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Abstract

We provide families of compact astheno-Kchler nilmanifolds and we study the behaviour
of the complex blowup of such manifolds. We prove that the existence of an astheno-Kihler
metric satisfying an extra differential condition is not preserved by blowup. We also study
the interplay between Strong Kiihler with torsion metrics and geometrically Bott—Chern
metrics. We show that Fino—Parton—Salamon nilmanifolds are geometrically-Bott—Chern-
formal, whereas we obtain negative results on the product of two copies of primary Kodaira
surface, Inoue surface of type Sy and on the product of a Kodaira surface with an Inoue
surface.
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1 Introduction

Compact Kéhler manifolds share many remarkable cohomological and metric properties,
e.g., they satisfy the 99-Lemma, all the complex cohomologies, Dolbeault, Aeppli and Bott-
Chern, are isomorphic, their underlying structure of smooth manifold is formal in the sense
of Sullivan, they satisfy the Hard Lefschetz Condition. As a consequence, the existence of a
Kihler structure on a compact smooth manifold M forces many topological constraints, e.g.,
the Betti numbers of even degree are positive, the Betti numbers of odd index are even and
Massey products vanish. On the other hand, a large and natural class of compact complex
manifolds arises as a quotient of simply connected nilpotent Lie groups by a discrete uniform
subgroup; nevertheless, in view of Benson and Gordon [11], the underlying structure of the
smooth manifold of such compact quotients admits a Kéhler structure if and only if the
group is Abelian, that is the manifold is diffeomorphic to a torus, and, more in general,
by Hasegawa (see [27, 28]) a compact quotient of a simply-connected solvable Lie group
by a closed subgroup carries a Kéhler structure if and only if it is a finite quotient of a
complex torus. Yet, this class of compact manifolds admits special Hermitian metrics, e.g.,
Strong Kdhler with torsion metrics or pluriclosed (see [12, 23]), astheno-Kdhler metrics in
the sense of Jost and Yau (see [31]). More precisely, a Hermitian metric g with fundamental
form F on an n-dimensional complex manifold (M, J) is said to be

o strong Kihler with torsion, or shortly SKT, if 99 F = 0 or, equivalently dd°F = 0;
o astheno-Kdihler, if 39 F"~% = 0 or, equivalently dd° F"~2 = 0,

where d° = J~!dJ. The SKT metrics have been studied by many authors and they have also
applications in type II string theory and in 2-dimensional supersymmetric o-models [23, 30,
50]. Moreover, they have also relations with generalized Kihler geometry (see for instance
[10, 15,23, 26, 29]).

Some rigidity theorems concerning compact astheno-Kéhler manifolds have been showed
in [31, Theorem 6] and in [34], where, in particular, a generalization to higher dimension
of the Bogomolov’s theorem on V I [ surfaces is proved (see [34, Corollary 3]). Astheno-
Kihler structures on Calabi—-Eckmann manifolds have been constructed in [36]. For other
results on SKT and astheno-Kéhler metrics and special metrics on complex manifolds see
also [14, 17-21, 30, 37, 40-42, 44, 53] and the references therein.

In the first part of the present paper we are interested in providing astheno-Kéhler metrics
on compact nilmanifolds, endowed with left-invariant complex structures and in studying
the behaviour of blowup of compact complex manifolds endowed with astheno-Kéhler met-
rics, satisfying certain extra differential conditions. First of all, we construct a family of
simply-connected 2-step nilpotent Lie groups G, admitting discrete uniform subgroups I" and
endowed with a left-invariant complex structure J, such that (I'\G, J) carries an astheno-
Kihler metric (see Theorem 4.1 for the precise statement). Such a construction will be applied
in the study of the behaviour of blowups.

In [21] respectively [20, Proposition 2.4] it is proved that the existence of an SKT metric
respectively a Hermitian metric g with fundamental form F on an n-dimensional compact
complex manifold M, satisfying 39F = 0, 39 F2 = 0, is stable under blowups of M. In
contrast, we prove the following

Theorem (See Theorem 5.3) On a compact complex manifold of dimension n, the existence
of a Hermitian metric F such that
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dd°F"? =0, ddF" =0
is not preserved by blowup.

Note that metrics whose fundamental form satisfies 99 F¥ = 0 belong, in particular, to a
class of Hermitian metrics introduced Fu, Wang, and Wu in [22] as a generalization of the
notion of Kihler metrics.

In the second part of the paper we focus on the interplay between SKT metrics and
geometrically-Bott-Chern-formal metrics. From the cohomological point of view, besides
the Dolbeault cohomology groups, a useful tool in the study of compact complex (non-
Kihler) manifolds is provided by Bott-Chern and Aeppli cohomology groups. Indeed, the
property of satisfying the d3-Lemma can be characterized in terms of their dimensions (see
[8]). By adapting the construction of Massey triple products respectively Dolbeault Massey
triple products as in [16, 51], respectively in Neisendorfer and Taylor (see [39]), in [9] the
notion of triple Aeppli-Bott-Chern—Massey products are introduced with the aim to give
obstructions to the existence of geometrically-Bott-Chern-formal metrics, that is Hermitian
metrics whose space of Bott-Chern harmonic forms has the structure of algebra. The notion
of formal Riemannian metrics has been previously introduced and studied intensively by
Kotschick in [32]. Very recently Milivojevi¢ and Stelzig in [38] introduced the n-fold Massey
products in the spectral sequence sense, for a commutative bigraded differential algebra.
In particular, for n = 3, they recover the definition of triple Aeppli—Bott-Chern—Massey
products as in [9]. Furthermore, they consider the notions of weak formality, respectively
strong formality which have applications in the study of cohomological properties of complex
non Kihler manifolds. For other results on these topics we refer to [47-49, 55].

Concerning the relation between SKT metrics and geometrically-Bott-Chern-formal
metrics, we study the 6-dimensional nilmanifolds with a left-invariant complex structure
admitting a left-invariant SKT metric, which have been characterized by Fino, Parton and
Salamonin [19, Theorem 1.2]. In particular, for such manifolds they provide explicit structure
equations depending on 5 complex parameters satisfying a real algebraic equation and they
prove that the SKT condition is satisfied by every left-invariant Hermitian metric. Denoting
by FPS-nilmanifold any such a manifold, we prove the following result.

Theorem (See Theorem 7.2) Let (M, J) be a F P S-nilmanifold. Then, any left-invariant
metric is geometrically-Bott-Chern-formal.

Moreover, we extend this result to a class of nilmanifolds which are a generalization of
FPS-manifolds in a arbitrary higher dimension (see Theorem 7.4).

