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Abstract
In this paper, we study varieties admitting torus actions as geometric realizations of birational
transformations. We present an explicit construction of these geometric realizations for a
particular class of birational transformations, and study some of their geometric properties,
such as their Mori, Nef and Movable cones.
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1 Introduction

Birational transformations of the projective space are called Cremona transformations, in
honor of Luigi Cremona, who studied them in the 1860s (cf. [12, 13]). Among them, the
standard Cremona transformation of the plane

P
2 � [x0, x1, x2] ��� [x1x2, x0x2, x0x1] ∈ P

2

was apparently known to Plücker andMagnus in 1830s, as indicated in Coble’s surveywritten
100 years ago (see [11] and references therein).

In the 1990s, Thaddeus and Reid linked birational geometry and the risingMinimalModel
Theory to Mumford’s Geometric Invariant Theory from the 1960s (GIT, [18]), which was
based on Hilbert’s fundamentals from 1890s, see [24]. Subsequently, the concept of the
algebraic cobordism was introduced by Morelli in the toric case, and by Włodarczyk in full
generality in the late 1990s [25]. The highlight of this approachwas a proof of the factorization
conjecture for birational maps of smooth projective varieties by Abramovich et al. [1].

In the present paper we adopt a view on birational maps similar to the one of Morelli
and Włodarczyk. Namely, we describe a birational map among complex projective varieties
of dimension n (in particular a Cremona transformation) in terms of an algebraic action of
the group C

∗ on a (projective) variety of dimension n + 1; such a variety will be called a
geometric realization of the birational map. For example, let us consider the action ofC∗ with
coordinate t on the product of three copies of P1 = C ∪ {∞}, each with (inhomogenenous)
coordinate yi :

C
∗ × (P1 × P

1 × P
1) � (t, (y1, y2, y3)) −→ (t y1, t y2, t y3) ∈ P

1 × P
1 × P

1

There exist 8 fixed points of this action which are the triples (y1, y2, y3) with yi = 0 or ∞
and one can illustrate the action with the following diagram, representing the fixed points
and the shortest nontrivial orbits (for clarity we do not label every fixed point).

• (0, 0, 0)

• (∞, 0, 0)

•

• (0, 0,∞)

•(∞,∞, 0)

•

•(0,∞,∞)

•(∞,∞,∞)
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Geometric realizations of birational… Page 3 of 22 45

The “flow” of the action in this diagram is from right to left; the rightmost point is called
the source and the leftmost point the sink of the action. The three vertical shaded sections
of the diagram represent three GIT quotients, depending on the stability conditions. The
triangular section on the right-hand side represents P2 parametrizing orbits diverging from
the source, hence with homogeneous coordinates [x1 : x2 : x3]. The section on the left-hand
side representsP2 parametrizing orbits converging at∞ to the sink, hencewith homogeneous
coordinates [x−1

0 : x−1
1 : x−1

2 ]. If a general orbit has coordinates [x0 : x1 : x2] close to the
source then its coordinates close to the sink are [x−1

0 : x−1
1 : x−1

2 ] = [x1x2 : x0x2 : x0x1].
We say that the variety P

1 × P
1 × P

1 endowed with the C
∗-action introduced above is a

geometric realization of the standard Cremona transformation.
In addition, the middle hexagonal section describes the intermediate (geometric) GIT

quotient. This is the blowup of P2 in three points, that resolves the Cremona map; that is,
it can be blown down to each of the two P

2’s. In higher dimensions the blowdowns have to
be replaced by more complicated birational operations like flips. Yet, as a general principle,
presentation of a birational map by variation of quotients of a suitably chosen C

∗-action
allows us to decompose the map as a sequence of simpler birational transformations. Based
on this principle, Włodarczyk proved his decomposition theorem.

Let us note that, if a birational map admits a geometric realization, then universal objects
for GIT theory, such as Chow or Hilbert quotients, if they are smooth, should provide a
strong factorization of the map. This idea has been used in [17] to resolve the birational map
determined by the inversion of matrices.

