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Abstract
Let N ≥ 3, R > ρ > 0 and Aρ := {x ∈ R

N ; ρ < |x | < R}. Let U±
n,ρ , n ≥ 1, be a radial

solution with n nodal domains of

{
�U + |x |α|U |p−1U = 0 in Aρ,

U = 0 on ∂Aρ.

We show that if p = N+2+2α
N−2 , α > −2 and N ≥ 3, then U±

n,ρ is nondegenerate for small
ρ > 0 and the Morse indexm(U±

n,ρ) satisfies

m(U±
n,ρ) = n

(N + 2� − 1)(N + � − 1)!
(N − 1)!�! for small ρ > 0,

where � = [α
2 ] + 1. Using Jacobi elliptic functions, we show that if (p, α) = (3, N − 4)

and N ≥ 3, then the Morse index of a positive and negative solutionsm(U±
1,ρ) is completely

determined by the ratio ρ/R ∈ (0, 1). Upper and lower bounds form(U±
n,ρ), n ≥ 1, are also

obtained when (p, α) = (3, N − 4) and N ≥ 3.
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1 Introduction andmain results

Let N ≥ 3, R > ρ > 0 and Aρ := {x ∈ R
N ; ρ < |x | < R}. We are concerned with radial

solutions of the Dirichlet problem{
�U + |x |α|U |p−1U = 0 in Aρ,

U = 0 on ∂Aρ.
(1.1)

The equation in (1.1) is called the Hénon equation arising in astrophysics. Hénon [16] studied
radial solutions of (1.1) on a ball. We are particularly interested in the case

p = pc := N + 2 + 2α

N − 2
and α > −2.

The exponent pc becomes the critical Sobolev exponent provided that α = 0.
Let B denote a unit ball in R

N . First we consider the problem{
�U + |x |α|U |p−1U = 0 in B,

U = 0 on ∂B.
(1.2)

When p ≥ pc, (1.2) has no nontrivial radial solution due to Pohozaev’s identity. On the other
hand, Ni [21] proved that (1.2) has a positive radial solution provided that 1 < p < pc. This
result was generalized by Bartsch–Willem [7]. They proved that, for each n ≥ 2, (1.2) has
radial solutions U±

n (r) that have n nodal domains, i.e., the set {x ∈ B; U±
n (x) �= 0} has

exactly n connected components. The uniqueness ofU+
n (r) follows fromNi–Nussbaum [22],

and U−
n (r) = −U+

n (r). Therefore, pc is a threshold between existence and nonexistence of
nontrivial radial solutions of (1.2).

The situation, however, is different in annular domains. It is known that for each n ≥ 1,
(1.1) has exactly two classical radial solutions U±

n,ρ with n nodal domains, which satisfies
U−
n,ρ(r) = −U+

n,ρ(r). We let (U+
n,ρ)′(R) < 0. In particular, U+

1,ρ and U−
1,ρ are a positive and

negative solution, respectively. Existence and uniqueness results hold for arbitrary p > 1 and
α ∈ R. See [22, Theorem 3.8] for existence of radial solutionsU±

n,ρ and see [22, Theorem 3.1]
for the uniqueness of U+

n,ρ . Thus, it is interesting to study what happens in the case p = pc
as ρ → 0. Bandle-Peletier [6] obtained, among other things, an asymptotic expansion of∥∥∥U±

1,ρ

∥∥∥
L∞(Aρ)

as ρ → 0 in the case α = 0. Specifically, as ρ → 0,

∥∥∥U±
1,ρ

∥∥∥
L∞(Aρ)

=
{
N (N − 2)

ρR

} N−2
4

(1 + o(1)).

In this paper we study theMorse index ofU±
n,ρ when ρ > 0 is small. We call the Morse index

m(U±
n,ρ) of a solutionU±

n,ρ of (1.1) themaximal dimension of a subspace X ⊂ H1
0 (Aρ)where

the quadratic form associated to the linearization operator atU±
n,ρ is negative definite. In our

problem (1.1)m(U±
n,ρ) is equal to the number of the negative eigenvalues of the problem{

�� + p|x |α|U±
n,ρ |p−1� = −λ� in Aρ,

� = 0 on ∂Aρ.
(1.3)

counted with their multiplicity, i.e.,

m(U±
n,ρ) = 	{negative eigenvalues of (1.3) counted with their multiplicity}. (1.4)
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We call that U±
n,ρ is nondegenerate if (1.3) does not have a zero eigenvalue.

We prepare some notation to state our main results. Let [ξ ], ξ ∈ R, denote the largest
integer that does not exceed ξ . Let {ν j }∞j=0 denote the set of the eigenvalues of the Laplace-

Beltrami operator −�SN−1 on the sphere SN−1, i.e.,

ν j := j(N + j − 2), j = 0, 1, 2, . . . . (1.5)

The multiplicity of the eigenvalue ν j is given by

Mj (N ) := (N + 2 j − 2)(N + j − 3)!
(N − 2)! j ! for N ≥ 3 and j = 0, 1, 2, . . . .

The first main result is about the exact Morse index for small ρ > 0 and the divergence of
the Morse index as ρ → R.

Theorem 1.1 Let N ≥ 3, α > −2 and p = pc. Let U±
n,ρ , n ≥ 1, denote radial solutions with

n nodal domains of (1.1). Then the following hold:

(i) Let � := [
α
2

] + 1. Then,

m(U±
n,ρ)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

= n
�∑

j=0

Mj (N ) = n
(N + 2� − 1)(N + � − 2)!

(N − 1)!�! for small ρ > 0,

≥ n
�∑

j=0

Mj (N ) = n
(N + 2� − 1)(N + � − 2)!

(N − 1)!�! for ρ < R,

and U±
n,ρ is nondegenerate for small ρ > 0. In particular, if α = 0, then

m(U±
n,ρ) = n(N + 1) for small ρ > 0.

(ii) As ρ → R,

m(U±
n,ρ) → +∞.

(iii) Let R > ρ > 0 be fixed. As α → ∞ (and hence p = pc → ∞),

m(U±
n,ρ) → +∞.

The Morse index formula given in Theorem 1.1 (i) has the following simpler form

m(U±
n,ρ) = nM�(N + 1) for small ρ > 0.

Explicit formulas for N = 3, 4, 5 are given in the following:

Example 1.2 Let α > −2, p = pc and � = [
α
2

] + 1. Then the following hold:

(i) If N = 3, thenm(U±
n,ρ) = n

2! (2� + 2)(� + 1) for small ρ > 0.
(ii) If N = 4, thenm(U±

n,ρ) = n
3! (2� + 3)(� + 1)(� + 2) for small ρ > 0.

(iii) If N = 5, thenm(U±
n,ρ) = n

4! (2� + 4)(� + 1)(� + 2)(� + 3) for small ρ > 0.

Remark 1.3 Let ρ = a, R = a + 1, λ ∈ (−∞, λ1) and p > 1. Here, λ1 > 0 denotes the
first Dirichlet eigenvalue of −� on Aρ . It was shown in [14, Proposition 3.6] that the Morse
index of a positive radial solution of{

�U + λU +U p = 0 in Aρ,

U = 0 on ∂Aρ
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diverges as a → ∞. The ratio ρ/R converges to 1 as a → ∞. This divergence result of
the Morse index corresponds to Theorem 1.1 (ii). Similar phenomena were also observed in
previous researches including [9, 17, 24, 25].

When (p, α) = (3, N − 4), the Morse index of positive and negative solutions U±
1,ρ can

be completely determined by the ratio ρ/R ∈ (0, 1). In particular, the smallness of ρ > 0 is
not assumed in the following:

Theorem 1.4 Let N ≥ 3 and (p, α) = (3, N − 4). Let U+
1,ρ and U−

1,ρ be a positive and
negative radial solution of (1.1), respectively. Assume that one of the following (a) and (b)
holds:

(a) R�,1 <
ρ
R ≤ R�+1,1 for a positive integer � > N

2 − 1,
(b) 0 <

ρ
R ≤ R�+1,1 for a nonnegative integer � = [ N

2

] − 1.
Then,

m(U±
1,ρ) =

�∑
j=0

Mj (N ) = M�(N + 1).

Here,

R�,n :=

⎧⎪⎨
⎪⎩
exp

(
−4n

√
3

8ν� − 3(N − 2)2
K

(√
4ν�

8ν� − 3(N − 2)2

))
if � > N

2 − 1,

0 if � ≤ N
2 − 1.

(1.6)
and K denotes the complete elliptic integral of the first kind whose definition and basic
properties are recalled in Sect.7.1.