In contrast to the mentioned positive results, on a compact complex manifold the existence
of a SKT metric does not imply the existence of geometrically-Bott-Chern-formal metrics.
More precisely, we prove this for the product of a pair of certain compact complex surfaces
by providing a non vanishing Aeppli-Bott-Chern—-Massey product on each manifold.

Theorem (See Theorem 7.5) Let (M, J) be the product of either two Kodaira surfaces, two
Inoue surfaces, or a Kodaira surface and a Inoue surface. Then (M, J) admits SKT metrics
but does not admit geometrically-Bott-Chern-formal metrics.

Furthermore, a similar result holds also for manifolds which are not a product of manifolds,
as it is shown for a family of nilmanifolds of complex dimension 4 in Theorem 7.6.

The paper is organized as follows. In Sect. 2, we briefly recall the notions of Dolbeault,
Bott-Chern, and Aeppli cohomologies on compact complex manifolds, and we recollect the
basis facts about the complex geometry of nilmanifolds. In Sect.3, following [2, 52], we
recall the notions of p-pluriclosed forms on an almost complex manifold of real dimension
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2n (in particular, when J is integrable, for p = 1, respectively p = n — 2, we recover the
notion of SKT metrics, respectively of astheno-Kéhler metrics). Moreover, we obtain a useful
obstruction for the existence of such structures (see Lemma 3.5), which will be used in both
Proposition 4.3 and Theorem 5.3. Sections4 and 5 are devoted to the proofs of Theorems 4.1
and 5.3. In Sect. 6, we briefly recall the notions of Aeppli-Bott-Chern—-Massey products and
geometrically-Bott-Chern-formal metrics. Finally, Sect.7 is mainly devoted to the proof of
Theorems 7.2, 7.4,7.5,7.6.

2 Preliminaries

Let M be a compact 2n-dimensional differentiable manifold endowed with an integrable
almost complex structure J, i.e., J € End(7 M) such that J 2 — —idyy and the Nijenhuis
tensor associated to J

Ny(X,Y):=[JX,JY]—[X,Y] = J[JX,Y] - J[X,JY]

vanishes for every X, Y € T M. By Newlander—Nirenberg, J endows M with the structure
of a compact complex manifold of complex dimension n. We will denote such manifold by
(M, J).

The C-linear extension of the endorphism J to the complexified tangent bundle Tc M :=
TM ® C gives rise to following decomposition in terms of the +i-eigenspaces of J

TeM=T""e1%M,

where T'OM = (X € TcM : JX = iX}and TO'M = (X € TeM : JX = —iX).
Such decomposition of T¢ M extends to the exterior powers bundles /\fé M = /\k TeM of
complex k-forms, that is

NeM = @ AN u.
p+q=k
where A”9 M := AP T'OM @ \? TO! M is the bundle of (p, g)-forms. We will denote the
global sections I'(M, /\fé M) and I'(M, \"'9 M) of the mentioned bundles by, respectively,
Aé’jM and AP 9M.
At the level of (p, g)-forms, the exterior differential d acts as

d: APIM — AP @ APt Y,

therefore, by setting d := w”*!190d and d := P 9* ! od, we obtain that d splitsasd = 9+4.
Since d2 = 0, it immediately follows that 32 = 3 = 0.

Associated to a compact complex manifold (M, J), one may define the de Rham, Dol-
beault, Bott-Chern, and Aeppli cohomologies,

M ©) = e, gy = S0 e, gy = R
Imd F) Im 3 7

HY*(M,J) = ﬂ.

Imo+Ima

For the sake of simplicity, we will denote HI;"(M, J) =: Hﬁ"(M), for § € {9, BC, A}.
We will denote the Betti numbers by by = dimc H é‘ r(M; C) and the Hodge numbers and
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the dimensions for the Bott-Chern and Aeppli cohomologies by hg 1 := dim¢ Hz (M), for
t € {9, BC, A}

From now on, (M, J) will denote a compact complex manifold of complex dimension 7.

A Hermitian metric g on (M, J) is a Riemannian metric on M such that J is an isometry
with respect to g, i.e., g(JX,JY) = g(X,Y), for every X,Y € I'(TM). For any given
Hermitian metric g, we will denote by F the fundamental form of g, defined as F(X,Y) =
g(JX,Y)fornany X,Y € ['(TM).

We will consider the C-antilinear extension of g to I'(Tc M) given by
gXRA Y®u) :=rug(X,Y), forevery XQA, Y @u € I'(TcM). Once fixed a Hermitian
metric g on (M, J), then the complex cohomology groups recalled above, are isomorphic to
the kernel of suitable elliptic self-adjoint operators. More precisely, setting

A; =33 +3°9
Apc =930 0"+ 0%99 +0 09*9 4+ 089 9 +9 0 + 9*9
Ap=09"+30 +0 0%99 + 009 0* 409 90" + 00%99 ,
where as usual % : A?9 — A"~9"7P jg the C-linear Hodge operator defined as

_ —_ "
a A*B = gla, ﬁ);

and @ = — 0%, 0% = — % 9%, and denoting the spaces of Dolbeault harmonic, respectively
Bott-Chern harmonic and Aeppli harmonic forms by

Hxs (M) = {a € A*(M) | Aga =0}
Hyo (M) = {a € A*(M) | Apca =0}
Hus (M) = {a € A**(M) | A =0},
we have the following complex vector spaces isomorphisms
H® (M) = Hy* (M),
see, e.g., [25], and
Hp (M) = HYS (M), Hy*(M)=H (M),

see [46]. It turns out that

. da =0
o€ Hgg(M) = 15 —0
éot =0
a e HY! (M) da =0
00 a =0
99a =0
ae HYI(M) = § 3% =0 2.1)
a =0.

We recall now some basic facts of complex geometry of nilmanifolds. Let M be a nilmanifold,
that is M = I'\G, where G is a simply connected nilpotent Lie group and T" is a lattice in
G, with dimr M = 2n. Let g be the Lie algebra of G. Then any given left-invariant almost
complex structure J on G gives rise to an almost complex structure J on M; therefore, any
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almost complex structure J on g gives rise to an almost complex structure on M, denoted
with the same symbol J. According to the Newlander and Nirenberg theorem, J is a complex
structure if and only

N;(X,Y)=0, VX,Y eg.
Equivalently, an almost complex structure on g can be defined by assigning an n-dimensional
complex subspace g0 of g¢» such that g0 N gl0 = {0}. We set, as usual,

APg:= NP a0 N g170

Then it turns out that a nilpotent Lie algebra g has a complex structure if and only if there
exists a basis {nl, ...,n"}of 91,0 such that

df* "l ezm', ... 05

where Z(n', ..., n*) denotes the ideal generated by {5', ..., n*}in A* g (see [45, Theorem
1.3]) and d denotes the extension of the Chevalley—FEilenberg exterior differential on the Lie

algebra g to /\* gf..

