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Abstract
Let N >3, R>p>0and A, :={x eRN; p < x| < R}.LetU,fp,n > 1, be a radial
solution with n nodal domains of

AU + [x|*|UIP~IU =0 in A,
U=0 ondA,.

We show that if p = % o > —2and N > 3, then U,f P is nondegenerate for small
p > 0 and the Morse index m(Ufp) satisfies

(N+2¢—-1)(N+£—-1)!
m(Ufp) =n N D for small p > 0,

where ¢ = [%] + 1. Using Jacobi elliptic functions, we show that if (p, o) = (3, N — 4)
and N > 3, then the Morse index of a positive and negative solutions m(U li p) is completely
determined by the ratio p/R € (0, 1). Upper and lower bounds for m(Ufp), n > 1, are also

obtained when (p,a) = (3, N —4) and N > 3.
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1 Introduction and main results

Let N >3,R>p>0and A, :={x € RY; p < |x| < R}. We are concerned with radial
solutions of the Dirichlet problem

AU + |x|*|UP7'U =0 inA,,

1.1
U=0 ondA,. (1D

The equation in (1.1) is called the Hénon equation arising in astrophysics. Hénon [16] studied
radial solutions of (1.1) on a ball. We are particularly interested in the case

N +2+4+ 2«
P=pei= o and o > —2.
The exponent p. becomes the critical Sobolev exponent provided that o« = 0.

Let B denote a unit ball in RV . First we consider the problem

AU + |x|4|U|P~'U =0 in B,

1.2
U=0 on 0B. (1:2)

When p > p, (1.2) has no nontrivial radial solution due to Pohozaev’s identity. On the other
hand, Ni [21] proved that (1.2) has a positive radial solution provided that 1 < p < p.. This
result was generalized by Bartsch—Willem [7]. They proved that, for each n > 2, (1.2) has
radial solutions Uf(r) that have n nodal domains, i.e., the set {x € B; U,f(x) # 0} has
exactly n connected components. The uniqueness of U} () follows from Ni-Nussbaum [22],
and U, (r) = —U,T (r). Therefore, p. is a threshold between existence and nonexistence of
nontrivial radial solutions of (1.2).

The situation, however, is different in annular domains. It is known that for each n > 1,
(1.1) has exactly two classical radial solutions U,fp with n nodal domains, which satisfies
U, ,(r) = —U,;‘:p(r). We let (U,;':p)’(R) < 0. In particular, Ul'fp and U;, are a positive and
negative solution, respectively. Existence and uniqueness results hold for arbitrary p > 1 and
o € R. See [22, Theorem 3.8] for existence of radial solutions U,;'f o and see [22, Theorem 3.1]
for the uniqueness of U,t - Thus, it is interesting to study what happens in the case p = p.
as p — 0. Bandle-Peletier [6] obtained, among other things, an asymptotic expansion of

H Uli,p HLOO(A 3P 0 in the case « = 0. Specifically, as p — 0,
P

[ ey =157

U = 1 1)).
1,p L®(A,) oR } (14 o0(1))

In this paper we study the Morse index of U ,f » When p > 0 is small. We call the Morse index
m(U,f ) of a solution U,f o of (1.1) the maximal dimension of a subspace X C Ho1 (A,) where
the quadratic form associated to the linearization operator at U,f » is negative definite. In our

problem (1.1) m(U,f o) is equal to the number of the negative eigenvalues of the problem

AD + plx|*|UL 1P = —A® inAp, (L.3)
=0 ondA,.
counted with their multiplicity, i.e.,
m(U,f p) = t{negative eigenvalues of (1.3) counted with their multiplicity}. (1.4)
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We call that U,f » 1s nondegenerate if (1.3) does not have a zero eigenvalue.
We prepare some notation to state our main results. Let [£], £ € R, denote the largest
integer that does not exceed &. Let {v j}?io denote the set of the eigenvalues of the Laplace-

Beltrami operator —Agn-1 on the sphere SV~ i.e.,
vii=j(N+j—-2), j=012,.... (1.5)
The multiplicity of the eigenvalue v; is given by
(N+2j—2)(N+j—3)!
(N =2)!5!

The first main result is about the exact Morse index for small p > 0 and the divergence of
the Morse index as p — R.

M;(N) := for N>3and j =0,1,2,....

Theorem 1.1 Let N > 3, « > —2 and p = pe. Let U*  n > 1, denote radial solutions with

n,p’
n nodal domains of (1.1). Then the following hold:

(i) Let £ :=[%]+ 1. Then,

¢
N+2¢—1)(N++¢—2)!
:nZMj(N):n( + W )(1)'; ) for small p > 0,
+ Jj=0 e
m(n.p) : (N +20—1)(N +£—2)!
Zn;Mj(N)=n N Dl forp < R,

and U,f P is nondegenerate for small p > 0. In particular, if « = 0, then
m(Ufp) =n(N +1) forsmall p > 0.
(i) As p — R,

mUE,) — +oo.

1,0
(iii) Let R > p > 0 be fixed. As o« — oo (and hence p = p. — 0),
m(Ufp) — +00.
The Morse index formula given in Theorem 1.1 (i) has the following simpler form
m(U;,) = nM¢(N + 1) for small p > 0.

Explicit formulas for N = 3, 4, 5 are given in the following:

Example 1.2 Leta > —2, p = p. and £ = [%] + 1. Then the following hold:
(i) If N = 3, then m(U,fp) = 5 (20 +2)(€ + 1) for small p > 0.
(ii) If N = 4, then m(U,fp) = %(22 +3)€ + 1)(£ +2) for small p > 0.
(iii) If N =5, then m(U,fp) = 52+ 4 + 1)(€ +2)(¢ + 3) for small p > 0.
Remark 1.3 Letp =a, R =a+ 1,2 € (—oo, A1) and p > 1. Here, A > 0O denotes the

first Dirichlet eigenvalue of —A on A,. It was shown in [14, Proposition 3.6] that the Morse
index of a positive radial solution of

AU+ AU +UP =0 inAy,
U=0 ondA,
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diverges as a — oo. The ratio p/R converges to 1 as a — oo. This divergence result of
the Morse index corresponds to Theorem 1.1 (ii). Similar phenomena were also observed in
previous researches including [9, 17, 24, 25].

When (p, a) = (3, N — 4), the Morse index of positive and negative solutions U 1p can
be completely determined by the ratio p/R € (0, 1). In particular, the smallness of p > 0 is
not assumed in the following:

Theorem1.4 Let N > 3 and (p,a) = (3, N — 4). Let U+p and U 1Lp be a positive and
negative radial solution of (1.1), respectively. Assume that one of the followmg (a) and (b)
holds:

@ Re1 < F < Ry+1,1 for a positive integer £ > 5 — 1,
b0 < % < Ry+1.1 for a nonnegative integer £ = [%] -1
Then,

14
mU,) =Y Mj(N) = M(N + 1).
j=0

Here,

3 4vy . N
ap | — > g Ny
Repi= 1P ( ”\/81),5 “3(N —2)2 (\/gw “3(N — 2)2)> fe>3 -1

0 ife<4 -1
(1.6)
and K denotes the complete elliptic integral of the first kind whose definition and basic
properties are recalled in Sect.7.1.

