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Abstract
We consider differential forms associated to Campana’s geometric orbifolds from a new
perspective, namely, as a qfh-sheaf on the variety underlying the geometric orbifold. This
approach avoids having to choose a covering of the underlying variety, which is one of the
drawbacks of a common way to work with these differential forms.
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1 Introduction

1.1 Motivation

Geometric orbifolds play a central role in Campana’s programme for the birational classifi-
cation of algebraic varieties [2]. They are pairs (X ,�) consisting of a normal variety X and a
WeilQ-divisor of the form � = ∑

i
mi−1
mi

Di with mi ∈ N≥2 ∪ {∞} and with the convention
that ∞−1

∞ = 1. These objects interpolate between projective varieties and logarithmic pairs
in the sense of Iitaka [13, Sect. 11].

As in the case of smooth projective varieties or logarithmic pairs, one of the fundamental
tools to study the geometry of such an object are differential forms on it. Associated to a
geometric orbifold we should have differential forms with logarithmic poles of fractional
order. These differential forms are only well-defined on a covering space of our geometric
orbifold, and this leads to the notion of adapted differentials. This has two disadvantages:

• The definition of adapted differentials requires the choice of a suitably ramified cover.
This choice is not unique, and the properties of the resulting sheaf, such as the dimension
of its space of global sections, depend on the chosen cover.

• These differentials donot formanobject on X a priori, like the sheaf ofKähler differentials
on a projective variety or the sheaf of logarithmic differentials on a logarithmic pair do.

But there is a natural object on X that takes all covers into account at once, namely, the
presheaf on Sch/X described in Construction 28. We show in Theorem 1 that this presheaf
is a qfh-sheaf on Sch/X in the sense of Suslin and Voevodsky. The qfh-topology is recalled
in Sect. 2.4.

1.2 Main result

Tomake the following discussion a bitmore self-contained, let us just say here that an adapted
morphism is a quasi-finite morphism γ : Y → X of normal varieties of the same dimension
such that γ ∗� has integer coefficients, and that on the domain of such a morphism we can
define the sheaf of adapted differential p-forms �

[p]
(X ,�,γ ), which are the kind of differential

forms that we want to consider. See Definition 16.

Theorem 1 Let X be a normal variety over C and let � be a Weil Q-divisor as above. For
every p ∈ N, there exists a presheaf �p

(X ,�) on Sch/X, unique up to isomorphism, with the
following universal property:

(a) For every adapted morphism γ : Y → X there exists a morphism

�
p
(X ,�)(Y ) → �

[p]
(X ,�,γ )(Y ),

and these morphisms are compatible with the pull-back of differential forms.
(b) For every presheaf H on Sch/X satisfying (a), there exists a unique morphism H →

�
p
(X ,�) compatible with the morphisms from (a).

Moreover, the morphisms in (a) are isomorphisms. Furthermore, �
p
(X ,�) is a sheaf with

respect to the qfh-topology on Sch/X.

Remark 2 In particular, we can recover �
[p]
(X ,�,γ ) as the restriction of �

p
(X ,�) to the small

Zariski site on Y , because every dense open subset of the domain of an adapted morphism
induces another adapted morphism.
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Remark 3 Adapted differentials are in particular reflexive (logarithmic) differentials on the
domain of an adapted morphism. Usual reflexive differentials on normal varieties are known
to have qfh-descent, in the sense that Lemma 26 also holds for reflexive differentials [18,
Théorme 2.2.2]. However, reflexive differentials do not form a presheaf on the whole Nor/X ,
because it is not always possible to define a meaningful pull-back, cf. [14, Sect. 1.2] or [15,
Sect. B.1]. Note also that the analogous qfh-descent property is known to fail for usual Kähler
differentials [18, Exemple 2.2.5].

Remark 4 The universal property in Theorem 1 can be conveniently rephrased as a Kan
extension, see Sect. 2.3 and Remark 27.

Being a presheaf means that we can pull back sections along morphisms, and being
a presheaf with transfers means, roughly speaking, that we can more generally pull back
sections along finite correspondences.

Corollary 5 In the setting of Theorem 1, the presheaf �
p
(X ,�) admits a natural structure of

presheaf with transfers.

Proof Follows from Theorem 1 and [4, Proposition 10.5.9]. �	
We refer to [4, Sect. 10] for a more detailed discussion on presheaves with transfers.

1.3 Idea of the proof

Adapted differentials form a Zariski sheaf on the domain of each adapted morphism, see
Definition 16. Taking their global sections gives us a presheaf F on the full subcategory
Adpt(X ,�) ⊆ Sch/X of adapted morphisms, see Lemma 22. This presheaf can be extended
to a presheaf �

p
(X ,�) on Sch/X as a Kan extension, see Construction 28. The universal

property and the description of the sections over adapted morphisms follow directly from the
construction.

We can also express �
p
(X ,�) as the Kan extension of G to Sch/X , where G is the Kan

extension of F to the category Nor/X of integral normal schemes over X , cf. Sect. 2.3. By
[22, Lemma 6.4], it suffices to show that G satisfies the following properties:

(i) The presheaf G restricts to a Zariski sheaf on any integral normal scheme over X .
(ii) For any integral normal scheme T over X and every finite Galois extension L/C(T ),

the restriction along the normalization T ′ → T of T in L gives a bijection G (T ) ∼=
G (T ′)Gal(L/C(T )), where the action of the Galois group on G (T ′) is given by pulling
sections back along the corresponding automorphisms of T ′ over X .

Condition (i) is a formal consequence of the construction of the presheaf, cf. Sect. 3.1.
The idea for the surjectivity in condition (ii) is the following. Suppose π : T ′ → T is such
a normalization of an integral normal scheme over X in a finite Galois field extension with
Galois group G and suppose we are given some σ ′ ∈ G (T ′)G . To define σ ∈ G (T ) we need
to specify an adapted differential σt for every t : Y → T such that the composition Y → X
is an adapted morphism, cf. Construction 28. We consider the commutative diagram

Y ′ Y

T ′ T X

t ′

f

γ
t

π
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in which Y ′ is the normalization of the fiber product T ′ ×T Y . Assume for simplicity that Y ′
is irreducible, so that the composition Y ′ → X is an adapted morphism. We are forced by
Construction 28 to take an adapted differential σt with the property that

f ∗(σt ) = σ ′
t ′ .