3 p-pluriclosed structures

We review the notion of positive forms on almost complex manifolds. We start by recalling
some preliminary linear algebra notions (see, e.g., [5]). Let V be a real 2n-dimensional
vector space endowed with a complex structure J, that is an endomorphism J of V satisfying
J? = —idy. Denote by V* the dual space of V and denote by the symbol J the complex
structure on V* naturally induced by J on V. Then the complexified v*C splits as the direct
sum of the =+ i-eigenspaces, V-0, V! of the extension of J to v*C, given by

V0= (evC | p=iny=(a—iJa | a € V")
VOl =y e V*C | Jy =—iy)=(B+ilp | Be V)
that is
V*(C — VI,O e VO,I_

According to the above decomposition, the space /\r(V*C) of complex r-covectors on vC
decomposes as

NV = @ A"V,
ptq=r
where
APV = AP (VIO @ AT(VOD),
If {nl, ..., n"}is a basis of V10 then

VA AP AR A A | 1 <ip < <ip<n, 1<ji<--<j, <n)

is a basis of AP”7(V*®). Seto, = i?2=P_ Then, given any 7 € /\”’O(V*C) we have that

OpN A =0pn AT,
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thatis o,n A7 is a (p, p)-real form. Consequently, denoting by

ART(VFC) = (g e APP(VFO) |y =),
we get that

{opn Ao AP AR A A | 1 <i) < <ip < n)

is a basis of /\ﬁ’p(V*C). By definition, ¥ € /\”’O(V*(C) is said to be simple or decomposable
if

for suitable nl, ..,nPe y 1o,

Remark 3.1 The complex structure J acts on the space of real k-covectors /\k (V*) by setting,
for any given « € /\k(V*),

Ja(Vi, ..., Vi) =a(Vi,.... V).

Then it is immediate to check thatif y € AL (V*C) then Jyr = . For k = 2, the converse

holds.
Vol = £nl/\ﬁ A A i77"/\777 ;
2 2

Vol =aun' A AR ARLA - AT,

Set

then

that is Vol is a volume form on V. A real (n, n)-form ¢ is said to be positive respectively
strictly positive if

¥ = aVol,

where a > 0, respectively a > 0.
Let @ € ALP(V*C). Then Q is said to be weakly positive if given any non-zero simple
(n — p)-covector 7, the real (n, n)-form

QAO_pn AT

is positive. The real (p, p)-form Q is said to be transverse if, given any non-zero simple
(n — p)-covector 7, the real (n, n)-form

QAO_pn AT

is strictly positive.

The notion of positivity on complex vector spaces can be transferred pointwise to almost
complex manifolds. Let (M, J) be an almost complex manifold of real dimension 2n; let
P4 (M) be the bundle of (p, g)-forms on (M, J). Denote by AP4(M) := T'(M, A" M)
the space of (p, g)-forms on (M, J) and by

ARP(M) = {y € APIM) | ¥ =)
the space of real (p, p)-forms. Then the exterior differential d satisfies

d(AP9(M)) C APTZITN (M) + AP (M) + AP (M) + AP (),
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and, consequently, d decomposes as
d=p;+3d;+9y + 1y,
where uj = P24 64, 9; = x4 o d. Set

d“=J"'aJ.

Definition 3.2 Let (M, J) be an almost complex manifold of real dimension 2n and let
1 < p < n. A p-pluriclosed form on (M, J) is a real dd“-closed transverse (p, p)-form €2,
that is Q is dd“-closed and, at every x € M, Q, € /\H’é’p (T}M) is transverse. The triple
(M, J, Q) is said to be an almost p-pluriclosed manifold.

Let (M, J) be an n-dimensional complex manifold and g be a Hermitian metric with
fundamental form F. Then d° = i(d — d) and consequently dd® = 2id9.

Definition 3.3 The Hermitian metric g is said to be astheno-Kdihler in the terminology by
Jost and Yau [31] if

JOF"% = 0;
g is said to be strong Kdhler with torsion, shortly SKT, if
dIF = 0.

Therefore, if g is an astheno-Kéhler metric respectively SKT metric on (M, J), then
(M, J, F"?) respectively (M, J, F) is an (n — 2)-pluriclosed respectively 1-pluriclosed
manifold.

Following Gauduchon [24], a Hermitian metric g on (M, J) is said to be standard if
F"1is 99-closed. As observed in [20], if a Hermitian metric on a 4-dimensional compact
complex manifold is at the same time SKT and astheno-Kéhler, then it must be also standard.
Furthermore, in [31, Lemma 6] a necessary condition for the existence of astheno-Kihler
metrics on compact complex manifolds was provided, showing that any given holomorphic
1-form must be d-closed.

In order to recall the characterization theorem of compact complex manifolds admitting
a p-pluriclosed structure, we review some known facts on positive currents. Let M be an n-
dimensional complex manifold and let A?-9 (R2) respectively DP9 (2)) be the space of (p, ¢)-
forms respectively (p, g)-forms with compact support on M. Consider the C*°-topology on
DP9(M). The space of currents of bi-dimension (p, q) or of bi-degree (n — p,n — q) is
the topological dual D;)’q (M) of DP-4(M). A current of bi-dimension (p, g) on M can be
identified with a (n — p, n — g)-form on M with coefficients distributions. A current 7' of
bi-dimension (p, p) is said to be real if T (n) = T (1), for any n € DP9(M). A real current
T € D), ,(M) is said to be strongly positive if,

T(2) =0,
for every weakly positive (p, p)-form 2. We have the following (see [4, Theorem 2.4,(4)])

Theorem3.4 A compact n-dimensional complex manifold N has a strictly weakly positive
(p, p)-form Q with 992 = 0 if and only if N has no strongly positive currents T # 0 of
bidimension (p, p), such that T = i0d A for some current A of bidimension (p + 1, p + 1).

We end this section by proving a simple yet useful lemma, which yields an obstruction to
the existence of p-pluriclosed forms on a closed almost complex manifold.
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Lemma3.5 Let (M, J) be a closed almost complex manifold of real dimension 2n. Let o be
a (2n — 2p — 2)-form which is not dd-closed and such that

ddeay™ PP =3k Ay

with y* simple (n— p, 0)-covectors and ¢y # 0 constants having the same sign. Then (M, J)
does not admit a p—pluriclosed form.
In particular,

e for p =1, (M, J) does not admit SKT metrics;
e for p=n—2, (M, J) does not admit astheno-Kdhler metrics.