A natural question that appears in this setting, that is the main motivation of this paper,
is how to construct explicit geometric realizations of birational maps. The problem has been
already tackled in [21], where the question has been solved for Atiyah flips [21, Section 6]
and for special quadro-quadric Cremona transformations (see Sect. 3 below). In this paper
we go one step further in this direction by constructing smooth geometric realizations for
bispecial transformations, a class of birational maps that contains special quadro-quadric
Cremona transformations.

Outline. In the first part of the paper we present background material on C
∗-actions and

describe the birational transformations they define (Sect. 2). In particular, in Sect. 2.8 we
introduce the central subject of the paper: namely, the definition of geometric realization
of a birational transformation. In Sect. 3 we recall the classification of equalized actions of
bandwidth three with isolated sink and source, and the relation with special quadro-quadric
Cremona transformations. This classification leads to the following statement (Theorem 3.2,
see also Notation 3.1 for conventions regarding rational homogeneous varieties):

Theorem Any quadro-quadric Cremona transformation with smooth nonempty fundamental
locus admits a geometric realization, given by an equalized C

∗-action of criticality three in
one of the following varieties:

P
1 × Qn−1, C3(3), A5(3), D6(6), E7(7).

The last two sections are devoted to the construction of geometric realizations of bispecial
transformations. First (Sect. 4), we show how to construct geometric realization in the case
in which the transformation is bispecial between smooth projective varieties. The main result
of this section is the following:

Theorem Let ψ be a bispecial birational transformation between smooth polarized varieties.
Then there exists a smooth B-type equalized geometric realization of ψ of criticality three.
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45 Page 4 of 22 G. Occhetta et al.

Furthermore, we show that such a geometric realization is unique under some additional
assumptions (see Theorem 4.6 for the precise statement).

Then, in Sect. 5, we study some geometric properties of these realizations, encoded in their
Nef, Mori and Movable cones (Propositions 5.2, 5.3). For simplicity we focus on the case of
birational transformations between varieties of Picard number one. In particular we discuss
when the sink and the source of the geometric realizations may be equivariantly contracted to
points, and when the (non B-type) geometric realization of ψ obtained in this way is smooth
(Theorems 5.5, 5.6).

2 C
∗-actions

This section contains some results, notation and conventions regarding C
∗-actions and the

birational transformations that they induce. We refer the interested reader to [2, 4, 10, 20,
21] for details and further results.

Let X be an irreducible complex algebraic variety. By C
∗-action on X we will always

refer to a morphical C∗-action on X , that is an action of the group C∗ on X , whose defining
map

C
∗ × X → X

is a morphism of algebraic varieties. The action of t ∈ C
∗ on x ∈ X will be always denoted

by t x . We will usually consider X to be proper.

Remark 2.1 We will use later on the fact that if Y ⊂ X is a C∗-invariant closed subset of X ,
then the action extends to the blowup of X along Y :

β : X � → X .

This holds also for the projectivization of theOX -algebra
⊕

m≥0 Im
Y with respect to a grading

different from the natural one. In other words, the C∗-action on X extends to any weighted
blowup of X along a C∗-invariant closed subset.

2.1 Fixed-point components

We will denote by XC
∗
the set of fixed components of the action, whose union is a closed set

in X , and by Y the set of its irreducible components. If X is proper, then we may consider,
for a general point x ∈ X , the limiting points

lim
t→0

t−1x, lim
t→0

t x ∈ X ,

called, respectively, the sink and the source of the orbit C∗x . The components Y−, Y+ con-
taining them are called, respectively, the sink and the source of the action. The rest of the
fixed-point components are called inner, and their set is denoted by Y◦. Moreover, if X is
smooth and projective, every Y ∈ Y is smooth (cf. [15, Main Theorem]).

2.2 Linearizations and weight maps

Given a line bundle L on X , a linearization on L of the C∗-action on X is an action of C∗ on
L such that the projection map L → X is equivariant and the action is linear on the fibers
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of L → X . If X is normal and projective, linearizations exist for any line bundle on X (see
[16, Proposition 2.4], and the Remark right after it). Given a fixed-point component Y ∈ Y ,
C

∗ acts on L |Y by multiplication with a character μL(Y ) ∈ M(C∗) = Hom(C∗,C∗) = Z,
which is called weight of the linearization on Y .

