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Abstract
We classify compact, connected Hamiltonian and quasi-Hamiltonian manifolds of cohomo-
geneity one (which is the same as being multiplicity free of rank one). The group acting is a
compact connected Lie group (simply connected in the quasi-Hamiltonian case). This work
is a concretization of amore general classification ofmultiplicity freemanifolds in the special
case of rank one. As a result we obtain numerous new concrete examples of multiplicity free
quasi-Hamiltonian manifolds or, equivalently, Hamiltonian loop group actions.

Keywords Hamiltonian manifold · Quasi-Hamiltonian manifold · Momentum map · Group
valued momentum map · Cohomogeneity · Multiplicity free · Spherical variety
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1 Introduction

Let K be a simply connected, compact Lie group. In order to study Hamiltonian actions of
the (infinite dimensional) loop groupLK on (infinite dimensional) manifoldsM, Alekseev–
Malkin–Meinrenken [2], introduced the notion of quasi-Hamiltonian K -manifolds. These
are finite dimensional K -manifolds, equipped with a 2-form and a momentum map.

To a certain extent, quasi-Hamiltonian manifolds are very similar to classical Hamilto-
nian manifolds. This means, in particular, that a quasi-Hamiltonian manifold can be locally
described by Hamiltonian manifolds. The most striking difference is that the target of the
momentummap is the group K itself (instead of its coadjoint representation k∗). For that rea-
son, quasi-Hamiltonian manifolds lack functoriality properties, like restriction to a subgroup
and are therefore more difficult to construct than Hamiltonian manifolds.

The most basic quasi-Hamiltonian manifolds are the conjugacy classes of K . These are
precisely the ones on which K acts transitively. The main purpose of this paper is to classify
the next case in difficulty, namely compact manifolds of cohomogeneity one, i.e., where K
acts with orbits of codimension one.
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Our approach is based on the papers [15, 16] where the more general class of mul-
tiplicity free (quasi-)Hamiltonian manifolds was considered. These are manifolds M for
which the momentum map induces an injective map on orbit spaces (M/K ↪→ k∗/K or
M/K ↪→ K//K , respectively). In op. cit. these have been classified in terms of pairs (P, �)

where P is a convex polytope (the momentum polytope) and � is a lattice (characterizing
the principal isotropy group). The compatibility condition between P and � is expressed
in terms of a root system (affine or finite, respectively) and the existence of certain smooth
affine spherical varieties. Even though the latter have been determined in [17] (up to cover-
ings, central tori andC

×-fibrations), the condition is hard to handle in practice. So the present
paper is also meant to be a (successful) test case for the feasibility of using [15, 16] to obtain
explicit classification results. More precisely, the case considered here is precisely that of the
multiplicity free manifolds which are of rank one, i.e., where rk M := dimP = rk � = 1.
Our classification proceeds in two steps. First, there is an induction procedure from smaller
Hamiltonianmanifolds.Manifolds which are not induced are called primitive. So, in a second
step, we determine all primitive manifolds. These can be quasi-Hamiltonian or Hamiltonian.
So, as a by-product, but of independent interest our classification also encompasses (classi-
cal) Hamiltonian manifolds of cohomogeneity one.

Theorem 1.1 Let M be a primitive, multiplicity free, (quasi-)Hamiltonian manifold of rank
one. Then M corresponds to a diagram in Table 8.3. Moreover, to each diagram there cor-
responds a manifold which is either unique (in the quasi-Hamiltonian case) or unique up to
rescaling the symplectic structure (in the Hamiltonian case).

In Table 8.3 we presented each case by a diagram which is very close to Luna’s
[20] for classifying spherical varieties. The classification yields many previously known
quasi-Hamiltonian manifolds. For example, the spinning 4-sphere of Hurtubise–Jeffrey
[9], Alekseev–Malkin–Woodward [3]) and its generalization, the spinning 2n-sphere, by
Hurtubise–Jeffrey–Sjamaar [10] are on our list. We also recover the Sp(2n)-action on P

n
H

discovered by Eshmatov [7] as part of a larger series which seems to be new, namely a quasi-
Hamiltonian action of K = Sp(2n) on the quaternionic Grassmannians Grk(Hn+1) (item
(cc) for the root system C(1)

n in Table 8.3).
It should be mentioned that there is related work by Lê [18] on more qualitative aspects

of Hamiltonian manifolds of cohomogeneity one.

Remark 1.2 Part of this paper is based on part of the second author’s doctoral thesis [25]
which was written under the supervision of the first named author.

2 Hamiltonian and quasi-Hamiltonianmanifolds

We first recall the most important properties of Hamiltonian and quasi-Hamiltonian mani-
folds. In the entire paper, K will be a compact connected Lie group with Lie algebra k. A
Hamiltonian K -manifold is a triple (M, w,m) where M is a K -manifold, w is a K -invariant
symplectic form on M and m : M → k∗ is a smooth K -equivariant map (the momentum
map) such that

w(ξ x, η) = 〈ξ,m∗(η)〉, for all ξ ∈ k, x ∈ M, η ∈ TxM . (2.1)

In [2], Alekseev, Malkin and Meinrenken studied this concept in the context of loop groups.
Even though these Loop groups are infinite dimensional, the authors managed to reduce
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Hamiltonian loop group action to a finite dimensional concept namely quasi-Hamiltonian
manifolds. These are very similar to Hamiltonian manifolds.

More precisely, quasi-Hamiltonian manifolds are also triples (M, w,m) where M is a K -
manifold,w is a K -invariant 2-form andm is a K -equivariant map. But there are differences.

First of all, the Lie algebra k has to be equipped with a K -invariant scalar product. More-
over, a twist τ ∈ Aut K has to be chosen1 (which may be the identity). The momentum map
m has values in K instead of k∗ and is equivariant with respect to the τ -twisted conjugation
action on K , i.e., g ∗ h := ghτ(g)−1. Finally, the closedness and non-degeneracy of w as
well as formula (2.1) have to be adapted. For the details one can consult the papers [2, 16,
23]. They are not relevant for the present paper.

In the following, we want to treat the Hamiltonian case and the quasi-Hamiltonian on the
same footing. So we talk about U -Hamiltonian manifolds where U = k∗ in the Hamiltonian
and U = K in the quasi-Hamiltonian case.

This momentum map m : M → U gives rise to a map between orbits spaces:

m/K : M/K → U/K . (2.2)

By definition, the fibers of this map are the symplectic reductions of M . The smooth ones
are symplectic manifolds in a natural way. In particular, they are even dimensional. Most
important for us are those manifolds for which this dimension is as low as possible, namely
0. These manifolds are called multiplicity free.

An important invariant ofM is itsmomentum image (m/K )(M/K ) ⊆ U/K . Its dimension
is called the rank of M . Multiplicity free manifolds of rank zero are simply the K -orbits in
U . In this paper we study the next more difficult case namely multiplicity free manifolds of
rank one. These two conditions can be combined into one. For this recall that the dimension
of M/K is the cohomogeneity of M . Then we have:

Lemma 2.1 For a U-Hamiltonian manifold M the following are equivalent:

(1) The cohomogeneity of M is 1.
(2) M is multiplicity free of rank one.

Proof Let c := 1
2 dim

(
(m/K )−1(a)

)
where a is a generic point of the momentum image. As

mentioned above, it is an integer. By definition, c = 0 is equivalent to multiplicity freeness.
Let r be the rank of M . Then we have

dim M/K = 2c + r . (2.3)

Hence, dim M/K = 1 if and only if c = 0 and r = 1. �	

3 Affine root systems

Before we go on with explaining the general structure ofU -Hamiltonian manifolds we need
to set up notation for finite and affine root systems. Here, we largely follow the exposition in
[16] which is in turn based on [21, 22].