Note that if � > (N − 2)/2, then 8ν� − 3(N − 2)2 > 0 and 0 <
√

4ν�

8ν�−3(N−2)2
< 1. Then

R�,1 and R�+1,1 are well-defined. We can check that R[ N2 ],1 is also well-defined. Since

(0,R[ N2 ],1] ∪
⎛
⎜⎝ ⋃

�> N
2 −1

(R�,1,R�+1,1]
⎞
⎟⎠ = (0, 1),

the statements (a) and (b) in Theorem 1.4 cover the whole range (0, 1).
Upper and lower bounds of Morse indicesm(U±

n ρ), n ≥ 1, can be obtained as follows:

Theorem 1.5 Let N ≥ 3 and (p, α) = (3, N − 4). Let U±
n,ρ , n ≥ 1, denote radial solutions

of (1.1) with n nodal domains. Then, the following holds:

(i) If ρ
R > R�,n for a positive integer � > N

2 − 1, then

m(U±
n,ρ) ≥ n

�∑
j=0

Mj (N ) = nM�(N + 1). (1.7)

Here, R�,n is defined by (1.6).
(ii) If ρ

R ≤ R̃�,n for a nonnegative integer � > N
2 − 2, then

m(U±
n,ρ) ≤ n

�∑
j=0

Mj (N ) = nM�(N + 1). (1.8)
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Here,

R̃�,n := exp

⎛
⎝−n(N − 2)

√
6

ν�+1{2ν�+1 − (N − 2)2}K
⎛
⎝
√
1

2
+ 3(N − 2)4

16ν�+1{2ν�+1 − (N − 2)2}

⎞
⎠
⎞
⎠ .

Note that if � > N
2 − 2 and � ≥ 0, then

2ν�+1 − (N − 2)2 > 0 and 0 <

√
1

2
+ 3(N − 2)4

16ν�+1{2ν�+1 − (N − 2)2} < 1,

and hence R̃�,n is well-defined.
When (p, α) = (3, N − 4), all the radial solutions of (1.1) can be written explicitly as

follows:

Theorem 1.6 Let N ≥ 3 and (p, α) = (3, N − 4). Let U±
n,ρ , n ≥ 1, denote radial solutions

of (1.1) with n nodal domains. Then,

U±
n,ρ(r) = ±N − 2

2

√
2k2(1 − k2)

2k2 − 1
r− N−2

2 sd

(
2nK (k)

log R − log r

log R − log ρ
, k

)
, (1.9)

where sd(ξ, k) := sn(ξ, k)/dn(ξ, k) and k ∈ ( 1√
2
, 1) is the unique solution of

4n

N − 2

√
2k2 − 1K (k) = log

R

ρ
. (1.10)

In Theorem 1.6 sn(ξ, k) and dn(ξ, k) denote Jacobi elliptic functions whose definitions
and basic properties are summarized in Sect. 7.

Let us compare our theorems with previous results. Morse indices of radial solutions were
studied by Amadori–Gladiali [1–5], by De Marchis–Ianni–Pacella [12, 13], by Gladiali–
Grossi–Neves [15] and by Moreira dos Santos–Pacella [20]. As mentioned above, (1.2) does
not have nontrivial radial solutions if p ≥ pc. Therefore it is appropriate to study differences
between (1.1) with p = pc and (1.2) with p < pc. When p < pc, for each n ≥ 1,
there exist exactly two radial solutions U±

n of (1.2) with n nodal domains, which satisfy
U−
n (r) = −U+

n (r). The following Morse index formula of U±
n was obtained for α = 0 in

[12] and for α > 0 in [2].

Proposition 1.7 Let N ≥ 3, α ≥ 0 and � := [
α
2

] + 1. If p(< pc) is close to pc, then

m(U±
n ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n
�∑

j=0

Mj (N ) ifα is not an even integer,

n
�∑

j=0

Mj (N ) − M�(N ) ifα is an even integer.

When α ≥ 0 is not an even integer, we see by Theorem 1.1 that m(U±
n,ρ) = m(U±

n ) for
smallρ > 0.On the other hand,whenα ≥ 0 is an even integer,we see thatm(U±

n,ρ) > m(U±
n )

for small ρ > 0. Hence, we can say that the critical case p = pc is more unstable than the
subcritical case p < pc when α is an even integer.
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In [3, Theorem 1.1] the following lower bounds of Morse indices for (1.1) and (1.2) were
obtained: If α ≥ 0, then

m(U±
n,ρ) ≥ (n − 1)

�∑
j=0

Mj (N ) + 1 and m(U±
n ) ≥ (n − 1)

�∑
j=0

Mj (N ) + 1, (1.11)

where � := [
α
2

] + 1. A simple proof in the case (1.2) with n ≥ 2 can be found in [12]. By
Theorem 1.1 we see thatm(U±

n,ρ) does not attain the lower bound (1.11). On the other hand,
if p(< pc) is close to pc and α = 0, then we see by Proposition 1.7 that m(U±

n ) attains the
lower bound (1.11) when � = 1. We can say that the critical case does not have the most
stable solution, while the subcritical case has.

Let us mention technical details. In the critical case by Emden’s transformation we can
transforma radial part of (1.1) into the scalar field equationu′′−u+|u|p−1u = 0.As explained
in Sect. 2, the Morse indexm(U±

n,ρ) is equal to the number of the negative eigenvalues of the
weighted eigenvalue problem{

��̃ + p|x |α|U±
n,ρ |p−1�̃ = − λ̃

|x |2 �̃ in Aρ,

�̃ = 0 on ∂Aρ

(1.12)

and all the eigenvalue of (1.12), which is denoted by λ̃i, j , can be written as follows:

λ̃i, j = λ̃rad,i + ν j for i ≥ 1 and j ≥ 0.

Here, λ̃rad,i , i = 1, 2, . . ., is the i-th radial eigenvalue of (1.12), i.e., the i-th eigenvalue of{
�̃′′

rad + N−1
r �̃′

rad + prα|U±
n,ρ |p−1�̃rad = − λ̃rad

r2
�̃rad for ρ < r < R,

�̃rad(ρ) = �̃rad(R) = 0.
(1.13)

Since ν j is explicitly given by (1.5), it becomes important to study all the negative eigenvalues
λ̃rad,i . In the critical case λ̃rad,i , i = 1, 2, . . ., are given as the eigenvalues for the linearization
of the scalar field equation as explained in Sect. 4. Let � := [α

2 ] + 1. The main part of our
analysis is for showing that

λ̃rad,n < −1

4
(α + 2)(α + 2N − 2) ≤ −ν� < 0 < λ̃rad,n+1 (1.14)

and that,

for i = 1, . . . , n, λ̃rad,i → −1

4
(α + 2)(α + 2N − 2) as ρ → 0. (1.15)

In particular,

λ̃rad,1 < · · · < λ̃rad,n < 0 < λ̃rad,n+1 < · · · .

The limit (1.15) will be obtained in Remark 5.9. If ρ > 0 is small, then all the negative
eigenvalues are

λ̃i, j = λ̃rad,i + ν j for 1 ≤ i ≤ n and 0 ≤ j ≤ �,

which leads to Theorem 1.1. Because of a variational characterization of λ̃rad,n , each orthog-
onal set gives an upper bound of λ̃rad,n . We can obtain a sharp upper bound in Remark 5.4.
On the other hand, a lower bound of λ̃rad,1 is nontrivial. In this paper we use a first Neumann
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eigenvalue of a linearization problem as a lower bound of λ̃rad,1. Then we use a blow-up
argument to show that

λ̃rad,1 → −1

4
(α + 2)(α + 2N − 2) as ρ → 0.

This limit implies (1.15), because of (1.14).
Let us again compare our problemwith a problem on a ball. It was shown in [3, Proposition

3.3] that, for a certain class of nonlinear terms including |x |α|U |p−1U , radial eigenvalues of
a wighted eigenvalue problem on a ball satisfy

λ̃rad,n−1 < −1

4
(α + 2)(α + 2N − 2) < λ̃rad,n < 0. (1.16)

It follows from (1.14) and (1.16) that the n-th radial eigenvalue is larger than that of our
problem. This causes a difference of lower bounds of Morse indices. A lower bound obtained
in [3, Theorem 1.1] is smaller than that in Theorem 1.1 (i).

When (p, α) = (3, N − 4), λ̃rad,n can be explicitly written as

λ̃rad,n = − 3k2

2k2 − 1
,

where k is the solution of (1.10). This explicit eigenvalue relates m(U±
n,ρ) to the ratio ρ/R,

and hence it plays a crucial role in the proof of Theorems 1.4 and 1.5 (i). There are various
results about lower bounds of theMorse index, while few results are known for upper bounds.
A rather explicit upper bound of the Morse index is obtained in Theorem 1.5 (ii). An upper
bound of the Morse index is in general not easy to obtain, because a lower bound of λ̃rad,1 is
needed. In this paper we use the following explicit lower bound of λ̃rad,1:

λ̃rad,1 ≥ −
(
N − 2

2

)2
(
1 +

√
1 + 3

(2k2 − 1)2

)
.

Recently, an exact expression of all the eigenvalues for the linearization of a Neumann
problem u′′ − u + u3 = 0 is obtained in [19]. The same method is applicable to the Dirichlet
problem. However, we do not use those exact expression in this paper.

In summary, thanks to the critical exponent pc, we can perform these detailed analysis of
eigenvalues λ̃rad,1, . . . , λ̃rad,n+1.