The map μL : Y → Z obviously depends on the linearization on L , but one may easily
prove that two linearizations on a line bundle L differ by a character of C∗; then we may
always choose the linearization so that μL has a prescribed value on a certain fixed-point
component. Usually we will choose the linearization so that μL(Y−) = 0, and call μL(Y )

the L-weight of the action on Y , for every Y ∈ Y . Note that with this convention we may
write μmL = mμL for every m ∈ Z.

If L is ample the minimum andmaximum value of the weights are achieved at the sink and
the source of the action, respectively (see [21, Remark 2.12]). In particular, the difference δ :=
μL(Y+) − μL(Y−), that is called the bandwidth of the C

∗-action on (X , L), is independent
of the chosen linearization.

2.3 Actions on polarized pairs. Criticality

A C
∗-action on a projective variety X , together with a linearization on an ample line bundle

L on X will be referred to as a C∗-action on the polarized pair (X , L). Denoting by

{a0 = 0, . . . , ar =: δ} (with a0 < · · · < ar )

the set μL (Y) ⊂ Z of L-weights of the action, we set:

Yi :=
⋃

μL (Y )=ai

Y ⊂ X .

The number r , which does not change if we substitute L by a multiple, is called the criticality
of the C

∗-action on (X , L). The minimum of the criticalities of the C∗-actions on the pairs
(X , L), when L varies in the set of ample divisors on X , will be called the criticality of the
C

∗-action on X .

2.4 The Biaynicki-Birula decomposition

We refer to [10] for a complete account on the Białynicki-Birula decomposition and its
applications, and to [4] for the original reference; let us describe here the contents of this
decomposition theorem. Assume that X is a proper variety admitting a C∗-action as above.
Given any set S ⊂ X , we in the following formula (1), the comma should be replaced with
a point

X±(S) := {x ∈ X | lim
t±1→0

t x ∈ S}. (1)

When S = Y with Y ∈ Y we call X±(Y ) the positive and the negative Białynicki-Birula
cells of the action at Y , so that we have a decomposition:

X =
⊔

Y∈Y
X+(Y ) =

⊔

Y∈Y
X−(Y ).

If X is smooth, C∗ acts (fiberwise linearly) on the normal bundle NY |X of Y in X . The
weights of the action on the fibers of the bundle are the same for every point of Y , andNY |X
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splits into two subbundles, onwhichC∗ acts with positive and negativeweights, respectively:

NY |X � N+(Y ) ⊕ N−(Y ). (2)

Then the action of C∗ on X±(Y ) is equivariantly isomorphic to the induced action on the
bundles N±(Y ).

Remark 2.2 If X is smooth, we will set, for every Y ∈ Y

ν±(Y ) := rkN±(Y ), (3)

so that from the Białynicki-Birula decomposition it follows that:

dim(X) = dim(X+(Y )) + ν−(Y ) = dim(X−(Y )) + ν+(Y ) (4)

for any Y ∈ Y . In particular, this implies that ν±(Y ) ≥ 1 for every inner fixed-point compo-
nent Y ∈ Y◦; in fact, if, for instance, ν+(Y ) = 0 for some Y ∈ Y , then (4) says that X−(Y )

is dense in X , and so Y is the sink of the action.

2.5 Geometric quotients

Recall that a linearization of the C
∗-action on a line bundle L over X provides a weight

decomposition on H0(X , L):

H0(X , L) =
⊕

u∈Z
H0(X , L)u,

where H0(X , L)u ⊂ H0(X , L) stands for the vector subspace of C∗-weight u. If L is ample
and globally generated, one may show (cf. [9, Lemma 2.4 (3)]) that the extremal values for
which H0(X , L)u �= {0} are μL (Y−) = 0, μL(Y+) = δ. In fact, the quoted statement shows
that the convex hull�(L) of the weightsμL(Y ), Y ∈ Y (which in our case is [0, δ]) coincides
with the convex hull �(L) of the weights of the induced action on H0(X , L).

Let us now recall how to construct algebraically the geometric (and semigeometric quo-
tients) of the polarized pair (X , L); we refer the interested reader to [5] and [20, Section 2.2]
for details. Given a C∗-action on a pair (X , L), with μL (Y) = {a0 = 0, . . . , ar = δ}, and
given any rational number τ ∈ [0, δ] ∩ Q we may consider the graded C-algebra

RL,τ :=
⊕

m≥0
mτ∈Z

H0(X , mL)mτ .