Let a be a Euclidean vector space, i.e., a finite dimensional real vector space equipped
with a scalar product 〈·, ·〉. Let a be an affine space for a, i.e., a is equipped with a free and

1 The original paper [2] deals only with the untwisted case τ = idK . The straightforward adaption to the
twisted case has been carried out independently in [4], [16], and [23].
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transitive a-action. We denote the set of affine linear functions on a by A(a). The gradient of
a function α ∈ A(a) is the element α ∈ a with

α(X + t) = α(X) + 〈α, t〉, X ∈ a, t ∈ a. (3.1)

A reflection s is an isometry of a whose fixed point set is an affine hyperplane. If that
hyperplane is the zero-set of α ∈ A(a) then one can express s = sα as sα(X) = X −α(X)α∨
with the usual convention α∨ = 2α

||α||2 .

Definition 3.1 An affine root system on a is a subset � ⊂ A(a) such that:

(1) R1 ∩ � = ∅ (in particular 0 /∈ �),
(2) sα(�) = � for all α ∈ �,
(3) 〈β, α∨〉 ∈ Z for all α, β ∈ �,
(4) the Weyl Group W = 〈sα, α ∈ �〉 acts properly discontinuously on a,
(5) Rα ∩ � = {+α,−α} for all α ∈ �.

Observe that, with our definition, � might be finite or even empty. In that case, the roots
have a common zero which we can use as a base point. This way, we can identify a with a

and we have α(X) = 〈α, X〉 for all roots α. If (a1,�1), . . . , (as,�s) are affine root systems
then

(a1,�1) × . . . × (as,�s) := (a1 × . . . × as, p
∗
1�1 ∪ . . . ∪ p∗

s �s) (3.2)

is also one (where the pi are the projections). Conversely, every affine root system admits
such a decomposition such that the Weyl group Wi of �i is either trivial or acts irreducibly
on ai . We say that � is properly affine if each irreducible factor �i is infinite.

A chamber of � is a connected component of a \ ⋃
α∈�{α = 0}. The closure A of a

chamber is called an alcove. If � is finite thenA is called aWeyl chamber. If � is irreducible
then A is either a simplicial cone if � is finite or a simplex if � is properly affine.

A root α ∈ � is called simple with respect to an alcove A if A ∩ {α = 0} is a wall of A.
The set of simple roots (for a fixed alcove) will be denoted by S.

Put � := {α | α ∈ �} and �
∨ := {α∨ | α ∈ �}. These are possibly non-reduced finite

root systems on a. We define:

Definition 3.2 An integral root system on a is a pair (�,
) where � ⊂ A(a) is an affine
root system and 
 ⊆ a is a lattice with � ⊆ 
 and 〈
,�

∨〉 ⊆ Z. The integral root system
is simply connected if 
 = {ω ∈ a | 〈ω,�

∨〉 ⊆ Z}.
The classification of irreducible (infinite) affine root systems as it can be found, e.g., in

[12] is recalled in Table 8.3. In that table, also the Dynkin label k(α) of each α ∈ S is given.
These labels are uniquely characterized by being integral, coprime, and having the property
that

δ :=
∑

α∈S
k(α)α (3.3)

is a positive constant function.

4 Classification of multiplicity free Hamiltonian and quasi-Hamiltonian
manifolds

We summarize some known facts about the quotient U/K .
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If U = k∗ then it is classical that U/K is parameterized by a Weyl chamber for the finite
root system attached to K .

If U = K we need to assume that K is simply connected which we do from now on.
Then U/K is in bijection with the alcove A for a properly affine root system which is

determined by K and the action of τ in the Dynkin diagram of K , cf. [24] for details. Recall
that in this case, k is equipped with a scalar product. We use it to identify k with k∗. Thereby,
we obtain a map

ψ : k∗ = k
exp→ K = U . (4.1)

In the Hamiltonian case, we put for compatibility reasons ψ = idk∗ . Likewise, we assume
that a scalar product has been selected on k even though the results will not depend on it.

Theorem 4.1 Let K ,U be as above. Then there is a subspace a ⊆ k∗ and an integral root
system (�,
) on a such that:

(1) If A ⊆ a is any alcove of �, then the map ψ/K : A → U/K is a homeomorphism.
(2) If X ∈ A and a := ψ(X) ∈ U, then the isotropy group

Ka = {k ∈ K | k · a = a} (4.2)

is connected, a ⊆ ka is a Cartan subalgebra, the weight lattice of Ka is 
, and

S(X) := {α ∈ S | α(X) = 0}, (4.3)

is a set of simple roots of Ka. Here S ⊂ � is the set of simple roots with respect to A.

Since Ka depends only on S(X) ⊆ S we also write Ka = KS(X). Let M be a compact,
connected U -Hamiltonian manifold. Then the invariant momentum map is the composition

m+ : M m→ U → U/K
∼→ A ⊆ a. (4.4)

Its image PM := m+(M) ⊆ A can be shown to be a convex polytope [13], the so-called
momentum polytope of M . It is the first main invariant of M .

A second invariant comes from the facts that for generic a ∈ PM the isotropy group Ka

acts on the momentum fiber m−1+ (a) via a quotient AM of Ka which is a torus independent
of a. Its character group �M is a subgroup of the weight lattice 
.

Theorem 4.2 [15, 16] Let M1 and M2 be two compact, connected multiplicity free U-
Hamiltonian manifolds with PM1 = PM2 and �M1 = �M2 . Then M1 and M2 are isomorphic
as U-Hamiltonian manifolds.

This begs the question which pairs (P, �) arise this way. The key to the answer lies in the
paper [5] of Brion which connects the theory of multiplicity free Hamiltonian manifolds with
the theory of complex spherical varieties. In the following we summarize only a simplified
version which suffices for our purposes.

We start with a connected, reductive, complex groupG. An irreducible algebraicG-variety
Z is called spherical if a Borel subgroup of G has an open orbit. Now assume also that Z
is affine and let C[Z ] be its ring of regular functions. Then the Vinberg-Kimelfeld criterion
[29] asserts that Z is spherical if and only if C[Z ] is multiplicity free as a G-module. This
means that there is a set (actually a monoid) �Z of dominant integral weights of G such that

C[Z ] ∼=
⊕

χ∈�Z

Vχ (4.5)
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where Vχ is the simple G-module of highest weight χ . A theorem of Losev [19] asserts that
in case Z is smooth, the variety Z is in fact uniquely determined by its weight monoid �Z .

Let K ⊆ G be a maximal compact subgroup. Then any smooth affine G-variety can
be equipped with the structure of a Hamiltonian K -manifold by embedding Z into a finite
dimensional L-module V and using a K -invariant Hermitian scalar product on V to define a
momentum map. Then

(1) Z is spherical as a G-variety if and only if it is multiplicity free as a Hamiltonian K -
manifold.

(2) PZ = R≥0�Z (the convex cone generated by �Z ).
(3) �Z = Z�Z (the group generated by �Z ).

The first two itemswere proved by Brion [5] in the context of projective varieties. The version
which we need, namely for affine varieties, was proved by Sjamaar in [27]. For the last item
see Losev [19, Prop. 8.6(3)].

Remark 4.3 It follows from the normality of Z that conversely

�Z = PZ ∩ �Z . (4.6)

So �Z and the pair (PZ , �Z ) carry the same information.

Definition 4.4 A pair (P, �) is called G-spherical if there exists a smooth affine spherical
G-variety Z with P = R≥0�Z and � = Z�Z . The (unique) smooth variety Z will be called
a model for (P, �).

Now we go back to U -Hamiltonian manifolds. For any subset P ⊆ A and point X ∈ P
we define the tangent cone of P at X as

TXP := R≥0(P − X). (4.7)

Here is a local version of sphericality:

Definition 4.5 Let P ⊆ A be a compact convex polytope and � ⊆ 
 a subgroup.

(1) (P, �) is spherical in X ∈ P if (TXP, �) is L-spherical where L := KC
a is the Levi

subgroup corresponding to a := ψ(X) ∈ U . The model variety for (TXP, �) will be
called the local model of (P, �) in X .