The group G acts on Y ′, and (Y , f ) is a quotient for this action in the sense of [20, Exposé V,
Sect. 1]. Therefore, the existence of such an adapted differential is ensured by the property
that

�
[p]
(X ,�,γ )(Y ) ∼= �

[p]
(X ,�,γ ◦ f )(Y

′)G ,

which is proven in Lemma 26.

1.4 Outline of this paper

In Sect. 2 we discuss the necessary preliminaries on category theory and on adapted differ-
entials. Most of these preliminaries on adapted differentials are well-known to experts, but
we include proofs for convenience. In Sect. 3 we prove Theorem 1. In Sect. 4 we compute
the cohomology of �

p
(X ,�), as well as its sections over some quasi-finite schemes over X .

2 Preliminaries

2.1 Notation and conventions

We follow the notation and terminology in [10] and [16]. In particular, varieties are assumed
to be irreducible, and if D is a WeilQ-divisor on a normal variety Y , then we denote by �D�
(resp. �D�) the divisor obtained by rounding up (resp. down) its coefficients. We work over
the complex numbers C and fix a pair (X ,�) as above once and for all. Some other notation
and conventions:

• All schemes are assumed to be of finite type over C.
• We denote by Sch/X the category of schemes over X .
• Wedenote byNor/X the full subcategory of Sch/X consisting of integral normal schemes

over X .
• A big open subset of a scheme is an open subset whose complement has codimension at

least 2.
• The quotient of a scheme by a group action will always mean a categorical quotient in

the sense of [20, Exposé V, Sect. 1].
• If f : Z → Y is a morphism of normal varieties and A is a coherent sheaf on Y , then

we denote by f [∗]A := ( f ∗A )∨∨ the reflexive hull of f ∗A .

2.2 Reflexive differentials

We follow [8, Sect. 2.E] when it comes to differential forms on normal varieties, i.e., we
work with reflexive differential forms. Let (Y , D) be a pair consisting of a normal variety
Y and a Weil divisor D, and let i : V → Y be the inclusion of the largest open subset such
that (V , D|V ) is snc. Then we define the sheaf of reflexive logarithmic differential p-forms
as �

[p]
Y (log D) := i∗�p

V (log D|V ) for every p ∈ N. Since �
p
V (log D|V ) is locally free and
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V ⊆ Y is a big open subset, �[p]
Y (log D) is indeed a reflexive coherent sheaf, and we may

equivalently write it as the reflexive hull �p
Y (log D)∨∨, see [8, Notation 2.17].

In Sect. 2.6 we will say that the pull-back of Kähler differentials induces a morphism
of reflexive logarithmic differentials to mean that there is a morphism between sheaves of
reflexive logarithmic differentials which agrees with the pull-back of Kähler differentials
wherever this makes sense, e.g., over the complement of the support of the boundary divisor
inside the smooth locus.

2.3 Kan extensions

Kan extensions provide a convenient language to discuss a construction that will be used
repeatedly in the proof of Theorem 1. The geometric idea behind this construction is the
following. Suppose we are given a presheaf defined only on a basis of open subsets of
a topological space. Then, there is a natural way to extend it to a presheaf on the whole
topological space. Namely, by setting the sections over any given open subset to be the limit
of the sections over basic open subsets contained in that open subset, cf. [9, Chap. 0, (3.2.1)].

In the categorical setting, let u : A → B be a functor. Then we have a restriction functor
on presheaves uP : PSh(B) → PSh(A), and this functor has a right adjoint Pu : PSh(A) →
PSh(B) which corresponds to the previous geometric construction, cf. [23, 00XF]. If F is a
presheaf onA, then Pu(F) = Ranu(F) is the right Kan extension of F along u, cf. [17, Sect.
X.3]. We will use the following two observations:

Remark 6 Let i : A → B be a fully faithful functor and let F be a presheaf on A. Then, the
restriction of the Kan extension Rani (F) to A is canonically isomorphic to F itself. See [17,
Corollary X.3.3] and the proof of Lemma 29.

Remark 7 Let u : A → B and v : B → C be functors and let F be a presheaf on A. Since
(v ◦u)P = uP ◦vP , we have P (v ◦u) ∼= Pv ◦ Pu. Therefore, Ranv◦u(F) ∼= Ranv(Ranu(F)).

2.4 qfh-topology

A morphism of schemes p : Y → Z is called a topological epimorphism if the Zariski
topology on Z is the quotient topology of the Zariski topology on Y , i.e., if p is surjective
and a subset A ⊆ Z is open if and only if p−1(A) is open. It is called a universal topological
epimorphism if for anyW → Z the projection from the fiber product pW : Y ×Z W → W is
a topological epimorphism. We recall the definition of the qfh-topology from [24, Definition
3.1.2]:

Definition 8 (qfh-topology)Theqfh-topologyon the category of schemes is theGrothendieck
topology associated with the pretopology whose coverings are of the form {pi : Ui → Y },
where {pi } is a finite family of quasi-finite morphisms of finite type such that the morphism
	pi : 	Ui → Y is a universal topological epimorphism.

Remark 9 Let Y be a normal connected scheme and let { fi : Yi → Y }i∈I be a finite family
of quasi-finite morphisms of finite type such that all Yi are irreducible. Denote by J the set
of those i for which Yi dominates Y . Then the above family is a qfh-covering if and only if
Y = ∪i∈J fi (Yi ), cf. [22, Lemma 10.1].

To prove Theorem 1, we will use the following:
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Lemma 10 (cf. [22, Lemma 6.4]) Let H be a presheaf on Nor/X. Assume that H satisfies
the Zariski condition (i) and the Galois condition (ii) spelled out in Sect.1.3. Then the right
Kan extension of H to Sch/X is a qfh-sheaf.

