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Abstract
We construct a Kawamata type semiorthogondal decomposition for the bounded derived
category of coherent sheaves of nodal quintic del Pezzo threefolds, decomposing the bounded
derived category into bounded derived categories of finite dimensional algebras. This is
achieved by constructing birational maps from nodal quintic del Pezzo threefolds to quadric
surface fibrations over the projective line.

1 Introduction

The most interesting smooth Fano threefolds are the ones with Picard rank 1. Their derived
categories are quite well known [17]. But much less is known about the derived categories
of singular Fano threefolds. The first examples are given by Kawamata [11] for nodal del
Pezzo threefolds of degree 6 and 8 (more details below). In both examples the threefolds have
only one ordinary double point (or nodal point). It is an interesting and important question
to understand the derived categories of other singular Fano threefolds and see what they
look like when the Fano threefolds have multiple nodal points. In this paper we study the
bounded derived category of coherent sheaves Db(X) for nodal quintic del Pezzo threefolds
X (terminal Gorenstein Fano threefolds of index 2 and degree 5) over an algebraically closed
field k of characteristic 0 and construct a Kawamata type semiorthogonal decomposition
(KSOD) defined in [8, Definition 4.1] for Gorenstein projective varieties. This answers the
question asked in [8, Example 4.16] about the existence of KSODs for these threefolds. A
KSOD is an admissible semiorthogonal decomposition (SOD) of the type

Db(X) = 〈A,Db(S1), . . . ,Db(Sn)〉 (1.1)

where A is a subcategory of Dperf (X), S1, . . . , Sn are finite dimensional k-algebras and
Db(Si ), 1 � i � n are bounded derived categories of finitely generated right modules over
Si . Here admissible means that the components of the SOD are admissible subcategories.

The classification of terminal Gorenstein del Pezzo threefolds of degree 5 states that they
have only nodal singularities and the number of nodal points is at most 3. Moreover, the
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quintic del Pezzo threefold Xm with m nodes (0 � m � 3) exists and is unique up to
isomorphism for each m; see [21, Corollary 8.7]. The SOD of the derived category Db(X0)

of the smooth quintic del Pezzo threefold is well known; see [17, Theorem 4.2]. It has a full
exceptional collection of four objects. In this paper, we will focus on the singular threefolds
Xm, 1 � m � 3 and show that two of the exceptional objects in the smooth case are
replaced by derived categories of finite dimensional algebras. Furthermore, we will see that
the construction of the SODs of Db(Xm) is closely related to derived categories of a chain of
m P

1’s. For a chain of P
1’s, there is a SOD as below.

Proposition 1.1 ([6]) Let � be a chain of n + 1 P
1’s. Then Db(�) = 〈Db(Rn),O�〉. Here

R0 = k and Rn, n � 1 is the path algebra of quiver with relations

Rn = k

⎧
⎨

⎩
• • • • •

α1

β1

α2

β2

...

αn

βn

∣
∣
∣
∣
∣
∣
αiβi = 0, βiαi = 0, ∀1 � i � n

⎫
⎬

⎭
. (1.2)

The main result of the paper is the construction of the following Kawamata type SODs,
which indicates that Db(Xm) behave in a similar way as Db(�).

Theorem 4.8 Let Xm be the quintic del Pezzo threefolds with m nodes for m = 1, 2, 3. Then
there is an admissible semiorthogonal decomposition

Db(Xm) = 〈Db(Rm−1),Db(R1),OXm ,OXm (1)〉
where R0 = k and R1, R2 are the path algebras defined by (1.2).

The reason we care about Kawamata type SODs for a singular scheme X is because it
gives a complete decomposition of the “singular part" ofDb(X) in terms of finite dimensional
algebras. More precisely, the singularity of Db(X) is measured by the Orlov’s triangulated
categories Dsg(X) of singularities, which is defined as the Verdier quotient of Db(X) by the
subcategoryDperf (X) of perfect complexes. In this sense Kawamata type SODwould induce
a SOD of Dsg(X) by triangulated categories of singularities of finite dimensional algebras.

If a Kawamata type SOD does exist, one can further ask whether there exists a full
exceptional collection for the subcategory A in the SOD (1.1). In the main result the answer
is yes with A = 〈OXm ,OXm (1)〉. The known examples where A has a full exceptional
collection is provided in [8, §4]. In dimension 1, a chain of projective lines studied by
Burban (see Proposition 1.1) is one family of such examples. In dimension 2, Karmazyn-
Kuznetsov-Shinder [9] proved that a projective Gorenstein toric surface has a SOD of this
kind if and only if it has the trivial Brauer group. Moreover, their method also provides some
non-toric examples: the du Val sextic del Pezzo surfaces [14] and the du Val quintic del Pezzo
surfaces [24]. In dimension 3, Kawamata [11] provides two such examples, the nodal quadric
threefold and the nodal sextic del Pezzo threefold, by investigating the derived category of a
threefold with an ordinary double point. More explicitly, Kawamata proved in [11, Theorem
6.1 and 5.1] that for certain threefolds X with an ordinary double point, the right (or left)
orthogonal complement to A in Db(X) is equivalent to Db(R1) (see (1.2) for the definition
of R1). One notes that Db(R1) is also the right orthogonal complement to the structure sheaf
in the derived category of a chain of two P

1’s by Burban. This phenomena is expected by
Knörrer periodicity [19, Theorem 2.1].

For a threefold X with multiple nodal points, one naturally wonders when the SOD (1.1)
of Db(X) exists and if it does exist, which algebras Si will appear. It is already known by
[8, Example 3.15 and 4.16] (see also [20, Corollary3.7]) that derived categories of nodal del
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Pezzo threefolds of degree between 1 and 4 do not have Kawamata type SODs. The main
result of paper confirms that Kawamata type SODs do exist for degree 5. This is detailed in
§4 and it uses a generalization of Kawamata’s result [11, Theorem 6.1 and 5.1] mentioned
before, which is explained in Proposition 2.12, to produce a semiorthogonal component
Db(R1) for threefolds with multiple nodal points. In detail, the derived category Db(Y1) of
a resolution Y1 of X1 has a full exceptional collection and it descends to a SOD of Db(X1).
The non-commutative algebra R1 appearing in the SOD of Db(X1) is the indication of the
node. For X2, X3 there are partial resolutions Y2, Y3 of a chosen nodal point, respectively.
We can prove that the derived category of a chain of m P

1’s can be embedded into Db(Ym).
This is how algebras R1 and Rm−1 appear in the SOD of Db(Xm) after descent, where R1 is
obtained in the same way as the 1-nodal case X1 and Rm−1 is the indication of the remaining
nodal points.

It should be pointed out that Kawamata type SODs ofDb(Xm) constructed in this paper are
certainly not unique. For example, there is another SOD for Db(X2) where the orthogonal
complement of 〈OX2 ,OX2(1)〉 is given by 〈Db(k),Db(R2)〉; see [20, Remark 3.13]. One
would probably notice the asymmetry of the subcategory 〈Db(R1),Db(R2)〉 in Db(X3). The
nodal point corresponding to R1 is singled out because it is the chosen point that gets resolved.
It is still unknownwhether it is possible forDb(X3) to have 〈Db(R1),Db(R1),Db(R1)〉 as the
orthogonal complement of 〈OX3〉 (instead of 〈OX3 ,OX3(1)〉). On the other hand, if one allows
differential graded algebras in the SOD, then the derived category Db(Rn) with Rn, n � 1
defined by (1.2) has a SODwith a copy ofDb(k) and n copies ofDb(k[ε]/ε2), where k[ε]/ε2
is the derived dual number with deg(ε) = −1. As a consequence, Db(Xm) has a symmetric
SOD with 4 copies of Db(k) and m copies of Db(k[ε]/ε2). Since Xm can be realized as
codimension 3 linear sections of Gr(2, 5) (detailed in Sect. 3), these symmetric SODs also
follow from the Homological Projective Duality theory, where the case for the smooth quintic
del Pezzo threefold X0 is done in [13, §6.1].

The key step of our construction of the Kawamata type SOD, which is interesting by
itself, is the study of a quadric surface fibration with fibers of corank 2. This method has
been formalized and generalized in the subsequent paper [25]. More explicitly, the partial
resolution Y3 of X3 at a nodal point is a quadric surface fibration p3 : Y3 → P

1 over P
1.

Because p3 has a fiber of corank 2, the non-trivial component ofDb(Y3) is notwell understood
by known results. We show in Proposition 4.4 that the non-trivial component is equivalent to
the derived category of a chain of three P

1’s. In this paper the proof is obtained by explicit
computation. But the essential reason for such an equivalence is that p3 : Y3 → P

1 has a
smooth section (each point of the section is a smooth point on the fiber) and amore theoretical
proof is given in [25, Example 6.1].

1.1 Organization of the paper

In Sect. 2 we provide background materials used in the paper. In Sect. 2.1 we review Clifford
algebras and spinor sheaves of a quadratic form. In Sect. 2.2 we introduce derived push-
forward and pull-back functors for derived categories of noncommutative projective schemes
and prove the projection formula (Lemma 2.5). In Sect. 2.3 we present results on the derived
push-forward functor of a proper morphism with fibers of dimension at most 1 and explain
in Proposition 2.11 how to descend SODs via the derived push-forward functor. We also
provide a generalization of Kawamata’s result in Proposition 2.12 that produces a non-trivial
semiorthogonal component in the derived category of a projective threefold with multiple
nodes.
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In Sect. 3 we study the geometry of Xm and realize that there exists a small resolution Ym

of Xm at one of the nodal points and Ym is a quadric surface fibration over P
1; see Proposition

3.3. Concretely, let x be a nodal point of Xm and let Tx Xm ∼= P
4 ⊂ P

6 be the embedded
projective tangent space of Xm at x . Then the linear projection φm : Xm ��� P

1 from Tx Xm

factors as f −1
m ◦ pm where fm : Ym → Xm is a small resolution of Xm at x and pm : Ym → P

1

is a quadric surface fibration.
In Sect. 4 we study Db(Xm) using the geometric model constructed in Sect. 3. The SOD

of derived categories of quadric fibrations has been constructed by Kuznetsov [12]; see (4.1)
for the SOD. The key step to understand Db(Ym) is to understand the nontrivial component
Db(P1,Bm,0), where Bm,0 is the even part of the Clifford algebra of pm : Ym → P

1. They
are well understood when m = 1, 2 because in these cases, fibers of pm have corank at most
1. A new argument is used for m = 3 where we show in Proposition 4.4 that Db(P1,B3,0)

is equivalent to the derived category of a chain of three P
1’s. From here we use Proposition

2.11 and 2.12 to descend the SOD of Db(Ym) to a SOD of Db(Xm) along fm∗ : Db(Ym) →
Db(Xm). One additional important ingredient is that for the exceptional locus E ∼= P

1 of
fm : Ym → Xm , its structure sheaf OE has a Koszul resolution given by a regular section of
the spinor bundle SE associated with E (see Proposition 2.2 (ii) and note that E is a smooth
section of pm).