(2) The pair (P, �) is locally spherical if it is spherical in every vertex of P.
Remark 4.6 It follows from the definition of G-sphericality that in a locally spherical pair P
and � are necessarily parallel in the sense that P is a polytope of maximal dimension inside
the affine subspace X + 〈�〉R ⊆ a for any X ∈ P.

The classification theorem can now be stated as follows:

Theorem 4.7 [15, 16] Let K be a connected compact Lie groupwhich is assumed to be simply
connected in the quasi-Hamiltonian case. Then the map M �→ (PM , �M ) induces a bijection
between

(1) isomorphism classes of compact, connected multiplicity free U-Hamiltonian manifolds
and

(2) locally spherical pairs (P, �) whereP ⊆ A is a compact convex polyhedron and � ⊆ 


is a subgroup.
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Remarks 4.8 (1) The relation between pairs and manifolds can be made more precise. Let
M be a U -Hamiltonian manifold and X ∈ PM . Then there exists a neighborhood P0 of
X in P such that

M0 ∼= K ×Ka Z0 (4.8)

where M0 = m−1+ (P0), a = ψ(X), and Z0 ⊆ Z is a Ka-stable open subset of the local
model Z in X .

(2) The construction of locally spherical pairs is quite difficult. Already deciding whether
a given pair is locally spherical is intricate. There is an algorithm due to Pezzini-Van
Steirteghem [26] for this but we are not going to use it since in our setting it is not
necessary.

Because of this theorem, we are going to work from now on exclusively on the “combi-
natorial side”, i.e., with locally spherical pairs. We start with two reduction steps.

Definition 4.9 Let

S(X) := {α ∈ S | α(X) = 0 for X ∈ P} (4.9)

be the set of simple roots which are zero for a fixed X ∈ P and

S(P) :=
⋃

X∈P
S(X) = {α ∈ S | α(X) = 0 for some X ∈ P}. (4.10)

Thus, elements of S(P) correspond to walls of A which contain a point of P. Let K0 :=
KS(P) be the corresponding (twisted) Levi subgroup of K . Then it is immediate that (P, �) is
locally spherical for K if and only if it is so for K0. This observation reduces classifications
largely to pairs with S(P) = S.

Definition 4.10 A polyhedron P ⊆ A is called genuine if S(P) = S.

There is another reduction. Assume S0 ⊆ S is a component of the Dynkin diagram of
S. It corresponds to a (locally) direct semisimple factor LS0 of G = KC. Suppose also that
S0 ⊆ S(X) for all X ∈ P. Then it follows from Remark 4.6 that 〈�, S0〉 = 0. In turn (4.5)
implies that LS0 will act trivially on every local model Z of (P, �). This means that also the
roots in S0 can be ignored for determining the sphericality of (P, �).

Definition 4.11 A genuine polyhedron P ⊆ A is called primitive if S does not contain a
component S0 with S0 ⊆ S(X) for all X ∈ P.

The following lemma summarizes our findings:

Lemma 4.12 Let P ⊆ A be a compact convex polyhedron and let be � ⊆ 
 a subgroup. Let

Sc := {α ∈ S | α(X) �= 0 for all X ∈ P} (4.11)

and let S1 be the union of all components C of S \ Sc with C ⊆ S(X) for all X ∈ P. Let

 := 
∩ S⊥

1 . Then P is primitive for S := S\(Sc ∪ S1). Moreover, the pair (P, �) is locally
spherical for (S, 
) if and only if it is so for (S, 
).

Now the purpose of this paper is to present a complete classification of primitive locally
spherical pairs in the special case when rk M = dimP = 1.
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In this case the following simplifications occur: the polyhedron P is a line segment P =
[X1, X2] with X1, X2 ∈ A and � = Zω with ω ∈ 
. It follows from Remark 4.6 that

X2 = X1 + cω for some c �= 0. (4.12)

By replacing ω by −ω if necessary, we may assume that c > 0. Then Theorem 4.7 boils
down to:

Corollary 4.13 The map M �→ (PM , �M ) = ([X1, X2], Zω) induces a bijection between

(1) isomorphism classes of compact, connected multiplicity free U-Hamiltonian manifolds
of rank one and

(2) triples (X1, X2, ω) satisfying (4.12) such that Nω is the weight monoid of a smooth
affine spherical KC

S(X1)
-variety Z1 and N(−ω) is the weight monoid of a smooth affine

spherical KC

S(X2)
-variety Z2. The triples (X1, X2, ω) and (X2, X1,−ω) are considered

equal.

Triples as above will be called spherical. A triple is genuine or primitive if P = [X1, X2]
has this property. The varieties Zi are called the local models of the triple.

5 The local models

We proceed by recalling all possible local models, i.e., smooth, affine, spherical L-varieties
Z of rank one where L is a connected,reductive, complex, algebraic group. Then

C[Z ] =
⊕

n∈�

Vnω, (5.1)

whereω is a non-zero integral dominantweight, Vnω is the simple L-module of highestweight
nω, and � equals either N orZ. The case � = Z is actually irrelevant for our purposes since
this case only occurs as local model of an interior point of P (by (4.6)).

In case � = N, the weight ω is unique.

Theorem 5.1 Let Z be a smooth, affine, spherical L-variety of rank one. Then one of the
following cases holds:

(1) Z = C
∗ and L acts via a non-trivial character.

(2) Z = L0/H0 where (L0, H0) appears in the first part of Table 8.2 and L acts via a
surjective homomorphism ϕ : L → L0.

(3) Z = V0 where (L0, V0) appears in the second part of Table 8.2 and L acts via a
homomorphism ϕ : L → L0 which is surjective modulo scalars (except for case a0
when ϕ should be surjective).

Proof Smooth affine spherical varieties have been classified by Knop-Van Steirteghem in
[17] and the assertion could be extracted from that paper. A much simpler argument goes
as follows. First, a simple application of Luna’s slice theorem (see [17, Cor. 2.2]) yields
Z ∼= L ×H V where H ⊆ L is a reductive subgroup and V is a representation of H . As the
homogeneous space L/H is the image of Z = L ×H V under the projection Z → L/H , the
rank of the homogeneous space L/H is at most the rank of Z , so either 0 or 1.

If it is 0, then L/H is projective (see, e.g., [28, prop. 10.1]), but, being also affine, it is a
single point, i.e., L = H . We deduce Z = V , i.e., Z is a spherical module of rank one. The
classification of spherical modules (Kac [11], see also [14]), yields the cases in (3).
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Assume now that L/H has rank one. This means that Z and L/H have the same rank.
Let F ⊆ L be the stabilizer of a point in the open L-orbit of Z such that F ⊆ H . By [8, lem.
2.4], the quotient H/F is finite. This implies that the projection Z → H/F has finite fibers.
Hence V = 0 and Z = L/H is homogeneous. The classification of homogeneous spherical
varieties of rank one (Akhiezer [1], see also [6], and Wasserman [30]), yields the cases in (1)
and (2). Observe, that the non-affine cases of Akhiezer’s list have been left out. �	
Remarks 5.2 Some remarks concerning Table 8.2:

(1) Observe that items [ 12 ]d2 and [ 12 ]d3 could be made part of the series [ 12 ]dn . Because of
their singular behavior we chose not to do so. For example both can be embedded into
An-diagrams. Moreover, [ 12 ]d2 are the only cases with a disconnected Dynkin diagram.

(2) We encode the local models by the diagram given in the last column of Table 8.2. For
homogeneous models these diagrams are due to Luna [20]. The inhomogeneous ones
are specific to our situation.

(3) For a homogeneous model the weight ω is a fixed linear combination of simple roots
(recorded in the fourth column). Hence it lifts uniquely to a weight of L . On the other
hand, for inhomogeneous models the weight of L is only unique up to a character. This
is indicated by the notation ω ∼ π1 which means that 〈ω, α∨〉 = 1 for α = α1 and = 0
otherwise.