Proof This right Kan extension is given by the right adjoint to the restriction func-
tor PSh(Sch/X) → PSh(Nor/X), cf. Remark 27. Therefore, it is given by the functor
e : PSh(Nor/X) → PSh(Sch/X) from [22, Sect. 6]. The arguments in the proof of [22,
Lemma 6.4] do not use the assumption that we are working over a field, but only that we are
working with finite type schemes over a field, cf. [22, Lemma 10.3]. This is still true in our
case, because X is itself of finite type over C, hence the claim. �	

2.5 Adaptedmorphisms and differentials

Quasi-finite morphisms between normal varieties of the same dimension are open and dom-
inant. We can pull back Cartier divisors along dominant morphisms [23, 02OO], and Weil
divisors on a normal variety are Cartier over the regular locus, which is a big open subset.
The preimage of a big open subset under a quasi-finite morphism of varieties of the same
dimension is again a big open subset. Therefore, quasi-finite morphisms between normal
varieties of the same dimension induce a pull-back homomorphism on Weil divisors. This
allows us to define:

Definition 11 (Adapted morphism) An adapted morphism with respect to (X ,�) is a quasi-
finite morphism γ : Y → X such that Y is a normal variety with dim(Y ) = dim(X) and such
that γ ∗� is a Weil divisor with integer coefficients.

We denote by Adpt(X ,�) the full subcategory of Sch/X whose objects are adapted
morphisms with respect to (X ,�).

Example 12 Let (X ,�) be a geometric orbifold with ���−� �= 0. Then idX is a quasi-finite
morphism between normal varieties of the same dimension, but it is not an adaptedmorphism
with respect to (X ,�).

Example 13 Let X = A1 = Spec(C[x]) and let � = 2
3 {x = 0}. Let m ∈ N. The morphism

γ : A1 → A1 given by x �→ xm is an adapted morphism with respect to (X ,�) if and only
if m ∈ 3Z.

We will only consider a single pair (X ,�), so from now we will simply refer to adapted
morphisms with respect to (X ,�) as adapted morphisms.

Remark 14 If γ1 : Y1 → X is an adapted morphism and f : Y2 → Y1 is a quasi-finite
morphism between normal varieties of the same dimension, then γ1 ◦ f : Y2 → X is again
an adapted morphism.

Remark 15 If γ1 : Y1 → X and γ2 : Y2 → X are adapted morphisms and f : Y2 → Y1 is a
morphism over X , then f is a quasi-finite morphism between normal varieties of the same
dimension [7, Proposition 12.17.(3)], hence open and dominant as well.

We refer to [5, II. Sect. 3] for the necessary background on logarithmic differentials and
to [3, Sect. 5] for a discussion motivating the following:

Definition 16 (Adapted differentials) Let I be a set of indices such that � = ∑
i∈I

mi−1
mi

Di

with Di distinct prime Weil divisors. We denote by I0 ⊆ I the subset of indices such
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that mi ∈ N. Let γ : Y → X be an adapted morphism and assume first that (X ,�) and
(Y , γ ∗�) are both snc pairs. Then γ is flat, so γ ∗ODi = Oγ ∗Di for all i ∈ I , where γ ∗Di

is regarded here as a subscheme of Y with the appropriate non-reduced structure. Moreover,
since γ ∗Di ≥ γ ∗( 1

mi
Di ) for all i ∈ I0, we have a quotient morphism

q : ⊕i∈I γ ∗ODi → ⊕i∈I0Oγ ∗
(

1
mi

Di

)

which is an epimorphism of OY -modules. We define the OY -module of adapted differential
1-forms as

�1
(X ,�,γ ) := ker

(

γ ∗�1
X (log���) γ ∗(res)−−−−→ ⊕i∈I γ ∗ODi

q−→ ⊕i∈I0Oγ ∗
(

1
mi

Di

)

)

.

For each p ∈ N, the OY -module of adapted differential p-forms is defined as

�
p
(X ,�,γ ) :=

p∧
�1

(X ,�,γ ),

which is then locally free because �1
(X ,�,γ ) was locally free.

In general, we consider the largest open subset U ⊆ X such that (X ,�) is snc over U .
This is a big open subset, i.e., the codimension of its complement is at least 2. Since γ is
quasi-finite between varieties of the same dimension, γ −1(U ) is a big open subset as well.
We can then consider the largest open subset V ⊆ γ −1(U ) such that (Y , γ ∗�) is snc over
V , which is a big open subset of Y . We define the OY -module of adapted differentials as

�
[p]
(X ,�,γ ) := i∗

(
�

p
(U ,�|U ,γ |V )

)
,

where i : V → Y denotes the open immersion.

Remark 17 The sheaves �
[p]
(X ,�,γ ) are coherent and reflexive, because they are the push-

forward of locally free sheaves defined over a big open subset, see [23, 0AY6].

Example 18 If � = 0, then any quasi-finite morphism γ : Y → X between normal varieties
of the same dimension is an adaptedmorphism, and in this casewe have γ [∗]�[p]

X
∼= �

[p]
(X ,�,γ )

for all p ∈ N, cf. also Lemma 21 below.

Example 19 In the setting of Example 13, if m = 3k for some k ∈ N>0, then �1
(X ,�,γ ) is the

subsheaf of �1
A1 generated by yk−1dy.

