Skip to main content
Log in

The value-distribution of artin L-functions associated with cubic fields in conductor aspect

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Arising from the factorizations of the Dedekind zeta-functions of cubic fields, we obtain Artin L-functions of certain two-dimensional representations. In this paper, we study the value-distribution of such Artin L-functions for families of non-Galois cubic fields in conductor aspect. For this, we apply asymptotic formulas for the counting functions of cubic fields proved by Bhargava et al. (Invent Math 193 (2):439-499, 2013) or Taniguchi and Thorne (Duke Math J 162(13): 2451-2508, 2013). Then the Artin L-functions associated with cubic fields are connected with random variables called the random Euler products. We construct a density function for the random Euler product, whose Fourier–Laplace transform has an infinite product representation. Furthermore, we prove that various mean values of the Artin L-functions are represented by integrals involving this density function. By the class number formula, the result is applied to the study on the distribution of class numbers of cubic fields. We show a formula for the sum involving the class numbers which is regarded as a cubic analogue of Gauss’ formula on quadratic class numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akbary, A., Hamieh, A.: Value-distribution of cubic Hecke \(L\)-functions. J. Number Theory 206, 81–122 (2020). https://doi.org/10.1016/j.jnt.2019.06.005

    Article  MathSciNet  MATH  Google Scholar 

  2. Akbary, A., Hamieh, A.: Two dimensional value-distribution of cubic Hecke \(L\)-functions. Proc. Am. Math. Soc. 149(11), 4669–4684 (2021). https://doi.org/10.1090/proc/15592

    Article  MathSciNet  MATH  Google Scholar 

  3. Ayoub, R.: An introduction to the analytic theory of numbers. Mathematical Surveys, No. 10. American Mathematical Society, Providence, R.I. (1963)

  4. Ayoub, R.: On \(L\)-series with real characters. Illinois J. Math. 8, 550–555 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barban, M.B.: Linnik’s “great sieve’’ and a limit theorem for the class number of ideals of an imaginary quadratic field. Izv. Akad. Nauk SSSR Ser. Mat. 26, 573–580 (1962)

    MathSciNet  MATH  Google Scholar 

  6. Bhargava, M., Shankar, A., Tsimerman, J.: On the Davenport–Heilbronn theorems and second order terms. Invent. Math. 193(2), 439–499 (2013). https://doi.org/10.1007/s00222-012-0433-0

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhargava, M., Taniguchi, T., Thorne, F.: Improved error estimates for the Davenport–Heilbronn theorems (2021). Preprint, https://arxiv.org/abs/2107.12819

  8. Billingsley, P.: Probability and measure, third edn. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1995). A Wiley-Interscience Publication

  9. Bohr, H., Jessen, B.: Über die Werteverteilung der Riemannschen Zetafunktion. Acta. Math. 54(1), 1–35 (1930). https://doi.org/10.1007/BF02547516

    Article  MathSciNet  MATH  Google Scholar 

  10. Bohr, H., Jessen, B.: Über die Werteverteilung der Riemannschen Zetafunktion. Acta. Math. 58(1), 1–55 (1932). https://doi.org/10.1007/BF02547773

    Article  MathSciNet  MATH  Google Scholar 

  11. Cho, P.J., Fiorilli, D., Lee, Y., Södergren, A.: Omega results for cubic field counts via lower-order terms in the one-level density. Forum Math. Sigma 10, e80 (2022). https://doi.org/10.1017/fms.2022.70

    Article  MathSciNet  MATH  Google Scholar 

  12. Cho, P.J., Kim, H.H.: Universality of Artin \(L\)-functions in conductor aspect. J. Math. Anal. Appl. 456(1), 34–56 (2017). https://doi.org/10.1016/j.jmaa.2017.06.076

    Article  MathSciNet  MATH  Google Scholar 

  13. Cho, P.J., Kim, H.H.: Moments of logarithmic derivatives of \(L\)-functions. J. Number Theory 183, 40–61 (2018). https://doi.org/10.1016/j.jnt.2017.08.017