It is known that the projectivization of RL,τ is a GIT quotient of an open set Xs ⊂ X of stable
points by the action of C∗. More precisely, Proj(RL,τ ) is a geometric quotient if τ �= ai for
every i , and a semigeometric quotient otherwise. Furthermore, given two rational numbers
τ, τ ′ ∈ (ai−1, ai ) for some i , the varieties Proj(RL,τ ),Proj(RL,τ ′) are isomorphic, and it then
makes sense to define, for every i ∈ 1, . . . , r :

GXi := Proj(RL,τi ), i = 1, . . . , r ,

where τi is any rational number in (ai−1, ai ); the corresponding open set of stable base
points is denoted Xs

i ⊂ X . We call the varieties GX1, . . . ,GXr the geometric quotients of the
polarized pair (X , L).
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Remark 2.3 Following [5], the open sets Xs
i ⊂ X can be described in terms of sections of the

ordered set of fixed-point components Y; in this way one may see for instance that GX1,GXr

parametrize the 1-dimensional orbits converging, respectively, to the sink and the source,
that is X−(Y−) \ Y−, X+(Y+) \ Y+. In particular, these two quotients do not depend on the
particular polarization L , but only on the C∗-action on X .

2.6 Equalized actions

A C
∗-action on a proper variety X is called equalized at Y ∈ Y if for every x ∈ (

X−(Y ) ∪
X+(Y )

) \ Y the isotropy group of the C∗-action on x is trivial, and is called equalized if it is
equalized at every fixed-point component. By the Białynicki-Birula Theorem, if the variety
X is smooth, the equalization of the action is equivalent to the weights of the action on
N±(Y ) being all equal to ±1 for every fixed-point component Y ∈ Y (as presented in [23,
Definition 1]).

Note that if a C
∗-action is equalized, then the closure of any 1-dimensional orbit is a

smooth rational curve (see [21, Corollary 2.9]), whose L-degree may be then computed in
terms of the weights at its extremal points. The precise relation among these values has been
introduced in [23] as the AM vs. FM formula, that we present here only for equalized actions
(see [23, Corollary 3.2 (c)]):

Lemma 2.4 (AM vs. FM) Let X be a smooth projective variety admitting a nontrivial equal-
ized C

∗-action, L an ample line bundle on X, and let C be the closure of a 1-dimensional
orbit, whose sink and source are denoted by x− and x+. Then C is a smooth rational curve
of L-degree equal to μL(x+) − μL(x−).

2.7 B-type torus actions

Definition 2.5 Let X be a smooth projective variety admitting a C∗-action. We say that the
action is of B-type if its sink and source, Y−, Y+, are codimension one subvarieties.

If we start from a non B-type C∗-action, we may perform first a C∗-equivariant divisorial
extraction (Remark 2.1) centered in the extremal fixed-point components Y± in order to get a
B-type action, with the same 1-dimensional orbits as in the original variety. In the equalized
setting one can prove (cf. [21, Lemma 3.10]):

Lemma 2.6 Given a nontrivial equalized C
∗-action on a smooth projective variety X with

sink and source Y±, the induced C
∗-action on the blowup of X along Y± is of B-type.

Remark 2.7 The blowup operation substitutes the extremal fixed-point components Y± with
the projective bundles P(NY±|X ), which, by the Białynicki-Birula Theorem, are isomorphic
to the quotients of X±(Y±)\Y± by the action ofC∗, that is, the geometric quotients GX1,GXr

introduced in Sect. 2.5. If the action is not equalized, then a similar construction works if one
uses the weighted blowup with respect to the weights of the C∗-action on NY±|X instead of
the standard blowup; see [2, §3.2 and Lemma 4.4] for details.

