a sequence of closed degree 0 morphisms in
τ≤0 Tw (J)w≥0 = τ≤0 Tw+(J)≥0. By our assumptions (in particular: cocompleteness of
H0(A ), non-degeneracy and the fact that H0

t (−) preserves direct sums), we know that the
direct sum ⊕n≥0X•

n exists in Tw+(J) and lies in Tw+(J)≥0. We consider the distinguished
triangle

⊕
n≥0

X•
n

1−μ−−→
⊕
n≥0

X•
n → holim−→

n

X•
n .

inTw+(J). Taking the right truncation τ≥0holim−→n
X•
n and arguing as in the aboveExample 3.7,

we can find an isomorphism

τ≤0 Tw (A)w≥0

(
τ≥0holim−→

n

X•
n,−

)
∼−→ τ≤0holim←−

n

τ≤0 Tw (A)w≥0(X
•
n,−)

in the derived category, hence satisfying (3.2) as we wanted.

Remark 3.9 In the above Example 3.8, we can take A = Ddg(G) to be the derived dg-
category of a Grothendieck abelian category G, endowed with the natural t-structure. Then,
it is not difficult to see that the dg-category of derived injectives of Ddg(G) coincides with
the (linear) category Inj(G) of injective objects in G.

A direct inspection shows that Tw(Inj(G)) is just the dg-category Chdg(Inj(G)) of com-
plexes of injective objects, and H0(Chdg(Inj(G))) can be identified with the homotopy

category of injectives K(Inj(G)). This is also called the unseparated derived category Ď(G)

of G, cf. [23, C.5.8]. The injective t-structure is such that

Chdg(Inj(G))
inj
≥0

∼= Ddg(G)≥0.
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Appendix A: Derived projectives/injectives and adjacent co-t-structures

In this appendix, we discuss the notions of derived projectives and injectives in triangulated
categories endowed with a t-structure, and we prove (Theorem A.6) that they are strictly
related to adjacent co-t-structures (see Definition 1.22). This result is not original, but is
instead a reinterpretation of known facts in silting and cosilting theory, which we outline in
Remark A.10.

Derived projectives and derived injectives generalize ordinary projective and injective
objects in abelian categories to the framework of t-structures.We shall define them essentially
following [31, §5.1]. Analogous notions have appeared in literature, for example injective
objects in stable ∞-categories (cf. [23, §C.5.7]) or Ext-projectives (cf. [4]).

Definition A.1 Let T be a triangulated category endowed with a t-structure (T≤0,T≥0),
and let P ∈ Proj(T♥) be a projective object in the heart T ♥ = T≤0 ∩ T≥0. The derived
projective associated to P is an object S(P) which represents the cohomological functor
T ♥(P, H0(−)) : T → Mod(k), namely:

T ♥(P, H0(−)) ∼= T (S(P),−).

Clearly, if S(P) exists, it is uniquely determined by P up to isomorphism.
An object Q ∈ T will be called derived projective if there is a projective P ∈ Proj(T ♥)

such that Q ∼= S(P). We will denote by DGProj(T ) the full subcategory of T spanned by
the derived projectives.

If for any P ∈ Proj(T ♥) an object S(P) as above exists, we say that T has derived
projectives. Moreover, ifT has derived projectives and the heartT ♥ has enough projectives,
we say that T has enough derived projectives.

Remark A.2 Derived injectives are defined as derived projectives in the opposite triangulated
category T op endowed with the opposite t-structure. For simplicity, we will concentrate on
derived projectives, but everything can be dualized to derived injectives in the straightforward
way.

We list some basic properties of derived projectives:
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Proposition A.3 (cf. [12, Proposition 2.3.3]) Let T be a triangulated category with a t-
structure (T≤0,T≥0), and let P ∈ Proj(T ♥) be a projective object in the heart. Assume that
the derived projective S(P) associated to P exists. Then:

(1) S(P) ∈ T≤0.
(2) H0(S(P)) ∼= P.
(3) The functor H0 : T → T ♥ induces an isomorphism

H0 : T (S(P), A)
∼−→ T ♥(P, H0(A)),

for all A ∈ T .

We already mentioned above that derived projectives are essentially the same concept as
Ext-projectives (cf. [4, §1] for the definition). This is made clearer by the following result:

Proposition A.4 (cf. [12, Proposition 2.3.5]) Let T be a triangulated category with a t-
structure, and let Q ∈ T be an object. The following are equivalent:

(1) Q is a derived projective.
(2) Q ∈ T≤0 and for any Z ∈ T≤0 we have

T (Q, Z [1]) ∼= 0. (A.1)

We will be interested in triangulated categoriesT endowed with a t-structure (T≤0,T≥0)

and a left adjacent co-t-structure (T w≥0,T
w≤0 = T≤0) (cf. Definition 1.22). We recall that the

co-heart of the co-t-structure (T w≥0,T
w≤0) is the intersection T w≥0 ∩ T w≤0. As an immediate

corollary of the above Proposition A.4, we can prove:

Corollary A.5 Let T be a triangulated category with a t-structure (T≤0,T≥0) and a left
adjacent co-t-structure (T w≥0,T

w≤0 = T≤0). Let Q ∈ T w≥0∩T w≤0 be an object in the co-heart.

Then, Q is a derived projective object. More precisely, H0(Q) is a projective object in T ♥
and Q ∼= S(H0(Q)).

Under reasonable assumptions on T , the presence of a left adjacent co-t-structure actu-
ally implies that the t-structure has enough derived projectives, and the derived projectives
coincide with the co-heart.