Proof We prove this lemma by contradiction. Suppose there exists a p-pluriclosed form
Q on (M, J), ie., Q2 is a (p, p)-real form which is dd“-closed and, for every x € M,
Q, € APP(T,M*) is transverse. Then, let & be a (2n — 2p — 2)-form on (M, J) as above
and let us assume, for example, that each ¢ > 0. Since M is closed, by Stokes theorem we
have that

OZ/LWW@@AQDZ/Q%QAdfa:§:q/Q%QAkaEk>Q
M M X M

which is a contradiction. To end the proof, notice that if F' is an astheno-Kiahler metric on
(M, J), the (n —2, n —2)-form F*2isa (n— 2)-pluriclosed form on (M, J). Analogously,
if F is a SKT metric on (M, J), F is 1-pluriclosed form on (M, J). ]

Remark 3.6 In Lemma 3.5 the thesis on the non existence of Hermitian metrics satisfying
dd°F = 0, for p = 1, respectively dd°F"—2 = 0, for p = n — 2, is still valid, without
assuming the integrability of J.

4 Astheno-Kahler metrics on 5-dimensional nilmanifolds

We now proceed to construct a family of nilmanifolds of complex dimension 5 endowed with
a left-invariant complex structure admitting an astheno-Kéhler metric.
Let {r;l, o, n5} be the set of complex forms of type (1, 0), such that

dy/ =0, j=1,...,4,
dn’ Ial7712+a27713+a3f714+a4ﬂﬁ+(15771§+616771§+a77711
b1 1P 4 by 4 by P!+ ban® + bs 0 4 b P 4.1

+ernt + e +e3n®? +ean® +es

+dy 't 4 do ™ 4+ d3 P dy g™

where ay, by, c,,dg € C,h=1,..., 7, k=1,....,6,r =1,...,5, s =1,...,4 and
we set as usual 7% = p4 A nB. Then, setting gh0 = Span(n', ..., ), we obtain that
gt = a9 @ g!-0 gives rise to an integrable almost complex structure J on the real 2-step
nilpotent Lie algebra g. Let G be the simply-connected and connected Lie group with Lie
algebra g. Then, for any given choice of parameters ay,, bk, ¢,, d; € Q[i] as a consequence of
Malcev’s theorem [35], there exist lattices I' C G, so that (M = I'\G, J) is a nilmanifold

endowed with a complex structure J with dim¢c M = 5. We have the following

@ Springer



55 Page 100f27 T. Sferruzza, A. Tomassini

Theorem 4.1 Let M = T'\G and J be the complex structure on M defined by (4.1). Then

I) The diagonal metric g on (M, J) whose fundamental form is

is astheno-Kdhler if and only if the following condition holds

2Re (dads + dabs + daCa + cada + cabs + bada)
= la1]* + laz|* + las* + las|* + las|* + la7|* +
+1b1? + b2 + B3> + |bs|* + |bs|* + |c1]* +
Hleal* + lesl® + les)? + [di]* + |da]* + |d3]*. 4.2)

II) Let
a=a3=as=a¢ =a7 =by =by =b3 =bs =bg=cp =c3 =c5
=d =dy=d3=0.

Then the metric g satisfies dd°F3 = 0 and dd°F* = 0 if and only if the following
conditions hold

20Re (dady + daby + dyCs + cady + caby + bady) = |ar)? + |c1|?

20Re (cady + caby + baasy) = |a)?
) 4.3)
Re (cqbg —dyag) =0

Re (b4£?4 —cqaq) = 0.

Proof As for I), with the aid of Sagemath and structure equations (4.1), it is easy to the see
that

%dch3 = (29‘{6 (daag + d41;4 + dacCs + caaq + C4l;4 + bgay)
—lai* = |az|* — las|® — |as|* — |ag|* — |a7|?
4.4)
—b11?> = |ba|* — |b3]* — |bs|?* — |bg|?

—le1? = le2? = le3? = |1 — |da? ) 72341234,

i.e., the metric F is astheno-Kihler on (M, J) if and only if (4.2) holds.
II) Under the assumption

ay =az=as=a¢=a7=Dby =by=>b3 =bs =bs=c| =cy=c3=c5

taking into account (4.4) and by a straightforward computation, we obtain that

dd°F3 =0, dd‘F?*=0
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if and only if

2Re (dady + dabs + dsCs + cads + caby + baas) — |ar|* — |c1)> =0
2Ne (cady + caby + baag) — |a1|> =0
2Re (dady + dabs + bads) — |ai|> = 0

2Re (dyay + dacq + caaq) — |cy |2 =0

20Re (dabs + dsCs + caby) — |c11> = 0.

The last system is equivalent to (4.3). O

Remark 4.2 Recall that an Hermitian metric g on a n-dimensional complex manifold (M, J)
is said to be balanced if its fundamental form o satisfies do"~! = 0. In [54, p- 185] the
authors asked for an example of a non-Kihler compact complex manifold which admits
both balanced and astheno-Kéhler metrics. In [18], and independently in [33], the authors
constructed explicit examples of such manifolds in any dimension. As a direct application
of Theorem 4.1, we obtain families of 5-dimensional complex nilmanifolds carrying both
astheno-Kéhler and balanced metrics. We apply a similar construction as in [33, Remark
2.6]. Let

i

2

F= (An11+n22+n33+n421+n55)

where A is a positive real number. Then d F4=0ifand only if

as + Abg + Acg + Ady = 0, 4.5)

where aq, ba, ca, ds are the parameters as in (4.1) Let g be the diagonal metric whose funda-
mental form is

l‘ - - - - -
F=5(?711+7722+7733+7744+7755)~

Then, according to I) of Theorem 4.1, g is astheno-Kihler if and only if condition (4.2) holds.
Take

1
a4=_ﬁ(1+2i)’ by =1, c4 =1, dy =1, A=E.
Then, with this choice of parameters, we obtain
1 1 1 1

1
Aby+ Acs+ Ady = —— — —i+ —i+ —i+—=0
Q4+ Aby + Aca + Ady = =15 — 5i + 5+ 151+ 15 =0,

that is (4.5) is satified and so, for such a choice of parameters, F gives rise to a balanced
metric on M = I'\G. A straightforward calculation yields

20Re (daag + daby + dsCs + c4ds + caby + bady) = 1.
Therefore, the Hermitian metric g is astheno-Kéhler if and only if condition (4.2) reads as

1= |a1* + laz|* + la3|* + las|* + lag|* + la7|?
+1b11? + [b2]* + b3 1% + |bs|* + |bs
Hetl? + leal? + lesl? + 1di 1> + |da . (4.6)
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One can check that there exist solutions in Q[i] of Eq. (4.6), so that, for any given solution,
the associated complex nilmanifold defined as in (4.1) admits both a balanced metric and an
astheno-Kéihler metric.