Note that if £ > (N —2)/2, then 8vy —3(N —2)2 > 0and 0 < /§;VF;‘(+2)2 < 1. Then
Re.1 and Rey1,1 are well-defined. We can check that R[ N is also well-defined. Since

O. Ry 1V U RerReal | = @),

N
>5—1

the statements (a) and (b) in Theorem 1.4 cover the whole range (0, 1).
Upper and lower bounds of Morse indices m(U, f ), n > 1, can be obtained as follows:

Theorem 1.5 Let N > 3 and (p,a) = 3, N —4). Let U
of (1.1) with n nodal domains. Then, the following holds:

Py p, n > 1, denote radial solutions
1) If% > Ry for a positive integer £ > % — 1, then
¢
mU;,) =n Y M;(N)=nM(N +1). (1.7)
Jj=0
Here, Ry, is defined by (1.6).
(i) If & < Ry, for a nonnegative integer £ > % — 2, then
¢
mUE,) <n Y Mj(N)=nM(N +1). (1.8)
j=0
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Here,

5 6 1 3(N —2)4
R i=exp (_”(N - 2)\/ v G — (N =2 N (\/ 2 160 v - (N = 2>2})) '

Note that if £ > % —2and ¢ > 0, then

2 (N —2)%>0and0 ! + 3w -2t 1
Vo1 — — > U an < = <1,
* 2 " 16vp1 {211 — (N —2)2)

and hence 7@5,” is well-defined.
When (p, «) = (3, N — 4), all the radial solutions of (1.1) can be written explicitly as
follows:

Theorem 1.6 Let N > 3 and (p,a) = (3, N —4). Let Ufp, n > 1, denote radial solutions
of (1.1) with n nodal domains. Then,

L N —2 [2k2(1 — k%) _n— log R —logr
U, ,r)==* r- 2z sd|2nKk)—, k|, (1.9)
» 2 2k% — 1 log R —log p

where sd(§, k) :=sn(&, k)/dn(&, k) and k € (%, 1) is the unique solution of

4 R
- nzx/2k2—1K(k):log—. (1.10)
— p

In Theorem 1.6 sn(&, k) and dn(&, k) denote Jacobi elliptic functions whose definitions
and basic properties are summarized in Sect.7.

Let us compare our theorems with previous results. Morse indices of radial solutions were
studied by Amadori—Gladiali [1-5], by De Marchis—Ianni—Pacella [12, 13], by Gladiali—
Grossi—Neves [15] and by Moreira dos Santos—Pacella [20]. As mentioned above, (1.2) does
not have nontrivial radial solutions if p > p.. Therefore it is appropriate to study differences
between (1.1) with p = p. and (1.2) with p < p.. When p < p., for each n > 1,
there exist exactly two radial solutions U,jt of (1.2) with n nodal domains, which satisfy
U, )= —U,;" (r). The following Morse index formula of U,jt was obtained for « = 0 in
[12] and for @ > 0 in [2].

Proposition 1.7 Let N > 3, « > Oand ¢ := [%] + L. If p(< p¢) is close to p., then

14
n Z M;(N) ifa is not an even integer,
mUsH =1 7
n Z M;(N) — M¢(N) ifa is an even integer.
=0

When « > 0 is not an even integer, we see by Theorem 1.1 that m(U,fp) = m(U,jt) for
small p > 0.Onthe otherhand, when« > 0is an even integer, we see that m(U,;'fp) > m(Uf)
for small p > 0. Hence, we can say that the critical case p = p. is more unstable than the
subcritical case p < p. when « is an even integer.
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In [3, Theorem 1.1] the following lower bounds of Morse indices for (1.1) and (1.2) were
obtained: If @ > 0, then

14 14
MUE) =~ DY Mj(N)+1 and mUF) =@ —1Y M;N)+1, (LD
j=0 j=0

where ¢ := [§] + 1. A simple proof in the case (1.2) with n > 2 can be found in [12]. By
Theorem 1.1 we see that m(U,f ) does not attain the lower bound (1.11). On the other hand,
if p(< pe) is close to p, and @ = 0, then we see by Proposition 1.7 that m(U) attains the
lower bound (1.11) when £ = 1. We can say that the critical case does not have the most
stable solution, while the subcritical case has.

Let us mention technical details. In the critical case by Emden’s transformation we can
transform a radial part of (1.1) into the scalar field equation " —u+|u|”~'u = 0. As explained
in Sect. 2, the Morse index m(U,ff ») is equal to the number of the negative eigenvalues of the
weighted eigenvalue problem

|x|?

% +op=1& _ A&
%@-l—plxl“lUn,plp O=—-2:d inAp, (1.12)
d=0 ondA,

and all the eigenvalue of (1.12), which is denoted by )N»,-,j, can be written as follows:
5»1‘,;‘ = Xrad,i +vjfori > 1andj > 0.

Here, ):rad,,-, i =1,2,...,1s the i-th radial eigenvalue of (1.12), i.e., the i-th eigenvalue of

rad r T r

~ N—15% + —1 F j‘\m I
g + N By prolUE P b = By forp<r <R
®Prag(p) = Praa(R) = 0.

Since v; is explicitly given by (1.5), it becomes important to study all the negative eigenvalues

Xrad,i. In the critical case Xrad.i ,i = 1,2, ..., are given as the eigenvalues for the linearization
of the scalar field equation as explained in Sect.4. Let £ := [$] + 1. The main part of our
analysis is for showing that

Kradin < —%(a +2) (@ +2N —2) < —vp <0 < Aradns (1.14)
and that,
fori =1,...,n, Xrad,i — —i(a +2) (¢ +2N —2)as p — 0. (1.15)
In particular,
Arad1 <+ < Aradin <0 < Aradn1 < -

The limit (1.15) will be obtained in Remark 5.9. If p > 0 is small, then all the negative
eigenvalues are

Xi,j=)~»md,i+vj forl <i<mnand0<j </,

which leads to Theorem 1.1. Because of a variational characterization of Xrad, 1, each orthog-
onal set gives an upper bound of Ar,q ,. We can obtain a sharp upper bound in Remark 5.4.
On the other hand, a lower bound of A;,q,1 is nontrivial. In this paper we use a first Neumann
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eigenvalue of a linearization problem as a lower bound of Xrad,l. Then we use a blow-up
argument to show that

~ 1
Arad,1 —> _Z(Ol +2) (0 +2N —2)asp — 0.

This limit implies (1.15), because of (1.14).

Let us again compare our problem with a problem on a ball. It was shown in [3, Proposition
3.3] that, for a certain class of nonlinear terms including |x |*|U [P~1U, radial eigenvalues of
a wighted eigenvalue problem on a ball satisfy

- 1 -
Aradn—1 < —Z(a +2)(a@+2N —2) < Aradn < 0. (1.16)

It follows from (1.14) and (1.16) that the n-th radial eigenvalue is larger than that of our
problem. This causes a difference of lower bounds of Morse indices. A lower bound obtained
in [3, Theorem 1.1] is smaller than that in Theorem 1.1 (i).

When (p,a) = 3, N —4), Xrad,n can be explicitly written as

3k?

j«rad,n = —ﬁ,

where k is the solution of (1.10). This explicit eigenvalue relates m(U,f p) to the ratio p/R,
and hence it plays a crucial role in the proof of Theorems 1.4 and 1.5 (i). There are various
results about lower bounds of the Morse index, while few results are known for upper bounds.
A rather explicit upper bound of the Morse index is obtained in Theorem 1.5 (ii). An upper
bound of the Morse index is in general not easy to obtain, because a lower bound of Xrad,l is

needed. In this paper we use the following explicit lower bound of Argq. 1

Rrad,1 > N_221+ I+
rd 1= 2 Q2 =12 )

Recently, an exact expression of all the eigenvalues for the linearization of a Neumann
problem u” — u +u> = 0 is obtained in [19]. The same method is applicable to the Dirichlet
problem. However, we do not use those exact expression in this paper.