Let S be the set of simple roots of L0, i.e., the set of vertices of a diagram. Then inspection
of Table 8.2 shows that the elements of

S′ := {α ∈ S | 〈ω, α∨〉 > 0} (5.2)

are exactly those which are decorated. All other simple roots α satisfy 〈ω, α∨〉 = 0. Another
inspection shows that the diagram of a local model is almost uniquely encoded by the pair
(S, S′). What is getting lost is a factor c of 1/2, 1 or 2, and the cases a1 and a1 become
indistinguishable. So we assign the formal symbol c = i to the inhomogeneous cases. This
way, the local model is uniquely encoded by the triple (S, S′, c) with c ∈ {1/2, 1, 2, i} which
triggers the following

Definition 5.3 A local diagram is a tripleD = (S, S′, c) associated to a local model in Table
8.2. In the homogeneous case, letωD be the weight given in column 4. IfD is inhomogeneous
and S is non-empty then αD denotes the unique element of S′. Moreover, we put α∨

D := αD∨.

6 The classification

Let (X1, X2, ω) be a primitive spherical triple. Thenwe obtain two localmodels Z1, Z2 which
determine two local diagrams D1 = (S1, S′

1, c1), D2 = (S2, S′
2, c2) where S1, S2 ⊆ S. Put

S p(ω) := {α ∈ S | 〈ω, α∨〉 = 0}. (6.1)

Lemma 6.1 Let (X1, X2, ω) be a primitive spherical triple. Then

S(X1) ∪ S(X2) = S and S(X1) ∩ S(X2) = S p(ω). (6.2)

Proof The first equality holds because the triple is genuine. The inclusion S(X1) ∩ S(X2) ⊆
S p(ω) follows directly from (4.12). Assume conversely that α ∈ S p(ω). Without loss of
generality we may assume that also α ∈ S(X1). But then also α ∈ S(X2) by (4.12). �	
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From now let i ∈ {1, 2} and j := 3− i , so that if Zi is a local model then Z j is the other.

Lemma 6.2 Let (X1, X2, ω) be a primitive spherical triple and D1,D2 as above. Then

S = S′
1∪̇S p(ω)∪̇S′

2. (6.3)

Moreover,

S(Xi ) = S′
i ∪̇S p(ω) = S \ S′

j . (6.4)

Proof It follows from Theorem 5.1 that every α ∈ S(Xi ) (a simple root of L) is either in Si
(a simple root of L0) or a simple root of ker ϕ. In the latter case, we have 〈ω, α∨〉 = 0.

Now let α ∈ S and assume first 〈ω, α∨〉 > 0. Since the triple is genuine we have S =
S(X1) ∪ S(X2). If α ∈ S(X2) then actually α ∈ S2. This contradicts 〈−ω, α∨〉 ≥ 0 for all
α ∈ S2. Thus α ∈ S(X1). By the same reasoning we have α ∈ S1. But then α ∈ S′

1 by (5.2).
Analogously, 〈ω, α∨〉 < 0 implies α ∈ S′

2. This proves (6.3). The second equality (6.4)
now follows from Lemma 6.1. �	

Definition 6.3 Let S′ be a subset of a graph S. The connected closure C(S′, S) of S′ in S is
the union of all connected components of S which meet S′. In other words, C(S′, S) is the
set of vertices of S for which there exists a path to S′.

The following lemma shows in particular how to recover Si from the triple (S, S′
1, S

′
2).

Lemma 6.4 Let (X1, X2, ω) be primitive. Then

(1) Si is the connected closure of S′
i in S \ S′

j .
(2) S is the connected closure of S′

1 ∪ S′
2.

(3) S = S1 ∪ S2.

Proof (1) Recall that S \ S′
j = S(Xi ) is the disconnected union of Si and the Dynkin diagram

Ci of ker ϕ. Inspection of Table 8.2 shows that Si is the connected closure of S′
i .

(2) LetC ⊆ S be a componentwithC∩(S′
1∪S′

2) = ∅. ThenC ⊆ S p(ω) = S(X1)∩S(X2)

in contradiction to primitivity.
(3) By (1), the connected closure of S′

1 ∪ S′
2 in S is S1 ∪ S2. �	

Definition 6.5 Let D be the quintuple D = (S, S′
1, c1, S

′
2, c2) where S is a (possibly empty)

Dynkin diagram, S′
1, S

′
2 are disjoint (possibly empty) subsets of S and c1, c2 ∈ { 12 , 1, 2}.

Let Si be the connected closure of S′
i in S \ S′

j . Then D is a primitive spherical diagram
if it has following properties:

(1) S = S1 ∪ S2.
(2) The triples Di := (Si , S′

i , ci ) are local diagrams.
(3) a) If both Di are homogeneous then ωD1 + ωD2 = 0.

b) IfDi is homogeneous andD j is inhomogeneouswith S j �= ∅ then 〈ωDi , α
∨
D j

〉 = −1.
c) If both Di are inhomogeneous with both Si �= ∅ and S is affine and irreducible then

k(α∨
D1

) = k(α∨
D2

) where k(α∨) is the colabel of α, i.e., the label of α∨ in the dual
diagram of S.

A primitive spherical diagram can be represented by the Dynkin diagram of S with deco-
rations as in Table 8.2 which indicate the subsets S′

i and the numbers ci .

123



(Quasi-)Hamiltonian manifolds of cohomogeneity one Page 11 of 27 29

Example 6.6 Consider the following diagram on F(1)
4 :

1/2
(6.5)

It represents the quintuple with S′
1 = {α1}, c1 = 1/2, S′

2 = {α3}, c2 = 1. Hence S1 =
{α0, α1, α2}, and S2 = {α2, α3, α4}. Comparing with Table 8.2 we see that the local diagrams
are of type 1

2d3 and c3, respectively. The diagram is bihomogeneous so we need to check
condition (3)a). Indeed

ωD1 + ωD2 =
(
1

2
α0 + α1 + 1

2
α2

)
+ (α2 + 2α3 + α4)

= 1

2
(α0 + 2α1 + 3α2 + 4α3 + 2α4) = 0 (6.6)

(compare with the labels of F(1)
4 in Table 8.3). Thus, the above diagram is primitive spherical.

The point of Definition 6.5 is of course:

Corollary 6.7 Let (X1, X2, ω) be a primitive spherical triple with local diagrams (S1, S′
1, c1)

and (S2, S′
2, c2). Then (S, S′

1, c1, S
′
2, c2) is a primitive spherical diagram.

Proof All conditions have been verified except for (3) c). If S is affine then the coroots satisfy
the linear dependence relation

∑

α∈S
k(α∨)α∨ = 0. (6.7)

We pair this with ω and observe that 〈ω, α∨〉 = 1,−1, 0 according to α = αD1 , α = αD2 or
otherwise. This implies the claim. �	

The following is our main result. It will be proved in the next section.

Theorem 6.8 Every primitive spherical diagram is isomorphic to an entry of Table 8.3.

Explanation of Table 8.3: The first column gives the type of S. The second lists for
identification purposes the type of the local models. The diagram is given in the fifth column.
If a parameter is involved, its scope is given in the last column. Observe the boundary cases
where we used the conventions b1 = a1, 2b1 = 2a1, c2 = b2, and c1 = a1. In some
cases, besides (S, S′

1, c1, S
′
2, c2) also (S, S′

1, c c1, S
′
2, c c2) is primitive spherical where c is

the factor in the column “factor”. An entry of the form [c]n=a indicates that the factor applies
only to the case n = a.

Finally, the weight ω can be read off from the third column. More precisely, if Di is
homogeneous then ωi indicates the unique lift of ω or −ω to an affine linear function with
ωi (Xi ) = 0. If both local models D1,D2 are inhomogeneous then ω is only unique up to a
character of G. Thus, the notation ω ∼ ω0 means 〈ω, α∨〉 = 〈ω0, α

∨〉 for all α ∈ S. Here,
πi ∈ 
 ⊗ Q denotes the i-th fundamental weight.