    Article  MathSciNet  MATH  Google Scholar 

  14. Chowla, S., Erdös, P.: A theorem on the distribution of the values of \(L\)-functions. J. Indian Math. Soc. (N.S.) 15, 11–18 (1951)

    MathSciNet  MATH  Google Scholar 

  15. Cogdell, J., Michel, P.: On the complex moments of symmetric power \(L\)-functions at \(s=1\). Int. Math. Res. Not. 31, 1561–1617 (2004). https://doi.org/10.1155/S1073792804132455

    Article  MathSciNet  MATH  Google Scholar 

  16. Davenport, H., Heilbronn, H.: On the density of discriminants of cubic fields. Bull. Lond. Math. Soc. 1, 345–348 (1969). https://doi.org/10.1112/blms/1.3.345

    Article  MathSciNet  MATH  Google Scholar 

  17. Davenport, H., Heilbronn, H.: On the density of discriminants of cubic fields. II. Proc. R. Soc. Lond. Ser. A 322(1551), 405–420 (1971). https://doi.org/10.1098/rspa.1971.0075

    Article  MathSciNet  MATH  Google Scholar 

  18. Elliott, P.D.T.A.: The distribution of the quadratic class number. Litovsk. Mat. Sb. 10, 189–197 (1970)

    MathSciNet  MATH  Google Scholar 

  19. Elliott, P.D.T.A.: On the distribution of the values of Dirichlet \(L\)-series in the half-plane \( >\frac{1}{2}\). Nederl. Akad. Wetensch. Proc. Ser. A 74=Indag. Math. 33, 222–234 (1971)

  20. Elliott, P.D.T.A.: On the distribution of \({\rm arg}L(s,\chi )\) in the half-plane \(\sigma >\frac{1}{2}\). Acta. Arith. 20, 155–169 (1972). https://doi.org/10.4064/aa-20-2-155-169

    Article  MathSciNet  Google Scholar 

  21. Elliott, P.D.T.A.: On the distribution of the values of quadratic \(L\)-series in the half-plane \( >\frac{1}{2}\). Invent. Math. 21, 319–338 (1973). https://doi.org/10.1007/BF01418793

    Article  MathSciNet  MATH  Google Scholar 

  22. Elliott, P.D.T.A.: Probabilistic number theory. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 240. Springer-Verlag, Berlin-New York (1980). Central limit theorems

  23. Granville, A., Soundararajan, K.: The distribution of values of \(L(1,\chi _d)\). Geom. Funct. Anal. 13(5), 992–1028 (2003). https://doi.org/10.1007/s00039-003-0438-3

    Article  MathSciNet  MATH  Google Scholar 

  24. Granville, A., Soundararajan, K.: Extreme values of \(|\zeta (1+it)|\). In: The Riemann zeta function and related themes: papers in honour of Professor K. Ramachandra, Ramanujan Math. Soc. Lect. Notes Ser., vol. 2, pp. 65–80. Ramanujan Math. Soc., Mysore (2006)

  25. Ihara, Y.: On “\(M\)-functions’’ closely related to the distribution of \(L^{\prime }/L\)-values. Publ. Res. Inst. Math. Sci. 44(3), 893–954 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ihara, Y., Matsumoto, K.: On certain mean values and the value-distribution of logarithms of Dirichlet \(L\)-functions. Q. J. Math. 62(3), 637–677 (2011). https://doi.org/10.1093/qmath/haq002

    Article  MathSciNet  MATH  Google Scholar 

  27. Ihara, Y., Matsumoto, K.: On \(\log L\) and \(L^{\prime }/L\) for \(L\)-functions and the associated “\(M\)-functions’’: connections in optimal cases. Mosc. Math. J. 11(1), 73–111 (2011). https://doi.org/10.17323/1609-4514-2011-11-1-73-111

    Article  MathSciNet  MATH  Google Scholar 

  28. Ihara, Y., Matsumoto, K.: On the value-distribution of logarithmic derivatives of Dirichlet \(L\)-functions. In: Analytic number theory. approximation theory, and special functions, pp. 79–91. Springer, New York (2014)