The paper consists of seven sections. In Sect. 2 we recall fundamental results about eigen-
values of (1.3) and (1.12). In Sect. 3 we use Emden’s transformation and transform (1.1) into
the scalar filed equation on an interval. Then, we prove Theorem 1.6. In Sect. 4 we compare
the weighted eigenvalue problem (1.12) with (4.1) which is an eigenvalue problem associ-
ated with the scalar field equation. In Sect. 5 we compute the Morse index ofU±

n,ρ and prove
Theorem 1.1. In Sect. 6 we consider the case (p, α) = (3, N − 4) and prove Theorems 1.4
and 1.5. Section7 is an appendix.We recall the definition and basic properties of the complete
elliptic integral K (k) and Jacobi elliptic functions sn(ξ, k), cn(ξ, k), dn(ξ, k) and sd(ξ, k).

2 Preliminaries

LetU±
n,ρ be solutions of (1.1)with n nodal domains. In this paperwemainly study eigenvalues

of the wighted eigenvalue problem (1.12). We define the number of the negative eigenvalues
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of (1.12) counted with their multiplicity by

m̃(U±
n,ρ) = 	{negative eigenvalues of (1.12) counted with their multiplicity}. (2.1)

The following proposition plays a crucial role in the study of the Morse index for radial
solutions. It was extensively used in previous researches including [1–5, 12, 13, 15].

Proposition 2.1 Letm(U±
n,ρ) and m̃(U±

n,ρ) defined by (1.4) and (2.1), respectively. Then the
following holds:

m(U±
n,ρ) = m̃(U±

n,ρ).

The proof of Proposition 2.1 is the same as [13, Lemma 4.2 (a)], which proves the case
α = 0. See also [4, Proposition 1.1]. We omit the proof.

Let L̃±
n := |x |2 (� + p|x |α|U±

n,ρ |p−1
)
defined on H1

0 (Aρ) and L̃±
rad,n := |x |2(�+ p|x |α

|U±
n,ρ |p−1

)
defined on H1

0,rad(Aρ). The eigenvalue problem L̃±
rad,n�̃rad = −λ̃rad�̃rad can be

also written as (1.13). From now on, σ(L̃±
n ) and σ(L̃±

rad,n) denote the set of the eigenvalues
of (1.12) and (1.13), respectively. Let σ(−�SN−1) denote the set of eigenvalues of −�SN−1 ,
i.e., σ(−�SN−1) = {ν j }∞j=0, where ν j is defined by (1.5). Let λ̃rad,i , i = 1, 2, . . ., denote the
i-th eigenvalue of (1.13).

Because of Proposition 2.1, we count the number of the negative eigenvalues of (1.12)
instead of (1.3). The eigenvalue problem (1.12) is easier to study, since all the eigenvalues
of (1.12) can be decomposed into a radial and spherical parts.

Proposition 2.2 The eigenvalues of (1.12) satisfy the following:

σ(L̃±
n ) = σ(L̃±

rad,n) + σ(−�SN−1). (2.2)

Specifically, each eigenvalue of (1.12), which is denoted by λ̃i, j , can be written as

λ̃i, j = λ̃rad,i + ν j for i ≥ 1 and j ≥ 0, (2.3)

where λ̃rad,i ∈ σ(L̃±
rad) and ν j ∈ σ(−�SN−1).

The proof of Proposition 2.2 is the same as [8, Lemma 3.1], which studies (1.2). The
relation (2.2) was also extensively used in [1–5, 8, 12–15, 17, 18].

The multiplicity of an eigenvalue of (1.12) can be calculated by the following proposition:

Proposition 2.3 Let λ̃ ∈ σ(L̃±
n ) be fixed. Let m(λ̃) denote the multiplicity of λ̃. Then,

m(λ̃) =
∑
(i, j)

λ̃rad,i+ν j=λ̃

Mj (N ),

where the summation takes all pairs (i, j) satisfying

λ̃rad,i + ν j = λ̃, i ≥ 1 and j ≥ 0. (2.4)

Moreover, the eigenspace of (1.12) associated to λ̃ is spanned by

�̃rad,i (r)ω j (θ) for ρ < r < R and θ ∈ S
N−1,

where �̃rad,i denotes the i-th eigenfunction of (1.13), ω j (θ) denotes an eigenfunction of
−�SN−1 associated to ν j and the pair (i, j) satisfies (2.4).

123
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We call the eigenvalue λ̃rad,i + ν0 of (1.12) a radial eigenvalue and λ̃rad,i + ν j , j ≥ 1, a
nonradial eigenvalue.

Since ν j is explicitly given by (1.5), it is important to study the negative eigenvalues of
(1.13). As mentioned in Sect. 1, we show that

λ̃rad,1 < · · · < λ̃rad,n < 0 < λ̃rad,n+1 < · · · .

3 Exact solutions

Let N ≥ 3, α > −2 and p = pc. The problem

�U + |x |α|U |p−1U = 0 in R
N (3.1)

has an exact positive radial singular solution

U∗(r) := Ar−β, (3.2)

where

β := 2 + α

p − 1
= N − 2

2
and A := {β(N − 2 − β)} 1

p−1 =
(
N − 2

2

) N−2
2+α

. (3.3)

We use the so-called Emden transformation

t := − 1

m
log

r

R
and u(t) := U (r)

U∗(r)
, (3.4)

where

m := {β(N − 2 − β)}− 1
2 = A− p−1

2 = 2

N − 2
. (3.5)

Then, we see in the following lemma that u(t) is a solution of the problem{
u′′ + f (u) = 0 for 0 < t < tρ,

u(0) = u(tρ) = 0,
(3.6)

where

f (u) := −u + |u|p−1u and tρ := − 1

m
log

ρ

R
. (3.7)

Lemma 3.1 Let N ≥ 3, α > −2 and p = pc. The radial function U (r) ∈ C2((ρ, R)) ∩
C([ρ, R]) is a solution of (1.1) if and only if u(t) is a solution of (3.6).

Proof By direct calculation we have

dU (r)

dr
= − AR−β−1

m
u′e(β+1)mt − AR−β−1βe(β+1)mt ,

d2U (r)

dr2
= AR−β−2

m2 u′′e(β+2)mt + AR−β−2

m
(2β + 1)u′e(β+2)mt + AR−β−2β(β + 1)ue(β+2)mt .
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Then,

0 = d2U

dr2
+ N − 1

r

dU

dr
+ rα|U |p−1U

= AR−β−2

m2 e(β+2)mt {u′′ + m(2β − N + 2)u′ − m2β(N − 2 − β)u + m2Ap−1|u|p−1u
}
.

(3.8)

We see by (3.3) that 2β − N + 2 = 0. By (3.8) we obtain

u′′ − u + |u|p−1u = 0.

Since ρ < r < R, we have that 0 < t < tρ and that u(t) satisfies the Dirichlet boundary
condition. Then, u(t) satisfies (3.6). It is clear that the converse is true. The proof is complete.

��
It is well known that a solution of (3.6) corresponds to an orbit of the system{

u′ = v,

v′ = u − |u|p−1u.
(3.9)

Since a Dirichlet boundary condition is imposed in (3.6), a corresponding orbit (u(t), v(t))
starts from a point on the v-axis and arrives a point on the v-axis. The system (3.9) has
three equilibria (−1, 0), (0, 0) and (1, 0). Then, (±1, 0) are centers and (0, 0) is a saddle.
Multiplying the equation in (3.6) by u′ and integrating it over [0, x], we see that each solution
(u(t), v(t)) is on a level set

v2

2
− u2

2
+ |u|p+1

p + 1
= C .

We see that (3.9) has two homoclinic loops connecting (0, 0) to itself which are on v2 −u2 +
2|u|p+1/(p+1) = 0. One loop surrounds (1, 0) and the other loop surround (−1, 0). Hence
two loops consist of a figure eight. Let

� := {(u, v); v2 ≤ u2 − 2|u|p+1/(p + 1)}. (3.10)

Two loops satisfy v2 = u2 − 2|u|p+1/(p + 1), i.e., the boundary of �. It is obvious
that there is no orbit in � satisfying the boundary condition of (3.6). Therefore, a solution
orbit of (3.6) is in R

2 \ �, and they are periodic orbits. If (u(t), v(t)) satisfies (3.9), then
(−u(t),−v(t)) also satisfies (3.9). This indicates that all times from a point on the v-axis to
the next point of the v-axis are equal, and hence the length of each nodal domain of u(t) is
equal to each other. Hence, if u has n nodal domains, then the length of each nodal domain
is tρ/n.

When (p, α) = (3, N − 4), the radial solutions of (1.1) can be written explicitly in terms
of Jacobi elliptic functions

Proof of Theorem 1.6 Because of Lemma 3.1, it is enough to obtain an exact solution of (3.6)
with n nodal domains. Since u satisfies u′′−u+u3 = 0 and u satisfies the Dirichlet boundary
condition, a general solution u(t) can be written in terms of elliptic functions as follows:

u(t) =
√

2k2

2k2 − 1
cn

(
t − t0√
2k2 − 1

, k

)
,

1√
2

< k < 1 and t0 ∈ R.
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See [10, Chapter 7, Section 10] for details of this formula and see Sect. 7 for the definition
of cn(ξ, k). Since u(0) = u(tρ) = 0 and u has n nodal domains, we see

t0 = ±
√
2k2 − 1K (k) and

tρ√
2k2 − 1

= 2nK (k), (3.11)

where K denotes the complete elliptic integral of the first kind whose definition and basic
properties are recalled in Sect. 7.1. Then,

u(t) =
√

2k2

2k2 − 1
cn

(
2nK (k)

t

tρ
∓ K (k), k

)
,

1√
2

< k < 1.

