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Abstract
Given coprime positive integers g1 < . . . < ge, the Frobenius number F = F(g1, . . . , ge) is
the largest integer not representable as a linear combination of g1, . . . , ge with non-negative
integer coefficients. Let n denote the number of all representable non-negative integers less
than F ; Wilf conjectured that F + 1 ≤ en. We provide bounds for g1 and for the type of
the numerical semigroup S = 〈g1, . . . , ge〉 in function of e and n, and use these bounds

to prove that F + 1 ≤ qen, where q =
⌈

F+1
g1

⌉
, and F + 1 ≤ en2. Finally, we give an

alternative, simpler proof for theWilf conjecture if the numerical semigroup S = 〈g1, . . . , ge〉
is almost-symmetric.
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Type · Almost symmetric numerical semigroup

Mathematics Subject Classification 05A99 · 11B75 · 20M14

1 Introduction

The classical money-changing problem consists of finding what sums of money can be
changed, using e different denominations of coins 2 ≤ g1 < . . . < ge. Assuming, without
loss of generality, that gcd(g1, . . . , ge) = 1, it is well-known that only a finite number of
sums cannot be changed, and there exists a maximum integer F = F(g1, . . . , ge) which
cannot be represented as a linear combination of the generators g1, . . . , ge, with coefficients
in the set of natural numbers N.

Determining this maximum integer F , called the Frobenius number, is the subject of
the Diophantine Frobenius Problem. This challenging problem has been extensively studied
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over the past decades, and presents applications in several areas of mathematics, including
Commutative Algebra, Combinatorics and Coding Theory (see [9] for a monograph on this
problem). Nonetheless, as of today there is an exact solution only for the special case e = 2,
where Sylvester showed that F = g1g2 − g1 − g2. In the general case, it is known that
no polynomial formula for F in function of g1, . . . , ge can exist (cf. [3]), and presently the
literature is mostly focused on finding algorithms and bounds for F .

In 1978,H.S.Wilf proposed an upper bound for the Frobenius number F (cf. [11]), namely

F + 1 ≤ en, (1)

where n is the number of solutions of the money-changing problem for g1, . . . , ge less than
F (actually, Wilf’s original question was a lower bound for e, but we choose this equivalent
and simpler formulation of his conjecture).

This problem, now known as theWilf Conjecture, has been considered by several authors;
however, only special cases have been solved. For instance, it is known that the Conjecture
is true in the following cases: e ≤ 3 (cf. [7]), |N\S| ≤ 65 (where S denotes the numerical
semigroup generated by g1, . . . , ge; cf. [2]), e ≥ g1

3 (cf. [6]), when g1 is large enough and

its prime factors are not smaller than

⌈
g1
e

⌉
(cf. [8]), if F + 1 ≤ 3g1 (cf. [5]). Most notably,

the last case, due to Eliahou, coupled with a previous result by Zhai (cf. [12]), infers that the
Wilf Conjecture is, in a sense, asymptotically true; the survey [4] describes the state of the
research on the Wilf Conjecture.

Despite this vibrant literature, the general case is still very elusive, and in fact, no bound
for F in function of e and n, that holds true for all numerical semigroups, is known. In this
work, we provide such a bound, by virtue of a bound for the smallest generator g1 in function
of e and n.

Theorem 1 Let g1 < . . . < ge be coprime positive integers larger than 1, let F be the
Frobenius number, n be the number of integers less than F which are representable as a

linear combination with coefficients in N of g1, . . . , ge, and q =
⌈
F + 1

g1

⌉
. Then

(1) F + 1 ≤ qen;
(2) F + 1 ≤ en2.

Then, we provide a bound for the type of the numerical semigroup S = 〈g1, . . . , ge〉 in
function of e and n, and use this bound to give an alternative proof of the Wilf Conjecture
when the numerical semigroup S is almost-symmetric.

2 Main result

Let Z denote the set of integers, and N the set of non-negative integers. Given e ≥ 2 and
g1, . . . , ge ∈ N such that gcd(g1, . . . , ge) = 1, it is well-known that the set

S = 〈g1, . . . , ge〉 = {a1g1 + . . . + aege | ai ∈ N}
is a submonoid of (N,+) such that the setN\S is finite; a monoid S satisfying this property is
called a numerical semigroup (see [10] for a detailed monograph on this algebraic structure).
With the notation S = 〈g1, . . . , ge〉we will assume that {g1, . . . , ge} is a minimal generating
system (which is unique for any numerical semigroup) for S, and we will thus say that e
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is the embedding dimension of S. We also denote by F the Frobenius number of S, that is,
F = maxZ\S. Denote by N (S) = S ∩ [0, F] the set of elements of S less than F (called
small elements), and let n = |N (S)|.

Given an element m ∈ S, define the Apéry set of S with respect to s as

Ap(S,m) = {ω ∈ S | ω − m /∈ S}.
Clearly Ap(S,m) consists of the smallest elements of S in every residual class modulo m,
therefore 0 ∈ Ap(S,m), max Ap(S,m) = F + m and |Ap(S,m)| = m.

Our first result is a bound for the smallest generator g1 (often called the multiplicity) of
S, in function of e and n. The main result is a direct corollary of this bound.

Theorem 2 Let 2 ≤ g1 < . . . < ge be coprime positive integers, and let S = 〈g1, . . . , ge〉.
Then

g1 ≤ (e − 1)n + 1.