  29. Iwaniec, H., Kowalski, E.: Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence, RI (2004). https://doi.org/10.1090/coll/053

  30. Jessen, B., Wintner, A.: Distribution functions and the Riemann zeta function. Trans. Am. Math. Soc. 38(1), 48–88 (1935). https://doi.org/10.2307/1989728

    Article  MathSciNet  MATH  Google Scholar 

  31. Kowalski, E.: An introduction to probabilistic number theory, Cambridge Studies in Advanced Mathematics, vol. 192. Cambridge University Press, Cambridge (2021). https://doi.org/10.1017/9781108888226

  32. Kowalski, E., Michel, P.: Zeros of families of automorphic \(L\)-functions close to 1. Pac. J. Math. 207(2), 411–431 (2002). https://doi.org/10.2140/pjm.2002.207.411

    Article  MathSciNet  MATH  Google Scholar 

  33. Lamzouri, Y.: Distribution of values of \(L\)-functions at the edge of the critical strip. Proc. Lond. Math. Soc. (3) 100(3), 835–863 (2010). https://doi.org/10.1112/plms/pdp050

    Article  MathSciNet  MATH  Google Scholar 

  34. Lamzouri, Y.: On the distribution of extreme values of zeta and \(L\)-functions in the strip \(\frac{1}{2}< <1\). Int. Math. Res. Not. IMRN 23, 5449–5503 (2011). https://doi.org/10.1093/imrn/rnq293

    Article  MathSciNet  MATH  Google Scholar 

  35. Lamzouri, Y.: The distribution of Euler-Kronecker constants of quadratic fields. J. Math. Anal. Appl. 432(2), 632–653 (2015). https://doi.org/10.1016/j.jmaa.2015.06.065

    Article  MathSciNet  MATH  Google Scholar 

  36. Lamzouri, Y., Lester, S.J., Radziwiłł, M.: Discrepancy bounds for the distribution of the Riemann zeta-function and applications. J. Anal. Math. 139(2), 453–494 (2019). https://doi.org/10.1007/s11854-019-0063-1

    Article  MathSciNet  MATH  Google Scholar 

  37. Louboutin, S.: Explicit upper bounds for residues of Dedekind zeta functions and values of \(L\)-functions at \(s=1\), and explicit lower bounds for relative class numbers of CM-fields. Can. J. Math. 53(6), 1194–1222 (2001). https://doi.org/10.4153/CJM-2001-045-5

    Article  MathSciNet  MATH  Google Scholar 

  38. Louboutin, S.: The Brauer-Siegel theorem. J. Lond. Math. Soc. (2) 72(1), 40–52 (2005). https://doi.org/10.1112/S0024610705006654

    Article  MathSciNet  MATH  Google Scholar 

  39. Luo, W.: On Hecke \(L\)-series associated with cubic characters. Compos. Math. 140(5), 1191–1196 (2004). https://doi.org/10.1112/S0010437X0400051X

    Article  MathSciNet  MATH  Google Scholar 

  40. Matsumoto, K.: On the theory of \(M\)-functions. In: Profinite monodromy. Galois representations, and Complex functions: in honor of Professor Yasutaka Ihara’s 80th Birthday, RIMS Kôkyûroku, vol. 2120, pp. 153–165. Research Institute for Mathematical Science, Kyoto (2019)

  41. Mine, M.: Probability density functions attached to random Euler products for automorphic \(L\)-functions. Q. J. Math. 73(2), 397–442 (2022). https://doi.org/10.1093/qmath/haab035

    Article  MathSciNet  MATH  Google Scholar 

  42. Mishou, H., Nagoshi, H.: Functional distribution of \(L(s,\chi _d)\) with real characters and denseness of quadratic class numbers. Trans. Am. Math. Soc. 358(10), 4343–4366 (2006). https://doi.org/10.1090/S0002-9947-06-03825-6

    Article  MATH  Google Scholar 

  43. Mourtada, M.: The distribution of values of logarithmic derivatives of real L-functions. ProQuest LLC, Ann Arbor, MI (2013). Thesis (Ph.D.)–University of Toronto (Canada)