By the addition formula

cn(x + y, k) = cn(x, k)cn(y, k) − sn(x, k)sn(y, k)dn(x, k)dn(y, k)

1 − k2sn2(x, k)sn2(y, k)

we have that cn(x ∓ K (k), k) = ±√
1 − k2sd(x, k). We obtain

u(t) = ±
√
2k2(1 − k2)

2k2 − 1
sd

(
2nK (k)

t

tρ
, k

)
,

1√
2

< k < 1. (3.12)

We return to the original variables. Then we obtain (1.9). By the first equality in (3.11) we
obtain (1.10). The function K (k) is increasing in k ∈ (0, 1). See Sect. 7. It is clear that√
2k2 − 1K (k) is strictly increasing in k ∈ ( 1√

2
, 1),

lim
k→ 1√

2

√
2k2 − 1K (k) = 0 and lim

k→1

√
2k2 − 1K (k) = ∞.

Thus, (1.10) has a unique solution k ∈
(

1√
2
, 1
)
. ��

4 Eigenvalue problem

Let n > 1 and let u(t) be a solution of (3.6) with n nodal domains. We consider the linearized
eigenvalue problem {

φ′′ + f ′(u)φ = −μφ for 0 < t < tρ,

φ(0) = φ(tρ) = 0.
(4.1)

Here f ′(u) = −1 + p|u|p−1. Let μi , i ≥ 1, denote the i-th eigenvalue and let φi denote an
eigenfunction associated with μi .

We use the same change of variables as (3.4), i.e., let t := − 1
m log r

R and we define

U (r) := u(t)U∗(Re−mt ) and �̃(r) := φ(t)U∗(Re−mt ),

whereU∗(r) is the singular solution of (3.1) given by (3.2) and φ is an eigenfunction of (4.1).
Then U (r) is a solution of (1.1) and �̃(r) satisfies{

��̃ + p|x |α|U |p−1�̃ = − μi
m2|x |2 �̃ in Aρ,

�̃ = 0 on ∂Aρ.
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For i ≥ 1, let

λ̃rad,i = μi

m2 =
(
N − 2

2

)2

μi . (4.2)

Then, the pair (λ̃rad,i , �̃) satisfies (1.12), and hence the radial part of the eigenvalue problem
(1.12), which is (1.13), is equivalent to (4.1). All the eigenvalues of (1.12) can be obtained
by (2.3). Since all the eigenvalues of −�SN−1 are explicitly given by (1.5), it is crucial to
study eigenvalues of (4.1).

5 Morse index

5.1 Fundamental results for the scalar field equation

Hereafter, we use a time map. A reader can consult [23, Chapters 1 and 2] for details about
relations of a time map and a solution structure of two point boundary value problems.

Let

F(v) :=
∫ v

0
f (s)ds = −v2

2
+ |v|p+1

p + 1
and a0 :=

(
p + 1

2

)1/(p−1)

.

First, we consider a positive solution of⎧⎪⎨
⎪⎩
U ′′ + N−1

r U ′ + rα|U |p−1U = 0 for ρ < r < R,

U (r) > 0 for ρ < r < R,

U (ρ) = U (R) = 0.

(5.1)

We use the change of variables

t := − 1

m
log

r√
ρR

and v(t) := U (r)

U∗(r)
,

where m and U∗(r) are defined in (3.5) and (3.2), respectively. Then v(t) satisfies⎧⎪⎨
⎪⎩

v′′ + f (v) = 0 for − T0 < t < T0,

v(t) > 0 for − T0 < T < T0,

v(−T0) = v(T0) = 0,

(5.2)

where T0 := 1
m log

√
R
ρ
. Note that T0 → 0 as ρ → R and T0 → ∞ as ρ → 0. A solution of

(5.1) corresponds to a solution (5.2). A solution of (5.2) corresponds to an orbit of (3.9) in the
right half-plane that starts from a point (0, v′(−T0)) and arrives (0, v′(T0)). This orbit goes
across the horizontal axis at (a, 0), and a is the maximum value of v(t) for −T0 < t < T0.
The orbit is in R

2 \ �, where � is defined by (3.10). Hence a > a0. We study the time of
this orbit. Multiplying the equation in (5.2) with v′ and integrating it over [T0, t], we have

v′(t)2

2
+ F(v(t)) = F(a).

Integrating 1 = v′(t)/
√
2(F(a) − F(v(t)) over [0, T0], we have

T0 = T0(a) = 1√
2

∫ a

0

dv√
F(a) − F(v)

for a > a0.
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Hence, T0 can be related to a which is max−T0<t<T0 v(t). It was shown in [22] that, for each
pair (ρ, R), 0 < ρ < R, (5.1) has a unique solution. Therefore, (5.2) also has a unique
solution for each T0 > 0. Since T0(a) corresponds to a solution of (5.2) with T0 = T0(a),
the uniqueness of a solution of (5.2) indicates that T0(a) is monotone. Since a → a0, the
corresponding orbit converges to a solution corresponding to a homoclinic loop in Cloc(R),
and hence T (a) → ∞ as a → a0. This limit, together with the existence of a solution of (5.2)
for all T0 > 0, indicates that T0(a) is decreasing, and T0(a) → 0 as a → ∞. In summary,

T0(a) is defined for a0 < a < ∞, it is decreasing, lim
a→a0

T0(a) = ∞ and lim
a→∞ T0(a) = 0.

Hence there exists an inverse function a = a(T0) for 0 < T0 < ∞.
We consider the following limit problem of (5.2):⎧⎪⎨

⎪⎩
w′′ + f (w) = 0 for − ∞ < t < ∞,

w > 0 for − ∞ < t < ∞,

limt→±∞ w(t) = 0.

(5.3)

Then w can be explicitly written as

w(t) = a0

(
cosh

(
p − 1

2
t

))− 2
p−1

.

In particular, w(0) = a0. We easily see that lima→a0 T0 = ∞ and

v(t) → w(t) in Cloc(R) as a → a0.

Moreover,
a → a0 as T0 → ∞. (5.4)

Lemma 5.1 Let v be a solution of (5.2). Then there exists C > 0 such that, for a ∈ (a0, 2a0),

|v(t)| ≤ C exp

(
− |t |√

2

)
for − T0 ≤ t ≤ T0. (5.5)

Proof Since v(t) is even, it is enough to prove (5.5) for 0 ≤ t ≤ T0. We define

ṽ(t) :=
{

v(t) for 0 ≤ t ≤ T0,

0 for t > T0.

Then ṽ(t) → w(t) in Cloc([0,∞)) as a → a0, ṽ(t) ≤ a for t ≥ 0 and ṽ(t) is nonincreasing
in t . There exists t0 > 0 independent of a ∈ (a0, 2a0) such that 0 ≤ ṽ(t) ≤ 2−1/(p−1) for
t ≥ t0. Let v̄(t) := 2a0 exp(−(t − t0)/

√
2). Then,

−ṽ′′ + 1

2
ṽ ≤ 0 ≤ −v̄′′ + 1

2
v̄ for t0 ≤ t < T0.

Note that a0 = ṽ(t0) ≤ v̄(t0) = 2a0 and 0 = ṽ(T0) ≤ v̄(T0). We see that v̄(t) − ṽ(t) does
not have a negative minimum in t0 < t < T0. Thus,

0 ≤ ṽ(t) ≤ v̄(t) for t0 ≤ t ≤ T0. (5.6)

It is clear that
0 ≤ ṽ(t) ≤ v̄(t) for t ∈ [0, t0) ∪ (T0,∞). (5.7)
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By (5.7) and (5.6) we see that 0 ≤ ṽ(t) ≤ v̄(t) for t ≥ 0 and that v̄(t) is independent of
a ∈ (a0, 2a0). The proof is complete. ��

A linearization problem of (5.3) in L2(R) becomes{
φ′′ + f ′(w)φ = −μφ for − ∞ < t < ∞,

φ ∈ L2(R).
(5.8)

The spectra of (5.8) is known as follows:

Proposition 5.2 Let L := d2

dt2
+ f ′(w). The problem (5.8) has a continuous spectrum [1,∞).

Moreover, the first eigenvalue of (5.8) is −(p − 1)(p + 3)/4, the second eigenvalue is 0 and
the third eigenvalue is (p − 1)(5 − p)/4 if 1 < p < 3. Specifically, the following hold:

φ0 := w
p+1
2 , Lφ0 = 1

4
(p − 1)(p + 3)φ0 if p > 1,

φ1 := w′, Lφ1 = 0 if p > 1,

φ2 := w
3−p
2 − p + 3

2(p + 1)
w

p+1
2 , Lφ2 = −1

4
(p − 1)(5 − p)φ2 if 1 < p < 3.

See e.g. [11, p.9] for Proposition 5.2.