Remark 20 Root stacks have been used in the context of symmetric differentials on geometric
orbifolds, see [21, Proposition 3.4]. If the construction of the (iterated) root stack of the
boundary divisors is possible, e.g., if X is locally factorial, then we can also understand
adapted differentials in terms of root stacks. Namely, adapted differentials are the pull-back of
differential forms defined on the root stack. To showcase the argument, let us look at a simple
example. Let X = Spec(C[x]), � = m−1

m {x = 0} for some m ∈ N≥2, Y = Spec(C[y])
and γ : Y → X given by x �→ ya with a = km for k ∈ N>0. Let U = Spec(C[z]) ∼=
Spec(C[x, t]/(tm − x)) and consider the cyclic quotient q : U → X given by x �→ zm .
Denoting by μm ⊆ C× the group of m-th roots of unity, we can describe the m-th root
stack of {x = 0} ⊆ X as the quotient stack X = [U/μm], where the action of μm on U
is given by ζ · z = ζ z [19, Theorem 10.3.10]. The morphism q factors as π ◦ u, where
π : X → X is the coarse moduli space and u : U → X is an atlas of the DM stack X . Since
γ ∗{x = 0} = km{y = 0} is an m-th power, the morphism γ lifts to a morphism γ̃ : Y → X

123
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68 Page 8 of 18 P. Núñez

over X . This can in turn be lifted to the morphism f : Y → U given by z �→ yk , and we
obtain the following commutative diagram:

U

Y X

X .

u
f

γ̃

γ
π

In this situation, the pull-back of Kähler differentials induces an isomorphism γ̃ ∗�1
X ∼=

�1
(X ,�,γ ). Indeed, by definition we have u

∗�1
X = �1

U , and the pull-back of Kähler differen-

tials f ∗�1
U → �1

Y induces an isomorphism onto the subsheaf generated by yk−1dy, which
is precisely �1

(X ,�,γ ).
In more general situations, similar computations can be used to argue analytic locally over

the smooth loci of (X ,�) and (Y , γ ∗�), cf. proof of Lemma 21.

2.6 Pull-back of adapted differentials

From now on we fix a p ∈ N.
The following lemmawas observed by Stefan Kebekus and Erwan Rousseau in an upcom-

ing work, but was probably known to experts before:

Lemma 21 Let γ1 : Y1 → X and γ2 : Y2 → X be two adapted morphisms and let f : Y2 →
Y1 be a morphism over X. The pull-back of Kähler differentials induces an isomorphism

f [∗]�[p]
(X ,�,γ1)

∼= �
[p]
(X ,�,γ2)

.

Proof The restriction of sections of a reflexive coherent sheaf on a normal variety to a big
open subset is an isomorphism [11, Proposition 1.6], so we may restrict to suitable big open
subsets and assume that (X ,�), (Y1, γ ∗

1 �) and (Y2, γ ∗
2 �) are all snc. Let �i be the reduced

divisor underlying γ ∗
i ��� for each i ∈ {1, 2}. Then �

p
(X ,�,γ1)

is a locally free subsheaf of

�
p
Y1

(log�1) and f is dominant, so the pull-back of logarithmic differential forms as in [13,
Sect. 11.c] induces an injective morphism

f ∗�p
(X ,�,γ1)

→ �
p
Y2

(log�2).

The claim is that the image is precisely�
p
(X ,�,γ2)

. It suffices to show this on the stalks and for
p = 1, so this can be checked analytic locally using the local generators in [3, (60)]. Indeed,
let z ∈ Y2 be a point and choose analytic local coordinates x1, . . . , xn around γ2(z) ∈ X such
that

� =
r∑

i=1

mi − 1

mi
Di +

l∑

i=r+1

Di

with Di = {xi = 0} around γ2(z). The simple normal crossing assumption implies that
l ≤ n, and for concreteness of notation let us assume that 1 ≤ r < l < n. We choose analytic
local coordinates y1, . . . , yn around f (z) ∈ Y1 such that

γ1 (y1, . . . , yn) = (
ya11 , . . . , yann

)

123
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with ai ∈ N>0 for all i ∈ {1, . . . , n}. Since γ1 is an adapted morphism with respect to
(X ,�), for each i ∈ {1, . . . , r}, there exists a ki ∈ N such that ai = miki . A system of local
generators of �1

(X ,�,γ1)
around f (z) is given by

yk1−1
1 dy1, . . . , y

kr−1
r dyr ,

1

yr+1
dyr+1, . . . , y

an−1
n dyn .

This follows from the local descriptions of the morphisms involved in Definition 16; cf. also
[3, Definition 5.3], in which the adapted morphism would be chosen such that ki = 1 for
all i ∈ {1, . . . , r}. Similarly, we choose analytic local coordinates z1, . . . , zn around z ∈ Y2
such that

f (z1, . . . , zn) = (
zc11 , . . . , zcnn

)

with ci ∈ N>0 for all i ∈ {1, . . . , n}. The morphism γ2 is then given by

γ2 (z1, . . . , zn) = (
zc1a11 , . . . , zcnann

)
.

The corresponding local generators of �1
(X ,�,γ2)

around z are

zc1k1−1
1 dz1, . . . , z

cr kr−1
r dzr ,

1

zr+1
dzr+1, . . . , z

cnan−1
n dzn,

which are, up to multiplication by non-zero scalars, the pull-backs along f of the local
generators of �1

(X ,�,γ1)
around f (z). �	

Lemma 22 If γ1 : Y1 → X and γ2 : Y2 → X are two adapted morphisms and f : Y2 → Y1 is
a morphism over X, then the pull-back of Kähler differentials induces a C-linear morphism
f ∗ : �

[p]
(X ,�,γ1)

(Y1) → �
[p]
(X ,�,γ2)

(Y2). Moreover:

• If γ : Y → X is an adapted morphism, then id∗
Y = id

�
[p]
(X ,�,γ )

(Y )
.

• If γ1 : Y1 → X, γ2 : Y2 → X and γ3 : Y3 → X are three adapted morphisms, and
f : Y2 → Y1 and g : Y3 → Y2 are two morphisms over X, then ( f ◦ g)∗ = g∗ ◦ f ∗.

Proof The existence of f ∗ follows from [11, Proposition 1.6] and Lemma 21. Since the
sheaves of adapted differentials are torsion-free, it suffices to check the desired identities
over a dense open subset. But over a dense open subset these morphisms agree with the
pull-back of Kähler differentials, hence the claim. �	
Notation 23 We denote by F the presheaf on Adpt(X ,�) with F (Y ) := �

[p]
(X ,�,γ )(Y ) for

all adapted morphisms γ : Y → X and with restriction maps given as in Lemma 22.