In summary, thanks to the critical exponent p., we can perform these detailed analysis of
eigenvalues ):md,l, o ):rad,,,ﬂ.

The paper consists of seven sections. In Sect. 2 we recall fundamental results about eigen-
values of (1.3) and (1.12). In Sect. 3 we use Emden’s transformation and transform (1.1) into
the scalar filed equation on an interval. Then, we prove Theorem 1.6. In Sect.4 we compare
the weighted eigenvalue problem (1.12) with (4.1) which is an eigenvalue problem associ-
ated with the scalar field equation. In Sect. 5 we compute the Morse index of U,f , and prove
Theorem 1.1. In Sect. 6 we consider the case (p, «) = (3, N — 4) and prove Theorems 1.4
and 1.5. Section 7 is an appendix. We recall the definition and basic properties of the complete
elliptic integral K (k) and Jacobi elliptic functions sn(&, k), cn(&, k), dn(&, k) and sd (&, k).

2 Preliminaries

Let U,f ,» besolutions of (1.1) with n nodal domains. In this paper we mainly study eigenvalues

of the wighted eigenvalue problem (1.12). We define the number of the negative eigenvalues
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of (1.12) counted with their multiplicity by
rﬁ(U,f o) = fi{negative eigenvalues of (1.12) counted with their multiplicity}. 2.1)

The following proposition plays a crucial role in the study of the Morse index for radial
solutions. It was extensively used in previous researches including [1-5, 12, 13, 15].

Proposition 2.1 Let m(U,f ) and M(U;E ) defined by (1.4) and (2.1), respectively. Then the
Sollowing holds:

m(U,;Ep) = ﬁq(U,fp).

The proof of Proposition 2.1 is the same as [13, Lemma 4.2 (a)], which proves the case
o = 0. See also [4, Proposition 1.1]. We omit the proof.

Let LF = [x|* (A + plx|*|UE,|P~") defined on H] (A,) and Ly ,, := |x[>(A + p|x|®
|U,fp|”’1) defined on H(%,rad(Ap)' The eigenvalue problem Lriad’n Drad = —Apad Prag can be

also written as (1.13). From now on, o (I:,ﬂf) and o (I:id’n) denote the set of the eigenvalues

of (1.12) and (1.13), respectively. Let o (—Agn-1) denote the set of eigenvalues of —Agn-1,
ie.,o0(—Agn-1) = {vj}?‘;o, where v; is defined by (1.5). Let )}ad,,’,i =1,2,...,denote the
i-th eigenvalue of (1.13).

Because of Proposition 2.1, we count the number of the negative eigenvalues of (1.12)
instead of (1.3). The eigenvalue problem (1.12) is easier to study, since all the eigenvalues
of (1.12) can be decomposed into a radial and spherical parts.

Proposition 2.2 The eigenvalues of (1.12) satisfy the following:
o(LEH =o(LE, )+ o(—Agn-1). 2.2)

rad,n

Specifically, each eigenvalue of (1.12), which is denoted by )1,',]-, can be written as

M= Awadi+vjfori>landj >0, (2.3)

+

where Arad,i € 0 (L g

Yand v € o(—Agn-1).

The proof of Proposition 2.2 is the same as [8, Lemma 3.1], which studies (1.2). The
relation (2.2) was also extensively used in [1-5, 8, 1215, 17, 18].
The multiplicity of an eigenvalue of (1.12) can be calculated by the following proposition:

Proposition 2.3 Let 1€ a(i,jf) be fixed. Let m(X) denote the multiplicity of)l Then,

mA)y= > M),
G
Arad,itVj=A
where the summation takes all pairs (i, j) satisfying
j\rad,i +v; = )2, i>1andj>0. (2.4)
Moreover, the eigenspace of (1.12) associated to A is spanned by
érad,i(r)wj(e)forp <r<Randf e SN,
where &Drad,i denotes the i-th eigenfunction of (1.13), w;(0) denotes an eigenfunction of

—Agn-1 associated to v; and the pair (i, j) satisfies (2.4).
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We call the eigenvalue ):rad,,- + vo of (1.12) a radial eigenvalue and irad,i +vj,j=1a
nonradial eigenvalue.

Since v; is explicitly given by (1.5), it is important to study the negative eigenvalues of
(1.13). As mentioned in Sect. 1, we show that

Arad,1 < -+ < Aradn <0 < Apadpp1 < -+

3 Exact solutions
Let N > 3,0 > —2 and p = p,. The problem
AU + |x|*|UIP~'U = 0in RN (3.1)
has an exact positive radial singular solution
U*(r) := ArP, (3.2)
where

1 N -2 i
and A :={B(N —2—pB)}r I = (7> . (3.3)

_2+a_N—2
o T2

B P

2

We use the so-called Emden transformation

e —Llog L and u(e) = 2O (3.4)
= —— 102 — an u = ) .
m & R U*(r)
where
=BV —2-py =t = 2 (3.5)
m = = =v_3 .
Then, we see in the following lemma that u () is a solution of the problem
u' + fu)=0 for0 <1t <1, (3.6)
u(0) = u(t,) =0,
where
1 1 P
f@):=—u+ul’"'u and t,:=——1log—. (3.7)
m R

Lemma3.1 Let N > 3, « > —2 and p = p.. The radial function U(r) € Cz((,o, R)) N
C([p, R]) is a solution of (1.1) if and only if u(t) is a solution of (3.6).

Proof By direct calculation we have

dUr) ARF-1
dr - m
d*U@r) AR P2
dr? =T

u/e(ﬂJrl)mt _ ARfﬂflﬂe(/&H)mt’

AR 2 2 2
——— @B+ D' PTIM  ARTPT2B(B + DuePrIm
m

M//e(ﬁ+2)mt +
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Then,
_d*U  N-1dU

0= - “uP-ty
dr? + r o dr +roivl
ARP2 o0s 2 2 4p-1 1
=PI L m@2B — N +2u' —m*B(N —2 — Byu+m> AP~ u|P~'u} .
m

(3.8)
We see by (3.3) that 28 — N + 2 = 0. By (3.8) we obtain
W —u+ P tu=0.

Since p < r < R, we have that 0 < ¢ < ¢, and that u(¢) satisfies the Dirichlet boundary
condition. Then, u(¢) satisfies (3.6). It is clear that the converse is true. The proof is complete.
[m}

It is well known that a solution of (3.6) corresponds to an orbit of the system

{”/ = (3.9)

v =u— |ulPlu.

Since a Dirichlet boundary condition is imposed in (3.6), a corresponding orbit (u(z), v(t))
starts from a point on the v-axis and arrives a point on the v-axis. The system (3.9) has
three equilibria (—1, 0), (0, 0) and (1, 0). Then, (£1, 0) are centers and (0, 0) is a saddle.
Multiplying the equation in (3.6) by u’ and integrating it over [0, x], we see that each solution
(u(t), v(t)) is on a level set

2 2 |u|p+l

v
2

4
2 p+1

We see that (3.9) has two homoclinic loops connecting (0, 0) to itself which are on v —u? 4
2|u|PH! /(p+ 1) = 0. One loop surrounds (1, 0) and the other loop surround (—1, 0). Hence
two loops consist of a figure eight. Let

Q= {(u,v); v> <u®>=2ulP/(p+ D). (3.10)

Two loops satisfy v2 = u? — 2|u|P*t!/(p + 1), i.e., the boundary of . It is obvious
that there is no orbit in € satisfying the boundary condition of (3.6). Therefore, a solution
orbit of (3.6) is in R? \ €, and they are periodic orbits. If (u(z), v(z)) satisfies (3.9), then
(—u(t), —v(t)) also satisfies (3.9). This indicates that all times from a point on the v-axis to
the next point of the v-axis are equal, and hence the length of each nodal domain of u(¢) is
equal to each other. Hence, if # has n nodal domains, then the length of each nodal domain
ist,/n.