Example 6.9 The primitive diagrams for A(1)
1 and A(2)

2 are

� � �
(6.8)

In these cases, we have P = A and ω = 1
2α1, α1, 2α1,

1
2α1, α1, respectively (where

S = {α0, α1}).
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The conditions defining a primitive spherical diagramD have been shown to be necessary
but it is not clear whether each of them can be realized by a (quasi-)Hamiltonian manifold
M . And if so, how unique is M? We answer these questions in Theorem 6.12 below. To state
it we need more notation.

Definition 6.10 (1) For a finite root system � let πα be the fundamental weight correspond-
ing to α ∈ S.

(2) If � is affine and irreducible (hence A is a simplex) let Pα ∈ A be the vertex of A with
α(Pα) > 0.

LetD be a local diagram �= a0. An inspection of Table 8.2 shows that the pairing 〈ω, α∨〉
is in fact independent of α ∈ S′ (actually only αn≥2 and [ 12 ]dn≥2 have to be checked). The
common value will be denoted by nD. Here is a list:

Table 6.11 The numbers nD

D a1 2a1 an≥2 bn≥2 2bn≥2 cn≥3 dn≥2
1
2 dn≥2 f4 g2 2g2 b′

3
1
2 b

′
3 an≥1 cn≥2

nD 2 4 1 1 2 1 2 1 1 1 2 2 1 1 1

Theorem 6.12 Let K be simply connected (also in the Hamiltonian case) and let D �= (∅)

be a primitive diagram for (a,�,
).

(1) If � is finite then D can be realized by a multiplicity free Hamiltonian manifold of rank
one. This manifold is unique up to a positive factor of the symplectic structure. The
momentum polytope is given by

Xi = c nD j

∑

α∈S′
j

πα (6.9)

(see Table 6.11 for nD) if both S′
i are non-empty. If S

′
1 �= ∅ and S′

2 = ∅ then

X1 = 0 and X2 = cω. (6.10)

In both cases, c is some arbitrary positive factor.
(2) If � is infinite and irreducible then D can be realized by a unique multiplicity free

quasi-Hamiltonian manifold of rank one. The momentum polytope is given by

Xi =
{
Pα if S′

j = {α}
k(α∨)

k(α∨)+k(β∨)
Pα + k(β∨)

k(α∨)+k(β∨)
Pβ if S′

j = {α, β}. (6.11)

(3) If � is infinite and reducible (cases A(1)
1 × A(1)

1 and A(2)
2 × A(2)

2 ) then D can be realized
by a multiplicity free quasi-Hamiltonian manifold of rank one if and only if the scalar
product is chosen to be the same on both factors of K , i.e., if the alcove A is a metric
square. This manifold is then unique.

Proof Let Li ⊆ KC be the (twisted) Levi subgroup having the simple roots S(i) := S \ S′
j .

We have to construct (X1, X2, ω) such that S(Xi ) = S(i), X2 − X1 ∈ R>0ω, and ω or
−ω generates the weight monoid of a smooth affine spherical L1-variety or L2-variety,
respectively.
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If bothD1 andD2 are homogeneous then there are exactly two choices for ω namely ωD1

and ωD2 which are related by ωD1 + ωD2 = 0. We claim that 〈ωDi , α
∨〉 ∈ Z for all α ∈ S.

This follows by inspection for α ∈ Si . From ωD1 = −ωD2 we get it also for α ∈ S j . Since
K is simply-connected, the weights ωDi are integral, i.e., ω ∈ 
.

If D1 is homogeneous and D2 is inhomogeneous we must put ω = ωD1 . By condition
(2)b) of Definition 6.5 we have 〈−ω, α∨

D2
〉 = 1. Let β ∈ S2\{αD2}. Then β is not connected

to any α ∈ S1 by Lemma 6.4(1). From ω ∈ QS1 we get 〈ω, β
∨〉 = 0. Hence ω ∈ 
 and

both Nω and N(−ω) form the weight monoid of a smooth affine spherical L1- or L2-variety,
respectively.

If both Di are inhomogeneous then we need a weight ω with 〈ω, α∨
D1

〉 = 1, 〈ω, α∨
D2

〉 =
−1, and 〈ω, α∨〉 = 0 otherwise. If � is finite then ω exists and is unique since S is a basis of

 ⊗ Q. If S is affine and irreducible then ω exists and is unique because of condition (3)c)
of Definition 6.5. In both cases ω is integral. The case of reducible affine root systems will
be discussed at the end.

This settles the reconstruction of ω. It remains to construct points X1, X2 ∈ A with
S(X1) = S(1), S(X2) = S(2) and X2 − X1 ∈ R>0ω. These boil down to the following set
of linear (in-)equalities (where the last column just records the known behavior of ω):

α X1 X2 ω

α ∈ S′
1 α(X1) = 0 α(X2) > 0 〈ω, α〉 > 0

α ∈ S′
2 α(X1) > 0 α(X2) = 0 〈ω, α〉 < 0

α /∈ S′
1 ∪ S′

2 α(X1) = 0 α(X2) = 0 〈ω, α〉 = 0

(6.12)

X2 = X1 + cω with c > 0. (6.13)

The inequalities (6.12) for X1 define the relative interior of a face of the alcoveA (observe
that S′

2 �= ∅ if � is affine). The first and the third set of inequalities for X2 then follow from
(6.13). Inserting (6.13) into the second set we get equalities for X1 and c:

α(X1) = c〈−ω, α〉 > 0 for all α ∈ S′
2. (6.14)

Define the affine linear function α∨ := 2
‖α‖α. Then (6.14) is equivalent to

α∨(X1) = cnD2 > 0 for all α ∈ S′
2. (6.15)

This already shows assertion (1) of the theorem. Now assume that� is affine and irreducible.
Then there is the additional relation

∑

β∈S
k(β∨)β∨(X) = ε ≡ const. > 0, X ∈ a. (6.16)

Setting X = X1, we get

cnD2

∑

β∈S′
2

k(β∨) = ε. (6.17)

This means that c is unique and positive. From (6.15) we get

α∨(X1) =
⎡

⎣
∑

β∈S′
2

k(β∨)

⎤

⎦

−1

ε. (6.18)

Evaluation of (6.16) at X = Pα yields α∨(Pα) = ε
k(α∨)

. To obtain (6.11) just observe that
S′
2 has either one or two elements.
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Finally, assume� is reducible. Themixed types “finite times infinite” do not appear in our
context. For the two other cases, the existence of ([X1, X2], ω) is clear from the following
graphics. In particular, they show why A must be a metric square.

A
(1)
1 × A

(1)
1 A

(1)
1 × A

(1)
1 A

(2)
2 × A

(2)
2

ω

α1

α′
1

α0

α′
0

ω

α1

α′
1

α0

α′
0

ω

α1

α′
1

α0

α′
0

ω = 1
2(α1 + α′

1) ω = α1 + α′
1 ω = 1

2(α1 + α′
1) �	

Example 6.13 Consider the diagram D(2)
4 (dd)

(6.19)

Then k(α∨
0 ) = k(α∨

3 ) = 1 and k(α∨
1 ) = k(α∨

2 ) = 2, and ω1 = α0 + α2 and ω2 = α1 + α3

and

X1 = 2

3
Pα1 + 1

3
Pα3 , X2 = 1

3
Pα0 + 2

3
Pα2 . (6.20)

Here is a picture of P inside A

Remark 6.14 (1) The three primitive diagrams for A(1)
1 (see Example 6.9) correspond to the

manifolds S4 (the so-called “spinning 4-sphere”, [3, 9]), S2×S2, andP
2(C), respectively

(see [16, §2.7] for details).
(2) Generalizing (1), the diagram A(1)

n−1(aa) with n ≥ 2 corresponds to the “spinning 2n-
sphere” S2n discovered by Hurtubise–Jeffrey–Sjamaar [10].

123



(Quasi-)Hamiltonian manifolds of cohomogeneity one Page 15 of 27 29

(3) The cases C(1)
n≥2(cc) are realized by Sp(2n) acting on the quaternionic Grassmannians

M = Grd(Hn+1) (see [16, Thm. 2.7.2]). This is a generalization of a result by Eshmatov
[7] for d = 1.