  44. Mourtada, M., Murty, V.K.: Distribution of values of \(L^{\prime }/L( ,\chi _D)\). Mosc. Math. J. 15(3), 497–509, 605 (2015). https://doi.org/10.17323/1609-4514-2015-15-3-497-509

  45. Roberts, D.P.: Density of cubic field discriminants. Math. Comp. 70(236), 1699–1705 (2001). https://doi.org/10.1090/S0025-5718-00-01291-6

    Article  MathSciNet  MATH  Google Scholar 

  46. Siegel, C.L.: The average measure of quadratic forms with given determinant and signature. Ann. Math. 2(45), 667–685 (1944). https://doi.org/10.2307/1969296

    Article  MathSciNet  MATH  Google Scholar 

  47. Taniguchi, T., Thorne, F.: Secondary terms in counting functions for cubic fields. Duke Math. J. 162(13), 2451–2508 (2013). https://doi.org/10.1215/00127094-2371752

    Article  MathSciNet  MATH  Google Scholar 

  48. Tenenbaum, G.: Introduction to analytic and probabilistic number theory, Graduate Studies in Mathematics, vol. 163, third edn. American Mathematical Society, Providence, RI (2015). https://doi.org/10.1090/gsm/163. Translated from the 2008 French edition by Patrick D. F. Ion

  49. Xia, H.: On zeros of cubic \(L\)-functions. J. Number Theory 124(2), 415–428 (2007). https://doi.org/10.1016/j.jnt.2006.10.006

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Mine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of this paper was supported by Grant-in-Aid for JSPS Fellows (Grant Number 22KJ2747).

Appendix: Results on the logarithmic derivative

Appendix: Results on the logarithmic derivative

In the above sections, we proved several results on values \(\log {L}(\sigma ,\rho _K)\). We obtain similar results for \((L'/L)(\sigma ,\rho _K)\), which are listed in this section. Note that the value \((L'/L)(1,\rho _K)\) is connected with the Euler–Kronecker constant \(\gamma _K\) defined by

$$\begin{aligned} \gamma _K =\lim _{s \rightarrow 1} \left( \frac{\zeta '_K}{\zeta _K}(s)+\frac{1}{s-1}\right) . \end{aligned}$$

By definition, \(\gamma _{\mathbb {Q}}\) is equal to Euler’s constant \(\gamma =0.577\ldots \). Thus we obtain

$$\begin{aligned} \frac{L'}{L}(1,\rho _K) =\gamma _K-\gamma \end{aligned}$$

for any non-Galois cubic field K since \(L(s,\rho _K)=\zeta _K(s)/\zeta (s)\). The proofs for the results in this section are omitted unless we need special remarks arising from the difference between \(\log {L}(\sigma ,\rho _K)\) and \((L'/L)(\sigma ,\rho _K)\). Let \({\mathbb {X}}=({\mathbb {X}}_p)_p\) and \({\mathbb {Y}}=({\mathbb {Y}}_p)_p\) be the sequences of independent random elements on \(\{A_{\mathfrak {a}} \mid {\mathfrak {a}} \in {\mathscr {A}}\}\) as in Sect. 2. Then we define the random Euler products \(L(s,{\mathbb {X}})\) and \(L(s,{\mathbb {Y}})\) as in (2.7).

Theorem A.1

For \(\sigma >1/2\), there exists a non-negative \(C^\infty \)-function \({\mathscr {C}}_\sigma \) such that

$$\begin{aligned} {\mathbb {P}}\left( \frac{L'}{L}(\sigma ,{\mathbb {X}}) \in A \right) =\int _{A} {\mathscr {C}}_\sigma (x) \,\frac{dx}{\sqrt{2\pi }} \end{aligned}$$

holds for all \(A \in {\mathscr {B}}({\mathbb {R}})\). Furthermore, it satisfies the following properties:

  1. (i)

    If \(1/2<\sigma \le 1\), we have \({{\,\textrm{supp}\,}}{\mathscr {C}}_\sigma ={\mathbb {R}}\), that is, \({\mathscr {C}}_\sigma (x)\) is not identically zero in any interval on \({\mathbb {R}}\);

  2. (ii)

    If \(\sigma >1\), the function \({\mathscr {C}}_\sigma \) is compactly supported;

  3. (iii)

    Let \(\sigma >1/2\). Then the integral

    $$\begin{aligned} \int _{-\infty }^{\infty } e^{ax} {\mathscr {C}}_\sigma (x) \,\frac{dx}{\sqrt{2\pi }} \end{aligned}$$

    is finite for any \(a>0\).