When (p, @) = (3, N — 4), the radial solutions of (1.1) can be written explicitly in terms
of Jacobi elliptic functions

Proof of Theorem 1.6 Because of Lemma 3.1, it is enough to obtain an exact solution of (3.6)
with n nodal domains. Since u satisfies u” —u +u> = 0 and u satisfies the Dirichlet boundary
condition, a general solution «(#) can be written in terms of elliptic functions as follows:

<k<Tlandr e R.

o 2k2 ( t—to k) 1
u = cn s ) =
w1\ —1) V2
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See [10, Chapter 7, Section 10] for details of this formula and see Sect.7 for the definition
of cn(§, k). Since u(0) = u(t,) = 0 and u has n nodal domains, we see

t
to = +v2k2 — 1K (k) and ——2—— =2nK (k), (3.11)
V2kr -1

where K denotes the complete elliptic integral of the first kind whose definition and basic
properties are recalled in Sect.7.1. Then,

0 ==X (nk - F KUK, = <k <1
— — — <k<1.
! a2\ FREE)

By the addition formula

cn(x, k)en(y, k) — sn(x, k)sn(y, k)dn(x, k)dn(y, k)
1 — k2sn2(x, k)sn2(y, k)

cn(x +y, k) =

we have that cn(x = K (k), k) = £+/1 — k%sd(x, k). We obtain

2k2(1 — k?)

u(t) ==+ o

t 1
sd{2nKk)—, k), — <k<l. 3.12
( ()t,, ) 7 (3.12)

We return to the original variables. Then we obtain (1.9). By the first equality in (3.11) we
obtain (1.10). The function K (k) is increasing in k € (0, 1). See Sect.7. It is clear that
+/2k? — 1K (k) is strictly increasing in k € (%, 1),

lim V242 — 1K) =0 and lim v2k> — 1K (k) = .
—

k— —=

1
V2

Thus, (1.10) has a unique solution k € (i, 1). O

S

4 Eigenvalue problem

Letn > 1 and let u(¢) be a solution of (3.6) with n nodal domains. We consider the linearized
eigenvalue problem

4.1)

¢+ ffw)p =—pp for0 <t <t,,
$(0) = ¢(tp) = 0.

Here f'(u) = —1 4 plu|’~'. Let w;, i > 1, denote the i-th eigenvalue and let ¢; denote an
eigenfunction associated with ;.
We use the same change of variables as (3.4), i.e., let t := —% log % and we define

U@r) = u(@®)U*(Re™™) and ®(r) := p@)U*(Re™™),

where U*(r) is the singular solution o~f (3.1) given by (3.2) and ¢ is an eigenfunction of (4.1).
Then U (r) is a solution of (1.1) and ®(r) satisfies

m?|x|?

AD + plx[*|UIP7ID = ——Hi D in A,
d=0 ondA,.
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Fori > 1, let

- i N -2\
hradi = 5 = (*2 ) 1. (4.2)

Then, the pair (Xrad,i , &D) satisfies (1.12), and hence the radial part of the eigenvalue problem
(1.12), which is (1.13), is equivalent to (4.1). All the eigenvalues of (1.12) can be obtained
by (2.3). Since all the eigenvalues of —Agny-1 are explicitly given by (1.5), it is crucial to
study eigenvalues of (4.1).

5 Morse index
5.1 Fundamental results for the scalar field equation

Hereafter, we use a time map. A reader can consult [23, Chapters 1 and 2] for details about
relations of a time map and a solution structure of two point boundary value problems.

Let
v 2 p+1 1\ /=D
F(v) ::/O F(s)ds = —% + |;|+1 and ag = (%) .

First, we consider a positive solution of

U”—f—NT_lU/—i—rO‘IUV’*lU:O forp <r <R,
Ur)>0 forp <r <R, 5.1
U(p) =U(R) =0.
We use the change of variables
1 r U(r)
t:=——1log—and v(¢) := ,
p” og ok and v(?) U

where m and U™ (r) are defined in (3.5) and (3.2), respectively. Then v(¢) satisfies

V' + f(v) =0 for — Ty <t < T,
v(t) >0 for — Ty < T < Ty, 5.2)
v(=Top) = v(Tp) =0,

where Ty := %log \/g. Note that 7p — 0 as p — R and Ty — oo as p — 0. A solution of
(5.1) corresponds to a solution (5.2). A solution of (5.2) corresponds to an orbit of (3.9) in the
right half-plane that starts from a point (0, v'(—Tp)) and arrives (0, v'(Tp)). This orbit goes
across the horizontal axis at (a, 0), and a is the maximum value of v(¢) for —Ty < t < Tp.
The orbit is in R? \ €2, where Q is defined by (3.10). Hence a > ag. We study the time of
this orbit. Multiplying the equation in (5.2) with v’ and integrating it over [Ty, t], we have

v/(t)Z
S+ F) = Fa).
Integrating 1 = v'(¢)//2(F(a) — F(v(¢)) over [0, Ty], we have

a dv

1
fo=T@="7 | /Fo-Fo

fora > ay.
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Hence, Tj can be related to a which is max_g, <, <7, v(¢). It was shown in [22] that, for each
pair (p, R), 0 < p < R, (5.1) has a unique solution. Therefore, (5.2) also has a unique
solution for each Ty > 0. Since Ty(a) corresponds to a solution of (5.2) with Ty = Tp(a),
the uniqueness of a solution of (5.2) indicates that 7p(a) is monotone. Since a — ag, the
corresponding orbit converges to a solution corresponding to a homoclinic loop in Cj,(R),
and hence T (a) — oo asa — ap. This limit, together with the existence of a solution of (5.2)
for all Ty > 0, indicates that Ty(a) is decreasing, and Tp(a) — 0 as a — oo. In summary,

To(a) is defined forap < a < oo, itis decreasing, lim Tp(a) = oo and lim Tp(a) = 0.
a—agp a— 00

Hence there exists an inverse function a = a(7Tp) for 0 < Ty < o0.
We consider the following limit problem of (5.2):

w’ + f(w)=0 for —oo <t < 00,
w >0 for —o00 <t < o0, (5.3)
lim; s 400 w(t) = 0.

Then w can be explicitly written as

2

w(t) = agp (COSh <pT_11>>_p_l .

In particular, w(0) = ap. We easily see that lim,_, 4, 7o = oo and

v(t) = w() in Cie(R) as a — ap.

Moreover,
a— ag asTy— oo. 5.4

Lemma 5.1 Let v be a solution of (5.2). Then there exists C > O such that, for a € (ao, 2ap),

lv(t)] < Cexp (—%) for — Ty <t <Tp. (5.5)

Proof Since v(t) is even, it is enough to prove (5.5) for 0 <t < Ty. We define

- v(t) forO0 <t <Typ,
v(t) =
0 fort > Ty.

Then v(t) — w(t) in Cyyc ([0, 00)) as a — ag, v(t) < a fort > 0 and v(¢) is nonincreasing
in z. There exists 7o > 0 independent of a € (agp, 2ag) such that 0 < v(¢) < 2-1/(= for
t > ty. Let 0(r) := 2ag exp(—(t — 19)/~/2). Then,

1
17505—17”4—517 for tp <t < Tp.