As an application of Lemma 3.5, we provide a family of compact almost complex nilmanifolds
without 2-pluriclosed forms.

Proposition 4.3 Let {/!, ..., y*} be the set of complex forms of type (1, 0), such that

dyl =0, j=1,...,3,
) ) ) - N 4.7)
Ayt =a v+ oy B tay +a v +as v +ag v+ ag ¢,

where ay, ...,a; € Qli]. Let G be the corresponding simply-connected and connected
nilpotent Lie group and I' C G be a lattice such that N = I'\G is a compact nilmanifold.
Assume that

ayay +aga7 =0 4.8)
and seta = (ai, ...,a7). Then (N, J,) does not admit any 2-pluriclosed form.

Proof A straightforward calculation using (4.7) yields to

Ldacy* = (Jar > + las|H ¥ 2% + (|aa | + la7 PP + (a1az + Gear) 122
+(arar —l—@aé)wzm

= (la1l? + las)y 212 + (lazl? + ar )y
The thesis follows immediately from Lemma 3.5. O

Remark 4.4 For any given a such that (ag, a7) # (0, 0), J, is anon integrable almost complex
structure on N. Consequently, for such an a, (N, J,) is an almost complex manifold with no
2-pluriclosed forms.

5 Blow-ups of astheno-Kadhler metrics

By classical results and more recent ones, (see [4, 13, 21, 56]), we know that, for compact
complex manifolds, the property of admitting, respectively, Kéhler, balanced, or SKT metrics,
is stable under blowups either in a point or along a compact complex submanifold. Regarding
astheno-Kéhler metrics, in [20], it is proved the following result.

Proposition 5.1 [20, Proposition 2.4] Let (M, J, g) be an astheno-Kdhler manifold of com-
plex dimension n such that its fundamental 2-form F satisfies

dd°F =0, dd°F*=0. 5.1

Then both the blow-up Mp of M at a point p € M and the blow-up My of M along a compact
complex submanifold Y admit an astheno-Kdahler metric satisfying (5.1), too.

In this section, we will show that blowups of astheno-Kéhler metrics do not preserve
additional differential properties of the metric, namely we construct an example of a 5-
dimensional manifold M admitting a metric F satisfying

dd°F> =0, dd‘F?®=0, (5.2)
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and we will consider the blowup of such manifold along a submanifold. We will prove
that such blowup does not admit any Hermitian metric F which satisfies dd“ F?> = 0 and
dd°F3? =0.

We note thatif dd“ F = 0, conditions (5.1) of [20] would be verified, thus yielding stability.
Therefore, when we consider a Hermitian metric F' which satisfies weaker conditions than
(5.1), e.g., the astheno-Kihler condition and the differential condition dd‘F n=3 = 0, in
general such conditions are not stable under blowups

Now, we construct a family of 5-dimensional compact complex nilmanifolds endowed
with a Hermitian metric whose fundamental form F satisfies (5.2) and such that the blowup
of M along a suitable 3-dimensional complex submanifold ¥ has no Hermitian metrics
satisfying (5.2). To this purpose, we start by considering the following nilpotent Lie group
G := (C°, %), where the operation * is defined for every w = (wy, wa, w3, w4, ws), 2 =
(21, 22, 23, 74, 25) € C? by

w * Z
= (w1 + 21, w2 + 22, W3 + 23, W4 + 24, 25 + a1W122 + asw121 + bawozo + crw3z4
+ cqw3z3 + dawaza + ws),

with ay, aq, by, c1, ca, dg € Q[i]. We can then consider the following forms on G

N =dz, ie€{l,2,3,4}
0 =dzs — a1z1dzy — asZ1dzy — baZadzy — c123dz4 — c4Z3dz3 — dyZadzy.

It can be easily seen that {1;1, R n5} are left invariant global forms on G with structure
equations

dnf =0, iefl,2,3,4}
dnd = —ain'? + asn™ + ban?* — c1n®* + can® + dun™.

The dual left invariant complex vectors fields {Zy, Z2, Z3, Z4, Zs} on G are given by

- 0 0
Zy = g5 T asZig;
B ~ .0
Zy = 55 +(@1z1 + baza) 5
T N
Z3 = 073 a3 azs

Zy =2 + (c123 +d434)3875

924
Zs = 3%
We note that TcG = (Z1,...,Zs5,Z1, ..., Zs) and the distribution D = (Z;, ..., Zs)
is integrable. Therefore, if we denote by J the almost complex structure on G for which
{Z1, ..., Zs}is aframe of (1, 0)-vector fields and {nl, e, n5} is a coframe of (1, 0)-forms,
then J is an integrable left invariant almost complex structure on G.

Since the constant structures aj, a4, b4, c1, c4, ds are numbers in Q[i], Malcev theorem
assures the existence of a discrete uniform subgroup I' such that M := I'\G is a compact
nilmanifold. In particular, since J is left invariant on G, it descends to M, i.e., (M, J) is a
complex 5-dimensional nilmanifold. In particular {Z1, ..., Zs}and {n', ..., n°} are a global
left invariant frame of (1, 0)-vector fields, respectively (1, 0)-forms on M.

In particular, we point out that M is the nilmanifold associated to the Lie algebra g of
Sect. 4, with structure constants

a=a3=as=ag=a7=by1=by=b3=bs=bg=cy=c3=c5s=d| =dy =d3 =0.
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If we denote by
p:G—->M
the natural quotient projection from G to I'\ G and we set
Yo :={(z1,22,23,24,25) 122 =24 =0} C G,

then p(Yp) =: Y C M is a compact complex 3-dimensional submanifold of M whose
complexified tangent bundle T Y is spanned by {Z1, Z3, Zs, Z1, Z3, Zs}.

It is immediate to check that Y is a 3-dimensional nilmanifold and {n', 3, n°}is a global
coframe of (1, 0)-forms on Y with complex structure equations given by

dnl =0,
dp? =0 (5.3)

dn® = agn'T + can®.

For the convenience of the reader, we set a! := nl Lol = 173, and o ;= n5, so that we can
rewrite (5.3) as

da! =0,

da? =0 (5.4)

do® = aga + caa®?.