Lemma 24 Let γ1 : Y1 → X and γ2 : Y2 → X be two adapted morphisms and let f : Y2 →
Y1 be a morphism over X. Then the restriction map f ∗ : F (Y1) → F (Y2) is injective.

Proof Again by torsion freeness it suffices to check this over a dense open subset, over which
it follows from the corresponding statement for pull-back of Kähler differentials along the
dominant morphism f . �	
Lemma 25 Let γ : Y → X be an adapted morphism and let V ⊆ Y be an open subset. Then
the restriction map F (Y ) → F (V ) is the usual restriction map of the sheaf �[p]

(X ,�,γ ).

Proof Follows from torsion freeness and the corresponding statement for Kähler differentials
as before. �	
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Lemma 26 Let γ1 : Y1 → X and γ2 : Y2 → X be two adapted morphisms and let f : Y2 →
Y1 be a morphism over X such that there exists a finite group G acting on Y2 in such a
way that (Y1, f ) is a quotient of Y2 by G. Then the restriction map f ∗ induces a bijection
F (Y1) → F (Y2)G.

Proof The G-action on Y2 induces a G-sheaf structure on logarithmic differentials [8, Fact
10.5], hence on adapted differentials byLemma21.The sheaf ( f∗�[p]

(X ,�,γ2)
)G is then reflexive

[8, LemmaA.4], so we may restrict our attention to big open subsets and assume that (X ,�),
(Y1, γ ∗

1 �) and (Y2, γ ∗
2 �) are all snc. By Lemma 21, pull-back of Kähler differentials induces

an isomorphism

f ∗�p
(X ,�,γ1)

∼= �
p
(X ,�,γ2)

.

If φg denotes the automorphism of Y2 corresponding to g ∈ G, then f ◦ φg = f , so the
previous isomorphism is also an isomorphism of G-sheaves with respect to the G-sheaf
structure induced on the pull-back. Hence, the assumption that (Y1, f ) is a quotient of Y2 by
G and the projection formula imply that

�
p
(X ,�,γ1)

∼= �
p
(X ,�,γ1)

⊗ ( f∗OY2)
G ∼= ( f∗ f ∗�p

(X ,�,γ1)
)G ∼= ( f∗�p

(X ,�,γ2)
)G ,

and taking global sections yields the desired bijection. �	

3 Proof of Theorem 1

To motivate Construction 28, we start with the following observation:

Remark 27 If we denote by i P : PSh(Sch/X) → PSh(Adpt(X ,�)) the restriction functor,
then the universal property in Theorem 1 can be rephrased as follows:

(a) There exists a morphism ε : i P (�
p
(X ,�)) → F .

(b) For every presheaf H on Sch/X such that there exists a morphism ϕ : i P (H ) → F ,
there exists a unique morphism ψ : H → �

p
(X ,�) such that ϕ = ε ◦ i P (ψ).

In otherwords,�p
(X ,�) is the rightKanextensionofF along the inclusion i : Adpt(X ,�)op →

(Sch/X)op.

Construction 28 We define �
p
(X ,�) as the right Kan extension ofF to Sch/X . Then �

p
(X ,�)

satisfies the universal property in Theorem 1 by construction, see Remark 27. Recall from
Sect. 2.3 that we can write �

p
(X ,�) = Pi(F ), where Pi : PSh(Adpt(X ,�)) → PSh(Sch/X)

is the right adjoint to the restriction functor, as described in [23, 00XF]. Therefore, we can
explicitly describe the sections of this presheaf as

�
p
(X ,�)(T ) = lim

Y→T
Y→X adapted

F (Y ). (1)

So a section σ = (σt )t ∈ �
p
(X ,�)(T ) consists of a family of adapted differentials indexed

by morphisms t : Y → T such that the composition Y → X is an adapted morphism. This
family is moreover compatible in the sense that

f ∗(σt ) = σt◦ f (2)

123
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for every morphism f : Y ′ → Y such that the composition Y ′ → X is an adapted morphism.
If π : T ′ → T is a morphism and we are given a section σ ∈ �

p
(X ,�)(T ), then �

p
(X ,�)(π)(σ )

is the family uniquely determined by the property that

�
p
(X ,�)(π)(σ )t ′ = σπ◦t ′ (3)

for every morphism t ′ : Y → T ′ such that the composition Y → X is an adapted morphism.

Lemma 29 Let γ : Y → X be an adapted morphism. Then the canonical morphism
�

p
(X ,�)(Y ) → F (Y ) is an isomorphism.

Proof This is a formal consequence of the inclusion i : Adpt(X ,�) → Sch/X being fully
faithful, cf. Remark 6. Let us make this explicit in the case at hand. Since the inclusion
i : Adpt(X ,�) → Sch/X is fully faithful, the indexing category in (1) has an initial object,
namely the identity on Y . Hence �

p
(X ,�)(Y ) ∼= F (Y ). More explicitly, the isomorphism is

given by sending a family (σt )t to the component σidY at idY , and the inverse is given by
pulling back along the corresponding morphisms. �	

It remains to show that �p
(X ,�) is a qfh-sheaf on Sch/X . As outlined in the introduction,

we will apply Lemma 10 to the right Kan extension of F to Nor/X .

Notation 30 Wedenote byG the rightKan extension ofF toNor/X , whereF is the presheaf
from Notation 23.

By Remark 7 and Remark 6, we may also regard G as the restriction of �
p
(X ,�) to Nor/X ,

so its sections are described by the same equations in Construction 28 that describe the
sections of �

p
(X ,�).