Similarly, for \(\sigma >2/3\), there exists a non-negative \(C^\infty \)-function \(K_\sigma \) such that

$$\begin{aligned} {\mathbb {P}}\left( \frac{L'}{L}(\sigma ,{\mathbb {Y}}) \in A \right) =\int _{A} {\mathscr {K}}_\sigma (x) \,\frac{dx}{\sqrt{2\pi }} \end{aligned}$$

holds for all \(A \in {\mathscr {B}}({\mathbb {R}})\). Furthermore, it satisfies the following properties:

  1. (i’)

    If \(2/3<\sigma \le 1\), we have \({{\,\textrm{supp}\,}}{\mathscr {K}}_\sigma ={\mathbb {R}}\), that is, \({\mathscr {K}}_\sigma (x)\) is not identically zero in any interval on \({\mathbb {R}}\);

  2. (ii’)

    If \(\sigma >1\), the function \({\mathscr {K}}_\sigma \) is compactly supported;

  3. (iii’)

    Let \(\sigma >2/3\). Then the integral

    $$\begin{aligned} \int _{-\infty }^{\infty } e^{ax} {\mathscr {K}}_\sigma (x) \,\frac{dx}{\sqrt{2\pi }} \end{aligned}$$

    is finite for any \(a>0\).

Denote by \({\mathscr {E}}_\sigma (X)\) the subset of \(L_3^\pm (X)\) such that \({\mathscr {E}}_\sigma (X)=E(X)\) for \(\sigma _1<\sigma \le 1\) and \({\mathscr {E}}_\sigma (X)=\emptyset \) for \(\sigma >1\), where \(\sigma _1\) is a real number for which (2.10) holds, and E(X) is defined by (2.11). Then we define \({\mathscr {M}}_{z, \sigma }^{\pm }(X)\) as

$$\begin{aligned} {\mathscr {M}}_{z, \sigma }^{\pm }(X) =\sum _{K \in L_3^\pm (X) \setminus {\mathscr {E}}_\sigma (X)} \exp \left( z \frac{L'}{L}(\sigma ,\rho _K)\right) \end{aligned}$$

as an analogue of the z-th moment \(M_{z, \sigma }^{\pm }(X)\) given by (1.9).

Theorem A.2

Let \(\sigma _1\) be a real number for which (2.10) holds. Then there exists an absolute constant \(\delta >0\) such that

$$\begin{aligned} {\mathscr {M}}_{z, \sigma }^{\pm }(X) =C^\pm \frac{1}{12\zeta (3)} X \int _{-\infty }^{\infty } e^{zx} {\mathscr {C}}_\sigma (x) \,\frac{dx}{\sqrt{2\pi }} +O\left( X\exp \left( -\delta \frac{\log {X}}{\log \log {X}}\right) \right) \end{aligned}$$
(A.1)

holds for \(\sigma >\sigma _1\) with \(z \in {\mathbb {C}}\) satisfying \(|z| \le b_\sigma R_{\sigma }(X)\), where \(b_\sigma \) is a positive constant, and \(R_{\sigma }(X)\) is defined as in (2.13). The implied constant in (A.1) depends only on \(\sigma \).