Let us finally note the following:

Remark 2.8 If a B-type action is equalized, then the closure C of any orbit in X satisfies that
C · Y± = 1 (see [21, Remark 3.3]).
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2.8 Geometric realizations of birational maps

Given any nontrivial C∗-action on a polarized pair (X , L), with X normal and projective,
we consider the geometric quotients GXi = Xs

i /C
∗ defined in Sect. 2.5. Given i < r , the

intersection Xs
i ∩ Xs

i+1 is a C
∗-invariant open set in X , whose images into GXi and GXi+1

are nonempty open sets providing a birational map GXi ��� GXi+1. Summing up, we have
birational maps:

GX1 GX2 . . . GXr−1 GXr

In particular we have a birational map ψ : GX1 ��� GXr ; we will call GX1 and GXr the
extremal geometric quotients. As in Remark 2.3, ψ does not depend on the chosen ample
line bundle L , and it is called the birational map associated to the C

∗-action on X .

Remark 2.9 In the case in which X is smooth and the C∗-action on X is of B-type, then the
Białynicki-Birula theorem tells us that the extremal geometric quotients of X are precisely
the sink and the source Y±. Then, if we apply this to the blowup X � along the sink and the
source of a smooth variety X endowed with an equalized C

∗-action (see Lemma 2.6) we
obtain a birational map:

ψ : P(N∨
Y−|X ) P(N∨

Y+|X ).

As noted above (see [2, Lemma 4.4]), a similar approach is possible in the non-equalized
case via weighted blowups.

Definition 2.10 Given a birational map between two normal projective varietiesψ : M− ���
M+, a geometric realization of ψ is a normal projective variety endowed with a nontrivial
C

∗-action, whose extremal geometric quotients are isomorphic to M±, and whose associated
birational map is ψ .

Remark 2.11 One cannot expect birational maps to have unique geometric realizations, since
performing birationalC∗-equivariant transformations on a geometric realization of amap, we
obtain other realizations of the same map. For instance, assume that we start with a faithful
C

∗-action on a smooth variety X that has an inner fixed-point component Y . The C∗-action
on X naturally extends to the blowup X � of X along Y , and the birational maps associated
to the actions of C∗ on X and X � are obviously the same.

3 EqualizedC
∗-actions with isolated extremal fixed points

In this section, we review the classification theorem for bandwidth three varieties admitting
an equalized C∗-action with isolated extremal fixed points. This result was firstly motivated
in [23] by the LeBrun–Salamon conjecture. In fact, bandwidth three varieties appear naturally
as subvarieties of some Fano contact manifolds (see also [19, proof of Theorem 5.1]). The
important point that we want to stress is the tight relation of a C∗-action with the birational
transformation induced by it, which has been fundamental in the proof of this result. We will
explore deeply this idea in the following sections.

Before stating the main result of this section, let us introduce the notation regarding the
rational homogeneous varieties that will appear later on. Our notation is compatible with
our main source for this section, [21], and essentially presents every rational homogeneous
variety as the closed orbit of a projective representation of a certain semisimple group.
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Notation 3.1 In the following description we use the numbering of fundamental weights
provided in [7, Planche I–IX].

• A5(2),A5(3) denote, respectively, the Grassmannians of 2 and 3-dimensional linear
subspaces in a complex vector space of dimension 6. They are the closed orbits of the
projective representations of SL(6) (whose Lie algebra is determined by the Dynkin
diagram A5) given by the fundamental weights ω2, ω3.

• C3(3) denotes the Lagrangian Grassmannian parametrizing 3-dimensional vector spaces
in a complex vector space of dimension 6 that are isotropic with respect a given nonde-
generate skew-symmetric form. It is the closed orbit of the projective representation of
Sp(6) (whose Lie algebra is given by C3) given by the fundamental weight ω3.

• D6(6) denotes the Spinor variety parametrizing 6-dimensional vector spaces in a com-
plex vector space of dimension 12 that are isotropic with respect a given nondegenerate
symmetric form. It is determined by the fundamental weight ω6 of the Lie algebra with
Dynkin diagram D6.

• E6(1), called Cartan variety, denotes the closed orbit of the projective representation of
the adjoint group of the Lie algebra E6 given by its weight ω6.

• E7(7) denotes the closed orbit of the projective representation of the adjoint group of the
Lie algebra E7 given by its fundamental weight ω7.

• With this notation, smooth quadrics of dimension k = 2r − 1, 2r − 2 can be written as
Bk(1),Dk(1), respectively. Since in our discussion below the parity of the dimension of
the quadrics is irrelevant, we will simply denote them by Qk .