One can combine the classification of primitive diagramswith the Reduction Lemma 4.12.
For the formulation of the lemma, we define

k∨(Sc) := gcd{k(α∨) | α ∈ Sc}. (6.21)

in case � is an irreducible affine root system.

Definition 6.15 Assume � is finite or irreducible. A spherical diagram is a 6-tuple
(S, Sc, S′

1, c1, S
′
2, c2) with:

(1) S′
1, S

′
2, S

c ⊆ S are pairwise disjoint
(2) (S12, S′

1, c1, S
′
2, c2) is a primitive diagram where S12 is the connected closure of S′

1 ∪ S′
2

in S \ Sc. Set Di = (Si , S′
i , ci ) where Si is the connected closure of S

′
i in S12 \ S′

j .
(3) If Di is homogeneous then 〈wDi , α

∨〉 ∈ Z for all α ∈ Sc.
(4) Assume D1 and D2 are both inhomogeneous with αi := αDi . Assume also that � is

affine and irreducible. Then k∨(Sc) divides k(α∨
1 ) − k(α∨

2 ).

Remark 6.16 The condition (3) is only relevant if Di is of type 1
2dn≥2 or 1

2b
′
3.

Again, the point of the definition is:

Lemma 6.17 Let (X1, X2, ω) be a spherical triple. Put Sc := S \ (S(X1) ∪ S(X2)) and let
(Si , S′

i , ci ) be the local diagram at Xi . Then (S, Sc, S′
1, c1, S

′
2, c2) is a spherical diagram.

Proof Only (4) needs an argument. The weight ω satisfies 〈ω, α∨
D1

〉 = 1, 〈ω, α∨
D2

〉 = −1,
〈ω, α∨〉 ∈ Z for α ∈ Sc, and 〈ω, α∨〉 = 0 for all other α ∈ S. Hence (4) follows from the
linear dependence relation (6.7). �	
Theorem 6.18 Let (�,
) be simply connected andD a non-empty spherical diagram on �.
Let � be finite or affine, irreducible. Then D is realized by a spherical triple (X1, X2, ω).

Proof The two last conditions (3) and (4) of Definition 6.15make sure that there existsω ∈ 


which gives rise to the appropriate local model at Xi (for (4), see the argument in the proof
of Lemma 6.17). We show the existence of a matching polytope first in the finite case. In
this case, we may assume that all roots α = α are linear and S is linearly independent.
Additionally to the inequalities (6.12) for α /∈ Sc we get the inequalities α(X1), α(X2) > 0
for α ∈ Sc. Because of linear independence, the values α(X1) with α ∈ S can be prescribed
arbitrarily. By Theorem 6.12, we can do that in such a way that all inequalities for α /∈ Sc

are satisfied. Now we choose α(X1) >> 0 for all α ∈ Sc. Since c in (6.13) is not affected by
this choice, this yields α(X2) > 0 for all α ∈ Sc, as well.

Now let � be affine, irreducible. If Sc = ∅ then the spherical diagram would be in fact
primitive. This case has been already dealt with. So let Sc �= ∅ and fix α0 ∈ Sc. Then
S f := S \ {α0} generates a finite root system. We may assume that all α ∈ S f are linear.
Then the existence of a solution (X1, X2) satisfying all inequalities for all α ∈ S f has been
shown above. Now observe that the set of these solutions form a cone. If we choose a solution
sufficiently close to the origin we get α0(X1), α0(X2) > 0. �	

A spherical diagram is drawn like a primitive diagramwhere the roots α ∈ Sc are indicated
by circling them.
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Example 6.19 Consider the diagram on D7:

� (6.22)

Then Sc = {α3}, S1 = {α5, α6, α7} and S2 = {α4, α5}.

Example 6.20 In addition to the primitive diagrams of Example 6.9, the root system A(1)
1

supports the following spherical diagrams:

� �
(6.23)

If one identifies the alcove A with the interval [0, 1] then P = [t, 1] in the first three
cases, P = [0, t] in cases 4 through 6 and P = [t1, t2] in the last case where 0 < t < 1 and
0 < t1 < t2 < 1 are arbitrary.

Example 6.21 Up to automorphisms, all spherical diagrams supported on A(1)
2 are listed in

the top row of

The bottom row lists the corresponding momentum polytopes. Observe that each simple
root of a Dynkin diagram in the first row corresponds to the opposite edge of the alcove below
it.

Remark 6.22 If � is a product of more than one affine root system then there are problems
with the metric ofA as we have already seen for the primitive case whereAmust be a metric
square. We have not explored this case in full generality.

7 Verification of Theorem 6.8

Recall i ∈ {1, 2} and j := 3 − i . Let (S, S′
1, c1, S

′
2, c2) be a primitive diagram. Recall that

Si is the connected closure of S′
i in S \ S′

j .
Put

S p
0 := S1 ∩ S2. (7.1)

Observe that these are exactly the simple roots that are not decorated in the diagram. Our
strategy is to construct S by gluing S1 and S2 along S p

0 . For this we have to make sure that
Si remains the connected closure of S′

i .

Lemma 7.1 Let S be a graph with subsets S′
1, S1, S

′
2, S2 such that S

′
i ⊆ Si ⊆ S \ S′

j . Assume
that S = S1 ∪ S2 and Si = C(S′

i , Si ). Then the following are equivalent:

(1) Si is the connected closure of S′
i in S \ S j .

(2) The following two conditions hold:

123



(Quasi-)Hamiltonian manifolds of cohomogeneity one Page 17 of 27 29

a) S1 ∩ S2 is the union of connected components of Si \ S′
i .

b) If α1 ∈ S1 \ S2 is connected to α2 ∈ S2 \ S1 in S then α1 ∈ S′
1 and α2 ∈ S′

2.

Proof Because of Si = C(S′
i , Si ), the assertion Si = C(S′

i , S \ S′
j ) means that there are no

edges between Si and

S \ (Si ∪ S′
j ) = (S j \ S′

j ) \ (Si ∩ S j ) = (S j \ Si ) \ S′
j . (7.2)

This statement breaks up into two parts: There are no edges between Si ∩ S j and (S j \
S′
j ) \ (Si ∩ S j ) which is just condition (2)a). And there are no edges between Si \ S j and

(S j \ Si ) \ S′
j which is just condition (2)b). �	

7.1 The case Sp0 �= ∅Sp0 �= ∅Sp0 �= ∅

We start our classification with:

Lemma 7.2 Let D be a primitive spherical diagram with S p
0 �= ∅ such that there is at least

one edge between S′
1 and S′

2. Then D ∼= A(1)
n≥2(aa):

� �
(7.3)

Proof Let α ∈ S p
0 and let there be an edge between α1 ∈ S′

1 and α2 ∈ S′
2. Inspection of Table

8.2 implies that there are paths from α1 and α2 to α respectively. Together with the edge they
form a cycle in S which implies that S is of type A(1)

n≥2 with α1, α2 being adjacent. Therefore
the local diagrams are either of type am or am . Since only diagrams of the latter type can be
glued such that S p

0 �= ∅ and S is a cycle we get A(1)
n≥2(aa) as the only possibility. �	

Thus, we may assume from now on that S is the union of S1 and S2 minimally glued along
S p
0 , i.e., with no further edges added. To classify these diagrams we proceed by the type

of S p
0 . Helpful is the following table which lists for all isomorphy types of S p

0 the possible
candidates for S1 and S2. The factor c is suppressed.

Table 7.3 Gluing data

S p0 Candidates for S1 and S2

A1 a3 a2 b2 cn≥3 c3 d3 g2 c2
A2 a4 a3 b′

3
A3 a5 a4 d4
An≥4 an+2 an+1
B2 b3 c4 c3
B3 b4 f4
Bn≥4 bn+1
Cn≥3 cn+2 cn+1
D4 d5
Dn≥5 dn+1

A1A1 c3 d3
A1Cn≥2 cn+2
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Remark 7.4 For c3, the graph S \ S′ consists of two A1-components. Therefore c3 is listed
twice in the A1-row. Also the case S

p
0 = D4 is listed separately since D4 has automorphisms

which don’t extend to D5.