1.2 Related work

In preparation of the paperwe learned that Pavic-Shinder [20] areworking on the same subject
via a different approach. They studyDb(Xm) using a different rational map coming from Xm .
In detail, they choose a line L ⊂ Xm in the smooth locus and consider the linear projection
Xm ��� P

4 from L . The image of the map is a smooth or nodal 3-dimensional quadric
Q3 and the map Xm ��� Q3 factors as the inverse of the blow-up Y ∼= BlL(Xm) → Xm

followed by the blow-up Y = BlC (Q3) → Q3 along a nodal curve C of arithmetic genus 0.
In comparison, the rational map φm : Xm ��� P

1 we used in this paper is a linear projection
onto a line in the smooth locus of Xm .

1.3 Notations

We will use the following notations and conventions throughout the paper.
Given an algebraic scheme X , we denote by Db(X) the bounded derived category of

coherent sheaves on X . Denote byD−(X),D(X) andDperf (X) the bounded above, unbounded
derived categories of coherent sheaves and derived categories of perfect complexes (quasi-
isomorphic to a bounded complex of locally free sheaves of finite rank), respectively. Given a
morphism f : X → Y , we denote by f∗ and f ∗ the total derived push-forward and pull-back
functors, respectively. The underived push-forward and pull-back functors will be denoted
by R0 f∗ and L0 f ∗, respectively.

Given a noncommutative projective scheme (X ,AX ) introduced in Definition 2.4, denote
by Coh(X ,AX ) and QCoh(X ,AX ) the abelian categories of, respectively, coherent and
quasi-coherent sheaves with rightAX -module structures. Note that whenAX = OX , the pair
(X ,AX ) is the usual scheme.

The base field k is an algebraically closed field of characteristic 0.
Let � be a chain of n P

1’s. Let �i be the i-th component of � and di ∈ Z, 1 � i � n.
Denote by
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• O�{d1, . . . , dn} the line bundle on � whose restriction to �i is O�i (di ).

We will provide a geometric model for nodal quintic del Pezzo threefolds Xm in Propo-
sition 3.3 and it will be used across the paper. For the convenience of the reader we include
a summary of related notations below.

• Xm is the quintic del Pezzo threefold with m nodes for m = 1, 2, 3;
• fm : Ym → Xm is a small resolution of a nodal point where fm contracts a smooth

rational curve E to the nodal point;
• pm : Ym → P

1 is a quadric surface fibration, where E is a smooth section (consists of
smooth points of the fibers) and the normal bundle NE/Ym

∼= OE (−1)2;
• Let E = OP1 ⊕ OP1(−1)3 and L = OP1(−1). Let π : P(E) → P

1 be the projection.
Then the total space Ym of the quadric surface fibration pm is the zero locus of a global
section

σm ∈ �(P(E),OP(E)/P1(2) ⊗ π∗L) ∼= �(P1,Sym2(E∨) ⊗ L)

on P(E) where E∨ is the dual of E and Sym2 is the second symmetric product. The
exceptional locus E of fm : Ym → Xm is the projectivization of OP1 ⊂ E .

Denote by

• im : Ym ↪→ P(E) the embedding (pm = π ◦ im);
• δ ∈ �(P(E),OP(E)/P1(1) ⊗ π∗E) ∼= �(P1, E∨ ⊗ E) the section corresponding to the

identity of End(E);
• Bm,0 the sheaf of even part of the Clifford algebra of the quadric fibration pm : Ym → P

1;
• Bm,1 the sheaf of odd part of the Clifford algebra of pm ;
• Zm the central subalgebra OP1 ⊕ �4E ⊗ (L2)∨ of Bm,0;
• gm : Cm = SpecP1(Zm) → P

1 the double cover ramified along the degeneration locus
of pm ;

• B̃m,0 the unique sheaf of algebra over Cm such that gm∗(B̃m,0) ∼= Bm,0 as sheaves of
Zm-algebras.

Note that the algebra structures of coherent sheavesBm,0,Bm,1, B̃m,0,Zm , the degeneration
locus of pm : Ym → P

1 and therefore the map gm : Cm → P
1 depend on the global section

σm defining the quadric surface fibration pm .

2 Preliminaries

2.1 Clifford algebras and spinor sheaves

In this section we review the Clifford algebra of a quadric hypersurface and spinor sheaves
associated with linear subspaces of a quadric hypersurface, with a focus on quadric surfaces.
Spinor sheaves on singular quadrics are studied by Addington in [1]. He follows the conven-
tion that spinor bundles on smooth quadrics are generated by global sections; e.g., the spinor
bundle on P

1 isO(1). Similarly, spinor sheaves of a quadric fibration can be constructed and
they are used to study derived categories of nodal quintic del Pezzo threefolds in Sect. 4.

Let V be a k-vector space and let q be a quadratic form on V . The Clifford algebra of q
is

Bq = T •(V )/〈v ⊗ v − q(v) · 1〉v∈V ,
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where T •(V ) is the free associative algebra generated by V . We view T •(V ) as a graded
algebra with elements of V having degree 1. Then Bq has a naturalZ/2-grading: the even part
Bq0 is spanned by monomials of even degrees and the odd part Bq1 is spanned by monomials
of odd degrees.

LetW be an isotropic subspace ofV , that is, q|W = 0. Then the subalgebra of Bq generated
by W is �•W . Let I W be the right ideal (�dim W W ) · Bq of Bq generated by �dim W W . Let
I W = I W

0 ⊕ I W
1 be the decomposition into the even part I W

0 and the odd part I W
1 . Consider

the map of vector bundles

OP(V )(−1) ⊗ I W δW−→ OP(V ) ⊗ I W

v ⊗ ξ �→ 1 ⊗ ξv

where OP(V )(−1) is regarded as the universal subbundle of OP(V ) ⊗ V . We use δW (n) to
denote the map obtained by tensoring δW with OP(V )(n). Since δW (n + 1) ◦ δW (n) = q
for every n, we have δW is an isomorphism away from the quadric Q = {q = 0} ⊂ P(V ).
Because ker(δW ) is torsion and OP(V )(−1) ⊗ IW is torsion free, we have δW is injective.
Hence, there are short exact sequences

0 → OP(V )(−1) ⊗ I W
0

δW
0−→ OP(V ) ⊗ I W

1 → SW → 0,

0 → OP(V )(−1) ⊗ I W
1

δW
1−→ OP(V ) ⊗ I W

0 → TW → 0.

(2.1)

where δW = δW
0 ⊕ δW

1 and SW := coker (δW
0 ), TW := coker (δW

1 ) are supported on Q. The
map δW

1 can be induced from δW
0 because

δW
1

∼= δW
0 ⊗Bq0 Bq1.

In particular, I W
1

∼= I W
0 ⊗Bq0 Bq1. There are resolutions on Q for SW (and similarly for TW ):

· · · δW
0 (−2)−−−−→ OQ(−2) ⊗ I W

1

δW
1 (−1)−−−−→ OQ(−1) ⊗ I W

0

δW
0−→ OQ ⊗ I W

1 → SW → 0,

0 → SW → OQ(1) ⊗ I W
0

δW
0 (2)−−−→ OQ(2) ⊗ I W

1

δW
1 (3)−−−→ OQ(3) ⊗ I W

0

δW
0 (4)−−−→ · · · .

(2.2)

The sheaves SW , TW constructed here are called the spinor sheaves of Q associated with
the linear subspace P(W ) ⊂ Q. They are the generalization of spinor bundles on smooth
quadrics. Similarly for a flat quadric fibration Q ⊂ P(V) → S and an isotropic subbundle
W ⊂ V , one can construct spinor sheaves SW , TW of Q associated with P(W) ⊂ Q. For
details of this construction, see [25, §2.2].

Proposition 2.1 ([1, Proposition 2.1 and 4.1]) The spinor sheaves SW , TW constructed by
(2.1) are reflexive sheaves on Q. Let K ⊂ V be the kernel of q; i.e., the singular locus of Q
is P(K ). We have

(i) if P(K ) ∩ P(W ) = ∅ and codim(W ) > 1, then SW , TW are locally free sheaves of rank
2codim(W )−2 on Q;

(ii) if codim(W ) is odd, then S∨
W

∼= SW (−1) and T ∨
W

∼= TW (−1);
(iii) if codim(W ) is even, then S∨

W
∼= TW (−1).

The sheaves SW , TW are unchangedwhenwe varyW continuouslywithW ∩K fixed. They
are not isomorphic when the family of W with fixed dim W and W ∩ K is not connected.
Let π : V → V /K be the projection map. Then we have SW � TW when dim π(W ) =
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1
2 dim V /K because there are two connected families ofW , and SW ∼= TW whendim π(W ) <
1
2 dim V /K .

For the rest of the section we will focus on dim V = 4.

Proposition 2.2 (i) Let Q = {q = 0} ⊂ P(V ) ∼= P
3 be a reduced quadric surface; i.e.,

it has corank at most 2. For a smooth point x ∈ Q, let Sx be the spinor sheaf for the
corresponding 1-dimension isotropic subspace constructed by (2.1). Then Sx is a rank 2
vector bundle on Q such that S∨

x
∼= Sx (−1) and the skyscraper sheafOx has a resolution:

0 → det(Sx (−1)) → Sx (−1) → OQ → Ox → 0. (2.3)

(ii) Let p : Q → S be a flat quadric surface fibration with fibers of corank at most 2 and
let q : V → L be the corresponding quadratic form. Assume that the base scheme
S is Cohen-Macaulay and there exists an isotropic sub line bundle N ⊂ V such that
F = P(N ) ⊂ Q is a smooth section; i.e., F consists of smooth points on the fibers. Then
the spinor sheaf SF associated with F is a rank 2 vector bundle on Q such that

S∨
F

∼= SF ⊗ OQ/S(−1) ⊗ p∗(N∨ ⊗ det(V∨) ⊗ L )

and there is a Koszul resolution

0 → det(S∨
F ) → S∨

F → OQ → OF → 0.

Proof (i) Let W = kv be the 1-dimensional isotropic subspace of V that corresponds to x .
Then Sx = SW . By Proposition 2.1 Sx is a rank 2 vector bundle on Q and S∨

x
∼= Sx (−1).

Explicitly, we have the following three cases.

(1) Q is smooth: Q ∼= P
1 × P

1 and Sx ∼= OP1×P1(1, 0) ⊕ OP1×P1(0, 1).
(2) Q is of corank 1: Q is the cone over a smooth conic C ∼= P

1. Let y ∈ Q be the
vertex. Let πy : Q − {y} → C be the projection and let jy : Q − {y} ↪→ Q be the
open embedding. Denote the rank 1 spinor sheaf R0 jy∗π∗

yOP1(1) on Q by M . Then
Sx is the unique nontrivial extension of M by M ; cf. [10, Example 5.5].

(3) Q is of corank 2: Q is the union of twoP
2’s intersecting alongP

1. Since x is a smooth
point, x is not a point on the intersection P

1. Denote the P
2 containing x by P

2
1 and

the P
2 not containing x by P

2
2. Denote by il : P

2
l ↪→ Q the inclusions for l = 1, 2.

Then using the sequences (2.1) defining spinor sheaves, one gets L0i∗1 Sx ∼= T
P
2
1
(−1)

where T
P
2
1
is the tangent bundle and L0i∗2 Sx ∼= O

P
2
2
⊕ O

P
2
2
(1).

Let {vi }4i=1 be an orthogonal basis of V for q such that v1 = v. Let sv ∈ H0(Q, Sx )

be the section corresponding to the map OQv ⊂ OQ ⊗ I W
1 → SW = Sx from (2.2).