Theorem 3.2 [23, Theorem 4.5], [21, Theorem 8.1] Let (X , L) be a polarized pair, where X
is a smooth projective variety of dimension n ≥ 3, endowed with a C

∗-action of bandwidth
three. Assume that its sink and source are isolated points, and that the action is equalized.
Then one of the following holds:

(1) X = P(V∨), with V = OP1(1)
⊕n−1 ⊕ OP1(3), or OP1(1)

⊕n−2 ⊕ OP1(2)
⊕2, and L =

OP(V∨)(1). Moreover (Yi , L |Yi ) � (Pn−2,OPn−2(1)), i = 1, 2.
(2) X = P

1 × Q
n−1, L = O(1, 1), each Yi is the disjoint union of a smooth quadric Q

n−3

and a point, and L |Qn−3 � OQn−3(1).
(3) X is one of the following rational homogeneous varieties:

C3(3), A5(3), D6(6), E7(7),

L is the ample generator of Pic(X) and the varieties Yi are respectively

P
2, P

2 × P
2, A5(2), E6(1).

The restriction of L to Yi is the ample generator of Pic(Yi ), except in the case Yi � P
2,

in which L |Yi � OP2(2).

The proof of the above result has been done adopting different techniques in [21, 23]; we
refer to [23, Lemma 4.4] for the case n = 2. More precisely, in [23, Theorem 3.5] the authors
relate the classical adjunction theory and Mori theory with a combinatorial description of
C

∗-varieties; in this way types (1) and (2) of pairs (X , L) in the above list are described in
terms of their adjoint morphisms.

The classification in the case in which the Picard number of X is one (type (3) in the
statement) was later obtained in [21, Theorem 8.1] by considering the birational map ψ

associated to theC∗-action, which, since Y± are isolated points, is a Cremona transformation
ψ : Pn−1 ��� P

n−1 by Remark 2.9. Let us briefly discuss the different steps that lead to the
proof of the statement in this case.
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Fig. 1 Birational transformation of a bandwidth three variety with isolated extremal fixed points into a P1-
bundle

(Sketch of the proof (Pic(X) � Z))
Step 0. Prove that, since Pic(X) � Z, the two subvarieties Y1, Y2 are irreducible (cf. [21,
Lemma 2.8(2)]).

Step 1. Blow up X along Y±, to obtain a variety X� with a C∗-action whose extremal fixed-
point components are projective spaces Pn−1± . Denote by U1, U2 the closure of the Białynicki-
Birula cells X+

� (Y1), X−
� (Y2), respectively.

Step 2. Blow up X� along U1, U2, and let U�
1, U

�
2 be the corresponding exceptional divisors.

Denoting by X ′
� the resulting variety, show that there exists another divisorial contraction

X ′
� → X ′, whose restriction to the U�

i ’s is a nontrivial projective bundle different from the

projection U�
i → Ui . See Fig. 1 below.

Step 3. The variety X ′ inherits a C
∗-action whose sink and source (Y ′±) are respectively

isomorphic to the blowup of Pn−1− along U1 ∩ P
n−1− � Y1, and to the blowup of Pn−1+ along

U2 ∩ P
n−1+ � Y2. Since the criticality of the induced C

∗-action on X ′ is one (that is, it has
no inner fixed point components), it follows that the associated birational map among Y ′−
and Y ′+ is an isomorphism. In other words, the map ψ and its inverse can be resolved with a
smooth blowup.

Y ′− � Y ′+
blowup blowup

P
n−1− P

n−1+
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Step 4. An intersection theory computation (see the proof of [21, Theorem 8.4]) shows that
the bidegree of the birational map ψ is (2, 2).

Step 5. Since Y1, Y2 (which are the indeterminacy loci of ψ,ψ−1) are irreducible, we may
apply [14, Theorem 2.6] to conclude that ψ is one of the four quadro-quadric Cremona
transformations defined by the linear system of quadrics containing a Severi variety:

v2(P
2) ⊂ P

5, P
2 × P

2 ⊂ P
8, A5(2) ⊂ P

14, E6(1) ⊂ P
26.