Using the table, it easy to find all primitive triples with S p
0 �= ∅. Since the case-by-case

considerations are lengthy we just give an instructive example namely where S p
0 = A2. Here

the following nine combinations have to be considered:

a4 ∪ a4, a4 ∪ a3, a3 ∪ a3(2×), a4 ∪ b′
3, a3 ∪ b′

3(2×), b′
3 ∪ b′

3(2×). (7.4)

We omitted the possibility of a factor of 1/2 for b′
3. Observe that in three cases two different

gluings are possible. It turns out that all cases lead to a valid spherical diagram (namely
D(1)
5 (aa), D5(aa), D4(aa), A4(aa′), B4(b′a) and D(2)

3 (b′b′) in the notation of Table 8.3)
except for a4 ∪ b′

3 and one of the gluings of a3 ∪ b′
3 which do not lead to affine Dynkin

diagrams.

7.2 The case Sp0 = ∅Sp0 = ∅Sp0 = ∅

Here, according to Lemma 7.1, S is the disjoint union of S1 and S2 stitched together with
edges between S′

1 and S′
2.

A rather trivial subcase is when S2 = S′
2 = ∅. ThenD is just a local diagram all of which

appear in Table 8.3.
Therefore, assume from now on that S1, S2 �= ∅. Since then 1 ≤ |S′

i | ≤ 2, the number N
of edges between S′

1 and S′
2 is at most 4. This yields 5 subcases.

7.2.1 N = 0

In this case, S is the disconnected union of S1 and S2. If the triple were bihomogeneous
we cannot have ωD1 + ωD2 = 0. If D1 were homogeneous and D2 inhomogeneous then
〈ωD1 , α

∨
D2

〉 = 0 �= −1. Therefore, the triple is bi-inhomogeneous and we get the three items
Am≥1 × An≥1, Am≥1 × Cn≥2, and Cm≥2 × Cn≥2 near the end of the table.

7.2.2 N = 1

In this case the diagramD is the disjoint union of two local diagrams connected by one edge
between some α1 ∈ S′

1 and α2 ∈ S′
2. One can now go through all pairs of local diagrams and

all possibilities for the connecting edge. This works well if one or both local diagrams are of
type (d2). Otherwise, it is easier to go through all possible connected Dynkin diagrams for S
and omit one of its edges. The remaining diagram admits very few possibilities for D1 and
D2. This way one can check easily that the table is complete with respect to this subcase.
Let’s look, e.g., at S = F(1)

4

1 2 3 4 2
(7.5)

Omitting one edge yields

(7.6)

Each component has to support a local diagram such that the circled vertex is in S′. This
rules out all cases except the third one where the local diagrams could be of type an or an .
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This yields

� � � � (7.7)

The first diagram violates Definition 6.5(3)c), the second is primitive and is contained in
Table 8.3, the third violates (3)b), and the fourth violates (3)a).

7.2.3 N = 2

In this case, at least one of the S′
i , say S′

1, has two different elements α1, α
′
1 which are

connected to elements α2, α
′
2 ∈ S′

2, respectively.
Assume first that α2 �= α′

2. Then both local models are either of type an≥2 or d2. One
checks easily that this yields the cases

A(1)
n≥3(aa), C(1)

n≥3(ad), D(2)
n+1(ad), A(1)

1 × A(1)
1 (dd), or A(2)

2 × A(2)
2 (dd). (7.8)

The second subcase is α2 = α′
2. If S1 is of type an≥2 one ends up with A(1)

n≥2(aa), d = 1.
Otherwise S1 is of type d2. Now one can go through all local diagrams for S2 and all possible
edges between α1, α

′
1 and α2 ∈ S′

2.

7.2.4 N = 3

In this case, there are distinct elements α1, α
′
1 ∈ S′

1 and α2, α
′
2 ∈ S′

2 which form a string

α1, α2, α
′
1, α

′
2. Both local diagrams are of type d2 which leaves only the case D(2)

4 (dd).

7.2.5 N = 4

Here α1, α2, α
′
1, α

′
2 form a cycle, so S is of type A(1)

3 . The local diagrams are both d2. This

yields A(1)
3 (dd).

This concludes the verification of the table.

8 Tables

Table 8.1 Affine Dynkin diagrams and their labels
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A(1)
1 1 1

A(1)
n , n ≥ 2

1 1 1 1 1 1
1

B(1)
n , n ≥ 3

1

1

2 2 2 2 2

C(1)
n , n ≥ 2 1 12 2

D(1)
n , n ≥ 4

1

1

1 12 2 2 2

E(1)
6

1 2 3 2 1

2

1

E(1)
7

1 2 3 4

2

3 2 1

E(1)
8

2 4 6 5 4 3 2 1

3

F(1)
4

1 2 3 4 2

G(1)
2

1 2 3

A(2)
2

2 1

A(2)
2n , n ≥ 2 2 2 2 1

A(2)
2n−1, n ≥ 3

1

1 12 2 2 2

D(2)
n+1, n ≥ 2 1 11 1

E(2)
6

1 2 3 2 1

D(3)
4

1 12
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Table 8.2 Primitive local models

Homogeneous models

L0 H0 ω Diagram

a1 PGL(2) GL(1) α1

2a1 PGL(2) N (C∗) 2α1

an≥2 PGL(n+1) GL(n)/μn+1 α1 + . . . + αn

bn≥2 SO(2n+1) SO(2n) α1 + . . . + αn

2bn≥2 SO(2n+1) O(2n) 2α1 + . . . +
2αn

2

cn≥3 PSp(2n) Sp(2)×μ2

Sp(2n−2)
α1+2α2+ . . .

+2αn−1+αn

1
2 dn≥4 SO(2n) SO(2n−1) α1+ . . .+αn−2

+ 1
2αn−1+ 1

2αn

1/2

dn≥4 PSO(2n) SO(2n−1) 2α1+ . . . +2αn−2
+αn−1+αn

1
2 d2 SO(4) SO(3) α + α′ 1/2

d2 SO(3) ×
SO(3)

SO(3) 1
2α + 1

2α′

1
2 d3 SO(6) SO(5) 1

2α1 + α2 +
1
2α3

1/2

d3 PSO(6) SO(5) α1+2α2+α3

f4 F4 Spin(9) α1 + 2α2 +
3α3 + 2α4

g2 G2 SL(3) 2α1 + α2

2g2 G2 N (SL(3)) 4α1 + 2α2 2

1
2 b

′
3 Spin(7) G2

1
2α1 + α2 +
3
2α3

1/2

b′
3 SO(7) G2 α1 + 2α2 +

3α3
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Inhomogeneous models

L0 V0 ω Diagram

a0 GL(1) C ∼ 0 ∅

an≥1 GL(n + 1) C
n+1 ∼ π1 �

cn≥2 GSp(2n) C
2n ∼ π1 �

Table 8.3 Affine Dynkin diagrams and their labels

� case ω = ω1 = −ω2 factor diagram scope

The empty case

∅ (∅) ω �= 0 ∅

The affine simple cases

A(1)
n≥1 (aa)

ω1 = α0 + . . . + αd−1
ω2 = αd + . . . + αn [2]n=1

α0 αd
1 ≤ d ≤ n

(dd2)
ω1 = ω1 = α0 + α2
ω2 = ω2 = α1 + α3

1
2

(dd3)
ω1 = α0 + 2α1 + α2
ω2 = α2 + 2α3 + α0

1
2

(aa) ω ∼ π0 − πn � �

B(1)
n≥3 (bd)

ω1 = α0 +α1 +2α2 + . . .+
2αd−1
ω2 = 2αd + . . . + 2αn

1
2 αd

2

2 ≤ d ≤ n

(bb)
ω1 = α1 + α2 + . . . + αn
ω2 = α0 + α2 + . . . + αn 2

(b′a) ω1 = dir(α1 + 2α2 + 3α3)