5.2 Proof of Theorem 1.1

Let T0 > 0 and u1(t) be a positive solution of{
u′′ + f (u) = 0 for 0 < t < 2T0,

u(0) = u(2T0) = 0.
(5.9)

Let μD denote the first eigenvalue of the Dirichlet problem{
φ′′ + f ′(u1)φ = −μφ for 0 < t < 2T0,

φ(0) = φ(2T0) = 0.
(5.10)

Lemma 5.3 Let μD be the first Dirichlet eigenvalue of (5.10). Then the following hold:
(i) For T0 > 0,

μD < −1

4
(p − 1)(p + 3). (5.11)

(ii) As T0 → 0,
μD → −∞. (5.12)

Proof (i) Let u1 be a positive solution of (5.9). Let

a := max
0≤t≤2T0

u1(t) = u1(T0) > a0 and b := √
2F(a).

Multiplying the equation of (5.9) by u′ and integrating it over [T0, x], we have
u′2

1

2
− u21

2
+ u p+1

p + 1
= −a2

2
+ a p+1

p + 1
.
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Since b = √
2F(a), we have

u′2
1

2
− u21

2
+ u p+1

1

p + 1
= −a2

2
+ a p+1

p + 1
= b2

2
. (5.13)

Let I1 := (0, 2T0) and

H(φ) :=
∫
I1

φ′2 − f ′(u1)φ2dt .

By the variational characterization we see that

μD = inf
ϕ∈H1

0 (I1)\{0}
H(ϕ)

‖ϕ‖22
. (5.14)

We take a test function ψ := u
p+1
2

1 . Using (5.13) and u′′
1 = u1 − u p

1 , we have

H(ψ) =
∫
I1

−ψ ′′ψ − (−1 + pu p−1
1 )ψ2dt

=
∫
I1

− p + 1

2

(
p − 1

2
u

p−3
2

1 u′2
1 + u

p−1
2

1 u′′
1

)
u

p+1
2

1 + u p+1
1 − pu2p1 dt

=
∫
I1

− p2 − 1

4
u p−1
1 u′2

1 − p − 1

2
u p+1
1 − p − 1

2
u2p1 dt

= −1

4
(p − 1)(p + 3)

∫
I1
u p+1
1 dt − p2 − 1

4

(
−a2 + 2

p + 1
a p+1

)∫
I1
u p−1
1 dt .

By (5.13) we have

H(ψ)

‖ψ‖22
= −1

4
(p − 1)(p + 3) − 1

4
(p2 − 1)b2

∫
I1
u p−1
1 dt∫

I1
u p+1
1 dt

. (5.15)

Thus, by (5.15) and (5.14) we have

μD = inf
ϕ∈H1

0 (I1)\{0}
H(ϕ)

‖ϕ‖22
≤ H(ψ)

‖ψ‖22
< −1

4
(p − 1)(p + 3). (5.16)

Note that the largeness of T0 > 0 is not necessary in (5.16). We have shown that (5.11) holds.
(ii) In this case we take a test function u1. We show that

H(u1)

‖u1‖22
→ −∞ as T0 → 0. (5.17)

If (5.17) holds, then by (5.14) we have

μD = inf
ϕ∈H1

0 (I1)\{0}
H(ϕ)

‖ϕ‖22
≤ H(u1)

‖u1‖22
→ −∞ as T0 → 0,

and hence (5.12) holds.
Hereafter, we prove (5.17). We need an apriori estimate to prove (5.17). Using Hölder’s

inequality, we have

|u1(t)| ≤
(∫ t

0
|u′

1(s)|2ds
)1/2 (∫ t

0
12ds

)1/2

≤ ∥∥u′
1

∥∥
2 t

1/2.
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Using this inequality, we have

‖u1‖p+1
p+1 =

∫ 2T0

0
|u1|p+1dt ≤ ∥∥u′

1

∥∥p+1
2

∫ 2T0

0
t
p+1
2 dt = 2

p + 3
(2T0)

p+3
2
∥∥u′

1

∥∥p+1
2 .

(5.18)
Multiplying the equation in (5.9) with u1 and integrating it by parts, we have∫ 2T0

0
u′2
1 + u21dt =

∫ 2T0

0
|u1|p+1dt . (5.19)

By (5.19) and (5.18) we have

∥∥u′
1

∥∥2
2 ≤ ∥∥u′

1

∥∥2
2 + ‖u1‖22 = ‖u1‖p+1

p+1 ≤ 2

p + 3
(2T0)

p+3
2
∥∥u′

1

∥∥p+1
2 . (5.20)

Then, by (5.20) we have (
p + 3

2

) 2
p−1

(2T0)
− p+3

p−1 ≤ ∥∥u′
1

∥∥2
2 . (5.21)

By (5.21) and (5.19) we have(
p + 3

2

) 2
p−1

(2T0)
− p+3

p−1 ≤ ∥∥u′
1

∥∥2
2 ≤ ‖u1‖p+1

p+1 .

Therefore, (
p + 3

2

) 2
p+1

(2T0)
− p+3

p+1 ≤ ‖u1‖p−1
p+1 . (5.22)

By Hölder’s inequality we have

∫ 2T0

0
u21dt ≤

(∫ 2T0

0
|u1|p+1dt

) 2
p+1

(∫ 2T0

0
1

p+1
p−1

) p−1
p+1

,

and hence

(2T0)
− p−1

p+1 ≤ ‖u1‖2p+1

‖u1‖22
. (5.23)

By (5.23), (5.22) and (5.19) we have

H(u1)

‖u1‖22
=

∫ 2T0
0 u′2

1 + u21 − p|u1|p+1dt

‖u1‖22
= −(p − 1)

∫ 2T0
0 |u1|p+1dt

‖u1‖22
= −(p − 1) ‖u1‖p−1

p+1

‖u1‖2p+1

‖u1‖22
≤ −(p − 1)

(
p + 3

2

) 2
p+1

(2T0)
−2 → −∞ as T0 → 0.

We have shown that (5.17) holds. The proof of (ii) is complete. ��
Remark 5.4 Let v(t) be a solution of (5.2) and let a := v(0). We can obtain a sharp upper
bound of μD in the following way: We can prove that∫ T0(a)

−T0(a)

|v(t)|qdt →
∫
R

w(t)qdt as a → a0, (5.24)
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using the dominated convergence theorem with Lemma 5.1. Here,

∫
R

w(t)qdt = 2

p − 1

(
p + 1

2

) q
p−1

B

(
q

p − 1
,
1

2

)
= 2

p − 1

(
p + 1

2

) q
p−1

√
π�(

q
p−1 )

�(
q

p−1 + 1
2 )

,

� denotes the Gamma function defined by �(z) := ∫∞
0 t z−1e−zdt and B denotes the Beta

function, which satisfies B(ξ, η) := �(ξ)�(η)/�(ξ + η). Using the same calculation as in
the proof of [6, Lemma 3.2], we can obtain

2 log b = −2T0 + 2 log 2a0 + 4

p − 1
log 2 + o(1) as T0 → ∞. (5.25)

By (5.25), (5.24) and (5.15) we have

μD ≤ −1

4
(p − 1)(p + 3) − (p2 − 1)2

p+3
p−1

B
(
p+1
p−1 ,

1
2

) e−2T0(1 + o(1)) as T0 → ∞. (5.26)

However, we do not use (5.26) in this paper.

Let u1 be a positive solution of (5.9). Let μN denote the first eigenvalue of the Neumann
problem {

φ′′ + f ′(u1)φ = −μφ for 0 < t < 2T0,

φ′(0) = φ′(2T0) = 0.
(5.27)

Note that u1(0) = u1(2T0) = 0, while φ′(0) = φ′(2T0) = 0.

Lemma 5.5 Let μN be the first Neumann eigenvalue of (5.27). Then,

μN → −1

4
(p − 1)(p + 3) as T0 → ∞. (5.28)

Proof Let v(t) be a solution of (5.2). Then the first eigenvalue of (5.27) is equal to that of{
φ′′ + f ′(v)φ = −μφ for − T0 < t < T0,

φ′(−T0) = φ′(T0) = 0.
(5.29)

Hereafter, we consider (5.29).
Let IT0 := (−T0, T0). Let μN be the first eigenvalue of (5.29) and let φ be a first eigen-

function of (5.29). We may assume that φ > 0 in R and ‖φ‖L2(IT0 ) = 1.
We see that

μN = inf
ϕ∈H1(IT0 )

‖ϕ‖2=1

∫
IT0

ϕ′2 − f ′(v)ϕ2dt (5.30)

and that φ attains the infimum of (5.30). Hereafter, we define φ = 0 on R\IT0 and χIT0
denotes the indicator function of IT0 . We also define v(t) = 0 on R \ IT0 to extend the

domain of v(t). We see that 1− p ‖v‖p−1∞ ≤ 1− p|v|p−1 on IT0 . By Lemma 5.3 (i) we have

1− p ‖v‖p−1∞ ≤ inf
ϕ∈H1(IT0 )

‖ϕ‖2=1

∫
IT0

ϕ′2 + (1− p|v|p−1)ϕ2dt = μN ≤ μD < −1

4
(p−1)(p+3),

(5.31)

123



65 Page 18 of 28 Y. Miyamoto

where we used
μN = inf

ϕ∈H1(IT0 )

‖ϕ‖2=1

H(ϕ) ≤ inf
ϕ∈H1

0 (IT0 )

‖ϕ‖2=1

H(ϕ) = μD . (5.32)