Theorem A.6 LetT be a triangulated categorywith a non-degenerate t-structure (T≤0,T≥0)

which admits a left adjacent co-t-structure (T w≥0,T
w≤0), such that the co-heart T

w≥0 ∩T w≤0 is
idempotent complete. Then, T has enough derived projectives, and the derived projectives
coincide with the co-heart:

DGProj(T ) = T w≥0 ∩ T w≤0.

The proof of Theorem A.6 is based on the following two lemmas:

Lemma A.7 Let T be a triangulated category with a t-structure (T≤0,T≥0) and a left adja-
cent co-t-structure (T w≥0,T

w≤0). Let A ∈ T ♥, and consider a non-functorial distinguished
triangle

σ≥0A → A → σ≤−1A

obtained from the co-t-structure onT , where σ≥0A ∈ T w≥0 and σ≤−1A ∈ T w≤−1. Then, σ≥0A
lies in the co-heart T w≥0 ∩ T w≤0, and the morphism σ≥0A → A induces an epimorphism

H0(σ≥0A) → A.

In particular, σ≥0A is a derived projective object and T ♥ has enough projectives.

123



T-structures on unbounded twisted complexes Page 49 of 51 18

Proof To prove that σ≥0A ∈ T w≤0 = T≤0, we fix Z ∈ T≥1 and we check thatT (σ≥0A, Z) =
0. We have an exact sequence:

T (A, Z) → T (σ≥0A, Z) → T ((σ≤−1A)[−1], Z).

Since A ∈ T ♥, we know thatT (A, Z) = 0. Moreover, (σ≤−1A)[−1] ∈ T w≤0 = T≤0, hence
T ((σ≤−1A)[−1], Z) = 0. By exactness we conclude that T (σ≥0A, Z) = 0, as claimed. ��
Lemma A.8 Let T be a triangulated category with a non degenerate t-structure (T≤0,T≥0)

and a left adjacent co-t-structure (T w≥0,T
w≤0). Let P ∈ Proj(T ♥). Assume that the co-

heart T w≥0 ∩ T w≤0 is idempotent complete. Then, there exists S(P) ∈ T w≥0 ∩ T w≤0 such that

H0(S(P)) ∼= P.

Proof Let P ∈ Proj(T ♥). We consider a (non-functorial) distinguished triangle given by the
co-t-structure (T w≥0,T

w≤0):

σ≥0P → P → σ≤−1P.

FromLemmaA.7we know that σ≥0P ∈ T w≥0∩T w≤0 and H
0(σ≥0P) → P is an epimorphism.

Since P is projective, it has a section P → H0(σ≥0P). From this, we obtain an idempotent
e : H0(σ≥0P) → H0(σ≥0P) such that P = ker(e). Since σ≥0P = S(H0(σ≥0P)) is derived
projective (Corollary A.5), we may uniquely lift e to an idempotent

ẽ : σ≥0P → σ≥0P

such that H0(ẽ) = e. Since the co-heart T w≥0 ∩ T w≤0 is idempotent complete, ẽ has a kernel
which is a direct summand of σ≥0P .

We now set

S(P) = ker(ẽ).

Being a direct summand of σ≥0P , which lies in the co-heart (which is closed under finite
direct sums and summands in T ), we have that S(P) ∈ T w≥0 ∩ T w≤0. The idempotent ẽ can
be viewed as a projection map(

0 0
0 1

) : S(P) ⊕ Q → S(P) ⊕ Q,

where Q is the complement of S(P): S(P)⊕Q ∼= σ≥0P . From this, we see that the (additive)
functor H0 preserves the kernel of ẽ, and finally we obtain H0(S(P)) ∼= P . ��
Proof of Theorem A.6 From Lemma A.7 we know that T ♥ has enough projectives, and from
Lemma A.8 we easily see that T has derived projectives. Indeed, from Corollary A.5 we
know that S(P) is derived projective, and for any X ∈ T , we have isomorphisms:

T (S(P), X)
∼−→ T ♥(H0(S(P)), H0(X))

∼−→ T ♥(P, H0(X)),

natural in X ∈ T . Hence, T has enough derived projectives.
From Corollary A.5, we already know that T w≥0 ∩ T w≤0 ⊆ DGProj(T ). To see the other

inclusion, let Q ∈ DGProj(T ) be a derived projective. Thanks to Lemma A.8 and the
previous part of the proof, we can find an object S(H0(Q)) in the co-heart T w≥0 ∩ T w≤0

which is the derived projective associated to the projective object H0(Q). By uniqueness, we
conclude that Q ∼= S(H0(Q)) indeed lies in the co-heart T w≥0 ∩ T w≤0, for it is closed under
isomorphisms in T . ��
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Remark A.9 The“reconstruction theorem” [11,Theorem7.2], combinedwithProposition3.3,
can be viewed as a (partial) converse to the above Theorem A.6.

Remark A.10 Asmentioned at the beginning of this appendix, TheoremA.6 rephrases known
results in silting and cosilting theory, which we now outline.

A recent survey of silting theory is [2]. A definition of silting objects can be found in [1,
Definition 2.1]. We also refer to [30, §4]; there, the relation of silting/cosilting objects to
Ext-projectivity and Ext-injectivity is explored, and it shown that the t-structure cohomology
turns silting/cosilting objects into projective/injective objects in the heart.

In [28, §3, §4] it is explained how co-hearts relate to injective and projective objects in
the heart of the given t-structure and to silting/cosilting classes.

[3] contains an in-depth study of adjacent co-t-structures in relation to silting; we refer to
[21] for the case of cosilting.

We end by mentioning some further references relating to Theorem A.6: [13, Theorem
1.3], [5, Chapter III, Theorem 3.4], [14, Proposition 4.8]. In particular, one can find there
explicit descriptions of the hearts of the t-structures associated to silting objects.
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