Note that ag = v(ty) < v(t9) = 2ag and 0 = v(Ty) < v(Ty). We see that v(t) — v(t) does
not have a negative minimum in ty < ¢t < Tp. Thus,

0<v(@®) <wv() for to<t<Tp. (5.6)
It is clear that

0<v() <v() for tel0,1t) U (T, 00). 5.7
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By (5.7) and (5.6) we see that 0 < v(z) < v(¢) for + > 0 and that v(¢) is independent of
a € (ap, 2ap). The proof is complete. O

A linearization problem of (5.3) in L2(R) becomes

(5.8)

¢+ f(w)p = —u¢ for —oo <t < oo,
¢ € L*>(R).

The spectra of (5.8) is known as follows:

Proposition 5.2 Let L := % + f'(w). The problem (5.8) has a continuous spectrum [1, 00).
Moreover, the first eigenvalue of (5.8) is —(p — 1)(p + 3) /4, the second eigenvalue is 0 and
the third eigenvalue is (p — 1)(5 — p)/4 if 1 < p < 3. Specifically, the following hold:

ol 1 ,
do=w'7, Lgo= 1 (p— D(p +3)o ifp > 1,
b=, L1 =0 ifp>1,
3-p p+3  pul 1 .
= 2 - —w 2, Lo =—(p—1)(5— 1 3.
¢ = w o n"” br=—2(p—DG—pbr ifl<p<

See e.g. [11, p.9] for Proposition 5.2.

5.2 Proof of Theorem 1.1

Let Tp > 0 and u(¢) be a positive solution of

u' + f(u) =0 for0 <t < 2Ty, 59
u(0) = u(2Ty) = 0. ’
Let 1P denote the first eigenvalue of the Dirichlet problem
"+ f'(u1)p = —pp for0 <t < 2T, (5.10)
#(0) = ¢2Ty) = 0.
Lemma 5.3 Let uP be the first Dirichlet eigenvalue of (5.10). Then the following hold:
(i) For Ty > 0,
1
n? <=1 =D +3). (5.11)
(i) As Ty — 0,
uP - —co. (5.12)

Proof (i) Let u; be a positive solution of (5.9). Let

a:= max ui(t) =u1(Ty) >a9 and b :=/2F(a).

0<t<2Ty
Multiplying the equation of (5.9) by u’ and integrating it over [T, x], we have

u/% % ubt! a2 ab+!

u
2 2 p+1l 2+p+1
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Since b = /2F (a), we have

ul oud uf“ a®>  qbt! b?
uro_ui _ & _ (5.13)
2 2 Tt 2 o1 2

Let I} := (0,27Tp) and
H(¢) = /1 ¢ — fu)pdr.

By the variational characterization we see that

H
wP = inf ("’2). (5.14)
peH (\0} llell;
P+l
We take a test function ¢ := u, 2 . Using (5.13) and u’{ =u — uf, we have

H) = /1 Y — (-1 4 pul Yy
1

1 /p_1 23 Pt Pl
:/1 _p; <p2 w? w4 u,? “/1/)”12 +ul ™ — puiPar
1

21, -1 -1
:/ _p Mp lu/z p uerl _ p u%pdl‘
I 2

— LD+ 3)/ arHap— V1 (—a2 + Law) / W dr
4 I 1 4 p+1 I 1

By (5.13) we have

HO) _ 1 ypay = Lon o ppdad 4 (5.15)
T 4 Jy, ul s
Thus, by (5.15) and (5.14) we have
H H 1
uP = inf ((p2) < (‘Q <——(p—D(p+3). (5.16)
eeH A\ llells — I llz 4

Note that the largeness of 7Ty > 0 is not necessary in (5.16). We have shown that (5.11) holds.
(i1) In this case we take a test function 1. We show that

H(up)
5 —> —ooas Ty — 0. (5.17)
luilly
If (5.17) holds, then by (5.14) we have
H H
ul = in (('02) < (M12) — —ocoas Ty — 0,
perj o} llelly — lluill;

and hence (5.12) holds.
Hereafter, we prove (5.17). We need an apriori estimate to prove (5.17). Using Holder’s
inequality, we have

' 12 12
lui ()] < </ Iu/l(s)lzds> </ 12ds> < [ui], ">
0 0
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Using this inequality, we have

2Ty 2T¢
ey 175 —/0 |7 dr < | ||"“f0 Ot%dmi(ﬂw” Juf |54

P+l =
(5.18)
Multiplying the equation in (5.9) with u; and integrating it by parts, we have

2To 2Ty
/ W+ udde = / ur [P dr. (5.19)
0 0

By (5.19) and (5.18) we have

2 i3
””1“2 ||”1||2 + ””1”2 = “”‘1”211 T p+ 3(2TO)12 H”/1H§+1 : (5.20)
Then, by (5.20) we have
2
<p;3> T Qny T < )P (5.21)

By (5.21) and (5.19) we have

2
+3\ 7T _p+d
(%) @Tp) "5 < |2 < a3

Therefore,
2
p+3\rT
( > ) (2To) 2 <||u1||p+1 (5.22)
By Holder’s inequality we have
2 p—1
2Ty 2Ty P+ 2T pi1 )\ pHI
/ u%d;§</ |u1|"+‘dz) (/ 1%) ,
0 0 0
and hence 5
e .
(2T0) ptl S 72. (523)
lluills
By (5.23), (5.22) and (5.19) we have
Haw)  fo"u? +u} = plu|P*de Jo " luy |+ de
7 = = —(p -
lluills llur 13 luills
2
_p Nl
=—(p=Dlulby, W
2

<—(p —1)(”“) (To) 2 — —o0 as Ty — 0.

We have shown that (5.17) holds. The proof of (ii) is complete. ]

Remark 5.4 Let v(t) be a solution of (5.2) and let @ := v(0). We can obtain a sharp upper
bound of x” in the following way: We can prove that

To(a)
/ |v(t)|th—>/w(t)th as a — aop, (5.24)
—To(a) R
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using the dominated convergence theorem with Lemma 5.1. Here,

_4q_ _4q_ q

2 1\ 7T 1 2 1\771 V7T
/w(t)thzi PN (g 1) _ p+1yr -1
R p—1\ 2 p—12 p—1\ 2 FGL+3)

" denotes the Gamma function defined by I'(z) := fooo t*~le=2dt and B denotes the Beta
function, which satisfies B(&, n) := I'(§)I"(n)/T"(§ + n). Using the same calculation as in
the proof of [6, Lemma 3.2], we can obtain

2logh = —2Ty + 2log2ag + I log2 + o(1) as Tp — oo. (5.25)
p—
By (5.25), (5.24) and (5.15) we have
1 (p* 1)25%T
n? < —2(P =D +3) - p(p-',—l])eZTO(l +o(1)) as Ty — 0. (5.26)
p—1°2

However, we do not use (5.26) in this paper.

Let u) be a positive solution of (5.9). Let " denote the first eigenvalue of the Neumann
problem

4 / — f 2T
¢, +f (u/1)¢ ug for0 <t < 27, 5.27)
¢'(0) = ¢'(2Tp) = 0.
Note that u1(0) = u(2Tp) = 0, while ¢’ (0) = ¢'(2Tp) = 0.
Lemma5.5 Let uN be the first Neumann eigenvalue of (5.27). Then,
1
wN = —Z(p —D(p+3)as Ty - oc. (5.28)

Proof Let v(r) be a solution of (5.2). Then the first eigenvalue of (5.27) is equal to that of

{¢ + ff(w)p =—pugp for — Ty <t < Ty, (5.29)

¢'(—=To) = ¢'(To) = 0.

Hereafter, we consider (5.29).

Let I, := (=To, Tp). Let u™ be the first eigenvalue of (5.29) and let ¢ be a first eigen-
function of (5.29). We may assume that ¢ > 0 in R and ||¢||L2(ITO) =1.