Since ‖v‖∞ is bounded for large T0 > 0, by (5.31) we see that μN is bounded for large
T0 > 0. Hence, 1 + μN + p ‖v‖p−1∞ is also bounded for large T0 > 0. Since∫

R

φ′2χIT0
dt ≤

(
1 + μN + p ‖v‖p−1∞

) ∫
R

φ2χIT0
dt ≤ C0 (5.33)

uniformly for large T0 > 0, we see that, for each compact set K , there are CK1 > 0 and
a compact set K1 such that K is in the interior set of K1 and that ‖φ‖H1(K1)

< CK1 for
large T0 > 0. Since H1(K1) ↪→ Cγ (K1), 0 < γ < 1/2, is continuous, {φ} is bounded in
Cγ (K1). Note that ‖φ‖L∞(R) is bounded uniformly for large T0 > 0 because ‖φ‖H1(R) is
bounded uniformly for large T0 > 0. Since φ satisfies the equation in (5.29), by Schauder
estimates we see that {φ} is bounded inC2,γ (K ). It follows fromAscoli-Arzelá theoremwith
a diagonal argument that there exists φ∗ ∈ C2(R) such that φ → φ∗ in C2

loc(R) as T0 → ∞.
Moreover, |φ∗(t)| ≤ C2 for t ∈ R, because H1(K1) ↪→ L∞(K1) is a continuous inclusion
and ‖φ‖H1(IT0 ) is bounded uniformly for large T0 > 0. We show that

lim
T0→∞

∫
R

|v|p−1φ2dt =
∫
R

|w|p−1φ2∗dt, (5.34)

wherew is a unique solution of (5.3). Since ‖φ‖∞ is bounded uniformly for large T0 > 0, by
Lemma 5.1 we see that |v|p−1φ2 is dominated by an L1(R)-function which is independent
of T0 > 0 large. Note that T0 → ∞ if and only if a → a0. The function |v|p−1φ2 converges
pointwise to w p−1φ2∗ in R as T0 → ∞. By the dominated convergence theorem we obtain
(5.34). Using (5.34), Fatou’s lemma and Lemma 5.3 (i), we have∫

R

φ′2∗ + φ2∗ − p|w|p−1φ2∗dt ≤ lim inf
T0→∞

∫
R

(
φ′2 + φ2)χIT0

dt + lim inf
T0→∞

∫
R

−p|v|p−1φ2dt

≤ lim inf
T0→∞

∫
R

(
φ′2 + φ2 − p|v|p−1φ2)χIT0

dt ≤ lim inf
T0→∞ μN

≤ lim inf
T0→∞ μD ≤ −1

4
(p − 1)(p + 3), (5.35)

where w is a solution of (5.3) and we used (5.32). Because of (5.35), φ∗ �≡ 0 in R. Since
{μN } is bounded, there existsμN∗ and a subsequence of {μN }, which is still denoted by {μN },
such that μN → μN∗ as T0 → ∞. Applying Fatou’s lemma to the LHS of (5.33), we see that
φ′∗ ∈ L2(R). Since ‖φ‖2 = 1, again by Fatou’s lemma we see that φ∗ ∈ L2(R), and hence
φ∗ ∈ H1(R). Since φ satisfies (5.29), φ∗ satisfies the problem{

φ′′∗ + f ′(w)φ∗ = −μN∗ φ∗ for − ∞ < t < ∞,

φ∗ ≥ 0.

Since φ∗ �≡ 0 in R, by the strong maximum principle φ∗ > 0 in R. Thus, φ∗ is a first
eigenfunction. By Proposition 5.2 we see that μN∗ = −(p− 1)(p+ 3)/4. This indicates that
(5.28) holds. ��

The following elementary inequality will be used later.
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Lemma 5.6 Let ξ j ≥ 0, j = 0, 1, . . . , n, and η j > 0, j = 0, 1, . . . , n. If

ξ j

η j
≥ ξ0

η0
for j = 1, 2, . . . , n,

then

ξ1 + · · · + ξn

η1 + · · · + ηn
≥ ξ0

η0
.

Proof Without loss of generality we assume that

ξ1

η1
= min

{
ξ1

η1
, · · · ,

ξn

ηn

}
.

Since
ξ j
η j

≥ ξ1
η1

for j = 1, 2, · · · , n, we see that ξ jη1 ≥ ξ1η j . Then

(ξ1 + · · · + ξn)η1 − ξ1(η1 + · · · + ηn) ≥ ξ1(η1 + · · · + ηn) − ξ1(η1 + · · · + ηn) = 0,

and hence

ξ1 + · · · + ξn

η1 + · · · + ηn
≥ ξ1

η1
≥ ξ0

η0
.

��

Let n ≥ 1. We define

T := tρ = 1

m
log

R

ρ
and T0 := T

2n
. (5.36)

Then (3.6) can be written as follows:{
u′′ + f (u) = 0 for 0 < t < 2nT0,

u(0) = u(2nT0) = 0.
(5.37)

Hereafter, u±
n denotes a solution of (5.37) with n nodal domains such that (u+

n )′(0) > 0 and
(u−

n )′(0) < 0. It is easy to see that u−
n (t) = −u+

n (t). We do not distinguish u+
n and u−

n . Note
that u±

n (t) can be extended to a 2T0-antiperiodic and 4T0-periodic function and that all the
nodal domains of u±

n (t) are

(0, 2T0), (2T0, 4T0), . . . , (2nT0 − 2T0, 2nT0).

The linearization problem of (5.37) becomes{
φ′′ + f ′(u±

n )φ = −μφ for 0 < t < 2nT0,

φ(0) = φ(2nT0) = 0.
(5.38)

Let {μi }∞i=1 denote the set of the eigenvalues of (5.38) associated with u±
n . Since 2nT0 =

1
m log R

ρ
, we see that

T0 → ∞ as ρ → 0.
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Lemma 5.7 Let n ≥ 1. Then the following hold:
(i) For ρ < R,

μn < −1

4
(p − 1)(p + 3). (5.39)

(ii) For each small ε > 0, there is ρε > 0 such that, for 0 < ρ < ρε ,

− 1

4
(p − 1)(p + 3) − ε < μ1. (5.40)

Proof (i) First we show thatμn < −(p−1)(p+3)/4. Recall that T = 2nT0. Let I := (0, T )

and let I j := (2( j − 1)T0, 2 jT0), j = 1, 2, . . . , n. We use the variational characterization
of μn

μn = inf
φ1,...,φn∈H1

0 (I )
sup

ϕ∈span(φ1,...,φn)\{0}
H(ϕ)

‖ϕ‖22
, (5.41)

where

H(ϕ) :=
∫
I
ϕ′2 − f ′(u±

n )ϕ2dt .

Let φD(t) be the first eigenfunction of (5.10) defined on I1. For j = 1, 2, . . . , n, let

φ j (t) :=
{

φD(t − 2( j − 1)T0) if 2( j − 1)T0 < t < 2 jT0,

0 otherwise.

Then, suppφ j = Ī j . Since φ j (t) is continuous on I , we can check that the weak derivative
of φ j (t) is φ′

j (t) for almost everywhere in I . The function φ′
j (t) is bounded on I j , and it is

identically equal to 0 on I \ Ī j . Then, the weak derivative of φ j (t) is in L2(I ), and hence
φ j ∈ H1(I ). Since φ j (0) = φ j (2nT0) = 0, we see that φ j (t) ∈ H1

0 (I ). Moreover, φ j

satisfies

H(φ j ) =
∫
I
φ′2
j − f ′(u±

n )φ2
j dt =

∫
I j

φ′2
j − f ′(u±

n )φ2
j dt

=
∫
I j

−
{
φ′′
j + f ′(u±

n )φ j

}
φ j dt = μD

∫
I j

φ2
j dt . (5.42)

We take a set of functions φ1, . . . , φn which are orthogonal in L2(I ), and define

ψ(t) :=
n∑
j=1

c jφ j (t),

where (c1, . . . , cn) �= (0, . . . , 0). Then, ψ ∈ span(φ1, . . . , φn). We see that ψ ∈ H1
0 (I ),

since φ j , 1 ≤ j ≤ n, is in H1
0 (I ). Since suppφ j ∩ suppφk , j �= k, has zero measure, by

(5.42) we have

H(ψ)

‖ψ‖22
=

∑n
j=1 c

2
j H(φ j )∑n

j=1 c
2
j

∥∥φ j
∥∥2
2

=
∑n

j=1 c
2
jμ

D
∥∥φ j

∥∥2
2∑n

j=1 c
2
j

∥∥φ j
∥∥2
2

= μD . (5.43)

By (5.43) and (5.41) we have

μn = inf
φ1,...,φn∈H1

0 (I )
sup

ϕ∈span(φ1,...,φn)\{0}
H(ϕ)

‖ϕ‖22
≤ H(ψ)

‖ψ‖22
= μD . (5.44)
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By (5.44) and Lemma 5.3 (i) we have

μn ≤ μD < −1

4
(p − 1)(p + 3).