�

1/2

(da) ω1 = dir(α1 + α3)

1/2

�

C(1)
n≥2 (cc)

ω1 = α0 + 2α1 + . . . +
2αd−1 + αd
ω2 = αd + 2αd+1 + . . . +
2αn−1 + αn

[2]n=2
αd 1 ≤ d < n

(ad)
ω1 = dir(α0 + αn )
ω2 = α1 + . . . + αn−1

[2]n=2 1/2

(cc) ω ∼ πd−1 − πd � �
αd 1 ≤ d ≤ n

D(1)
n≥4 (dd)

ω1 = α0 +α1 +2α2 + . . .+
2αd−1
ω2 = 2αd + . . . + 2αn−2 +
αn−1 + αn

1
2

αd
2 ≤ d ≤ n−1
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� case ω = ω1 = −ω2 factor diagram scope

(dd′)
ω1 = 2α1 + 2α2 + . . . +
2αn−2 + αn−1 + αn
ω2 = 2α0 + 2α2 + . . . +
2αn−2 + αn−1 + αn

1
2

(aa)

ω1 = α1+α2+. . .+αn−2+
αn−1
ω2 = α0+α2+. . .+αn−2+
αn

F(1)4 (b f )
ω1 = α0 + α1 + α2 + α3
ω2 = α1 +2α2 +3α3 +2α4

(cd)
ω1 = 1

2 α0 + α1 + 1
2 α2

ω2 = α2 + 2α3 + α4

1/2

(aa) ω1 = α3 + α4 �

G(1)
2 (ga) ω1 = α2 + 2α1 �

(aa) ω1 = α1 �

(da) ω1 = 1
2 α0 + 1

2 α1
�

1/2

A(2)
2n

n≥1
(ab)

ω1 = 2α0 + 2α1 + . . . +
2αn−1
ω2 = αn

2

(bc) ω1 = α0 +α1 + . . .+αd−1 �
αd 1 ≤ d ≤ n

A(2)
2n−1
n≥3

(a1c)
ω1 = α1 + 2α2 + . . . +
2αn−1 + αn
ω2 = α0

(a3c)
ω1 = α0 + α1 + α2
ω2 = α2 + 2α3 + . . . +
2αn−1 + αn

(ad)
ω1 = α0 +α1 +2α2 + . . .+
2αn−1
ω2 = αn

(dc) ω1 = 1
2 α0 + 1

2 α1 + α2 +
. . . + αd−1

�
1/2 αd

2 ≤ d ≤ n

(cc) ω ∼ π0 − π1

�

�

D(2)
n+1
n≥2

(bb)
ω1 = α0 + . . . + αd−1
ω2 = αd + . . . + αn 2

αd 1 ≤ d ≤ n

(ad)
ω1 = α1 + . . . + αn−1
ω2 = α0 + αn [ 12 ]n=2

(dd)
ω1 = α0 + α2
ω2 = α1 + α3

1
2

(b′b′) ω1 = 3α0 + 2α1 + α2
ω2 = α1 + 2α2 + 3α3

1
2

(da) ω1 = 1
2 α0 + 1

2 α2
1/2

�
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� case ω = ω1 = −ω2 factor diagram scope

(cc) ω ∼ π0 − π2 � �

E(2)6 (a f )
ω1 = α0
ω2 = 2α1 +3α2 +2α3 +α4

(bc)
ω1 = α0 + 2α1 + 2α2 + α3
ω2 = α2 + α3 + α4

(aa) ω1 = α0 + α1 + α2 �

D(3)
4 (ag)

ω1 = α0
ω2 = 2α1 + α2

2

(ad)
ω1 = α0 + α2
ω2 = 2α1

1
2

(aa) ω1 = α0 + α1 �

The finite simple cases

An≥1 (aa) ω1 = α1 + . . . + αd−1 �
αd 2 ≤ d ≤ n

(d2a) ω1 = 1
2 α1 + 1

2 α3
1/2

�

(d3a) ω1 = α1 + 2α2 + α3 �

(aa) ω ∼ πd−1 − πd � �
αd 2 ≤ d ≤ n

(aa′) ω ∼ π1 − πn � � n ≥ 2

(a) ω1 = α1 + . . . + αn [2]n=1

(d) ω1 = α1 + 2α2 + α3
1
2

(a) ω ∼ π1 �

Bn≥2 (ba) ω1 = αd + . . . + αn
αd

� 2 ≤ d ≤ n

(da) ω1 = 1
2 α1 + 1

2 α3
1/2

�

(dc) ω1 = α1 + 2α2 + α3 �
1/2

(b′a) ω1 = α2 + 2α3 + 3α4 �

(aa) ω ∼ πn−1 − πn � �

(ac) ω ∼ π1 − π3 ��

(b) ω1 = α1 + . . . + αn 2

(b′) ω1 = α1 + 2α2 + 3α3
1
2

Cn≥3 (ac) ω1 = α1 + . . . + αd−1 �
αd 2 ≤ d ≤ n

(ca) ω1 = α2 + 2α3 + . . . +
2αn−1 + αn

�

(ac) ω ∼ πd−1 − πd �
αd

� 2 ≤ d ≤ n

(c) ω1 = α1 + 2α2 + . . . +
2αn−1 + αn

(c) ω ∼ π1 �
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� case ω = ω1 = −ω2 factor diagram scope

Dn≥4 (da) ω1 = αd + . . . + αn−2 +
1
2 αn−1 + 1

2 αn

1/2

αd
� 2 ≤ d < n

(aa) ω1 = α1 + . . . + αn−1

�

(d4a) ω1 = α2 + 2α3 + α4 + 2α5 �

(aa) ω ∼ πn−1 − πn

�

�

(d) ω1 = 2α1 + . . . + 2αn−2 +
αn−1 + αn

1
2

F4 (ca) ω1 = α2 + 2α3 + α3 �

(aa) ω1 = α3 + α4 �

(bc) ω1 = α1 + α2 + α3 �

(aa) ω ∼ π2 − π3 � �

( f ) ω1 = α1 +2α2 +3α3 +2α4

G2 (aa) ω1 = α1 �

(aa) ω ∼ π1 − π2 ��

(g) ω1 = 2α1 + α2 2

The reducible cases

A(1)
1 × A(1)

1 (dd)
ω1 = α0 + α′

0
ω2 = α1 + α′

1

1
2

δ‖αi ‖ = δ′
‖α′

i ‖

A(2)
2 × A(2)

2 (dd)
ω1 = α0 + α′

0
ω2 = 1

2 α1 + 1
2 α′

1

1/2
δ‖αi ‖ = δ′

‖α′
i ‖

A1 × A(1)
1 (da) ω1 = 1

2 α1 + 1
2 α′

0
�1/2

A1 × A(2)
2n

n≥1
(dc) ω1 = α1 + α′

0
�

A1 × C(1)
n≥2 (dc) ω1 = 1

2 α1 + 1
2 α′

0
�1/2

A1 × G(1)
2 (da) ω1 = α1 + α′

0
�

A1 × An≥2 (da) ω1 = α1 + α′
1

�

A1 × Cn≥3 (dc) ω1 = α1 + α′
1

�

A1 × Bn≥2 (da) ω1 = α1 + α′
1

�

A1 × Cn≥2 (da) ω1 = 1
2 α1 + 1

2 α′
1

�1/2
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� case ω = ω1 = −ω2 factor diagram scope

A1 × G2 (da) ω1 = α1 + α′
1

�

Am≥1 × An≥1 (aa) ω ∼ π1 − π ′
1

�
�

Am≥1 × Cn≥2 (ac) ω ∼ π1 − π ′
1

�
�

Cm≥2 × Cn≥2 (cc) ω ∼ π1 − π ′
1

�
�

A1 × A1 (d) ω1 = α1 + α′
1

1
2
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