We see that

uN = inf f o2 — flv)edt (5.30)
peH! (Iny) I,
lgll=1

and that ¢ attains the infimum of (5.30). Hereafter, we define ¢ = 0 on R\Iz, and X,

denotes the indicator function of I7,. We also define v(#) = 0 on R\ I, to extend the
domain of v(¢). We see that 1 — p IIvIIgo_1 <1—plv/”~'on I,. By Lemma 5.3 (i) we have

_ 1
I—plZ < inf / o2+ (1= plolP Y2t = uN < 1P < —Lp—Dip+3),
peH () JIr, 4

lloll,=1
(5.31)
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where we used

uV = inf H(p)< inf H(p)=puPl. (5.32)
peH! (I) peH] (I,)
ol =1 lplla=1

Since ||v] is bounded for large 7o > 0, by (5.31) we see that ! is bounded for large
Top > 0. Hence, 1 + uV + p ||v||é’o‘1 is also bounded for large T > 0. Since

/ 02y dr = (146 + p oI %) / 2 X1y, dt < Co (5.33)
R R

uniformly for large 7y > 0, we see that, for each compact set K, there are Cx, > 0 and
a compact set K such that K is in the interior set of K; and that [|¢[|51g,) < Ck, for
large Ty > 0. Since H' (K1) — C”(K1),0 < y < 1/2, is continuous, {¢} is bounded in
C”(Ky). Note that |1l oo w) is bounded uniformly for large 7o > O because ||¢||H1(R) is
bounded uniformly for large 7o > 0. Since ¢ satisfies the equation in (5.29), by Schauder
estimates we see that {¢} is bounded in C2? (K). It follows from Ascoli-Arzeld theorem with
a diagonal argument that there exists ¢, € C 2(R) such that ¢ — ¢, in C 120 (R) as Ty — oo.
Moreover, |¢4(t)] < C, fort € R, because H'(K}) = L%(K)) is a continuous inclusion
and (@l g1 Iy) is bounded uniformly for large 7y > 0. We show that

lim / o[~ p?dt :/ lw|P~ p2dt, (5.34)
To—oo Jr R

where w is a unique solution of (5.3). Since ||¢|| 5, is bounded uniformly for large 7y > 0, by
Lemma 5.1 we see that |v|” _14)2 is dominated by an L'(R)-function which is independent
of Ty > 0 large. Note that Ty — oo if and only if @ — ag. The function |v|”~!¢? converges
pointwise to w? _1¢f in R as Tp — oo. By the dominated convergence theorem we obtain
(5.34). Using (5.34), Fatou’s lemma and Lemma 5.3 (i), we have

/¢§3+¢f—p|w|”‘1¢£d¢snminf/ (¢ + %) 1, dt—l—liminf/ —plv|P~¢%di
- To—oo JR 0 To—oo JR

< liminf/ (¢ + ¢* — plvIP~'9?) x4, dt < liminf p
R 0 To— o0

To— o0

1
<liminf u” < —Z(p —D(p+3), (5.35)

To— o0

where w is a solution of (5.3) and we used (5.32). Because of (5.35), ¢, # 0 in R. Since
{u™N'} is bounded, there exists M*N and a subsequence of {x"'}, which is still denoted by {z"},
such that uV — ,u*N as Typ — oo. Applying Fatou’s lemma to the LHS of (5.33), we see that
¢, € L2(R). Since ll¢ll, = 1, again by Fatou’s lemma we see that ¢, € L2(R), and hence
¢s € H'(R). Since ¢ satisfies (5.29), ¢, satisfies the problem

V- (w)ps = —pul ¢y for —oo <t < o0,
¢« > 0.

Since ¢, # 0 in R, by the strong maximum principle ¢, > 0 in R. Thus, ¢, is a first
eigenfunction. By Proposition 5.2 we see that //,iv = —(p — 1)(p + 3)/4. This indicates that
(5.28) holds. O

The following elementary inequality will be used later.
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Lemma5.6 Let&(; >0, j=0,1,...,n,andn; >0, j=0,1,...,nIf

izé—o forj=1,2,...,n,
nj 170

then

E1+---+& >-;io
m+-+n  no

Proof Without loss of generality we assume that

& . {51 En]
S mind2t . b
m m Mn

Since%z i—‘lforj: 1,2,---,n,weseethat £ > &n;. Then
G+ tEqom—&m+-+n) =8+ +n) =&+ +n) =0,

and hence

E1 4+ & zs—lzé—o.
n+---+n.  n - No

m}
Letn > 1. We define
1 R T
T:=t,=—log— and Tp:= —. (5.36)
m 0 2n
Then (3.6) can be written as follows:
u' + fu) =0 for0 <t < 2nTy, (537)

u(0) =unTp) = 0.

Hereafter, uf denotes a solution of (5.37) with n nodal domains such that (#;7)’(0) > 0 and
(u;)(0) < 0. Itis easy to see that u; (t) = —u;" (t). We do not distinguish ;" and u;;. Note
that u,ﬂf(t) can be extended to a 27p-antiperiodic and 47Ty-periodic function and that all the
nodal domains of u,jf(t) are

(0, ZTQ), (2T0, 4T0), ey (2nT0 — 2T0, ZI’ZT()).

The linearization problem of (5.37) becomes

" == _
{¢ + fuE)p = —pug for 0 <t < 2nTp, 538)

¢(0) = ¢(2nTo) = 0.

Let {;}72, denote the set of the eigenvalues of (5.38) associated with u,jf. Since 2nTy =
% log %, we see that

To - ocas p — 0.
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Lemma 5.7 Let n > 1. Then the following hold:

(i) For p < R,
1
tn < =3 (p=D(p+3). (5.39)
(ii) For each small ¢ > 0, there is p. > 0 such that, for 0 < p < p,,
1
— (P =D 3 - <. (5.40)
Proof (i) First we show that u, < —(p—1)(p+3)/4.Recallthat T = 2nTy.Let I := (0, T)
and let I; := (2(j — 1)To,2jTp), j = 1,2, ..., n. We use the variational characterization
of u
U = inf sup ﬂ 5.41)

1obnHL(D) gespan(or g0} 10113

where
H(p) := /¢’2 — flwH)edt.
I
Let ¢>D(t) be the first eigenfunction of (5.10) defined on /;. For j = 1,2, ..., n, let

¢>D(t —2(j — DTy) it2(j— 1Ty <t <2jTy,
0 otherwise.

@) = {

Then, suppgp; = I_] Since ¢ (¢) is continuous on I, we can check that the weak derivative
of (1) is qb} (t) for almost everywhere in /. The function qb} (¢) is bounded on [, and it is

identically equal to O on 7 \ I_ j- Then, the weak derivative of ¢;(¢) is in L2(1), and hence
¢; € H'(I). Since ¢;(0) = ¢;(2nTy) = 0, we see that ¢;(t) € H] (I). Moreover, ¢;
satisfies

Hgy) = /1 o2 — f'(u)g2ds = / 97— gl

/ {¢”+ fut )¢, jdt = / ¢2d. (5.42)

J

We take a set of functions ¢, ..., ¢, which are orthogonal in L2(I), and define

Y =) cjgi),

j=1

where (c1,...,¢c) # (0,...,0). Then, ¢ € span(¢1, ..., P,). We see that Y € Hol(l),
since ¢;, 1 < j < n,isin HOl (I). Since supp¢; N suppgx, j # k, has zero measure, by
(5.42) we have

Hoy) Yo C?H(cbj) ~ Z? 165#” 2 ||§ D

_ _ (5.43)
”w”% Z/ 1€ j |¢]H [ 1€ j H¢JH2
By (5.43) and (5.41) we have
g = inf He) HW) _ b (5.44)

sup
(oS ¢nEH(;(1) pespan(¢y,...,¢n) \{0 ||§0||2 ”1//”2
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By (5.44) and Lemma 5.3 (i) we have

1
i < uP < —7 P =D +3).