The proof of (i) is complete. Note that the smallness ρ > 0 is not used.
(ii) Let φN (t) be the first eigenfunction of (5.27) defined on I1 and φ̃N (t) be the first

eigenfunction of (5.38) defined on I . Let ξ0 := H1(φ
N ), η0 := ‖φN‖2

L2(I1)
,

ξ j := Hj (φ̃
N ), η j := ‖φ̃N‖2L2(I j )

, j = 1, 2, . . . , n,

where, for j = 1, 2, . . . , n,

Hj (φ) :=
∫
I j

φ′2 − f ′(u±
n )φ2dt .

We restrict a domain of the function φ̃N to I j for j = 1, 2, . . .. Then, φ̃N
∣∣∣
I j

does not

necessarily satisfy a Dirichlet boundary condition on ∂ I j , though φ̃N satisfies a Dirichlet
boundary condition on ∂ I . However, as seen below, a space of test functions is H1(I j ).

Hence, we can use φ̃N
∣∣∣
I j
as a test function. By the unique continuation theorem for linear

elliptic PDEs that neither φN nor φ̃N vanishes on an open set, and hence η j > 0 for j =
0, 1, 2, . . . , n. Since φN is the first eigenfunction of (5.27), we see that

ξ j

η j
= Hj (φ̃

N )

‖φ̃N‖2
L2(I j )

≥ inf
ϕ∈H1(I1)

H1(ϕ)

‖ϕ‖2
L1(I1)

= H1(φ
N )∥∥φN

∥∥2
L2(I1)

= ξ0

η0
.

By Lemma 5.6 we see that

H(φ̃N )

‖φ̃N‖22
= ξ1 + · · · + ξn

η1 + · · · + ηn
≥ ξ0

η0
= H1(φ

N )∥∥φN
∥∥2
L2(I1)

. (5.45)

Since φ̃N is a first eigenfunction of (5.38), by (5.45) we see that

μ1 = inf
ϕ∈H1

0 (I )

H(ϕ)

‖ϕ‖22
= H(φ̃N )

‖φ̃N‖22
≥ H1(φ

N )∥∥φN
∥∥2
L2(I1)

= μN .

By Lemma 5.5 we see that for each ε > 0, there exists ρε > 0 such that

μ1 > −1

4
(p − 1)(p + 3) − ε

for 0 < ρ < ρε . The proof is complete. ��
Let {λ̃rad,i }∞i=1 denote the set of the eigenvalues of (1.13) associated with the solution u

±
n .

Corollary 5.8 Let � := [
α
2

] + 1. Then the following holds:
(i) For ρ < R,

λ̃rad,n < −ν�.

(ii) There exists ρε > 0 such that, for 0 < ρ < ρε ,

−ν�+1 < λ̃rad,1.
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Proof (i) We use (4.2), i.e., λ̃rad,i = ( N−2
2

)2
μi . Multiplying (5.39) by

( N−2
2

)2
, we have

λ̃rad,n < −1

4
(α + 2)(α + 2N − 2). (5.46)

Since 2� − 2 ≤ α < 2�, by elementary calculation we have

− 1

4
(α + 2)(α + 2N − 2) ≤ −ν�. (5.47)

By (5.47) and (5.46) we see that (i) holds. Note that the smallness of ρ > 0 is not used.
(ii) Since 2� − 2 ≤ α < 2�, by elementary calculation we have

− ν�+1 < −1

4
(α + 2)(α + 2N − 2). (5.48)

By (5.48) we see that if ε > 0 is small, then

− ν�+1 < −1

4
(α + 2)(α + 2N − 2) −

(
N − 2

2

)2

ε. (5.49)

Multiplying (5.40) by
( N−2

2

)2
, we have

− 1

4
(α + 2)(α + 2N − 2) −

(
N − 2

2

)2

ε < λ̃rad,1 (5.50)

when ρ > 0 is small. Here, ε > 0 in (5.50) is the same value as ε > 0 in (5.49), since by
Lemma 5.7 (ii) we can take an arbitrarily small ε > 0 in (5.50). Thus, by (5.49) and (5.50)
we see that the conclusion of (ii) holds. ��

Remark 5.9 By (5.50) and (5.46) we see that, for each 1 ≤ i ≤ n,

λ̃rad,i → −1

4
(α + 2)(α + 2N − 2) as ρ → 0.

Lemma 5.10 For ρ < R, μn+1 > 0 and hence

λ̃rad,n+1 > 0.

Proof Since λ̃rad,n+1 = ( N−2
2

)2
μn+1, it is enough to show that μn+1 > 0. We prove the

lemma by contradiction. Suppose that μn+1 ≤ 0. Then, the associated eigenfunction φn+1

has n + 2 zeros on [0, T ]. Let φ be a solution of the initial value problem{
φ′′ + f ′(u±

n )φ = 0 for t > 0,

φ(0) = 0, φ′(0) = 1.

By Sturm’s comparison principle φ oscillates more rapidly than φn+1 or φ = cφn+1 for
some c �= 0. Hence, φ has at least n + 2 zeros on [0, T ]. Let 0 = z0 < z1 < z2 < · · · <

zn+1 denote the first n + 2 zeros of φ. Since ψ := (u±
n )′(t) satisfies the same equation

ψ ′′ + (−1 + p|u±
n |p−1)ψ = 0, by Sturm separation theorem we see that ψ(t) has one zero

in (zi , zi+1) for i = 0, 1, 2, . . . , n. The function ψ(t) has exactly n zeros in (0, T ), while
there are at least n + 1 intervals {(zi , zi+1)}ni=0. We obtain a contradiction. Thus, μn+1 ≤ 0
does not occur, and hence μn+1 > 0. ��
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Proof of Theorem 1.1 (i) First, we consider the case where ρ > 0 is small. When ρ > 0 is
small, by Corollary 5.8 and Lemma 5.10 we have

λ̃rad,i + ν j

⎧⎪⎨
⎪⎩

< 0 if 1 ≤ i ≤ n and 0 ≤ j ≤ �,

> 0 if 1 ≤ i ≤ n and j ≥ � + 1,

> 0 if i ≥ n + 1 and j ≥ 0.

(5.51)

Therefore, if ρ > 0 is small, then (1.12) has no zero eigenvalue, and hence (1.3) has also no
zero eigenvalue. Thus, U±

n,ρ is nondegenerate for small ρ > 0.
By (5.51) we see that all negative eigenvalues are

λ̃rad,i + ν j for 1 ≤ i ≤ n and 0 ≤ j ≤ �.

Moreover, it follows from Proposition 2.3 that a multiplicity of each eigenvalue is Mj (N ).
Thus,

m̃(U±
n,ρ) = n

�∑
j=0

Mj (N ) for small ρ > 0.

By Proposition 2.1 we see that m(U±
n,ρ) = m̃(U±

n,ρ) = n
∑�

j=0 Mj (N ) for small ρ > 0.

We calculate
∑�

j=0 Mj (N ). We use the following form of the multiplicity formula of ν j :

Mj (N ) = M̃ j − M̃ j−2,

where

M̃ j :=
{

(N+ j−1)!
(N−1)! j ! if j ≥ 0,

0 if j < 0.

We assume that � is even. Then

�∑
j=0

Mj =
{
(M̃� − M̃�−2) + · · · + (M̃0 − M̃−2)

}
+
{
(M̃�−1 − M̃�−3) + · · · + (M̃1 − M̃−1)

}

= M̃� + M̃�−1 = (N + 2� − 1)(N + � − 2)!
(N − 1)!�! .

We obtain the same formula in the odd case.
Next, we consider the case where ρ > 0 is not necessarily small. Even in this case, by

Corollary 5.8 (i) we have

λ̃rad,i + ν j < 0 if 1 ≤ i ≤ n and 0 ≤ j ≤ �.

Thus, by Proposition 2.1 we have

m(U±
n,ρ) = m̃(U±

n,ρ) ≥ n
�∑

j=0

Mj (N ) for ρ < R.

The proof of (i) is complete.
(ii) Since 2nT0 = 1

m log R
ρ
, it follows from Lemma 5.3 (ii) that μD → −∞ as ρ → R.

By (5.44) and (4.2) we see that

λ̃rad,n =
(
N − 2

2

)2

μn ≤
(
N − 2

2

)2

μD → −∞ as ρ → R.
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Therefore, it is clear that, for each large integer � > 0, there exists ρ� < R such that if
ρ� < ρ < R, then λ̃rad,n + ν j < 0 for 0 ≤ j ≤ �. The integer � can be arbitrary large if ρ is
close to R. This indicates that m(U±

n,ρ) = m̃(U±
n,ρ) → ∞ as ρ → R.

(iii) It follows from (5.46) that

λ̃rad,n → −∞ as α → ∞.

Note that the smallness of ρ > 0 is not used in (5.46). By the same argument as in (ii) we
see thatm(U±

n,ρ) = m̃(U±
n,ρ) → ∞ as α → ∞. ��

6 The case (p,˛) = (3,N − 4)

6.1 Proof of Theorem 1.4

We consider the case (p, α) = (3, N − 4). In this section u denotes a solution of (3.6) with
n nodal domains for simplicity. Let a := max0≤t≤tρ |u(t)|. Then, a > a0 = √

2 and

u′2 − u2 + u4

2
= −a2 + a4

2
(6.1)

for 0 ≤ t ≤ tρ .
The following lemma says that the n-th eigenvalue of (4.1) with respect to a solution u

with n nodal domains can be written explicitly.