Step 6. Reverting the construction described in Steps 1, 2 and 3 one shows that X is uniquely
determined by ψ . We then conclude by proving that the varieties

C3(3), A5(3), D6(6), E7(7)

admit C∗-actions whose birational transformations are the above ones. ��
Remark 3.3 The birational construction performed in Steps 1, 2 and 3 (represented in Fig. 1)
does not require the irreducibility of Y1, Y2, and can be extended to arbitrary bandwidth (see
[20, Theorem 3.1]).

Moreover, we may still claim that also in the cases of Picard number two of Theorem 3.2
the variety X admitting an equalized C

∗-action of bandwidth three with isolated extremal
fixed points is uniquely determined by the subjacent special Cremona transformation ψ , and
that ψ has bidegree (2, 2). We then note that, by using completely different methods, Pirio
and Russo (cf. [22, Proposition 5.6]) have extended the classification of Ein and Shepherd-
Barron to include the case in which the exceptional locus ofψ is reducible. Their list includes
Cremona transformations Pn−1 ��� P

n−1 having as fundamental locus the union of a point
and a smooth quadricQn−3, which is precisely the birational transformation that we obtain in
Theorem 3.2(2). We finally note that in case (1) the subvariety Y1 ⊂ P

n−1− is a codimension
one linear subspace, so the linear system of quadrics defining ψ has a fixed hyperplane;
dividing by its equation we obtain that ψ is a linear isomorphism. In other words, Theorem
3.2 implies the following:

Theorem 3.4 Any quadro-quadric Cremona transformation with nonempty smooth funda-
mental locus admits a geometric realization, given by an equalized C

∗-action in one of the
following varieties:

P
1 × Qn−1, C3(3), A5(3), D6(6), E7(7).

4 Constructing geometric realizations

Wehave seen howone can associate to aB-typeC∗-action a birational transformation between
the sink and the source; in this section we want to show that the converse holds for a certain
class of birational transformations among smooth projective varieties, that we will introduce
herein.

Definition 4.1 Let (Y−, H−), (Y+, H+) two smooth polarized pairs of dimension n. A bispe-
cial transformation between (Y−, H−) and (Y+, H+) is a birational map ψ : Y− ��� Y+ that
can be resolved via two blowups π± along smooth subvarieties Z± ⊂ Y± such that, denoting
by E± = π−1± (Z±) the corresponding exceptional divisors, there exist integers m± > 0
with:

π∗+ H+ ∼ m−π∗− H− − E−, π∗− H− ∼ m+π∗+ H+ − E+ (5)
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We call (m−, m+) the type of the bispecial transformation.

E− W

π− π+

E+

Z− Y−

ψ

Y+
ψ−1

Z+

(6)

Note that, from the definition it follows also that:

E− + m−E+ ∼ (m−m+ − 1)π∗+ H+, E+ + m+E− ∼ (m−m+ − 1)π∗− H−.

In particular, since E± are effective, we have that m−m+ > 1.

Remark 4.2 In the case in which Pic(Y±) have rank one, condition (5) implies that H± are
the ample generators of the Picard groups. In fact, denoting by [e±] the numerical class of a
nontrivial fiber of π±, and by [�±] = π∓∗[e±] the class of its image into Y∓, it follows that:

[�∓] · H∓ = [e±] · π∗∓ H∓ = [e±] · (m±π∗± H± − E±) = 1.

Remark 4.3 In the classical setting in which Y± is the projective space, a birational trans-
formation with smooth and irreducible fundamental locus is called a special Cremona
transformation (see [14]). In the definition of bispecial transformation we do not require
Y± to be projective spaces, nor the fundamental locus to be irreducible; however we do
require the fundamental loci of both the transformation and its inverse to be smooth.

Before stating the main result of this section, let us start by describing the setting in which
we will work on.

Setup 4.4 Throughout this sectionψ will denote a bispecial transformation of type (m−, m+)

between (Y−, H−) and (Y+, H+) as in Definition 4.1. To shorten notation, we set μ± :=
m± − 1, and L± := π∗± H± ∈ Pic(W ).