3.1 Zariski condition (i)

Weneed to show that for any integral normal X -scheme T , the presheafG defines a sheaf in the
small Zariski site onT [22,Definition 6.1].Arbitraryfiber products donot exist inAdpt(X ,�)

nor in Nor/X , but fiber products along open immersions do exist. Moreover, if T → X is
in Adpt(X ,�) (resp. in Nor/X ) and U → T is an open immersion, then the composition
U → X is again in Adpt(X ,�) (resp. in Nor/X ). Therefore, taking Zariski coverings as
coverings, both Adpt(X ,�) and Nor/X are sites in the sense of [23, 00VH], and it suffices
to show that G is a sheaf on Nor/X with respect to the corresponding Zariski topology.
Since the sheaves of adapted differentials are Zariski sheaves and the restriction maps of F
are compatible with the restriction maps of these sheaves by Lemma 25, F is a sheaf with
respect to the Zariski topology onAdpt(X ,�). The inclusion functor Adpt(X ,�) → Nor/X
is cocontinuous [23, 00XJ], so the sheaf property is preserved by the right Kan extension
[23, 00XK] and G is a Zariski sheaf on Nor/X .

3.2 Galois condition (ii)

In this subsection we fix a normal integral X -scheme T → X and a finite Galois extension
L/C(T ) of its function field C(T ). We denote by G the Galois group of this extension and
by π : T ′ → T the normalization of T in L [7, Definition 12.42].

We will use the following observation. This is not a new result, but we include a proof for
convenience:
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Lemma 31 Let Y and Y ′ be normal integral schemes and let f : Y ′ → Y be a morphism.
Then f is a quotient of Y ′ by the action of a finite group H if and only if f induces a finite
Galois extension of function fields with Galois group H and Y ′ is the normalization of Y in
this extension of its function field.

Proof Suppose (Y , f ) is a quotient of Y ′ by a finite group H in the sense of [20, Exposé
V, Sect. 1]. Then f is finite and the statement that we want to show is local on Y , so we
may assume that both Y ′ and Y are affine, say Y ′ = Spec(B) and Y = Spec(A). The group
H acts on B and the quotient morphism f allows us to identify A = BH , cf. [20, Exposé
V, Proposition 1.1]. By [1, Exercise 5.12] we have an induced H -action on B(0) such that
A(0) = (B(0))

H , so C(Y ) ⊆ C(Y ′) is a finite Galois extension with Galois group H . It
remains to show that Y ′ is the normalization of Y inside C(Y ′), i.e., we want to show that
B = {b ∈ B(0) | b integral over A}. Every element in B is integral over A, because A ⊆ B is
integral. And conversely, if b ∈ B(0) is integral over A, then it is also integral over B. Since
Y ′ is normal, we deduce that b ∈ B.

Conversely, suppose that Y ′ is the normalization of Y in C(Y ′) and that C(Y ) ⊆ C(Y ′)
is a finite Galois extension with Galois group H . We show that H acts on Y ′ with quotient
(Y , f ). The statement is local on Y and normalization is a finite morphism in our setting, so
we may assume again that both Y ′ = Spec(B) and Y = Spec(A) are affine. By assumption
there is an H -action on B(0) such that A(0) = (B(0))

H , and we want to show that it induces
an H -action on B such that A = BH . Given b ∈ B non-zero and h ∈ H , since A ⊆ B is an
integral extension, there exists a monic polynomial P ∈ A[T ] such that P(b) = 0. Since the
coefficients of P are G-invariant, this implies that P(h · b) = 0, so h · b is also integral over
A, hence over B. Since Y ′ is normal, h ·b ∈ B. So the H -action on B(0) induces an H -action
on B. Since A(0) = (B(0))

H and Y is normal, we have A = BH . �	
So in our current setting π : T ′ → T is the quotient of T ′ by the induced G-action on

T ′. For each g ∈ G we denote by φg the corresponding automorphism of T ′. Then we have
a G-action on G (T ′) given by pulling back along the corresponding automorphism. The
restriction map G (π) : G (T ) → G (T ′) has image contained in G (T ′)G , because π ◦φg = π

for all g ∈ G. Our goal in this subsection is to show that this restriction map is a bijection
onto G (T ′)G .

Lemma 32 The morphism G (π) : G (T ) → G (T ′)G is injective.

Proof Let σ, σ ′ ∈ G (T ) be two sections such that G (π)(σ ) = G (π)(σ ′). We want to show
that σ = σ ′, so let t : Y → T be a morphism such that the composition Y → X is an adapted
morphism and let us show that σt = σ ′

t . Let Y
′ be a component of the normalization of the

fiber product T ′×T Y that surjects ontoY , considered as a subschemewith its induced reduced
structure, and let f : Y ′ → Y be the induced surjectivemorphism,which is also finite because
so are the normalization, the closed immersion and the pull-back of π . Let t ′ : Y ′ → T ′ be
the induced morphism, so that π ◦ t ′ = t ◦ f and the composition Y ′ → X is an adapted
morphism as well. It follows then from (2) and (3) that f ∗(σt ) = σπ◦t ′ = σ ′

π◦t ′ = f ∗(σ ′
t ),

hence σt = σ ′
t by Lemma 24. �	

Lemma 33 The morphism G (π) : G (T ) → G (T ′)G is surjective.

Proof Let σ ′ ∈ G (T ′) be a G-invariant section, i.e., G (φg)(σ
′) = σ ′ for all g ∈ G, where

φg denotes the automorphism of T ′ corresponding to g. We want to find a section σ ∈ G (T )

such that G (π)(σ ) = σ ′, so let t : Y → T be a morphism such that the composition Y → X
is an adapted morphism. Let Y ′

0 be any irreducible component of the fiber product T ′ ×T Y ,

123



Adapted differentials as a qfh-sheaf Page 13 of 18 68

considered as a subscheme with its induced reduced structure. Let G0 be the stabilizer of
Y ′
0 in G, so that the induced morphism Y ′

0 → Y is a quotient of Y ′
0 by G0, cf. [12, Lemma

2.1.11] and [22, Corollary 5.10]. Let Ȳ ′
0 be the normalization of Y ′

0. Then G0 acts on Ȳ ′
0 as

well and the induced morphism f Y0 : Ȳ ′
0 → Y is still a quotient for this action, cf. Lemma 31.