The proof of (i) is complete. Note that the smallness p > 0 is notused.
(ii) Let ¢" (r) be the first eigenfunction of (5.27) defined on I; and ¢" (¢) be the first
eigenfunction of (5.38) defined on /. Let & := H; @N), no := ||¢N||iz([1),

g =Hj@"). nj =16 172, J=1.2...n,

where, for j = 1,2,...,n,
Hi (@) = / o7 — fub)pldr.
1j

We restrict a domain of the function ¢~>N to I; for j = 1,2,.... Then, <;~SN does not
1

necessarily satisfy a Dirichlet boundary condition on 9/;, though @V satisfies a Dirichlet

boundary condition on d/. However, as seen below, a space of test functions is H 1(I i)

Hence, we can use ¢V | as a test function. By the unique continuation theorem for linear

IJ
elliptic PDEs that neither ¢ nor #" vanishes on an open set, and hence n; > 0 for j =
0,1,2,...,n. Since d)N is the first eigenfunction of (5.27), we see that
& _ Hi@Y) P 1 CO N . (TC AP N )
T NAN2 = 2 - 2 -
M 16V e, e an el V]2, 0

By Lemma 5.6 we see that

H@GY) &+-+& _ & Hi@¢"Y)

N a2 =z (5.45)
o™iy m I 110 ”d’ HL2(11)
Since éN is a first eigenfunction of (5.38), by (5.45) we see that
pi= i @ _HGY  H@Y _x
- 2 T AN2 & 2 -
ey el NN [oN] 1,
By Lemma 5.5 we see that for each ¢ > 0, there exists p, > 0 such that
1
mr>=—2(p=Dlp+3)—e
for 0 < p < pe. The proof is complete. O

+

n-:

Let {Arad.; }72 | denote the set of the eigenvalues of (1.13) associated with the solution u

Corollary 5.8 Let ¢ := [%] + 1. Then the following holds:
(i) For p < R,

Xrad,n < —V¢.
(ii) There exists pe > 0 such that, for 0 < p < pg,

—Vgt1 < Arad,1-
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Proof (i) We use (4.2), i.e., Arad.i = (NT’Z)2 ;. Multiplying (5.39) by (NT’Z)2 we have
Aradn < —%(a +2)(a +2N —2). (5.46)
Since 2¢ — 2 < o < 2¢, by elementary calculation we have
— %(a+2)(a+2N—2) < —vg. (547

By (5.47) and (5.46) we see that (i) holds. Note that the smallness of p > 0 is not used.
(ii) Since 2¢ — 2 < o < 24, by elementary calculation we have

1
— Vg1 < —Z(a +2)(a + 2N —2). (5.48)

By (5.48) we see that if ¢ > 0 is small, then

1 N —2\?
— Vg1 < —Z(a +2)(a +2N —2) — (T) e. (5.49)

Multiplying (5.40) by (#)2, we have

1 N-2\* .
— Z(a+2)(oz+2N—2) — 5 & < Arad,1 (5.50)

when p > 0 is small. Here, ¢ > 0 in (5.50) is the same value as ¢ > 0 in (5.49), since by
Lemma 5.7 (ii) we can take an arbitrarily small ¢ > 0 in (5.50). Thus, by (5.49) and (5.50)
we see that the conclusion of (ii) holds. ]

Remark 5.9 By (5.50) and (5.46) we see that, foreach 1 <i <n,
~ 1
Arad,i —> _Z(Ol +2)(¢+2N —2)as p — 0.

Lemma5.10 For p < R, 41 > 0 and hence

)\rad,n+l > 0.

. ~ 2 ..
Proof Since Aradni1 = (NT_Z) Iny1, it is enough to show that 11,41 > 0. We prove the
lemma by contradiction. Suppose that i, 11 < 0. Then, the associated eigenfunction ¢,
has n + 2 zeros on [0, T']. Let ¢ be a solution of the initial value problem

"+ f'ufp=0 fort >0,
$0) =0, ¢'(0)=1.

By Sturm’s comparison principle ¢ oscillates more rapidly than ¢,41 or ¢ = c¢,41 for
some ¢ # 0. Hence, ¢ has at least n + 2 zeroson [0, T]. Let 0 = z9 < z1 <220 < --- <
Zn+1 denote the first n + 2 zeros of ¢. Since ¢ = (uf)’ (t) satisfies the same equation
v+ (=1 + pluflp’l)w = 0, by Sturm separation theorem we see that v (¢) has one zero
in (z;, zi4+1) fori = 0, 1,2, ..., n. The function ¥ (¢) has exactly n zeros in (0, T'), while
there are at least n + 1 intervals {(z;, zi+1)}7_,. We obtain a contradiction. Thus, u,+1 <0
does not occur, and hence 1,41 > 0. ]
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Proof of Theorem 1.1 (i) First, we consider the case where p > 0 is small. When p > 0 is
small, by Corollary 5.8 and Lemma 5.10 we have

<0 ifl<i<pand0<j<U{,
hradi +vj1>0 ifl <i<nandj>£€+1, (5.51)
>0 ifi >n+1landj>0.
Therefore, if p > 0 is small, then (1.12) has no zero eigenvalue, and hence (1.3) has also no

zero eigenvalue. Thus, Urf » is nondegenerate for small p > 0.
By (5.51) we see that all negative eigenvalues are

)Nhrad,,- +v; forl <i<nand0<j </
Moreover, it follows from Proposition 2.3 that a multiplicity of each eigenvalue is M (N).
Thus,
14

M(Uy,) =n Y M;(N) for small p > 0.
j=0

By Proposition 2.1 we see that m(U,fp) = Fﬁ(U,ffp) =n Zﬁ‘:o M (N) for small p > 0.

We calculate Zf‘:o M (N). We use the following form of the multiplicity formula of v;:
Mj(N) = Mj — Mj_s,
where
i
it | 1= 0,
J op .
0 if j <O.

We assume that £ is even. Then

My = { Ve = Meo) + -+ (o = M) | + { (Moot = Me3) + -+ + (1 = M)}

12
=0

j
(N +2¢ — 1)(N + £ —2)!
(N — D!

We obtain the same formula in the odd case.
Next, we consider the case where p > 0 is not necessarily small. Even in this case, by
Corollary 5.8 (i) we have

=M+ M =

Madi +v; <0if 1 <i<nand0<j <¢.
Thus, by Proposition 2.1 we have

¢
m(U;-,) = MUy ,) =n Y M;(N) forp < R.
j=0
The proof of (i) is complete.
(i1) Since 2nTy = % log %, it follows from Lemma 5.3 (ii) that u”? — —oco as p — R.
By (5.44) and (4.2) we see that

. N —2\? N-2\* ,
)\rad,n: T Mn = T no = —oQ asp—>R.
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Therefore, it is clear that, for each large integer ¢ > 0, there exists p; < R such that if
o < p < R, then Apg, + v; < 0for0 < j < {. The integer £ can be arbitrary large if p is
close to R. This indicates that m(U,ffp) = m(U,fp) — ooas p —> R.

(ii1) It follows from (5.46) that

Aradn = —O0 as o — 00.