Now fix the following constant structures
ar=—1-3i, ag=1, bs=1, c1=—-4, c4=2, dy=2,

and consider the metric

5

F=%an/\n7.

j=1
For such choice of coefficients, by Theorem 4.1, we have that
dd‘F* =0, dd°F3>=0, dd‘F +#0.

Now, let us consider the blowup 7 : My — Mof M along the compact complex submanifold
Y, with E the exceptional divisor. We note that E has complex dimension 4, since each fiber
7 'y c My over a point y € Y has dimension 1 and dim¢ Y = 3.

By contradiction, now let us assume that the astheno-Kéhler condition dd‘F 3 =0and
the condition dd¢F? = 0 are stable, i.e., there exists a Hermitian metric on M y such that
dd°F3 =0and dd‘F? = 0.

Then, the restriction of F on E gives rise to a astheno-Kiihler metric on E, that is
ddC(I:"|E)2 =0, i.e., E is a 2-pluriclosed manifold.

We now recall the following useful proposition by Alessandrini [3, Proposition 3.1].

Proposition 5.2 Let M and N be connected compact complex manifolds, withdim N = n >
m=dimM > 1, and let f: N — M be a holomorphic submersion, where a :== n —m =
dim f~'(x), x € M, is the dimension of the standard fibre F. If N is “ p-Kcihler" for some
p.a<p<n-—1,then M is “(p — a)-Kdihler".
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Note that in the above statement a “ p-Kdhler" manifold means a compact complex manifold
admitting one of the following

(1) a p-Kdhler form, i.e., a closed transverse (p, p)-form;

(2) aweakly p-Kdhler form, i.e., a transverse (p, p)-form Q such that 9Q = 9da;

(3) a p-symplectic form,i.e.,areal closed 2 p-form W whose (p, p)-component is transverse;
(4) a p-pluriclosed form, i.e., a dd-closed transverse (p, p)-form.

We refer to [1, Section 2] for further details.

Let us consider the map 7|,.: £ — Y. We note that | £ is a holomorphic submersion
with 1-dimensional fibers, therefore by Proposition 5.2, we have that Y is 1-pluriclosed, i.e.,
it admits a SKT metric.

However, this is absurd by either the characterization of 3-dimensional SKT nilmanifolds
by [19], or Lemma 3.5, observing that dd®(—a3) = 8a!212.

Summing up, we have proved the following

Theorem 5.3 On a compact complex manifold of dimension n, the existence of a Hermitian
metric F such that

dd°F"2=0, ddF"3=0

is not preserved by blowup.

6 Aeppli-Bott-Chern-Massey products and
geometrically-Bott-Chern-formal metrics

In this section, we review the definitions and basic facts of the notions of Aeppli-Bott-Chern—
Massey products on a compact complex manifold and of geometrically-Bott-Chern-formal
Hermitian metrics.

From rational homotopy theory, a differentiable manifold M is said to be Sullivan formal if
the algebra of differential forms endowd with the exterior differential d, i.e., the pair (A, d),
is equivalent to a differential graded algebra (B, dp) with zero differential, i.e., dg = 0.

In the 50’s, Massey introduced certain cosets of the de Rham cohomology, the Massey
triple products, which, if non trivial, yield an obstruction to Sullivan’s formality.

More recently, in [9] a notion of Massey triple products has been introducted as an adap-
tation of classical Massey products for the Bott-Chern cohomology of complex manifolds.

Let (M, J) be a compact complex manifold, and choose

a=[ale HYAM), b=I[Ble Hys(M), c=Iyle HL (M)
such that
aUb=0¢eHp (M), bUc=0¢e Hy """ (M),
i.e., there exists fyp € APT L4t~ p1 and f5, € A7Fu=LsTV=1 a1 quch that
(=D AB =030 fup, (=) BAYy =00fs,.
Then, the triple Aeppli—Bott-Chern—Massey product of a, b, c is given by

(@,b,c)apc :=[=D"Man fg, — (=D fup Ayla
Hp+r+u—],q+x+v—l
A

€ .
H;;Jrufl,s«kvfl(M) Ua+ H£+r—l,q+s—l(M) Ue
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We note that such a construction does not depend on the choice of representatives «, 8, y or
the choice of the primitives fug, fgy .

Furthermore, a notion of geometric formality analogous to the one in the sense of Kotschick
(see [32]) has been defined in [9].

Let g be a Hermitian metric on a compact complex manifold (M, J) and let HX;C (M) be
the space of Bott-Chern harmonic forms on (M, J) with respect to g. The Hermitian metric
g is said to be geometrically-Bott-Chern-formal if HZ;C (M) has a structure of algebra
induced by the A product, i.e., if for every two Bott-Chern harmonic forms « € HE4 (M),

Apc
B e HZ‘;C (M), we have that

aABeHTIT (M,

Apc

in particular, by the characterization (2.1),
aAB)=0, daAB) =0, 33x, (a@Ap)=0.

It is clear that, since first two conditions are always satisfied by Leibniz rule, since o and
B are d-closed, the only condition that needs to be checked (and the only one involving the
metric g) is 39 *g (A B) =0.

It turns out that Aeppli—Bott-Chern—Massey products are an obstruction to the existence
of geometrically-Bott-Chern-formal metrics, as proved in [9].

Theorem [9, Theorem 2.4] Triple Aeppli—Bott-Chern—Massey products vanish on compact
complex geometrically-Bott-Chern-formal manifolds.

7 Geometric Bott-Chern formality and Strong Kahler with Torsion
metrics

In this section we investigate the relation between the notions of SKT metrics and
geometrically-Bott-Chern-formal metrics in the setting of nilmanifolds endowed with a left-
invariant complex structure J and a Hermitian metric g.

In complex dimension 3, the existence of SKT metrics is fully characterized by Fino,
Parton, and Salamon, in terms of the complex structure equation of the manifold, as we recall
in the following.

Theorem 7.1 [19, Theorem 1.2] Let M = T'\G be a 6-dimensional nilmanifold with an
invariant complex structure J. Then the SKT condition is satisfied by either all invariant
Hermitian metrics g or by none. Indeed, it is satisfied if and only if J has a basis (¢') of
(1, 0)-forms such that
da! =0
do? =0 (7.1)
do’ = Aa'? + Ba?? + Call + Da'? + Eal?
where A, B, C, D, E are complex numbers such that

|A)? +|D)? + |E|*> 4+ 2%Re (BC) = 0. (7.2)

We will refer to 6-dimensional nilmanifolds satisfying (7.1) and (7.2) as Fino—Parton—
Salamon-nilmanifolds, shortly FPS-nilmanifolds and we will denote the Lie algebra of the
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group G by the symbol g. As a consequence of Theorem 7.1, any left-invariant Hermitian
metric on a FPS-nilmanifold is SKT.
By this classification result, we are able to prove the following theorem.