Let t0 : Ȳ ′
0 → T ′ be the induced morphism, so that t ◦ f Y0 = π ◦ t0 and the composition

Ȳ ′
0 → X is an adapted morphism:

Ȳ ′
0 Y

Y ′
0

T ′ ×T Y Y

T ′ T .

t0

norm.

f Y0

t

π

The desired σ ∈ G (T ) must then have the property that ( f Y0 )∗(σt ) = σπ◦t0 = σ ′
t0 . Let

now g ∈ G0 and let ψg denote the corresponding automorphism of Ȳ ′
0. From (2), (3) and

the equality t0 ◦ ψg = φg ◦ t0 we deduce that ψ∗
g (σ ′

t0) = σ ′
t0 , hence σ ′

t0 is a G0-invariant

adapted differential on Ȳ ′
0. By Lemma 26we can find an adapted differential σt on Y such that

( f Y0 )∗(σt ) = σ ′
t0 . Moreover, the resulting adapted differential is independent of the chosen

irreducible component Y ′
0. Indeed, let Y

′
1 be another irreducible component and let τt be an

adapted differential on Y such that ( f Y1 )∗(τt ) = σ ′
t1 , where f Y1 and t1 are defined as before

but for the irreducible component Y ′
1 instead. Since G acts transitively on the irreducible

components of the fiber product [22, Corollary 5.10], we can find some g ∈ G such that the
corresponding automorphism of the fiber product induces an isomorphism Y ′

0 → Y ′
1 over

Y , hence also an isomorphism ψg : Ȳ ′
0 → Ȳ ′

1 over Y . From G-invariance of σ ′, the equality
φg ◦ t0 = t1 ◦ ψg , the equality f Y0 = f Y1 ◦ ψg and the usual equations we have

( f Y0 )∗(σt ) = σ ′
t0 = σ ′

φg◦t0 = ψ∗
g (σ ′

t1) = ψ∗
g (( f Y1 )∗(τt )) = ( f Y0 )∗(τt ),

hence σt = τt by Lemma 24.
We show next that the family of adapted differentials σ constructed in this manner satisfies

(2), i.e., that σ ∈ G (T ). Let t : Y → T be a morphism such that the composition Y → X is
an adapted morphism and let f : Z → Y be a morphism such that the composition Z → X
is an adapted morphism as well. Since f : Z → Y is dominant, we may find an irreducible
component of T ′×T Z which dominates an irreducible component of T ′×T Y , say Z ′

0 → Y ′
0.

From the universal property of the normalization we obtain now a morphism f0 : Z̄ ′
0 → Ȳ ′

0
such that f ◦ f Z0 = f Y0 ◦ f0, where f Y0 : Ȳ ′

0 → Y and f Z0 : Z̄ ′
0 → Z are defined as in the

last paragraph:

Z̄ ′
0 Z

Ȳ ′
0 Y

T ′ T .

f Z0

f0 f

f Y0

t0 t

π

123



68 Page 14 of 18 P. Núñez

From (2) for σ ′, the equality f ◦ f Z0 = f Y0 ◦ f0 and the construction of σ we deduce that
( f Z0 )∗( f ∗(σt )) = ( f Z0 )∗(σt◦ f ), hence f ∗(σt ) = σt◦ f by Lemma 24.

To finish the proof we need to check that G (π)(σ ) = σ ′, so let s : Y → T ′ be a morphism
such that the composition Y → X is an adapted morphism. Let f Y0 : Ȳ ′

0 → Y and t0 : Ȳ ′
0 →

T ′ be constructed as above with respect to the morphism t := π ◦ s. For every g ∈ G, denote
by Eg the equalizer of φg ◦ t0 and s ◦ f Y0 , which is a closed subscheme of Ȳ ′

0 because π

is separated [7, Definition and Proposition 9.7.(ii)]. We claim that Ȳ ′
0 = ∪g∈GEg as sets.

Indeed, it suffices to show that every closed point of Ȳ ′
0 belongs to Eg for some g ∈ G,

because all Eg are closed subspaces and the set of closed points is dense in Ȳ ′
0. But we are

working over an algebraically closed field, so this follows from [7, Exercise 9.7] and from
the equality π ◦ t0 = π ◦ s ◦ f Y0 , in which π is a quotient of T ′ by G. Since Ȳ ′

0 is irreducible
and G is finite, there exists some g ∈ G such that Ȳ ′

0 = Eg as topological spaces. But Ȳ ′
0 is

reduced, so we must have Ȳ ′
0 = Eg and thus φg ◦ t0 = s ◦ f Y0 . Let now Ȳ ′

1 be a normalized
component of the fiber product such that g induces an isomorphism ψg : Ȳ ′

0 → Ȳ ′
1 with

t1 ◦ψg = φg ◦ t0, notation again as above. Then the following diagram remains commutative
after adding the dashed arrow:

Ȳ ′
0 Ȳ ′

1 Y

T ′ T ′ T .

t0

ψg

f Y0

t1

f Y1

t
s

φg π

Therefore t1 ◦ ψg = s ◦ f Y1 ◦ ψg , and thus also t1 = s ◦ f Y1 . By construction of σ we have
( f Y1 )∗(σt ) = σ ′

t1 , so ( f Y1 )∗(σt ) = ( f Y1 )∗(σ ′
s). It follows from Lemma 24 that σπ◦s = σ ′

s ,
hence G (π)(σ )s = σ ′

s . �	

3.3 Conclusion

If we denote by i1 : Adpt(X ,�) → Nor/X and i2 : Nor/X → Sch/X the inclusion functors,
Remark 7 implies that

�
p
(X ,�) = P (i2 ◦ i1)(F ) ∼= Pi2(Pi1(F )) = Pi2(G ).

In Sect. 3.1 and Sect. 3.2 we have seen that G is a qfh-sheaf on Nor/X in the sense of Suslin–
Voevodsky, i.e., that it satisfies conditions (i) and (ii) from the introduction. Therefore, by
Lemma 10, its Kan extension �

p
(X ,�) is a qfh-sheaf on Sch/X .