Note that the smallness of p > 0 is not used in (5.46). By the same argument as in (ii) we
see that m(U;E ) = rTﬁ(U,fp) — 00 as o —> 00. ]

6 Thecase (p,a) = 3, N — 4)
6.1 Proof of Theorem 1.4

We consider the case (p, o) = (3, N —4). In this section u denotes a solution of (3.6) with
n nodal domains for simplicity. Let a := maxo<, <, [u(t)|. Then, a > ap = /2 and
4

I I I 6.1)
2 2 ’

forO <t <t,.
The following lemma says that the n-th eigenvalue of (4.1) with respect to a solution u
with n nodal domains can be written explicitly.

Lemma 6.1 Let p =3 and let a > 2. Then,

Up = —gaz and ¢, (t) := u(t)\/m

are the n-th eigenvalue of (4.1) and an associated eigenfunction, respectively. In particular,
{ W W = —ptndn for0 <t <1,
¢n(0) = ¢u(1p) =0,
where t, is defined by (3.7).
Proof Substituting 11, and ¢, into ¢” + (—1 + 3u® + 1), we have
G+ (=14 3u” + 1)

3uu’2 + u2u// u3u/2
VuZ —2+a2 (W —2+a?)3?
3
+ (—1 +3u® — §a2> uvu? =2+ a2. 6.2)

Using u” = u — u® and (6.1), we can check that the RHS of (6.2) is equal to 0. Since
w2 =2+a%>0for0<t < t, and u(t) has n nodal domains, we see that ¢, (f) has n — 1
zeros on (0, 1,). It follows from Sturm-Liouville theory that ¢, is an n-th eigenfunction, and
hence p, is the n-th eigenvalue. O

=u"Vu? —-2+a%+

Proof of Theorem 1.4 We consider the case n = 1. Using Lemma 6.1 with n = 1 and
Lemma 5.10 with n = 1, we see that

n1 <0< pa.
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By (4.2) we see that Xrad,,' = (NT*z)2 Wi . Therefore, Xrad,l is the only negative radial eigen-
value of (1.12). It follows from Propositions 2.1-2.3 that

4
m(U,) = MU ,) =Y M;(N)
j=0
if Arad 1 + Ve < 0and Apg.1 + veg1 = 0 forsome £ € {0, 1,2, ...}.(6.3)

First we consider the case (a). Let £ be given in (a). Since u(¢) can be written explicitly as

(3.12), we see that a = /2k?/(2k? — 1), and hence
s (N-2)
el = 2 ) 2w -1

Since £ > % — 1, we see that 8vy — 3(N — 2)2 > 0 and 8vp41 — 3(N — 2)2 > 0, and

hence Ry 1 and R¢41,1 are well-defined. Since Ry, < % < Ry+1,1 for a positive integer

0> %—l,wehave

4
Re1 < exp (—m\/ 2k2 — 1K(k)> < Ri+1.1- (6.4)

By direct calculation we can check that (6.4) is equivalent to
Xrad,l + vy < 0and Xrad,l + vy > 0. (6.5)

Thus, by (6.3) we see that the conclusion holds.

Second we consider the case (b). Let £ be given in (b). Since ¢ = [%] — 1, we see
that ¢ +1 > (N —2)/2 and £ < (N — 2)/2, and hence 8vyy; — 3(N — 2)2 > 0. Then,
0="TRe1 < Res1.1- Since

0<% =Repi. (6.6)

by the same argument as in (a) we can check that (6.6) is equivalent to (6.5). Thus, by (6.3)
we see that the conclusion holds. O

6.2 Upper and lower bounds of the Morse index

Proof of Theorem 1.5 (i) It follows from Proposition 2.2 that if )N\rad,,, + v¢ < 0, then the
following are negative eigenvalues of (1.12):

Aadi +vj for 1<i<nand0<j<¢.
By Propositions 2.1-2.3 we see that

14
MUy, = MU, =1y Mj(N) if Aragn+ve < 0.
j=0
Let £ > 0 be given in Theorem 1.5 (i). In a similar way to the proof of Theorem 1.4 we see
that Arad,» + Ve < 0 1is equivalent to % > Ry.n. Thus, we have shown that (1.7) holds. O

Proof of Theorem 1.5 (ii) Let u(t) be a solution of (3.6) with n nodal domains. Leta := ||u]| 0.
Then u(t) can be written explicitly as (3.12) and

2k2
a = 2](27_]>ao=\/§.
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We define

wi=—1—V1+3@-12 and (1) = u(t)® + % (\/1 13@—1)2 - 2) .

By direct calculation we see
v+ ffu)y = —puy for0 <t <t,,
¥ >0 for0 <t <t,.

Let 11 be the first eigenvalue of (4.1) and let ¢ be a positive eigenfunction associated to
w1. We define ¢ := 1 — c¢. Here ¢ > 0 can be taken such that the following holds: There
exists #o € (0, t,) such that ¢(f9) = 0and ¢(t) > 0 for 0 <t < 1,, since ¢(0) = (t,) > 0.

We prove by contradiction that
1< . 6.7)

Suppose the contrary, i.e.,
H1 < . (6.8)

Since ¢ (1) > 0for 0 <t < t,, we see that
9"+ flwe = —py + nicgr < —p + pegr = —pg
for 0 < r < t,. Since #( is a minimum point of ¢, we have ¢” (t9) > 0, and hence
0 < ¢"(t0) + f'(u(10))¢(t0) < —pg(t0) = 0.

‘We obtain a contradiction. Thus, (6.8) does not occur, and ®= .
We define

- (N=-2)° N -2\? 3
&rad,l'=<T> Ez_(T) 1+ 1+m ’

Multiplying (6.7) by (NT—2)2, by (4.2) we have that A,,q | < Araq,1. Hereafter, let £ > 1. If
Xrad, 1 + ve+1 > 0, then the following are nonnegative eigenvalues of (1.12):

Aradi +vjfori > land j > €+1, and
Aadi +vj fori > n+ land j > 0.
Hence the following eigenvalues can be negative:
Xrad,i-i-vjforl <i<nand0 < j <.

Therefore, by Propositions 2.1 and 2.3 we see that

¢
m(UE,) =ML, <ny Mj(N) (6.9)
j=0
provided that Araq,1 + ves1 > 0.1 g 1 + Vet > 0, then Arad 1 + Vet > Apgq g +Ves1 = 0,
and hence (6.9) holds. Hence ;md’ 1 + veq1 = 0is a sufficient condition for (6.9). Let £ be

given in Theorem 1.5 (ii). By direct calculation we see that irad,l + ve+1 > 0 is equivalent
to & < Ry,. Thus, (1.8) holds. 0
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7 Appendix: Complete elliptic integral and Jacobi elliptic functions
7.1 Complete elliptic integral

Let 0 < k < 1. The complete elliptic integral of the first kind is denoted by
K(k) = /‘ ! ds
o JU =1 — kY

One can easily see that K (k) is monotonically increasing in k € [0, 1),

K(O):% and  lim K (k) = co.

7.2 Jacobi elliptic functions

Let 0 < k < 1. The Jacobi elliptic function sn(&, k) is an odd, periodic and analytic function
with period 4K (k) as a function for the real domain, and is defined locally by

sn(é k) ds
é:_/o VA =1 — k22

for & € [0, K (k)]. The function cn(§, k) is an even and 4K (k)-periodic function defined
locally by

cn(é, k) :=+/1 —sn2(&, k)
for & € [0, K (k)] and dn(&, k) is an even and 2K (k)-periodic function defined by
dn(, k) == /1 — k2sn2(E, k).
In particular,
sn?(£,k) +en? (&, k) = 1, k*sn®(£,k) +dn’(£,k) = 1
for £ e Rand k € (0, 1). The function sd(&, k) is defined by

sn(§, k)

sd(&, k) := RNTS
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