Theorem 7.2 Let (M, J) be an FPS-nilmanifold. Then, any left-invariant metric is geometrically-
Bott-Chern-formal.

Before proving Theorem 7.2, we will need the following lemma for the 39 operator on this
class of manifolds.

Lemma 7.3 Let (M, J) be a FPS-nilmanifold. Then,

a5|/\,,,qg =0.

Proof of Lemma 7.3 We begin by observing that it suffices to prove that 39033 = 0. In fact,
let us consider the left invariant (p, g)-form on M

o=a " A Aalr /\05-71 A---ocj‘i.
We note that if o does not contain a2, then 890 = 0. In fact, let us consider the two cases:

(1) ix #3,j; #3foreveryk € {1,..., pl.l e {1,....q}.
(2) i = 3 for some k eﬁ{l,.;.,p} and j; # 3 foreveryl € {1, ..., g}, oriy # 3 for every
kefl,....,p}and j, =3 forsomel € {1, ..., q}.

In case (1), by structure equations (7.1) we immediately have that da’* = da/t = 0.
Hence, by Leibnitz rule, 330 = 3(do) = 0.

For case (2), we first assume that iy, = 3fork € {1, ..., p} andj, #* 3, forj e{l,...,q}.
Then, up to a sign change, by Leibnitz rule we have that 90 = 9> A &, where 6 is o from
which we remove &3. Since da® = Aa!? + Ba?? + Ca'l + Da!?, we can write that

9o =AaP A6 +BaP A6 +Call A6+ Dal? A6,

Since do does not contain &> nor 3, once again by (7.1) and Leibnitz rule, we obtain

930 = 3(30) = 0. Analogous complltati()lls can be carried out for the other case, i.e., when
iy # 3 foreveryk e {1,...,3} and j, =3 forsomel € {1, ..., q}.

Let us then compute 99«3, If g is any left-invariant metric on (M, J) with fundamental
form

.3
! i, 1 kh _ 7= __hk
F=3 ]; Fge + 2 k%:l (Fige™ = F ™)

then, by the above argument 39 F = £ F;509a. By Theorem 7.1, any left-invariant Hermi-

tian metric on (M, J) is SKT, therefore, g is SKT, i.e., 30 F = 9933 = 0.
Therefore, up to swapping the forms and changing the sign accordingly, for a left-invariant
form o = a*3 Aé with 6 not containing e nor o>

we obtain that

, as a a consequence of the above argument

990 = 39(@>) A6 =0.

Then, by linearity of the 33 operator, we can conclude. O
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Proof of Theorem 7.2 First of all, we observe that the complex structure J on the nilmanifold
M := T'\G is nilpotent, i.e., there exists a basis of (1, 0)-forms {ai}?:l, such that do €

Spang (ol a"j)iz’ j=1- Hence, [6, Theorem 3.7] (see also [43, Corollary 3.12]) yields the

isomorphisms
HPA (g, J) < HEZ (M), (73)

i.e., the Bott-Chern cohomology of (M, J) can be computed via the subcomplex of left-
invariant forms.

Now, let g be a left-invariant metric on (M, J) with fundamental form F. We will show
that g is geometrically-Bott-Chern-formal. Let us then fix two Bott-Chern harmonic forms
B e HEA(M, g), y € Hz-(M, g). Then, the product B A y is Bott-Chern harmonic with
respect to g if, and only if,

dBAy)=0, 3%, (BAy)=0.

By Leibnitz rule, d(B A y) = 0 since both 8 and y are Bott-Chern harmonic. Moreover, by
Lemma 7.3, 33 (x¢8 A y) = 0,ie, BAy € Hhe "7 (M, g). Hence, g is a geometrically-
Bott-Chern-formal metric on (M, J). ]

A similar result also holds for a class of manifolds which generalizes the FPS manifolds
in higher dimensions.

Theorem 7.4 Let M be any 2n-dimensional nilmanifold endowed with an invariant integrable
almost complex structure J induced by a coframe {n', . .., 7"} of left invariant (1, 0)-forms
on (M, J) with structure equations given by

dnf =0, ie{l,....,n—1},
dn" € Span(n'/, n'); =1, .n-1.

Then, any invariant SKT metric is geometrically-Bott-Chern-formal.

Proof In a similar fashion to proof of Theorem 7.2, it can be shown that, if there exists a left
invariant SKT metric on (M, J), then 397" = 0, and in particular the 39 operator vanishes
on any left-invariant form on (M, J). Notice that the Bott-Chern cohomology of (M, J)
can be computed via the subcomplex of left-invariant forms and its Bott-Chern harmonic
representatives are invariant since the complex structure J is nilpotent and [6, Theorem
3.8] applies. Hence, if g is a SKT metric on (M, J) and we take two Bott-Chern harmonic
forms « and B of bedegree (p, q), respectively (r, s), then o and § are left-invariant and
a A B e NPT g satisfies d(a A ) = 0 and by, structure equations, 39 (xga A B) = 0.
Therefore o A B is Bott-Chern harmonic, i.e., the product of two left-invariant Bott-Chern
harmonic forms with respect to g is Bott-Chern harmonic. This implies that every left-
invariant SKT metric is geometrically-Bott-Chern-formal. O

In higher dimension and under more general conditions on the complex structure of the
nilmanifold, however, similar results do not hold. Certain products of compact complex
surfaces, e.g., are SKT but do not admit geometrically-Bott-Chern-formal metrics, as proved
in the following theorem.

Theorem 7.5 Let (M, J) be the product of either two Kodaira surfaces, two Inoue surfaces,
or a Kodaira surface and a Inoue surface. Then (M, J) admits SKT metrics but does not
admit geometrically-Bott-Chern-formal metrics.
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Proof We begin by noticing that given the product of any two of the above compact complex
surfaces (M, J) = (M’, J") x (M", J"), such manifold admits an SKT metric.

Let us consider the product metric g := g’ +g”, given by the sum of the diagonal constant
metrics g’ and g” with respect to certain coframes {n', n%} and {5>, n*} on, respectively,
(M’,J"yand (M"”, J") and let

F = IE (an + nli) , F! — IE <n3§ + 7741)

be the fundamental forms associated to, respectively, g’ and g”. By a dimension argument,
we have that on each factor

99F =0, 93F" =0.
Therefore, if F := F’ + F”, it is clear that
J0F =99F +3dF" =0,

i.e., the product metric g is SKT on (M, J). (We will refer to such metric by g.)