Note that the composition OQv → Sx → OQ(1) ⊗ I W
0 is given by the column vector

(v2, v3, v4, 0). Thus, the zero locus of sv is {v2 = v3 = v4 = 0} = {x}. Because both
the codimension of the point x and the rank of Sx are 2, this implies that sv is a regular
section and the skyscraper sheaf Ox has the Kozsul resolution (2.3).

(ii) Let Bq0 and Bq1 be the even and odd Clifford algebras of q , respectively. Let I0 ⊂ Bq0,
I1 ⊂ Bq1 be right modules over Bq0 generated by N . We have decompositions

Bq0 ∼= OS ⊕ �2V ⊗ L ∨ ⊕ det V ⊗ (L 2)∨, Bq1 ∼= V ⊕ �3V ⊗ L ∨.

Taking the parts that have the factor N gives the decompositions

I0 ∼= N ⊗ V/N ⊗ L ∨ ⊕ det V ⊗ (L 2)∨, I1 ∼= N ⊕ N ⊗ �2(V/N ) ⊗ L ∨.
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Moreover, one has

I∨
n

∼= I◦
1−n ⊗ N∨ ⊗ det V∨ ⊗ L 2 (2.4)

for n = 0, 1 where I◦
n are the left modules over Bq0 generated by N and I◦

n
∼= In as

OS-modules. For n ∈ Z let

In :=
{
I0 ⊗ L k, n = 2k,

I1 ⊗ L k, n = 2k + 1.

The relative version of (2.2) reads as

· · · → OQ/S(−1) ⊗ p∗I0 → p∗I1 → SF → 0,

0 → SF → OQ/S(1) ⊗ p∗I2 → OQ/S(2) ⊗ p∗I3 → · · · .

Taking the dual of the second sequence, one gets

· · · → OQ/S(−2) ⊗ p∗I∨
3 → OQ/S(−1) ⊗ p∗I∨

2 → S∨
F → 0.

Since I∨
3

∼= I∨
1 ⊗ L ∨ and I∨

2
∼= I∨

0 ⊗ L ∨, combining with (2.4) we have S∨
F

∼=
SF ⊗ OQ/S(−1) ⊗ p∗(N∨ ⊗ det(V∨) ⊗ L ).
The proof for the Koszul resolution is the same to that of (i). Note that the choice of the
regular section sv ∈ H0(Q, Sx ) is canonical and thus the argument can be extended to
the fibration case.

��
Lastly, we include the following computation of even Clifford algebras for later reference.

Example 2.3 Let q(x) = x1x2 + q ′(x3, x4) be a quadratic form of V with dim V = 4. Then
q is the direct sum of the hyperbolic quadratic form u = x1x2 and q ′. We get

Bq ∼= Bu ⊗ Bq ′ ∼= M2(Bq ′), Bq0 ∼= Bu0 ⊗ Bq ′0 ⊕ Bu1 ⊗ Bq ′1

where M2 is the matrix algebra of size 2.
Up to a change of variables q ′(x3, x4) is of the form λx23 + μx24 for some λ,μ ∈ k. The

symmetric matrix corresponding to q is
⎛

⎜
⎜
⎝

(
0 1
1 0

)

0

0

(
2λ 0
0 2μ

)

⎞

⎟
⎟
⎠ .

Let {v1, v2, e3, e4} be a dual basis of {xi }4i=1. Then we have

v21 = v22 = 0, v1v2 + v2v1 = 1, vi e j = −e jvi , i ∈ {1, 2}, j ∈ {3, 4} in Bq .

If we set e1 = v1 + v2 and e2 = v2 − v1, then {ei }4i=1 is an orthogonal basis of V for q; i.e.,

ei e j = −e j ei , i �= j, e2i = q(ei ) in Bq .

Moreover, we have q(e1) = 1 and q(e2) = −1.
Let d = e1e2e3e4 ∈ Bq . Then Zq := k1⊕kd ∼= k[d]/(d2−det(q)) is a central subalgebra

of Bq0. If q ′(x3, x4) = 0, then

Bq0 ∼= Zqv1v2 ⊕ Zqv2v1 ⊕ Zqv1e3 ⊕ Zqv1e4 ⊕ Zqv2e3 ⊕ Zqv2e4
∼= Zqv1v2 ⊕ Zqv2v1 ⊕ kv1e3 ⊕ kv1e4 ⊕ kv2e3 ⊕ kv2e4.

(2.5)
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If q ′(x3, x4) �= 0, then there exists v3 ∈ ke3 ⊕ ke4 such that q(v3) = 1. In this case,

Bq0 ∼= Zq〈s, t〉
〈s2 = 1, t2 = 1, st = −ts〉

where s = e1e2, t = e2v3. Morever, Bq0 ∼= M2(Zq) and an explicit identification is given
by

s =
(
1 0
0 −1

)

, t =
(
0 1
1 0

)

.

Under this identification we have
(
1 0
0 0

)

= s + 1

2
= v1v2,

(
0 0
0 1

)

= 1 − v1v2 = v2v1,

(
0 1
0 0

)

= t + st

2
= −v1v3,

(
0 0
1 0

)

= t − st

2
= v2v3.

(2.6)

Furthermore,

Zqv1v2 = kv1v2 ⊕ kv1v2e3e4, Zqv2v1 = kv2v1 ⊕ kv2v1e3e4,

Zqv1v3 = kv1e3 ⊕ kv1e4, Zqv2v3 = kv2e3 ⊕ kv2e4.
(2.7)

2.2 Noncommutative projective schemes

In this section we introduce noncommutative projective schemes in the sense of pairs of
projective schemes togetherwith sheaves of algebras.Wewill define the derived push-forward
and pull-back functors of a morphism and prove the projection formula (Lemma 2.5) in this
setting. The generalization to noncommutative schemes in the sense of pairs of noetherian
schemes together with sheaves of algebras is given in Appendix A of [25].

Definition 2.4 A pair (X ,AX ) is a noncommutative projective scheme over k if X is a pro-
jective scheme over k and AX is a quasi-coherent OX -module and sheaf of OX -algebras. A
morphism � = (θ, θA) : (X ,AX ) → (Y ,AY ) of noncommutative projective schemes over
k consists of a morphism θ : X → Y of schemes and a homomorphism θA : L0θ

∗AY → AX

of OX -algebras.

Following the same lines after Definition 10.3 in [16], there is the derived functor

�∗ = θ∗ : D(QCoh(X ,AX )) → D(QCoh(Y ,AY )).

For every G ∈ QCoh(Y ,AY ),

L0�
∗G := θ−1G ⊗θ−1AY

AX ∼= L0θ
∗G ⊗L0θ∗AY AX ∈ QCoh(X ,AX ).

Since Y is projective, there is a locally free OY -module V (of finite rank if G is a coherent

OY -module) and an OY -module epimorphism V
s
� G. Thus, there is a right AY -module

epimorphism

V ⊗ AY � G, v ⊗ a �→ s(v)a, v ∈ V, a ∈ AY

from the locally freeAY -module V ⊗AY . This means that QCoh(Y ,AY ) has enough locally
free objects. By Lemma 13.29.1 and the proof of Lemma 20.26.12 in [22], for every complex
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G ∈ D(QCoh(Y ,AY )), there is a locally free resolution K ∈ D(QCoh(Y ,AY )). We can
define the derived functor �∗ of L0�

∗ by

�∗G := L0�
∗K .

This gives a well-defined functor

�∗ : D(QCoh(Y ,AY )) → D(QCoh(X ,AX )).

It is clear that �∗ is a left adjoint of �∗.

Lemma 2.5 (Projection formula) Let � = (θ, θA) : (X ,AX ) → (Y ,AY ) be a mor-
phism between noncommutative projective schemes defined by Definition 2.4. For every
F ∈ D(QCoh(X ,Aop

X )) and G ∈ D(QCoh(Y ,AY )) the natural map

G ⊗L

AY
�∗(F) → �∗(�∗(G) ⊗L

AX
F) (2.8)

is an isomorphism in D(QCoh(Y )).

Proof There exists a natural map

�∗(G ⊗L

AY
�∗(F)) ∼= �∗(G) ⊗L

AX
�∗�∗(F) → �∗(G) ⊗L

AX
F

because �∗ commutes with derived tensor functors and (�∗,�∗) are adjoint. Applying the
adjointness again gives (2.8). Let T ⊂ D(QCoh(Y ,AY )) be the full triangulated subcategory
of objects G such that (2.8) is an isomorphism. We will prove that T = D(QCoh(Y ,AY )).

Note that D(QCoh(Y )) has a compact generator U ∈ Dperf (Y ) by [5, Theorem 3.1.1]
and is cocomplete (admits arbitrary direct sums). Then D(QCoh(Y ,AY )) has a compact
generator U ⊗ AY and is also cocomplete. Clearly U ⊗ AY ∈ T and T is closed under
arbitrary direct sums because �∗,�∗,⊗L

AY
,⊗L

AX
all commute with direct sums. We deduce

from [18, Theorem 2.2c] that T = D(QCoh(Y ,AY )). ��
We end the section with a few simple examples. Let X be a projective scheme.

Example 2.6 Let V be a vector bundle on X . Then V is a locally projective left module
over End(V) and there is the Morita equivalence D(X) ∼= D(X , End(V)) given by inverse
equivalences V∨ ⊗OX − and − ⊗End(V) V .

Example 2.7 Let C be a coherent sheaf of commutative algebras on X . Then D(X , C) ∼=
D(Spec(C)).

Example 2.8 Let B be a coherent sheaf of algebras on X and let C be a central subalgebra of
B; i.e., C is contained in the center of B. Let f : Spec(C) → X be the natural map and let
B̃ be the unique sheaf of algebras on Spec(C) such that f∗B̃ ∼= B as sheaves of C-algebras.
Then D(X ,B) ∼= D(Spec(C), B̃).

2.3 Some facts about derived categories

We first provide a useful lemma that provides an easy criterion for semiorthogonal decompo-
sitions of derived categories of Gorenstein projective schemes to be admissible and provides
a mutation for such decompositions.

Recall that given a map f : X → S, a triangulated subcategory A ⊂ Db(X) is called S-
linear if F ⊗ f ∗G ∈ A for every F ∈ A and G ∈ Dperf (S). A semiorthogonal decomposition
of Db(X) is S-linear if each component is S-linear, and is admissible if each component is
admissible.
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Lemma 2.9 Let f : X → S be a map between Gorenstein projective schemes. Assume that
there is an S-linear semiorthogonal decomposition

Db(X) = 〈A1, . . . ,An〉 (2.9)

such that all but one components are contained inDperf (X); i.e., there exists some t,1 � t � n
such that A j ⊂ Dperf (X) for every j �= t . Then the relative dualizing sheaf ωX/S is a line
bundle and the semiorthogonal decomposition (2.9) is admissible. In addition, there is an
admissible S-linear semiorthogonal decomposition

Db(X) = 〈An ⊗ ωX/S,A1, . . . ,An−1〉. (2.10)

Proof Since X , S are Gorenstein projective, dualizing sheavesωX , ωS are line bundles. Then
ωX/S is a line bundle becauseωX/S ∼= ωX ⊗ f ∗ω∨

S . SetA = 〈A1, . . . ,An−1〉. By assumption
we have A or An is contained in Dperf (X). Then by [8, Lemma 2.15] An is admissible and
there is a SOD

Db(X) = 〈An ⊗ ωX ,A〉 = 〈An ⊗ ωX ,A1, . . . ,An−1〉,
which by definition is S-linear. Since ωX ∼= ωX/S ⊗ f ∗ωS and An is S-linear, we have
An ⊗ ωX ∼= An ⊗ ωX/S . This gives the SOD (2.10). Repeating this process, we get Ai is
admissible for each i, 1 � i � n and an S-linear SOD

Db(X) = 〈Ai ⊗ ωX/S, . . . ,An ⊗ ωX/S,A1, . . . ,Ai−1〉.
Thus, (2.9) (2.10) are admissible SODs. ��

In the next two propositionswe present the behavior of the derived push-forward functor of
certain propermorphismwithfibers of dimension atmost 1 andhow it induces semiorthogonal
decompositions.