4 Some computations

The value �
p
(X ,�)(T ) can be described more explicitly for quasi-finite separated X -schemes

T → X . In Proposition 34 we compute the restriction of �
p
(X ,�) to the small Zariski site

on X , which allows us to compute the cohomology of �
p
(X ,�) in Corollary 35. The cases

dim(T ) < dim(X) and dim(T ) = dim(X) are briefly discussed in Remark 36 andRemark 37
respectively.
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Proposition 34 In the setting of Theorem 1, denote by �
p
(X ,�)|X the restriction of �p

(X ,�) to
the small Zariski site on X. Then we have

�
[p]
X (log ���) ∼= �

p
(X ,�)|X .

Proof The global sections of �
p
(X ,�) are given by

�
p
(X ,�)(X) ∼=

⎧
⎪⎪⎨

⎪⎪⎩

(σγ )γ ∈
∏

γ : Y→X
adapted

�
[p]
(X ,�,γ )(Y )

∣
∣
∣
∣
f ∗(σγ ) = σγ ◦ f for all
f : Y ′ → Y over X

⎫
⎪⎪⎬

⎪⎪⎭

.

Recall that �
[p]
X (log ���)(X) can be described as i∗�p

U (log ��|U �) for U ⊆ X as in Def-

inition 16. Therefore, given σ ∈ �
[p]
X (log ���)(X) = �

p
U (log ��|U �)(U ) and an adapted

morphism γ : Y → X , we can pull back σ along γ |γ −1(U ) : γ −1(U ) → U and restrict the

result to the open subset V in Definition 16 to obtain a section γ ∗σ ∈ �
[p]
(X ,�,γ )(Y ). By tor-

sion freeness and functoriality of pull-back of logarithmic differentials, the resulting family
(γ ∗σ)γ is a section in �

p
(X ,�)(X). Since adapted morphisms are dominant, this defines an

injective morphism �
[p]
X (log ���)(X) → �

p
(X ,�)(X).

The same recipe gives an injective morphism �
[p]
X (log ���)(W ) → �

p
(X ,�)(W ) for any

other open subset W ⊆ X . Suppose now that ι : W1 → W2 is an inclusion of open subsets
of X . The restriction morphism of �

[p]
X (log ���) is induced by the pull-back of Kähler

differentials ι∗ as in Lemma 22, so we want to show that the following diagram commutes:

�
[p]
X (log ���)(W2) �

p
(X ,�)(W2)

�
[p]
X (log ���)(W1) �

p
(X ,�)(W1).

ι∗ �
p
(X ,�)

(ι)

Let σ ∈ �
[p]
X (log ���)(W2) and let w1 : Y → W1 be a morphism such that the composition

γw1 : Y → X is an adapted morphism. The upper horizontal isomorphism sends σ to the
family (w∗

2σ)w2 , indexed by morphisms w2 : Z → W2 such that the composition Z → X
is an adapted morphism. Its image under �

p
(X ,�)(ι) is the family whose component at w1

is given by (w∗
2σ)w2=ι◦w1 , i.e., w∗

1 ι
∗σ . Therefore, the diagram commutes and we have an

injective morphism

�
[p]
X (log ���) → �

p
(X ,�)|X

of sheaves on the topological space X . We show that it is also surjective. Suppose we are
given a family (σγ )γ ∈ �

p
(X ,�)(X). LetU0 ⊆ X be the largest open subset over which X and

Supp(�) are smooth, which is a big open subset contained in the open subset U ⊆ X from
Definition 16. Surjectivity is local on X , so after possibly shrinking X , wemay assume thatwe
are in the setting of [6, §3.5]. Therefore,wemay assume that there exists an adaptedmorphism
γ0 : Y0 → X factoring through U0 ⊆ X such that there exists a finite group G acting on Y0
so that Y0 → U0 is a quotient of Y0 by G. (2) ensures that the logarithmic differential σγ0 is
G-invariant, hence Hurwitz’s formula [6, Lemma 3.16] implies that there exists a logarithmic
differential σ ∈ �

p
U0

(log ��|U0�)(U0) such that γ ∗
0 σ = σγ0 . This logarithmic differential

defines a reflexive logarithmic differential in�
[p]
X (log ���)(X)which is the desired preimage
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of the given section of �
p
(X ,�). The same argument works for sections defined over smaller

open subsets W ⊆ X , so the morphism above is surjective. �	
Corollary 35 In the setting of Theorem 1 we have

Hi
qfh

(
X ,�

p
(X ,�)

) ∼= Hi
(
X ,�

[p]
X (log ���)

)

for all i ∈ N, where the left-hand side denotes cohomology with respect to the qfh-topology
on Sch/X and the right-hand side denotes usual sheaf cohomology on X.

Proof Since normal schemes are geometrically unibranch [23, 0BQ3] and qfh-sheaves are
étale sheaves, we can apply [4, Proposition 10.5.12] and [4, Theorem 10.5.10] to compute
the left-hand side with respect to the étale topology on Sch/X . Étale cohomology groups
can be computed in the small étale site instead [23, 03YX]. By Proposition 34, �p

(X ,�)|X is a
quasi-coherent sheaf on X , so we can in turn compute its étale cohomology groups as usual
Zariski sheaf cohomology on X [23, 03DW]. �	
Remark 36 In the setting of Theorem 1, let T → X be an X -scheme such that dim(T ) <

dim(X). Then�
p
(X ,�)(T ) = 0, because we are taking the limit over an empty diagram in (1).

But Proposition 34 shows that �p
(X ,�)(X) �= 0 for some (X ,�), so �

p
(X ,�) is not homotopy

invariant in general.

Remark 37 If T → X is quasi-finite with dim(T ) = dim(X), then the normalization T̄ → T
induces a canonical isomorphism �

p
(X ,�)(T ) ∼= �

p
(X ,�)(T̄ ) as a consequence of its univer-

sal property [23, 035Q]. Combining this with the Zariski sheaf property one can express
�

p
(X ,�)(T ) as the product of the sections over its irreducible components, and with argu-

ments similar to those in Proposition 34 this allows one to compute the sections of �
p
(X ,�)

over any quasi-finite separated X -scheme T → X .
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