We will show that none of the above product manifolds admits geometrically-Bott-Chern-
formal metrics by exhibiting a non vanishing Aeppli—Bott-Chern—Massey product on each
manifold.

Note that on each product, Bott-Chern and Aeppli cohomologies can be computed via the
subcomplex of invariant complex forms, as follows. First of all, the de Rham cohomology
and the Dolbeault cohomology of compact surfaces diffeomorphic to solvmanifolds can be
computed in terms of invariant forms, see, e.g., [7]. Therefore, applying Kunneth formula,
it follows that the de Rham and the Dolbeault cohomologies of the product of any two such
surfaces can be computed in terms of the invariant forms. By [6, Theorem 3.7], also the
Bott-Chern and Aeppli cohomologies can be computed in terms of the invariant forms.

(i) The product of two Kodaira surfaces of primary type.

Let(M,J) = (KT, Jxk1)x (KT, Jgr) be the product of two Kodaira surfaces. The complex
structure J is determined by the coframe {5', 2, 53, n*} of left-invariant (1, 0)-forms such
that its structure equations read

dn' =0
d 2 _ A 11
T (7.4)
dn® =0
dn* = B,
for A, B € C\ {0}.
From (7.4), it is easy to see that the following Bott-Chern cohomology classes
' se, P 1se, 'lse,
are non zero. Also, we have that
— — _ 1 — —
11 33 24 33 3
U ( a5 ) nAn (

Then, it is well defined the following Aeppli—-Bott-Chern—Massey product

1T 33 3 _ _L 231}
{[n""1Bc, [n”"1Bc. [n°1BC)ABC = [ AE” i
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Hy' (M)
1,0 1T 1,1 3
Hy (M) U [n ]BC+HA (M)V [n°]sc

Since d * n2 —d (7712314) = 0, the form 5>3* is Aeppli harmonic, hence, as a cohomology
class in Hi’ (M), we have that
1 m]
[ — O.
[ VA P

It remains to show that [ AIB 234] ¢ Hy' (M) U [n'Mc + Hy' (M) U [ ]sc.
Let us then suppose, by contradiction, the opposite, i.e.,

hl,O hl,l
1 . i 17 - j 3 Y
riE' A + siv! An° +0R+ 98, 7.6
ABn ;_1 i A ;:] v A (7.6)

where By := dim HY (M, g),ri,s; € C,R € AVN(M), S € A20(M) and {g'} and {y/}
are the left-invariant harmonic representatives of, respectively, H A (M ), and H: A (M ), with
respect to g.

It is immediate to compute the invariant Aeppli cohomology of (M, J) of bi-degree (1, 0)
and (1, 1), resulting in

=y, &=y, =0, =0

vl = nli vt = n1§ v = an Yt = nzT v = nzi v = nzi vl = nﬁ

5 3 T T 3 : AB
WS = 32 g0 =B, 0= 3R gl A 12 3 13 28 7742
AB
Then, Eq. (7.6) can be rewritten as
1 — — — — — — — — —
_50234 = — 2T 3T g g 132 133 138 23T (23
233 341 343

1 AB
+312n344—S13ﬂ2 —S13=— 342+8R~|—8S.
AB
(1.7)

— 6 +s10m”" +s1n

12134 ;

We note that the form n is d-closed. Therefore, if we multiply (7.7) by 2134, we obtain

0= sl3£n1234ﬁ +9 (R A 7712@) +5<S A nlzm) ’
AB
ie.,

SB%B Vol = 3 ( 12@) ) (—S A nlzm) . (1.8)

By integrating (7.8) and applying Stokes theorem on a manifold with empty boundary, we
obtain that s;3 = 0. -

If we repeat the same argument, multiplying now (7.7) by the d-closed form n'*123, we
obtain

1 I _ —
Lvor=a (R g ) 3 (s g ),
AB

which, by integrating and Stokes theorem, leads to a contradiction.
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To summarize,

("Mse. 1 1sc, *1sc) ase # 0,

i.e., we obtained a non vanishing Aeppli—Bott-Chern—-Massey product, which, by [9, Theorem
2.4], implies that (M, J) does not admit geometrically-Bott-Chern-formal metrics.

(ii) The product of two Inoue surfaces of type Sy;.

Let (M, J) = (Su., Js,,) % (Sm. Js,,) be product of two Inoue surfaces of type Sys. The
complex structure J is determined by the left invariant (1, 0)-coframe {n', 2, 5, n*} with
structure equations

d’ll _ aZip 12 _ a—iiﬂ 12

oy |
dn? = —ian??
dpd = Y834 y=is _ y—is 3 (7.9)
= T T
dn* = —iyn*,

fora, y € R\{0}, 8,8 € R.
From (7.9), it is clear that the following Bott-Chern cohomology classes
[T U PYR Ul

[n BC

are well defined and non zero. Moreover,
_ - . 1 _ - _
7722 A 77343 -9 <_2 ) '7233’ 77343 A 7744 -0,
ay
hence the following Aeppli-Bott-Chern—Massey product
— — — 1 J—
(Inge- 18, 1*1se) ase = [—n”‘”“}
ay A
H2 (M)
€1 > 2.1 i’
Hy Un?lc + Hy (M) U [n*]pc

is well defined. o B -
Note that since d (4 n23434) = —d (17121) = 0, the form n23434 is Aeppli-harmonic and,

as a Aeppli cohomology class,
l —
|:7n23434i| £0.
oy A

It remains to show that [$ n234ﬂ]A ¢ Hﬁ’l U [nzj]gc + Hi’l (M) U [)’)41]3(‘. In order to
do, we prove that Hi’l (M) = {0}, yielding that Hi’l Un*sc + Hi’l (M)U [n**]gc = 0.
By definition, we observe that

Ker (37| )
A2L(M
HY' (M) = o

With the aid of structure equations (7.9) and Sagemath, we can compute
dimc Ker(85|/\2,| g) =15

dime Im(3) 1.1 ) = 12

@ Springer



55 Page 22 of 27 T. Sferruzza, A. Tomassini

dimc Im(9) p20g) =6
dime Im(3] 11 ) N Im(5|/\z.og) =3,
so that
dime Hj'' (M) = dime Ker(39) 2.1 ) — dime(Im(@) , 11 ) +Im(@} 20 )
=15-(18-3) =0.

Therefore, Hi’] (M) = {0} and

— — — ] J—
(1*1sc. ™ 1sc. *™1sc) asc = [*7723434} # 0,
ay A
which, by [9, Theorem 2.4] implies that (M, J) does not admit any geometrically-Bott-
Chern-formal metric.
(iii) The product of a Inoue surface of type S;; and a primary Kodaira surface