Proposition 2.10 ([2, Theorem 7.13]) Let γ : Y → X be a proper morphism of normal
varieties over k with fibers of dimension at most 1 such that (the derived push-forward)
γ∗OY ∼= OX . Let X1 be the locus of X where fibers of γ are one-dimensional and assume
that X1 is a finite set of points. For each closed point x ∈ X1, let Cx := γ −1(x)red be the
reduced fiber over x and let Cx,i be its irreducible components. Denote by lx,i : Cx,i ↪→ Y
the embeddings. Then each Cx,i is a smooth rational curve and γ∗ : Db(Y ) → Db(X) is a
Verdier quotient with kernel ker(γ∗) = 〈lx,i∗OCx,i (−1)〉x∈X1 ; i.e., we have an equivalence
Db(Y )/ker(γ∗) ∼= Db(X).

Proof The condition γ∗OY ∼= OX implies that H1(Cx ,OCx ) = 0 for every x ∈ X1. Note
that the base field k is assumed to be algebraically closed. Thus, Cx,i is a smooth rational
curve by [3, Theorem D.1].

Now we prove the claims for the derived push-forward functor γ∗. Since the fibers of
γ : Y → X have dimension atmost 1, the spectral sequence Riγ∗H j (F) ⇒ Ri+ jγ∗F , where
H j is the cohomology sheaf in degree j , degenerates and we have short exact sequences

0 → R1γ∗H j−1(F) → R jγ∗F → R0γ∗H j (F) → 0. (2.11)

This implies that ker(γ∗) is generated by ker(γ∗) ∩ Coh(Y ). Since the one-dimensional
fibers of γ are isolated by assumption, every F ∈ ker(γ∗) ∩ Coh(Y ) is the direct sum of
sheaves supported on Cx , x ∈ X1. Together with Proposition 7.12 in [2] this implies that
ker(γ∗) ∩ Coh(Y ) has finite length. Therefore, Theorem 7.13 in [2] implies that ker(γ∗) =
〈lx,i∗OCx,i (−1)〉x∈X1 .
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For the equivalence of the induced functorDb(Y )/ker(γ∗) → Db(X), we use an argument
similar to [4, Theorem2.14].Wewillmake use of the canonical truncation functors τ�p, τ�p .
The sequence (2.11) implies that if τ�pG = 0 for G ∈ Db(X), then

γ∗(τ�p−1γ ∗G) = 0, i.e., G ∼= γ∗γ ∗G ∼= γ∗(τ�pγ ∗G). (2.12)

Wededuce from this thatγ∗ is essentially surjective. Finally,we claim that forF,F ′ ∈ Db(Y ),

HomDb(Y )/ker(γ∗)(F,F ′) → HomDb(X)(γ∗F, γ∗F ′)

is a bijection. The inverse map is constructed as follows. Choose p such that τ�pF = 0 and
τ�p−1F ′ = 0. A map f : γ∗F → γ∗F ′ gives a map

g : τ�pγ ∗γ∗F → τ�pF ′ ∼= F ′.

Let K be the cone of γ ∗γ∗F → F , which is bounded above but not necessarily bounded.
Taking G = γ∗F in (2.12) we get

γ∗F ∼= γ∗(τ�pγ ∗γ∗F).

Since F ∼= τ�pF , we get γ∗τ�p K = 0 and thus τ�p K ∈ ker(γ∗). This implies that the
map g corresponds to a map F → F ′ in the Verdier quotient Db(Y )/ker(γ∗). ��

It is explained in [9, §2] how one can induce a SOD of the derived category of a surface
with rational singularities from a SOD of the derived category of its resolution. We claim
that it can be applied to a proper morphism of dimension at most 1.

Proposition 2.11 Let γ : Y → X be the map in Proposition 2.10. Suppose there is a
semiorthogonal decomposition

Db(Y ) = 〈Ã1, . . . , Ãn〉 (2.13)

and assume that for every irreducible component Cx,i , x ∈ X1, there exists some j, 1 � j �
n such that OCx,i (−1) ∈ Ã j .

(i) There is a semiorthogonal decomposition

Db(X) = 〈A1, . . . ,An〉 (2.14)

where Ai = γ∗(Ãi ) ∼= Ãi/(Ãi ∩ ker(γ∗)).
(ii) Assume that Y is Gorenstein projective and all but one components of (2.13) are contained

in Dperf (Y ). Let KY be the canonical Cartier divisor. If KY .Cxi , j = 0 for every i, j , then
the SOD (2.14) is admissible.

Proof (i) By [15, Proposition 4.1], it suffices to show that ker(γ∗) ⊂ Db(Y ) is compatible
with (2.13); i.e., there is a SOD

ker(γ∗) = 〈ker(γ∗) ∩ Ã1, . . . , ker(γ∗) ∩ Ãn〉.
Clearly the collection on the right hand side is semiorthogonal. It generates ker(γ∗) by
Proposition 2.10 and the assumption.

(ii) Since KY .Cxi , j = 0 for every i, j , we have if E ∈ Di , then OE (−1) ∈ Ãi (±KY ).
Moreover, by Lemma 2.9 (take S as a point) we get SODs

Db(Y ) = 〈Ãi+1(KY ), . . . , Ãn(KY ), Ã1, . . . , Ãi 〉,
Db(Y ) = 〈Ãi , . . . , Ãn, Ã1(−KY ), . . . , Ãi−1(−KY )〉
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for every i . Theses SODs of Db(Y ) also induce SODs of Db(X) via γ∗ by (i). Thus, each
Ai ∼= γ∗(Ãi ) is both left and right admissible, which concludes (ii).

��
Wealso provide a generalization of the criterion given byKawamata in [11] for the descent

of SODs. This will be used to descend the SOD of Db(Ym) in Corollary 4.6 to a SOD of
Db(Xm) in Theorem 4.8.

Proposition 2.12 ([11, Theorem 6.1 and 5.1]) Let X be a Gorenstein projective 3-fold.
Assume that X is smooth away from a finite number of nodal points {a1, . . . , an}. Suppose
that there is a projective birational morphism f : Y → X such that the exceptional locus
E of f is a smooth rational curve, f (E) = a1 and Y is smooth away from {a2, . . . , an};
i.e., f is a partial small resolution of X at the nodal point a1. Assume that there are Cartier
divisors D1, D2 on Y such that, for Ni := R0 f∗OY (Di ), i = 1, 2, the following conditions
are satisfied:

(1) D1.E = 1, D2.E = −1;
(2) {N1, N2} is a simple collection; i.e., dimHom(Ni , N j ) = δi j for 1 � i, j � 2;
(3) H p(X , R0 f∗OY (Di − D j )) = 0 for all p > 0 and 1 � i, j � 2;

Then there are locally free sheaves F1, F2 of rank 2 on X given by non-trivial extensions

0 → N2 → F1 → N1 → 0,

0 → N1 → F2 → N2 → 0.
(2.15)

Let F = F1 ⊕ F2 and let 〈Ni 〉2i=1 be the triangulated subcategories of Db(X) generated by
Ni . Then

(i) Ext p(F, F) = 0 for all p > 0, End(F) is isomorphic to the path algebra R1 defined by
(1.2), and F is flat over R1;

(ii) The functor � = − ⊗R1 F : Db(R1) → Db(X) is fully faithful and it induces an equiv-
alence Db(R1) ∼= 〈Ni 〉2i=1.

Proof (i) Note that the path algebra R1 is isomorphic to R =
(

k kt
kt k

)

mod t2 in [11,

Theorem 6.1]. The same proof in loc. cit. concludes (i).
(ii) It follows from the proof in [11, Theorem 5.1(1)]. Let � = RHom(F,−) : Db(X) →

Db(R1). Then � is the right adjoint of � and � ◦ � is the identity, which implies that
� is fully faithful. Note that Db(R1) is a triangulated category generated by its simple
modules (one for each vertex in the quiver) and their images under � are N1, N2. This
gives the equivalence.
One should note that the assumptions that X has just one nodal point and Y is smooth in

[11, Theorem 6.1] are only needed to prove that N1 ⊕ N2 generates the triangulated category
of singularities Dsg(X). ��

3 Geometry of Nodal Quintic Del Pezzo threefolds

In this section we will describe the nodal quintic del Pezzo threefolds Xm in a way that their
derived categories can be understood. In short, there is a small resolution fm : Ym → Xm at
a nodal point and pm : Ym → P

1 is a quadric surface fibration.
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Definition 3.1 A quintic del Pezzo threefold is a normal integral projective threefold X
with at worst terminal Gorenstein singularities such that −K X is ample, divisible by 2 and
(−K X/2)3 = 5.

The classification indicates that the quintic del Pezzo threefolds have at worst nodal singu-
larities and have at most 3 nodal points. The quintic del Pezzo threefold Xm with m nodes
(0 � m � 3) exists and is unique up to isomorphism for each m by [21, Corollary 8.7].
Moreover, they can be realized as codimension 3 linear sections of Gr(2, 5) embedded into
P
9 via Plücker embedding. Let X be a codimension 3 linear section of Gr(2, 5). For a generic

choice of the linear section X is smooth. We first give a general discussion about when X is
a quintic del Pezzo threefold Xm, 0 � m � 3 and then describe the singular Xm, 1 � m � 3
as explicit linear sections in Lemma 3.2.

Let V5 be a 5-dimensional k-vector space and let L ⊂ �2V ∨
5 be a 3-dimensional sub-

space where V ∨
5 is the dual vector space. Denote the orthogonal complement by L⊥ :=

ker(�2V5 → L∨). Let X = Gr(2, V5) ∩ P(L⊥).

(1) X is the smooth quintic del Pezzo threefold X0 if and only if P(L)∩Gr(2, V ∨
5 ) = ∅; see

[16, Example 6.1].
(2) Assume that L ⊂ �2V ∨ is a generic subspace such that P(L) ∩ Gr(2, V ∨

5 ) is a disjoint
union of m points for m = 1, 2, 3. Then X is the nodal quintic del Pezzo threefold Xm

with m nodes.

In Case (2) there is a one-to-one correspondence between the points onP(L)∩Gr(2, V ∨
5 ) and

the nodal points on X as we now explain. Let H be a hyperplane of P(�2V ) corresponding
to a point pH ∈ P(L)∩Gr(2, V ∨

5 ). Let PH be the singular locus of Gr(2, V5)∩ H . Represent
the point pH by a 2-dimensional subspace A2 of V ∨

5 and let B3 := ker(V5 → A∨
2 ). Then

PH ∼= Gr(2, B3) ∼= P
2 and PH ∩ X is the node on X corresponding to pH .