Lemma 6.1 Let p = 3 and let a >
√
2. Then,

μn := −3

2
a2 and φn(t) := u(t)

√
u(t)2 − 2 + a2

are the n-th eigenvalue of (4.1) and an associated eigenfunction, respectively. In particular,{
φ′′
n + f ′(u)φn = −μnφn for 0 < t < tρ,

φn(0) = φn(tρ) = 0,

where tρ is defined by (3.7).

Proof Substituting μn and φn into φ′′ + (−1 + 3u2 + μ)φ, we have

φ′′
n + (−1 + 3u2 + μn)φn

= u′′√u2 − 2 + a2 + 3uu′2 + u2u′′
√
u2 − 2 + a2

− u3u′2

(u2 − 2 + a2)3/2

+
(

−1 + 3u2 − 3

2
a2
)
u
√
u2 − 2 + a2. (6.2)

Using u′′ = u − u3 and (6.1), we can check that the RHS of (6.2) is equal to 0. Since
u(t)2 − 2+ a2 > 0 for 0 ≤ t ≤ tρ and u(t) has n nodal domains, we see that φn(t) has n− 1
zeros on (0, tρ). It follows from Sturm-Liouville theory that φn is an n-th eigenfunction, and
hence μn is the n-th eigenvalue. ��
Proof of Theorem 1.4 We consider the case n = 1. Using Lemma 6.1 with n = 1 and
Lemma 5.10 with n = 1, we see that

μ1 < 0 < μ2.
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By (4.2) we see that λ̃rad,i = ( N−2
2

)2
μi . Therefore, λ̃rad,1 is the only negative radial eigen-

value of (1.12). It follows from Propositions 2.1–2.3 that

m(U±
1,ρ) = m̃(U±

1,ρ) =
�∑

j=0

Mj (N )

if λ̃rad,1 + ν� < 0 and λ̃rad,1 + ν�+1 ≥ 0 for some � ∈ {0, 1, 2, . . .}.(6.3)
First we consider the case (a). Let � be given in (a). Since u(t) can be written explicitly as
(3.12), we see that a = √

2k2/(2k2 − 1), and hence

λ̃rad,1 = −
(
N − 2

2

)2 3k2

2k2 − 1
.

Since � > N
2 − 1, we see that 8ν� − 3(N − 2)2 > 0 and 8ν�+1 − 3(N − 2)2 > 0, and

hence R�,1 and R�+1,1 are well-defined. Since R�,1 <
ρ
R ≤ R�+1,1 for a positive integer

� > N
2 − 1, we have

R�,1 < exp

(
− 4

N − 2

√
2k2 − 1K (k)

)
≤ R�+1,1. (6.4)

By direct calculation we can check that (6.4) is equivalent to

λ̃rad,1 + ν� < 0 and λ̃rad,1 + ν�+1 ≥ 0. (6.5)

Thus, by (6.3) we see that the conclusion holds.
Second we consider the case (b). Let � be given in (b). Since � = [ N

2

] − 1, we see
that � + 1 > (N − 2)/2 and � ≤ (N − 2)/2, and hence 8ν�+1 − 3(N − 2)2 > 0. Then,
0 = R�,1 < R�+1,1. Since

0 <
ρ

R
≤ R�+1,1, (6.6)

by the same argument as in (a) we can check that (6.6) is equivalent to (6.5). Thus, by (6.3)
we see that the conclusion holds. ��

6.2 Upper and lower bounds of theMorse index

Proof of Theorem 1.5 (i) It follows from Proposition 2.2 that if λ̃rad,n + ν� < 0, then the
following are negative eigenvalues of (1.12):

λ̃rad,i + ν j for 1 ≤ i ≤ n and 0 ≤ j ≤ �.

By Propositions 2.1–2.3 we see that

m(U±
n,ρ) = m̃(U±

n,ρ) ≥ n
�∑

j=0

Mj (N ) if λ̃rad,n + ν� < 0.

Let � > 0 be given in Theorem 1.5 (i). In a similar way to the proof of Theorem 1.4 we see
that λ̃rad,n + ν� < 0 is equivalent to ρ

R > R�,n . Thus, we have shown that (1.7) holds. ��
Proof of Theorem 1.5 (ii) Let u(t) be a solution of (3.6) with n nodal domains. Let a := ‖u‖∞.
Then u(t) can be written explicitly as (3.12) and

a =
√

2k2

2k2 − 1
> a0 = √

2.
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We define

μ := −1 −
√
1 + 3(a2 − 1)2 and ψ(t) := u(t)2 + 1

3

(√
1 + 3(a2 − 1)2 − 2

)
.

By direct calculation we see{
ψ ′′ + f ′(u)ψ = −μψ for 0 < t < tρ,

ψ > 0 for 0 ≤ t ≤ tρ.

Let μ1 be the first eigenvalue of (4.1) and let φ1 be a positive eigenfunction associated to
μ1. We define ϕ := ψ − cφ1. Here c > 0 can be taken such that the following holds: There
exists t0 ∈ (0, tρ) such that ϕ(t0) = 0 and ϕ(t) ≥ 0 for 0 ≤ t ≤ tρ , since ϕ(0) = ϕ(tρ) > 0.

We prove by contradiction that
μ ≤ μ1. (6.7)

Suppose the contrary, i.e.,
μ1 < μ. (6.8)

Since φ1(t) > 0 for 0 < t < tρ , we see that

ϕ′′ + f ′(u)ϕ = −μψ + μ1cφ1 < −μψ + μcφ1 = −μϕ

for 0 < t < tρ . Since t0 is a minimum point of ϕ, we have ϕ′′(t0) ≥ 0, and hence

0 ≤ ϕ′′(t0) + f ′(u(t0))ϕ(t0) < −μϕ(t0) = 0.

We obtain a contradiction. Thus, (6.8) does not occur, and μ ≤ μ1.
We define

λ̃rad,1 :=
(
N − 2

2

)2

μ = −
(
N − 2

2

)2
(
1 +

√
1 + 3

(2k2 − 1)2

)
.

Multiplying (6.7) by
( N−2

2

)2
, by (4.2) we have that λ̃rad,1 ≤ λ̃rad,1. Hereafter, let � ≥ 1. If

λ̃rad,1 + ν�+1 ≥ 0, then the following are nonnegative eigenvalues of (1.12):

λ̃rad,i + ν j for i ≥ 1 and j ≥ � + 1, and

λ̃rad,i + ν j for i ≥ n + 1 and j ≥ 0.

Hence the following eigenvalues can be negative:

λ̃rad,i + ν j for 1 ≤ i ≤ n and 0 ≤ j ≤ �.

Therefore, by Propositions 2.1 and 2.3 we see that

m(U±
n,ρ) = m̃(U±

n,ρ) ≤ n
�∑

j=0

Mj (N ) (6.9)

provided that λ̃rad,1+ν�+1 ≥ 0. If λ̃rad,1+ν�+1 ≥ 0, then λ̃rad,1+ν�+1 ≥ λ̃rad,1+ν�+1 ≥ 0,

and hence (6.9) holds. Hence λ̃rad,1 + ν�+1 ≥ 0 is a sufficient condition for (6.9). Let � be

given in Theorem 1.5 (ii). By direct calculation we see that λ̃rad,1 + ν�+1 ≥ 0 is equivalent
to ρ

R ≤ R̃�,n . Thus, (1.8) holds. ��

123



Exact Morse index of radial solutions… Page 27 of 28 65

Acknowledgements The author would like to thank the referee for helpful comments and for bringing [3,
Proposition 3.3] to author’s attention.

Funding Open access funding provided by The University of Tokyo.

Data Availability The author confirms that the data supporting the findings of this study are available within
the article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

7 Appendix: Complete elliptic integral and Jacobi elliptic functions

7.1 Complete elliptic integral

Let 0 ≤ k < 1. The complete elliptic integral of the first kind is denoted by

K (k) :=
∫ 1

0

ds√
(1 − s2)(1 − k2s2)

.

One can easily see that K (k) is monotonically increasing in k ∈ [0, 1),
K (0) = π

2
and lim

k→1
K (k) = ∞.

7.2 Jacobi elliptic functions

Let 0 < k < 1. The Jacobi elliptic function sn(ξ, k) is an odd, periodic and analytic function
with period 4K (k) as a function for the real domain, and is defined locally by

ξ =
∫ sn(ξ,k)

0

ds√
(1 − s2)(1 − k2s2)

for ξ ∈ [0, K (k)]. The function cn(ξ, k) is an even and 4K (k)-periodic function defined
locally by

cn(ξ, k) :=
√
1 − sn2(ξ, k)

for ξ ∈ [0, K (k)] and dn(ξ, k) is an even and 2K (k)-periodic function defined by

dn(ξ, k) :=
√
1 − k2sn2(ξ, k).

In particular,

sn2(ξ, k) + cn2(ξ, k) = 1, k2sn2(ξ, k) + dn2(ξ, k) = 1

for ξ ∈ R and k ∈ (0, 1). The function sd(ξ, k) is defined by

sd(ξ, k) := sn(ξ, k)

dn(ξ, k)
.
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