Proof Define the map

ϕ : Ap(S, g1) \ {0} → P(N (S) × {g2, . . . , ge}), ϕ(ω) = {(ω − gi , gi ) | ω − gi ∈ S}.
This map is well defined since, if ω ∈ Ap(S, g1)\{0}, then ω ≤ F +g1, therefore ω−gi ∈ S
implies ω − gi ∈ N (S). Moreover, for every ω ∈ Ap(S, g1)\{0}, there exists a generator
gi such that ω − gi ∈ S, and therefore ϕ(ω) 	= ∅. Finally, for ω1, ω2 ∈ Ap(S, g1) \ {0}, if
(s, gi ) ∈ ϕ(ω1)∩ϕ(ω2) then s = ω1 − gi = ω2 − gi and thus ω1 = ω2: hence the sets ϕ(ω)

are pairwise disjoint. Therefore the collection {ϕ(ω)}ω∈Ap(S,g1)\{0} is a partition of a subset
of N (S) × {g2, . . . , ge}, and thus we conclude that
g1 − 1 = |Ap(S, g1) \ {0}| ≤

∑
ω∈Ap(S,g1)\{0}

|ϕ(ω)| ≤ |N (S) × {g2, . . . , ge}| = n(e − 1).

��

Proof of Theorem 1 By Theorem 2, we know that g1 ≤ (e − 1)n + 1, thus multiplying by q
and remembering that n ≥ 1, we obtain

F + 1 ≤ g1q ≤ q(e − 1)n + q = qen − qn + q ≤ qen.

Finally, since by definition of q we have {0, g1, 2g1, . . . , (q − 1)g1} ⊆ S ∩ [0, F] = N (S),
we have q ≤ n, therefore

F + 1 ≤ qen ≤ en2.

��

For a numerical semigroup S = 〈g1, . . . , ge〉, define the set of pseudo-Frobenius numbers
of S as the set

PF(S) = {ω /∈ S | ω + s ∈ S for every s ∈ S \ {0}}.
The cardinality of PF(S) is called the type of S, denoted by t . Since for every ω ∈ PF(S)

and m ∈ S\{0}, ω + m ∈ Ap(S,m)\{0}, we have t ≤ g1 − 1. Our next result is a bound for
t in function of e and n.
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Theorem 3 Let 2 ≤ g1 < . . . < ge be positive coprime integers, let S = 〈g1, . . . , ge〉, and
define q =

⌈
F + 1

g1

⌉
≥ 1. Then

t ≤ (e − 2)[n − q + 1] + 2 ≤ (e − 2)n + 2.

Proof Assume that there are two elements f1, f2 ∈ PF(S) such that f1 = λ1g2 − g1 and
f2 = λ2g2−g1, with λ1, λ2 ∈ N and λ1 > λ2; then s = f1− f2 = (λ1−λ2)g2 ∈ S, yielding
f2 + s = f1 ∈ S, a contradiction. Then there is at most one element of the form λg2 − g1 in
the set PF(S); let f2 be such an element (if it exists), and let PF ′(S) = PF(S) \ {F, f2}
(if f2 does not exist, then take PF ′(S) = PF(S)).

Define the function ϕ : PF ′(S) → P(N (S) × {g3, . . . , ge}) as ϕ( f ) = {(s, gi ) | s =
f + g1 − gi ∈ S}. This function is well-defined since (s, gi ) ∈ ϕ( f ) is such that s =
f +g1−gi < f ≤ F , ϕ( f ) 	= ∅ (because, being f 	= f2, f +g1 cannot be of the form Kg2,
for some integer K ), and clearly ϕ( f ) ∩ ϕ( f ′) = ∅ if f 	= f ′, since (s, gi ) ∈ ϕ( f ) ∩ ϕ( f ′)
would imply f = s+ gi − g1 = f ′. Therefore the collection {ϕ( f )} f ∈PF ′(S) is a partition of
a subset of N (S)×{g3, . . . , ge}. Moreover, our choice of q means that for i = 1, . . . , q − 1,
ig1 ∈ N (S), but if (ig1, gi ) ∈ ϕ( f ) for some f and gi , then f = ig1 + gi − g1 ∈ S, which is
impossible. Therefore for every i = 1, . . . , q − 1 and j = 3, . . . , e, (ig1, g j ) cannot belong
to any set ϕ( f ). Combining these facts, and remembering that q ≥ 1, we obtain

t − 2 ≤ |PF ′(S)| ≤
∑

f ∈PF ′(S)

|ϕ( f )| = |
⋃

f ∈PF ′(S)

ϕ( f )| ≤ (e − 2)[n − q + 1] ≤ (e − 2)n.

��
Let S = 〈g1, . . . , ge〉 be a numerical semigroup. We say that S is almost-symmetric if, for

every x /∈ S, either F − x ∈ S or {x, F − x} ⊆ PF(S). Partitioning the interval [0, F] in
couples {x, F − x}, it is simple to see that, for an almost-symmetric numerical semigroup,
2n + t = F + 2. Then Theorem 3 can be used to provide an alternative proof of Wilf’s
Conjecture for almost-symmetric numerical semigroups (see [1] for the original proof).

Corollary 4 Almost symmetric numerical semigroups satisfy Wilf’s conjecture.

Proof Let S be an almost symmetric numerical semigroup, S 	= {0, g1,→} (in this case it is
immediate to check that the Wilf Conjecture still holds). Then in Theorem 3 we have q ≥ 2,
and thus

t ≤ [e − 2][n − 1] + 2 = [e − 2]n − e + 4.

By definition of almost symmetric numerical semigroup we have 2n + t = F + 2, hence
assuming that e ≥ 4 (we recall that Wilf’s Conjecture holds in case e ≤ 3) we have

F + 1 ≤ en − e + 3 < en.

��
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