From now on, we focus on singular Xm for 1 � m � 3. Recall that Gr(2, 5) is the
intersection of 5 quadrics in P

9. Denote the coordinates of P
9 = P(�2V5) by {xi j }1�i< j�5.

Then Gr(2, 5) is defined by the Plücker equations {xi j xkl − xik x jl + xil x jk = 0} for 1 �
i < j < k < l � 5.

Lemma 3.2 The quintic del Pezzo threefold Xm with m nodes for 1 � m � 3 can be described
by the following codimension 3 linear sections of Gr(2, 5):

(1) X1 ∼= Gr(2, 5) ∩ {x45 = x23 + x14 = x13 + x25 = 0} and it has one node a1;
(2) X2 ∼= Gr(2, 5) ∩ {x45 = x23 = x13 + x14 + x25 = 0} and it has two nodes a1, a2;
(3) X3 ∼= Gr(2, 5) ∩ {x45 = x23 = x13 + x14 = 0} and it has three nodes a1, a2, a3

where a1, a2, a3 are points on P
9 such that all coordinates are 0 except for x12, x15, x25,

respectively.

Proof One can check directly that the linear sections in (1)-(3) have only nodal singularities
at the given points ai . Hence, they are quintic del Pezzo threefolds and the isomorphisms
follow from the uniqueness of quintic del Pezzo threefolds with m nodes for 1 � m � 3. ��

We will construct a birational morphism resolving the singularities of Xm at the node a1.
We start with a general set-up and then use Lemma 3.2 to apply to Xm .

Let x = [V2] ∈ Gr(2, V5) be a fixed point that is represented by a 2-dimensional subspace
V2 of V5. Consider the natural rational map

φ : Gr(2, V5) ��� Gr(2, V5/V2) ∼= P(�2(V5/V2)) ∼= P
2 (3.1)
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sending [W2] to its image in V5/V2. Then the base locus ofφ is {[W2] ∈ Gr(2, V5) | W2∩V2 �=
0} or equivalently the union of lines in Gr(2, V5) that contain x . This is a cone over P

1 × P
2

with vertex x . Moreover, φ is a linear projection from the embedded projective tangent space
Tx Gr(2, V5) ∼= P

6 ⊂ P
9 of Gr(2, V5) at x . Let H be a hyperplane of P(�2V5) corresponding

to a point on

Gr(2, (V5/V2)
∨) ∼= P(�2(V5/V2)

∨) ⊂ Gr(2, V ∨
5 ) ⊂ P(�2V ∨

5 ).

These are the hyperplanes H where Tx Gr(2, V5) ⊂ H , or equivalently x is contained in the
singular locus of Gr(2, V5) ∩ H . The rational map φ (3.1) restricts to a linear projection

φH : Gr(2, V5) ∩ H ��� P
1 (3.2)

from Gr(2, V5) ∩ Tx Gr(2, V5) ⊂ Gr(2, V5) ∩ H . Blowing up Gr(2, V5) ∩ H along the base
locus Gr(2, V5) ∩ Tx Gr(2, V5) of φH gives the resolution of indeterminancy

P
2 × P

1 Y = GrP1(2,O3
P1

⊕ OP1(−1))

P
2 Gr(2, V5) ∩ H P

1

f p

φH

(3.3)

where the exceptional locus of f is GrP1(2,O3
P1

) ∼= P
2×P

1 and f restricted to GrP1(2,O3
P1

)

is a trivial P
1-bundle over the singular locus P

2 of Gr(2, V5) ∩ H .
Alternatively, if we represent H = [A2] ∈ Gr(2, V ∨

5 ) by a 2-dimensional subspace A2 of
V ∨
5 and let B3 = ker(V5 → A∨

2 ), then

Gr(2, V5) ∩ H ∼= {[W2] ∈ Gr(2, V5) | W2 ∩ B3 �= 0}.
Since [A2] ∈ Gr(2, (V5/V2)

∨), we have V2 ⊂ B3. Using this description we have

Y ∼= {([W2], [W4]) ∈ Gr(2, V5) × Gr(4, V5) | W2 ⊂ W4, B3 ⊂ W4}
and maps f , p are given as

f : Y → Gr(2, V5) ∩ H , ([W2], [W4]) �→ [W2],
p : Y → P

1 ⊂ Gr(2, V5/V2), ([W2], [W4]) �→ [W4/V2].
Using the descriptions of Xm in Lemma 3.2, we take x = a1 (i.e., V2 is generated by the

basis e1, e2 with e1∧e2 = x12) and H = {x45 = 0}. We get that Xm ⊂ H for 1 � m � 3, the
target P(�2(V5/V2)) of the map φ (3.1) is P

2
x34,x35,x45 and the singular locus of Gr(2, 5)∩ H

is P
2
x12,x13,x23 .

Proposition 3.3 Let φm : Xm ��� P
1 be the restriction of the rational map φH (3.2) for

1 � m � 3. Let Ym = f −1(Xm). Let fm = f |Ym : Ym → Xm and pm = p|Ym : Ym → P
1

be the respective restrictions of maps in (3.3). By construction we have φm = pm ◦ f −1
m and

the following descriptions hold.

(i) The map fm : Ym → Xm is a birational morphism that resolves the singularity of a
nodal point a1 ∈ Xm and contracts a smooth rational curve E on Ym to a1, and the map
pm : Ym → P

1 is a quadric surface fibration where E is a smooth section (consists of
smooth points on the fibers). In particular, Ym has m −1 nodal points and is Gorenstein.
The fibers of pm, m = 1, 2 are quadrics of corank at most 1 (smooth or a cone over a
smooth quadric) and p3 has a fiber of corank 2.
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(ii) Let E = OP1 ⊕ OP1(−1)3 and L = OP1(−1). Let π : P(E) → P
1 be the projection.

Then the total space Ym of the quadric surface fibration pm is the zero locus of a global
section

σm ∈ �(P(E),OP(E)/P1(2) ⊗ π∗L) ∼= �(P1,Sym2(E∨) ⊗ L)

on P(E) where E∨ is the dual of E and Sym2 is the second symmetric product.
(iii) The exceptional locus E of fm : Ym → Xm is the projectivization of OP1 ⊂ E and E is

a (−1,−1)-curve on Ym; i.e., the normal bundle NE/Ym is OE (−1)2.
(iv) We have

OYm/P1(1) ∼= f ∗
mOXm (1)

where OYm/P1(1) is the restriction of OP(E)/P1(1) to Ym ⊂ P(E) and OXm (1) is the
restriction of OP6(1) to Xm ⊂ P

6. In particular, we get OYm/P1(1)|E ∼= OE and

ωYm
∼= f ∗

mωXm
∼= OYm/P1(−2)

(the dualizing sheaves ωYm , ωXm are line bundles because Ym, Xm are Gorenstein).
(v) Let Lm be the Hilbert scheme of lines on Xm that contain a1. Then Lm is a nodal curve

of arithmetic genus 0 and degree 3 on P
3. More specifically, L1 is the twisted cubic

curve, L2 is a chain of two P
1’s, and L3 is a chain of three P

1’s. Moreover, we can
embed Lm into Xm such that a1 /∈ Lm, {a2} is the singular point of L2 and {a2, a3} are
the singular points of L3.

Proof We can use the explicit equations in Lemma 3.2 for the argument.
(i) We first note that the ideal of Gr(2, 5) ∩ H = Gr(2, 5) ∩ {x45 = 0} in P

8 is generated
by

the three 2-by-2 minors making rank

(
x14 x24 x34
x15 x25 x35

)

� 1 (3.4)

and

(
x14 x24 x34
x15 x25 x35

)
⎛

⎝
x23

−x13
x12

⎞

⎠

We also have that the base locus Bs(φm) of φm is given by Xm ∩ {x34 = x35 = 0}. Then Ym ,
which is the blow up of Xm along Bs(φm), can be described explicitly as

Ym ∼= Proj
k[x12, xi4, xi5, 1 � i � 3][u, v]

(vxi4 − uxi5, 1 � i � 3, qm,1, qm,2)
(3.5)

where qm,1, qm,2 are quadratic forms

• q1,1 = x12x34 + x24x25 − x214, q1,2 = x12x35 + x225 − x14x15;
• q2,1 = x12x34 + (x14 + x25)x24, q2,2 = x12x35 + (x14 + x25)x25;
• q3,1 = x12x34 + x14x24, q3,2 = x12x35 + x14x25.

The exceptional locus E is defined by {xi4 = xi5 = 0, 1 � i � 3}. Then E ∼= P
1 and

fm : Ym → Xm maps E to the node a1.
From (3.5) we get that Ym is a subscheme of

P = Proj
k[x12, xi4, xi5, 1 � i � 3][u, v]

(vxi4 − uxi5, 1 � i � 3)
, (3.6)
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which is the zero locus of a regular section of OP6×P1(1, 1)
3. One can easily compute that

P ∼= P(E) where E = OP1 ⊕ OP1(−1)3.
Let π : P(E) → P

1 be the projection. Let U = π−1({u = 1}) and V = π−1({v = 1}) be
the open cover of P(E). Then inside U and V , respectively, we have

Y1 ∩ U = {x12x34 + vx224 − x214 = 0}, Y1 ∩ V = {x12x35 + x225 − ux215 = 0};
Y2 ∩ U = {x12x34 + x14x24 + vx224 = 0}, Y2 ∩ V = {x12x35 + ux15x25 + x225 = 0};
Y3 ∩ U = {x12x34 + x14x24 = 0}, Y3 ∩ V = {x12x35 + ux15x25 = 0}. (3.7)

One easily checks that E is a smooth section from the equations above. Moreover, p1
has singular fibers over the points {u = 0}, {v = 0} and the fibers are of corank 1; p2 has a
singular fiber over the point {u = 0} and the fiber is of corank 1; p3 has a singular fiber over
the point {u = 0} and the fiber is of corank 2. This concludes (i).

For the proof of (ii)-(iv) we observe from the proof of (i) that Ym is the zero locus of a
global section

σm ∈ �(P(E),OP(E)/P1(2) ⊗ π∗Mm) ∼= �(P1,Sym2(E∨) ⊗ Mm) (3.8)

for some line bundle Mm on P
1. This implies that pm∗OYm/P1(1) ∼= E∨ ∼= OP1 ⊕ OP1(1)

3.
(iv) Since each fiber of pm is a quadric surface contained in Xm that passes through a1,

we have OYm/P1(1) ∼= f ∗
mOXm (1) ⊗ p∗

m Nm for some line bundle Nm on P
1. Since

h0(Xm,OXm (1)) = 7 = h0(Ym,OYm/P1(1)),

we get Nm ∼= OP1 . Since fm : Ym → Xm is a small contraction and Xm is a Fano variety of
index 2,

ωYm
∼= f ∗

mωXm
∼= f ∗

mOXm (−2) ∼= OYm/P1(−2).

(ii) It remains to determine the line bundle Mm in (3.8). We achieve this by computing the
dualizing sheaf ωYm . The adjunction formula gives

ωYm
∼= (ωP(E) + Ym) |Ym∼= (OP(E)/P1(−4) ⊗ π∗ det(E∨) ⊗ π∗ωP1 ⊗ OP(E)/P1(2) ⊗ π∗Mm) |Ym∼= OYm/P1(−2) ⊗ p∗

m(OP1(1) ⊗ Mm).