Note that the subset \({\mathscr {E}}_\sigma (X)\) differs from \(E_\sigma (X)\) at \(\sigma =1\). We hereby explain the reason why this difference arises. In the same line as (5.15), one can show the asymptotic formula

$$\begin{aligned}&\sum _{K \in L_3^\pm (X) \setminus E(X)} \exp \left( z \frac{L'}{L}(\sigma ,\rho _K)\right) \\&\quad =C^\pm \frac{1}{12\zeta (3)} X \int _{-\infty }^{\infty } e^{zx} {\mathscr {C}}_\sigma (x) \,\frac{dx}{\sqrt{2\pi }} +O\left( X\exp \left( -\delta \frac{\log {X}}{\log \log {X}}\right) \right) \end{aligned}$$

for \(\sigma >\sigma _1\) and \(|z| \le b_\sigma R_\sigma (X)\), where \(\delta \) is an absolute positive constant. To prove formula (A.1) at \(\sigma =1\) with \({\mathscr {E}}_1(X)=\emptyset \), one needs to obtain the upper bound

$$\begin{aligned} \sum _{K \in E(X)} \exp \left( z \frac{L'}{L}(\sigma ,\rho _K)\right) \ll X\exp \left( -\delta \frac{\log {X}}{\log \log {X}}\right) \end{aligned}$$
(A.2)

for \(\sigma =1\) and \(|z| \le b_\sigma R_\sigma (X)\). This is true for \(\sigma >1\) due to \((L'/L)(\sigma ,\rho _K) \ll 1\) and \(\# E(X) \ll X^{1-\delta }\). However, we know just

$$\begin{aligned} \frac{L'}{L}(1,\rho _K) \ll \log {X} \end{aligned}$$

for \(K \in L_3^\pm (X)\) without any assumptions, which prevents us from obtaining (A.2) at \(\sigma =1\). A related difficulty on studying the distribution of values \((L'/L)(1,\chi _d)\) was discussed in the Ph.D. thesis of Mourtada [43]. See also Lamzouri [35] for more information about the Euler–Kronecker constants of quadratic fields.

Theorem A.3

Assume GRH and upper bound (2.14) for each \(\epsilon >0\) with some constants \(\alpha \) and \(\beta \) such that \(0<\alpha <5/6\). Let \(\sigma _2\) be as in (2.15). Then there exists a constant \(\delta =\delta (\sigma )>0\) such that

$$\begin{aligned} {\mathscr {M}}_{z, \sigma }^{\pm }(X)&=C^\pm \frac{1}{12\zeta (3)} X \int _{-\infty }^{\infty } e^{zx} {\mathscr {C}}_\sigma (x) \,\frac{dx}{\sqrt{2\pi }} \nonumber \\&\quad +K^\pm \frac{4\zeta (1/3)}{5\varGamma (2/3)^3\zeta (5/3)} X^{5/6} \int _{-\infty }^{\infty } e^{zx} {\mathscr {K}}_\sigma (x) \,\frac{dx}{\sqrt{2\pi }} +O\left( X^{5/6-\delta }\right) \end{aligned}$$
(A.3)

holds for any \(\sigma >\max (\sigma _2,2/3)\) with \(z \in {\mathbb {C}}\) satisfying \(|z| \le {\tilde{b}}_\sigma {\tilde{R}}_{\sigma }(X)\), where \({\tilde{b}}_\sigma \) is a positive constant, and \({\widetilde{R}}_\sigma (X)\) is defined as in (2.17). The implied constant in (A.3) depends only on \(\sigma \).

Corollary A.2

There exists an absolute constant \(\delta >0\) such that

$$\begin{aligned} \sum _{K \in L_3^\pm (X) \setminus E(X)} \exp (z \cdot \gamma _K)&=C^\pm \frac{1}{12\zeta (3)} X e^{\gamma z} \int _{-\infty }^{\infty } e^{rx} {\mathscr {C}}_1(x) \,\frac{dx}{\sqrt{2\pi }} \\&\quad +O\left( X \exp \left( -\delta \frac{\log {X}}{\log \log {X}}\right) \right) \end{aligned}$$

holds for any \(z \in {\mathbb {C}}\) with \(|z| \le b_1 R_1(X)\), where the implied constant is absolute.