Hence, using (iv) we get Mm ∼= OP1(−1).
(iii) It is easy to see from the proof of (i) that E is the projectivization of OP1 ⊂ E and

the normal bundle NE/P(E) isOE (−1)3. In terms of the normal bundle NE/Ym , we make use
of the short exact sequence of normal bundles

0 → NE/Ym → NE/P(E) → NYm/P(E)|E → 0.

Since OYm/P1(1)|E ∼= OE by (iv) and E is a section of pm , we get from (ii) that

NYm/P(E)|E ∼= (OYm/P1(2) ⊗ p∗
mOP1(−1))|E ∼= OE (−1).

This implies that NE/Ym
∼= OE (−1)2.

(v) We mentioned after the construction of the map φ (3.1) that the base locus Bs(φ)

consists of lines on Gr(2, 5) that pass through x = a1. Then Bs(φm) as a linear section of
Bs(φ) consists of lines on Xm that pass through a1. That is, Bs(φm) is the cone over Lm with
the vertex a1 and Lm can be identified with the projection of Bs(φm) from a1. Explicitly,
Bs(φm) = Xm ∩{x34 = x35 = x45 = 0} and Lm ∼= Bs(φm)∩{x12 = 0}. To describe Lm one
notes that Gr(2, 5) ∩ {x12 = x34 = x35 = x45 = 0} is isomorphic to P

1 × P
2 and the Segre
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embedding P
1 ×P

2 ↪→ P
5 is of degree 3. Therefore, Lm is obtained by cutting P

1 ×P
2 with

the respective hyperplane sections for Xm . ��
Recall from Sect. 1.3 that we denoted

Bm,0 ∼= OP1 ⊕ (�2E ⊗ L∨) ⊕ (�4E ⊗ (L2)∨) ∼= O4
P1

⊕ OP1(−1)4,

Bm,1 ∼= E ⊕ (�3E ⊗ L∨) ∼= OP1 ⊕ OP1(−1)6 ⊕ OP1(−2)

as even and odd parts of the Clifford algebra of the quadric surface fibration pm : Ym → P
1,

respectively. Then

Zm = OP1 ⊕ �4E ⊗ (L2)∨ ∼= OP1 ⊕ OP1(−1)

is a central subalgebra of Bm,0 and the map gm : Cm = SpecP1(Zm) → P
1 is the double

cover ramified along the degeneration locus of pm . We also denoted B̃m,0 as the sheaf of
algebras on Cm when one regards Bm,0 as a sheaf of algebras over Zm .

Lemma 3.4 (i) C1 ∼= P
1 and C2 ∼= C3 is a chain of two P

1’s. The map g1 : C1 → P
1 is

a double cover ramified at [1 : 0], [0 : 1] ∈ P
1 and the map gi : Ci → P

1 is a double
cover ramified at the double point supported at [0 : 1] ∈ P

1 for i = 2, 3.
(ii) Let H(pm) be the Hilbert scheme of lines on the fibers of pm : Ym → P

1 for m = 1, 2.
Let

Vm =
{
OC1 ⊕ OC1(−1), m = 1
OC2 ⊕ OC2{−1, 0}, m = 2

where OC2{a, b} is the line bundle whose restriction to the first P
1 is OP1(a) and to the

second P
1 is OP1(b). Then B̃m,0 ∼= End(Vm) and H(pm) ∼= P(Vm) for m = 1, 2.

Proof (i) By Proposition 3.3 (ii) the quadric surface fibration pm : Ym → P
1 corresponds

to a symmetric bilinear form bm : Sym2(E) → L. The form bm induces a morphism
E → Hom(E,L) whose determinant gives a global section of

�(P1, det(E∨)2 ⊗ L4) ∼= �(P1,OP1(2)).

Denote the global section by det(bm). The degeneration locus of pm is given by
{det(bm) = 0} and the maps gm : Cm = SpecP1(Zm) → P

1 are locally defined by
SpecOP1 [d]/(d2 − det(bm)). The equations (3.7) of Ym indicate that

det(b1) = λ1uv, det(b2) = λ2u2, det(b3) = λ3u2

for some non-zero λm ∈ k. The result then follows.
(ii) Proposition 3.3 (i) states that the fibers of pm, m = 1, 2 are quadrics of corank � 1. By

[12, Proposition 3.13] B̃m,0 is a sheaf of Azumaya algebras onCm . The natural morphism
H(pm) → P

1 factors as the composition of a P
1-fibration H(pm) → Cm followed by

gm : Cm → P
1. In fact, H(pm) is the Severi-Brauer scheme or the P

1-fibration over
Cm corresponding to the sheaf of Azumaya algebras B̃m,0. Furthermore, H(pm) → Cm

has a section given by the lines on the fibers of pm intersecting the section E . Then
B̃m,0 is Brauer trivial; i.e., it is End(Vm) for some rank 2 vector bundle Vm on Cm and
H(pm) ∼= P(Vm).
It remains to determine Vm . Every indecomposable vector bundle on a chain of P

1’s is a
line bundle. This fact is used in [6, §2] and a proof can be found in Corollary 6.2 of [7].
Hence, up to tensoring by a line bundle, we can assume

Vm = OCm ⊕ Lm
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for a line bundle Lm on Cm .
One observes from (3.7) that Y1, Y2 are defined by the type of quadratic equations in

Example 2.3. Adopting the notations in this example, we can set the local sections of direct
summands of E = OP1 ⊕ OP1(−1)3 as below.

v1, v2, e3, e4 are local sections of OP1 ,OP1(−1),OP1(−1),OP1(−1), respectively.

(3.9)

The local sections of End(Vm) can be obtained from (2.6). In particular,

Hom(OCm ,Lm) ∼= Lm has a local section v2v3,

Hom(Lm,OCm ) ∼= L∨
m has a local section v1v3.

From (2.7) we get that

gm∗Lm is a rank 2 vector bundle with local sections v2e3, v2e4,

gm∗L∨
m is a rank 2 vector bundle with local sections v1e3, v1e4.

(3.10)

Note that Bm,0 ∼= gm∗End(Vm). Hence, gm∗Lm , gm∗L∨
m are subbundles of �2E ⊗ L∨ with

respective local sections. Since L = OP1(−1), we get

gm∗Lm ∼= OP1(−1)2, gm∗L∨
m

∼= O2
P1

.

Therefore, H•(Cm,Lm) = 0 and H•(Cm,L∨
m) = k

2. This implies that L1 ∼= OC1(−1), and
L2 ∼= OC2{−1, 0} orOC2{0,−1}. Up to the involution of g2, we canmakeL2 ∼= OC2{−1, 0}.

��

4 Derived Categories of Nodal Quintic Del Pezzo threefolds

The goal of the section is to construct a Kawamata type semiorthogonal decomposition of
Db(Xm) using the birational morphism fm : Ym → Xm and the quadric surface fibration
pm : Ym → P

1 constructed in Sect. 3. There are three steps towards this construction.
Firstly, we take the SOD of Db(Ym) constructed by Kuznetsov [12] and try to understand

the nontrivial subcategory Db(P1,Bm,0). The majority of the work in this step goes into the
3-nodal case X3 and the result is given in Proposition 4.4.

Secondly, we work out the objects generating each component of the SOD of Db(Ym)

and perform a series of mutations to obtain a new SOD of Db(Ym) that can be descended
to a SOD of Db(Xm); see Corollary 4.6. This is where the spinor sheaf associated with the
smooth section E appears; see Lemma 4.5.

Lastly, Proposition 2.12 gives a generalization of the conditions proposed by Kawamata
in [11] for the descent of derived categories, and Lemma 4.7 checks that these conditions are
satisfied. Together with Proposition 2.10 and 2.11, we can prove the main result Theorem
4.8 of the paper.

Recall maps pm : Ym → P
1, π : P(E) → P

1 and im : Ym ↪→ P(E) (pm = π ◦ im) for
m = 1, 2, 3.

Theorem 4.1 ([12, Theorem 4.2]) There are P
1-linear admissible semiorthogonal decompo-

sitions

Db(Ym) = 〈�m,l(Db(P1,Bm,0)), p∗
mD

b(P1), p∗
mD

b(P1) ⊗ OYm/P1(1)〉 (4.1)
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whereDb(P1,Bm,0) is the derived category of coherent sheaves on P
1 with rightBm,0-module

structures. Moreover, �m,l , l ∈ Z is the embedding functor

�m,l = p∗
m(−) ⊗L

p∗
mBm,0

Km,l : Db(P1,Bm,0) ↪→ Db(Ym) (4.2)

where Km,l is a rank 4 vector bundles on Ym with left Bm,0-module structures defined by the
short exact sequence

0 → OP(E)/P1(−2) ⊗ π∗(Bm,0 ⊗ OP1(l))

δm−→ OP(E)/P1(−1) ⊗ π∗(Bm,1 ⊗ OP1(l)) → im∗Km,l → 0. (4.3)

Here δm is the multiplication induced by δ from the right (recall δ from §1.3) and δm ·δm = σm

where σm is the global section defining the total space Ym of the quadric fibration.

Remark 4.2 (1) The SOD (4.1) is admissible because Ym is Gorenstein projective by Propo-
sition 3.3 (i) and we can apply Lemma 2.9.

(2) The map δm in (4.3) is defined in the same way as maps in (2.1). Thus, up to the twist by
OYm/P1(−1), the bundle Km,0 can be regarded as the spinor sheaf S0 associated with the
zero isotropic subbundle on Ym .

(3) There are equivalences

gm∗ : Db(Cm, B̃m,0)
∼=−→ Db(P1,Bm,0) (4.4)

by the definition of B̃m,0. According to Lemma 3.4 (ii), B̃m,0 ∼= End(Vm) for m = 1, 2
are trivial Azumaya algebras. There are equivalences

− ⊗ V∨
m : Db(Cm)

∼=−→ Db(Cm, B̃m,0), m = 1, 2.

Since p3 : Y3 → P
1 has a fiber of corank 2, B̃3,0 is not an Azumaya algebra. It is not clear a

priori what Db(C3, B̃3,0) looks like. We study this subcategory below.
Let M be a chain of three P

1’s and let N be a chain of two P
1’s. Let Mi , i = 1, 2, 3 be the

i-th component of M and let N j , j = 1, 2 be the j-th component of N . Let h : M → N be
the map that contracts M2 to the point N1 ∩ N2. That is, h|M1 : M1 → N1, h|M3 : M3 → N2

are identities of P
1 and h|M2 : M2 → N1 ∩ N2 is the constant map.

Recall from Sect. 1.3 the notation OM {d1, . . . , d3} for line bundles on M .

Lemma 4.3 We have h∗OM {0,−1, 0} ∼= ON1(−1)⊕ON2(−1) and h∗OM {0, 1, 0} ∼= ON1 ⊕
ON2 .

Proof Let x ∈ M2 be a smooth point and let y = N1 ∩ N2 be the intersection point. There
is a short exact sequence

0 → OM {0,−1, 0} → OM → Ox → 0. (4.5)

Note that h∗OM ∼= ON . Applying h∗, we have

0 → R0h∗OM {0,−1, 0} → ON → Oy → 0

and Ri h∗OM {0,−1, 0} = 0 for i > 0. Thus,

h∗OM {0,−1, 0} ∼= R0h∗OM {0,−1, 0} ∼= ON1(−1) ⊕ ON2(−1)
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because it is the ideal of y. Tensoring the sequence (4.5) by OM {0, 1, 0} and applying h∗,
we get

0 → ON → R0h∗OM {0, 1, 0} → Oy → 0

and Ri h∗OM {0, 1, 0} for i > 0.
Let f : M̃ → M be the normalization of M . Then M̃ ∼= ⊔3

i=1 Mi and there is a short
exact sequence

0 → OM {0, 1, 0} → f∗ f ∗OM {0, 1, 0} → Ox1 ⊕ Ox2 → 0

where x1, x2 are the nodal points of M . Note that f ∗OM {0, 1, 0} ∼= OM1 ⊕OM2(1) ⊕OM3 .
Applying h∗ to the above sequence, we get

0 → R0h∗OM {0, 1, 0} → ON1 ⊕ O2
y ⊕ ON2 → O2

y → 0

where the second map is given by natural surjections ONi → Oy and identities Oy → Oy .
This implies that

h∗OM {0, 1, 0} ∼= R0h∗OM {0, 1, 0} ∼= ON1 ⊕ ON2 .

��
Wecan embed N intoP

2. Let o ∈ N ⊂ P
2 be the nodal point of N and let f : Blo P

2 → P
2

be the blow-up of P
2 at o. Then M ∼= f −1(N ) is the total transform of N and h : M → N

is the restriction of f . This gives the commutative diagram

M = f −1(N ) Blo P
2

N P
2.

h f (4.6)

Recall from Proposition 3.3 (v) that Lm is the Hilbert scheme of lines on Xm containing
a1 and Lm can be embedded into Xm with image disjoint from a1. Recall that gm : Cm → P

1

are double covers ramified along the degeneration locus of pm .

sLet hm : Lm ∼= f −1
m (Lm) ↪→ Ym

pm−→ P
1. By Proposition 3.3 (v) and Lemma 3.4 (i) we

have Lm ∼= Cm for m = 1, 2 and L3 ∼= M, C3 ∼= N . In addition, we get

hm =
{

gm, m = 1, 2
g3 ◦ h, m = 3

(4.7)

where h is the map in (4.6).
SinceBlo P

2 ⊂ P
2×P

1, we have an embedding j : L3 ↪→ P
1
C3

and commutative diagrams

L3 P
1
C3

C3,

j

h
π3

L3 C3

P
1

h

h3
g3 (4.8)

where π3 is the projection map.
Recall E = OP1 ⊕ OP1(−1)3 and L = OP1(−1).

Proposition 4.4 Let L3 = OL3{0,−1, 0} and V3 = OL3 ⊕ L3. Let h : L3 → C3 be the map
that contracts the middle P

1 to the node of C3. Then
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(i) h∗End(V3) ∼= B̃3,0 as sheaves of OC3 -algebras;

(ii) h∗ : Db(L3, End(V3))
∼=−→ Db(C3, B̃3,0) is an equivalence.

Proof (ii) We first prove (ii) assuming (i). Since h can be obtained as the restriction of
the blow-up map f in (4.6) as well as the projection map π3 in (4.8), we get det(V3) ∼=
L3 ∼= j∗Oπ3(−1), which is relative very anti-ample. Thus, V∨

3 is relative base-point free and
det(V∨

3 ) is relative ample. Moreover, V∨
3 has a direct summand OL3 and H1(L3,V3) = 0.

This implies that V3 is a local projective generator in 0Per(L3/C3) by [23, Proposition 3.2.7]
and h∗ is an equivalence by [23, Proposition 3.3.1].

(i) We see from (3.7) that similarly to cases of Y1, Y2, quadratic equations of Y3 can also
be studied using Example 2.3. We will adopt the notations in this example and apply similar
arguments used in Lemma 3.4 (ii).

If we view q(x) as the C3-family of quadratic equations obtained from pulling back
p3 : Y3 → P

1 along g3 : C3 → P
1, then for every vector v we can regard q(v) : C3 → k

as a function on closed points of C3. Denote the node of C3 by o. Note that the fiber of
Y3 ×P1 C3 → C3 has corank 2 at o ∈ C3 and is smooth otherwise. Thus, for i = 3, 4 and
x ∈ C3, we have

q(ei )(x) �= 0 if x �= o, q(ei )(o) = 0.

Since q ′(x3, x4) = 0 at o ∈ C3, we get from (2.5) that B̃3,0 is generated by local sections
v1v2, v1e3, v1e4, v2v1, v2e3, v2e4. Its algebra structure is described in the list below. The list
only includes the multiplication of any two of these local sections that may be non-zero.

⎧
⎨

⎩

(v1v2)
2 = v1v2, (v1v2)(v1ei ) = v1ei ,

(v2v1)
2 = v2v1, (v2v1)(v2ei ) = v2ei ,

(v1ei )(v2ei ) = −q(ei )v1v2, (v2ei )(v1ei ) = −q(ei )v2v1,

i = 3, 4.

On the other hand, we will use Lemma 4.3 to study the algebra structure of h∗End(V3).
Remember L3 = M and C3 = N . We take local sections of h∗End(V3) as below.

h∗Hom(OL3 ,OL3)
∼= ON has a section idOL3

,

h∗Hom(L3,L3) ∼= ON has a section idL3 ,

h∗Hom(L3,OL3)
∼= h∗OM {0, 1, 0} ∼= ON1 ⊕ ON2 has a section sk, k = 1, 2

(4.9)

such that sk is the constant function on Nk with value 1. There are short exact sequences

0 → ON1(−1)
a1−→ ON

s2−→ ON2 → 0,

0 → ON2(−1)
a2−→ ON

s1−→ ON1 → 0.

Thus, for k = 1, 2 we can consider ak above as a local section of the ideal sheaf ONk (−1)
and get

N2 = {a1 = 0} ⊂ N , N1 = {a2 = 0} ⊂ N .

This means that

h∗Hom(OL3 ,L3) ∼= h∗OM {0,−1, 0} ∼= ON1(−1) ⊕ ON2(−1) has a local section ak,

k = 1, 2.

There are relations

sk ◦ ak = δo idOL3
, ak ◦ sk = δo idL3 , k = 1, 2
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where δo : C3 → k is a function satisfying δo(x) �= 0 if x �= o and δo(o) = 0.
Now we will construct an algebra homomorphism from B̃3,0 to h∗End(V3). Let

β : B̃3,0 → h∗End(V3)

be the OC3 -homomorphism such that

β(v1v2) = idOL3
, β(v1ei ) = si−2, β(v2ei ) = ai−2, i = 3, 4. (4.10)

Note that v2v1 = 1−v1v2 and this impliesβ(v2v1) = idL3 . From the discussion of the algebra
structures on both sides, we get that β is an algebra homomorphism up to multiplying a1, a2
with a nowhere zero function on C3.

We claim that β is an isomorphism. Note that

g3∗B̃3,0 ∼= B3,0 ∼= OP1 ⊕ (�2E ⊗ L∨) ⊕ (�4E ⊗ (L2)∨) ∼= O4
P1

⊕ OP1(−1)4,

g3∗OC3
∼= Z3 ∼= OP1 ⊕ (�4E ⊗ (L2)∨) ∼= OP1 ⊕ OP1(−1).

Using the convention (3.9) for local sections v1, v2, e3, e4 of E , we can describe the corre-
sponding local section for each direct summand of Bm,0 and the table of its local sections is
given as below.

direct summand OP1 OP1 OP1 OP1 OP1(−1) OP1(−1) OP1(−1) OP1(−1)
local section v1v2 v1e3 v1e4 v2v1 v2e3 v2e4 v2v1e3e4 v1v2e3e4

(4.11)

Lemma 4.3 implies that

g3∗h∗End(V3) ∼= O4
P1

⊕ OP1(−1)4

and one can use (4.11) to check that g3∗β is an isomorphism. Since g3 is finite, β is also an
isomorphism. ��

Recall the definition of hm from (4.7). From Lemma 3.4 (ii) and Proposition 4.4 (i) we
get

Bm,0 ∼= gm∗B̃m,0 ∼= hm∗End(Vm), m = 1, 2, 3. (4.12)

Combining functors (4.2) (4.4) and Proposition 4.4 (ii), we have for m = 1, 2, 3 the fully
faithful embedding

�m,l : Db(Lm) Db(Lm, End(Vm)) Db(P1,Bm,0) Db(Ym).
−⊗V∨

m

∼=
hm∗
∼=

�m,l
(4.13)

Recall maps pm : Ym → P
1, π : P(E) → P

1 and im : Ym ↪→ P(E) (pm = π ◦ im). We know
from Proposition 3.3 (iii) that OP1 ⊂ E is the isotropic sub line bundle corresponding to the
smooth section E = P(OP1) of pm . Its associated spinor sheaf SE is a rank 2 vector bundle
constructed by the short exact sequence

0 → OP(E)/S(−1) ⊗ π∗I0
δm−→ π∗I1 → im∗SE → 0 (4.14)

where I0 ⊂ Bm,0 and I1 ⊂ Bm,1 are right modules overBm,0 generated byOP1 , respectively.

Lemma 4.5 Write SE (−1) for SE ⊗ OYm/P1(−1). We have

(i) �m,l(OLm ) ∼= SE (−1) ⊗ p∗
mOP1(l);

(ii) det(S∨
E ) ∼= OYm/P1(−1) ⊗ p∗

mOP1(2) and S∨
E

∼= SE (−1) ⊗ p∗
mOP1(2).
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Proof (i) The isomorphisms in (4.12) imply that hm∗(V∨
m ) is a right module over Bm,0.

Since Vm = OLm ⊕ Lm , we have V∨
m ⊂ End(Vm) and thus hm∗(V∨

m ) ⊂ Bm,0. We claim
hm∗(V∨

m ) ∼= I0.
To prove the claim we adopt the notations in Example 2.3 and use the convention (3.9).

Note that v1 is the local section of OP1 ⊂ E . The claim would follow if we can prove
that hm∗(V∨

m ) is a rank 4 vector bundle with local sections v1v2, v1e3, v1e4, v1v2e3e4. For
m = 1, 2, we have Lm = Cm, gm = hm and we get from (2.6) that

Hom(OLm ,OLm ) has a local section v1v2.

From (2.7) we get that

hm∗Hom(OLm ,OLm ) is a rank 2 vector bundle with local sections v1v2, v1v2e3e4.

Recall from (3.10) that

hm∗Hom(Lm,OCm ) is a rank 2 vector bundle with local sections v1e3, v1e4.

This concludes the cases of m = 1, 2. For m = 3, we get from (4.9) (4.10) that

h∗End(V3,OL3)
∼= ON ⊕ ON1 ⊕ ON2 has local sections v1v2, v1e3, v3e4

where N = C3 and N1, N2 are irreducible components of N . Recall h3 = g3 ◦ h.
We deduce from (2.7) that h3∗(V∨

3 ) is a rank 4 vector bundle with local sections
v1v2, v1e3, v1e4, v1v2e3e4.