Corollary A.3

Assume GRH and upper bound (2.14) with some constants \(\alpha \) and \(\beta \) such that \(3\alpha +\beta <5/2\). Then there exists an absolute constant \(\delta >0\) such that

$$\begin{aligned} \sum _{K \in L_3^\pm (X)} \exp (z \cdot \gamma _K)&=C^\pm \frac{1}{12\zeta (3)} X e^{\gamma z} \int _{-\infty }^{\infty } e^{zx} {\mathscr {C}}_1(x) \,\frac{dx}{\sqrt{2\pi }} \\&\quad +K^\pm \frac{4\zeta (1/3)}{5\varGamma (2/3)^3\zeta (5/3)} X^{5/6} e^{\gamma z} \int _{-\infty }^{\infty } e^{zx} {\mathscr {K}}_1(x) \,\frac{dx}{\sqrt{2\pi }} \\&\quad +O\left( X \exp \left( -\delta \frac{\log {X}}{\log \log {X}}\right) \right) \end{aligned}$$

holds for any \(z \in {\mathbb {C}}\) with \(|z| \le {\tilde{b}}_1 {\tilde{R}}_1(X)\), where the implied constant is absolute.

Define the quantity \({\mathscr {D}}_\sigma ^\pm (X; a)\) as

$$\begin{aligned} {\mathscr {D}}_\sigma ^\pm (X; a) =\frac{\# \left\{ K \in L_3^\pm (X) \,\Big |\, \frac{L'}{L}(\sigma ,\rho _K) \le a \right\} }{N_3^\pm (X)} -\int _{-\infty }^{a} {\mathscr {C}}_\sigma (x) \,\frac{dx}{\sqrt{2\pi }} \end{aligned}$$

for \(\sigma >1/2\) and \(a \in {\mathbb {R}}\).

Theorem A.4

Let \(\sigma _1\) be a real number for which (2.10) holds. Then we obtain

$$\begin{aligned} \sup _{a \in {\mathbb {R}}} \left| {\mathscr {D}}_\sigma ^\pm (X; a)\right| \ll \frac{1}{R_\sigma (X)} \end{aligned}$$

for \(\sigma >\sigma _1\), where \(R_\sigma (X)\) is as in (2.13).

Finally, we present a result similar to Theorem 2.5. There exists a difference from the result for \(\log {L}(\sigma ,\rho _K)\) when we consider the case \(\sigma =1\) by the same reason as in Theorem A.3. For this, we define a subclass of C(S) as

$$\begin{aligned} C^{{{\,\textrm{poly}\,}}}({\mathbb {R}}) =\left\{ \varPhi \in {C}({\mathbb {R}}) \,|\, \varPhi (x) \ll |x|^a\text { with some }a>0 \right\} . \end{aligned}$$

Theorem A.5

Let \(\sigma _1\) be a real number for which (2.10) holds. Then the limit formula

$$\begin{aligned} \lim _{X \rightarrow \infty } \frac{1}{N_3^\pm (X)} \mathop {{\mathop {\sum }\nolimits '}}\limits _{K \in L_3^\pm (X)} \varPhi \left( \frac{L'}{L}(\sigma ,\rho _K)\right) =\int _{-\infty }^{\infty } \varPhi (u) {\mathscr {C}}_\sigma (x) \,\frac{dx}{\sqrt{2\pi }} \end{aligned}$$

holds in the following cases:

  • \(\sigma >1\) and \(\varPhi \in C({\mathbb {R}}) \cup I({\mathbb {R}})\);

  • \(\sigma =1\) and \(\varPhi \in C^{{{\,\textrm{poly}\,}}}({\mathbb {R}}) \cup I({\mathbb {R}})\);

  • \(\sigma _1<\sigma <1\) and \(\varPhi \in C_b({\mathbb {R}}) \cup I({\mathbb {R}})\) without assuming GRH;

  • \(\sigma _1<\sigma \le 1\) and \(\varPhi \in C^{\exp }({\mathbb {R}}) \cup I({\mathbb {R}})\) if we assume GRH.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mine, M. The value-distribution of artin L-functions associated with cubic fields in conductor aspect. Math. Z. 304, 64 (2023). https://doi.org/10.1007/s00209-023-03326-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03326-2

Keywords

Mathematics Subject Classification

Navigation