Note that I0 ⊗Bm,0 Bm,1 ∼= I1 where I1 ⊂ Bm,1 is the right module over Bm,0 generated
byOP1 ⊂ E . By (4.2) (4.3)�m,l(I0) = p∗

mI0⊗L

p∗
mBm,0

Km,l fits into the short exact sequence

0 → OP(E)/P1(−2) ⊗ π∗(I0 ⊗ OP1(l))
δm−→ OP(E)/P1(−1) ⊗ π∗(I1 ⊗ OP1(l))

→ im∗�m,l(I0) → 0.

Comparing it with (4.14), we get �m,l(OLm ) ∼= �m,l(I0) ∼= SE (−1) ⊗ p∗
mOP1(l).

(ii) We can apply Proposition 2.2 (ii) by letting V = E = OP1 ⊕ OP1(−1)3, L = L =
OP1(−1), N = OP1 and F = E . Then there are isomorphisms

S∨
E

∼= SE (−1) ⊗ p∗
m(O∨

P1
⊗ det(E∨) ⊗ L) ∼= SE (−1) ⊗ p∗

mOP1(2).

This gives det(S∨
E )2 ∼= OYm/P1(−2)⊗ p∗

mOP1(4). On the other hand, the proof of Proposition
2.2 (i) implies that det(S∨

E ) restricted to each fiber of pm : Ym → P
1 is O(−1). Thus,

det(S∨
E ) ∼= OYm/P1(−1) ⊗ p∗

m M

for some line bundle M on P
1 and it follows that M ∼= OP1(2). ��

Corollary 4.6 Write SE (−1) for SE ⊗ OYm/P1(−1). For m = 1, 2, 3 there is an admissible
semiorthogonal decomposition

Db(Ym) = 〈Db(Rm−1),OYm/P1(−1) ⊗ p∗
mOP1(1),SE (−1) ⊗ p∗

mOP1(1),

p∗
mOP1(−1),OYm ,OYm/P1(1)〉

where R0 = k and R1, R2 are the path algebras defined by (1.2).
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Proof The semiorthogonal decomposition (4.1) when l = 1 reads as

Db(Ym) = 〈�m,1(Db(P1,Bm,0)), p∗
mOP1(−1),OYm ,OYm/P1(1),OYm/P1(1) ⊗ p∗

mOP1(1)〉.
By the construction of �m,1 from (4.13), we have �m,1(Db(Lm)) ∼= �m,1(Db(P1,Bm,0)).
Hence, the above semiorthogonal decomposition is equivalent to

〈�m,1(Db(Lm)), p∗
mOP1(−1),OYm ,OYm/P1(1),OYm/P1(1) ⊗ p∗

mOP1(1)〉
∼= 〈Db(Rm−1),SE (−1) ⊗ p∗

mOP1(1), p∗
mOP1(−1),OYm ,

OYm/P1(1),OYm/P1(1) ⊗ p∗
mOP1(1)〉

∼= 〈OYm (−1) ⊗ p∗
mOP1(1),D

b(Rm−1),SE (−1) ⊗ p∗
mOP1(1),

p∗
mOP1(−1),OYm ,OYm/P1(1)〉

∼= 〈Db(Rm−1),OYm/P1(−1) ⊗ p∗
mOP1(1),SE (−1) ⊗ p∗

mOP1(1),

p∗
mOP1(−1),OYm ,OYm/P1(1)〉.

The first equivalence above is due to Proposition 1.1 and Lemma 4.5 (i). For the second
equivalence we use Lemma 2.9 with X = Ym and S = Speck. By Proposition 3.3 (i) (iv), Ym

is Gorenstein projective and ωYm
∼= OYm/P1(−2). Then the second equivalence is obtained

by applying the functor − ⊗ ωYm
∼= − ⊗ OYm/P1(−2) to OYm/P1(1) ⊗ p∗

mOP1(1). The final
equivalence is obtained by the left mutation ofDb(Rm−1) throughOYm/P1(−1)⊗ p∗

mOP1(1).
Again byLemma2.9 all SODs above are admissiblewhen they exist. The finalmutation exists
because the SOD before the mutation is admissible, and the mutation induces equivalence of
categories before and after the mutation. ��

Recall maps pm : Ym → P
1 and fm : Ym → Xm . In the next lemma we check that

Proposition 2.12 can be applied to the map fm .

Lemma 4.7 Write M1 = O(D1) = OYm (−1) ⊗ p∗
mOP1(1) and M2 = O(D2) =

p∗
mOP1(−1). Then

(1) D1.E = 1 and D2.E = −1;
(2) {Ni := fm∗Mi }i=1,2 is a simple collection of sheaves; i.e., dimHom(N j , Nk) = δ jk for

1 � j, k � 2;
(3) H p(Xm, R0 fm∗O(Di − D j )) = 0 for all p > 0 and 1 � i, j � 2;
(4) the triangulated subcategory 〈Ni 〉2i=1 of Db(Xm) generated by N1, N2 is equivalent to

Db(R1) where R1 is the path algebra defined by (1.2).

Proof (1) Note OYm (−1)|E ∼= OE by Proposition 3.3 (iv). Then (1) follows from this and
that E is a section of pm .

(2) Let I be the ideal IE/Ym of E ⊂ Ym and let En be the subscheme defined by I n, n � 1.
Then

I/I 2 ∼= N∨
E/Ym

∼= OP1(1)
2, I n/I n+1 ∼= Symn(I/I 2) ∼= OP1(n)n+1, n � 2.

Let μn : En → Ym, n � 1 be the inclusion maps. By the theorem on formal functions
we have

̂R p fm∗(M) ∼= lim←− H p(En, L0μ
∗
n M)

for all M ∈ Coh(Ym). Consider for n � 1 the exact sequences

0 → I n/I n+1 → OEn+1 → OEn → 0.
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Since M1|E ∼= OP1(1) and M2|E ∼= OP1(−1), we have Mi |En are extensions of sheaves
OP1(l) for l � −1. This implies that H p(En, Mi |En ) = 0 for p > 0, i = 1, 2 and all n.
Thus, R p fm∗(Mi ) = 0, p > 0 and Ni is a sheaf for i = 1, 2.
Next we show that {N1, N2} is a simple collection. Let U = Ym − E . Let jU : U ↪→ Ym

and iU = fm ◦ jU : U ↪→ Xm be open embeddings. Since the codimension of U ⊂ Ym

is 2, we have Mi ∼= R0 jU∗(Mi |U ). Thus,

Hom(Ni , N j ) ∼= Hom(R0 fm∗(Mi ), R0 fm∗(M j ))

∼= Hom(R0 fm∗ R0 jU∗(Mi |U ), R0 fm∗ R0 jU∗(M j |U ))

∼= Hom(R0iU∗(Mi |U ), R0iU∗(M j |U ))

∼= R0iU∗Hom(Mi |U , M j |U ).

Taking H0(Xm,−) on both sides above, we get

Hom(Ni , N j ) ∼= Hom(Mi |U , M j |U ) ∼= Hom(Mi , M j ).

Since

pm∗OYm
∼= OP1 , pm∗O(D1 − D2) = 0,

pm∗O(D2 − D1) ∼= E∨ ⊗ OP1(−2) ∼= OP1(−2) ⊕ OP1(−1)3,

we have

h p(Ym,O(Di − D j )) = h p(P1, pm∗O(Di − D j )) =

⎧
⎪⎪⎨

⎪⎪⎩

δi j , p = 0
0, (i, j) = (1, 2),∀p
0, (i, j) = (2, 1), p �= 1
1, (i, j) = (2, 1), p = 1

.

(4.15)

Hence, dim Hom(Ni , N j ) = δi j .
(3) SinceOE (D1 − D2) ∼= OP1(2), we have thatO(D1 − D2)|En is the extension of sheaves

OP1(l) for l � 2. The arguments using the theorem on formal functions in (2) imply that

Rq fm∗O(D1 − D2) = 0, q > 0.

Similarly, we haveO(D1 − D2)|En is the extension ofOP1(−2) with sheavesOP1(l) for
l � −1. This implies that

R1 fm∗O(D2 − D1) ∼= k,

which is supported on the node a1 ∈ Xm . We make use of the Leray spectral sequence

E p,q
2 = H p(Xm, Rq fm∗O(Di − D j )) ⇒ E p+q = H p+q(Ym,O(Di − D j )).

Since R�2 fm∗ = 0, R1 fm∗ is supported on the node a1 ∈ Xm and dim(Xm) = 3, we
have E p,q

2 = 0 unless 0 � p � 3, q = 0 or (p, q) = (0, 1). In this case there is an exact
sequence

0 → E1,0
2 → E1 ξ−→ E0,1

2 → E2,0
2 → E2

and E3,0
2

∼= E3. Equations (4.15) give E2 = E3 = 0 for all i, j , and E1 = E0,1
2 = 0 if

(i, j) �= (2, 1) and E1 ∼= E0,1
2

∼= k if (i, j) = (2, 1). We deduce that ξ : E1 → E0,1
2 is

an isomorphism for all i, j . Thus, E p,0
2 = 0 for all p > 0 and i, j .
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(4) It is a consequence of (1)-(3) and Proposition 2.12.
��

For the smooth section E of pm : Ym → P
1, Proposition 2.2 (ii) gives us the Koszul

resolution

0 → det(S∨
E ) → S∨

E → OYm → OE → 0.

By Lemma 4.5 (ii) we get

0→OYm/P1(−1) ⊗ p∗
mOP1(1)→SE (−1) ⊗ p∗

mOP1(1)→ p∗
mOP1(−1)→OE (−1) → 0.

(4.16)

Theorem 4.8 Let Xm be the quintic del Pezzo threefolds with m nodes for m = 1, 2, 3. Then
there is an admissible semiorthogonal decomposition

Db(Xm) = 〈Db(Rm−1),Db(R1),OXm ,OXm (1)〉
where R0 = k and R1, R2 are the path algebras defined by (1.2).

Proof From Proposition 2.10 we have that fm∗ : Db(Ym) → Db(Xm) is a Verdier quotient
with ker( fm∗) = 〈OE (−1)〉. Let T be the triangulated subcategory generated by

OYm (−1) ⊗ OP1(1), SE (−1) ⊗ OP1(1), p∗
mOP1(−1).

Then Corollary 4.6 reads as

Db(Ym) = 〈Db(Rm−1), T ,OYm ,OYm (1)〉. (4.17)

We deduce from the exact sequence (4.16) thatOE (−1) ∈ T . Observe that in the SOD (4.17)
all components except forDb(Rm−1) are contained inDperf (Ym). Moreover, Ym is Gorenstein
and ωYm |E ∼= OE by Proposition 3.3 (i) (iv). Then Proposition 2.11 implies that we have the
induced admissible semiorthogonal decomposition

Db(Xm) = 〈 fm∗Db(Rm−1), fm∗(T ), fm∗(OYm ), fm∗(OYm (1))〉
∼= 〈 fm∗Db(Rm−1), fm∗(T ),OXm ,OXm (1)〉.

Since Db(Rm−1) ∩ ker( fm∗) = ∅, we have fm∗Db(Rm−1) ∼= Db(Rm−1). Since fm∗(T ) is
generated by fm∗(OYm (−1) ⊗ p∗

mOP1(1)) and fm∗(p∗
mOP1(−1)), Lemma 4.7 (4) implies

that fm∗(T ) ∼= Db(R1). ��
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