Remark 4.5 Denoting by F± a fiber of E± → Z±, we then have:

(L−)|F− ∼ OF− , (L+)|F+ ∼ OF+ , (7a)

(L−)|F+ ∼ OF+(1), (L+)|F− ∼ OF−(1). (7b)

Theorem 4.6 Let ψ be a bispecial transformation of type (m−, m+) between (Y−, H−) and
(Y+, H+) as in Setup4.4. There exists a unique B-type equalized smooth geometric realization
X of ψ of criticality 3 such that Y±|Y± � (1 − m±)H±.

Proof We will construct the variety X as a birational modification of a P
1-bundle on W ,

defined as P := PW (L− ⊕ L+), with natural projection π : P → W and tautological line
bundle H . The proof will be divided in several steps.
Step 1: Description of the variety P .

We denote by s± : W → P the two sections corresponding to the quotients L− ⊕ L+ →
L± and set W± := s±(W ). Then, by construction

W− ∼ H − π∗L+, W+ ∼ H − π∗L−, (8a)

H |W− ∼ L−, H |W+ ∼ L+, (8b)

so the normal bundles of W± in P are given by

W−|W− ∼ L− − L+, W+|W+ ∼ L+ − L−. (8c)
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Abusing notation, we denote by E± ⊂ W± the images s±(E±) ⊂ W± of the exceptional
loci of the projections π±; note that we are not assuming E± to be irreducible. Moreover we
denote by γ a fiber of π .

Note that there exists a natural equalized B-type C∗-action on P , whose sink and source
are, respectively, W− and W+. This is defined as the action of C∗ on P induced by the group
of (OW -module) automorphisms of L− ⊕ L+ defined as the multiplication by t ∈ C

∗ in L−
and as the identity in L+.
Step 2: Constructing two C

∗-equivariant small modifications ϕ± : P ��� P±, with indeter-
minacy locus E±.

Each modification ϕ± will be obtained by composing the smooth blowup p± of P along
E± with a different smooth blowdown of the exceptional locus E�

± of p±. We will show now
how to construct ϕ− : P ��� P−; the construction of ϕ+ : P ��� P+ is analogous.

Let p− : P�
− → P be the blowup of P along E− ⊂ W−, with exceptional divisor

E�
− := P(N∨), N := NE−/P . Since E− is contained in the fixed-point component W−, the

action of C∗ can be lifted to N , providing the weight decomposition:

N = N 0 ⊕ N− � NE−/W− ⊕ (NW−/P )|E− . (9)

Moreover, Eqs. (9, 8c, 5) imply that:

(N 0)∨ ⊗ OE−(E−) = OE− = π∗−OZ−
(N−)∨ ⊗ OE−(E−) = OE−(μ−L−) = π∗−OZ−(μ− H−)

(10)

Then, denoting B− := PZ−(OZ− ⊕ OZ−(μ− H−)) we have a Cartesian square:

E�
−

P
1

E−

B−
P
1

Z−
whose maps are horizontal projective bundles.

On the other hand, since E− ⊂ W− ⊂ P consists of C∗-fixed points, it follows that
the C

∗-action extends to P�
− so that p− is equivariant. Note that, since E− ⊂ W− has

codimension one, the strict transform via p− of W−, which is the sink of the C∗-action on
P�

−, is isomorphic to W−; we continue to denote it by W− ⊂ P�
−.

The action leaves E�
− invariant, and the weight decomposition (9) shows that E�

− contains

two fixed-point components; they are the images of the two sections σ± : E− → E�
− given

by the two projections ofN∨ onto its summands, (N 0)∨, (N−)∨, respectively. The first one
is contained in the sink of P�

−, and the second is an inner fixed-point component of the action.

The projection E�
− → B− isC∗-equivariant, when one considers the (fiberwise) action ofC∗

on B− = PZ−(OZ− ⊕ OZ−(μ− H−)) whose fixed-point components are the images of the
two sections corresponding to the summands of the subjacent vector bundle. We still denote
these section by σ−, σ+ so that they fit into two commutative diagrams:

E�
− E−

σ±

B− Z−
σ±
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Fig. 2 The C∗-equivariant small transformation ϕ : P ��� P−

Note that any fiber F�
− of the projective bundle E�

− → B− is a section of E�
− → E− over its

image F−, which is a fiber of E− → Z−. By formulae (7b, 8c) we see that

N |F− � OF−(−1) ⊕ OF−(−1), (11)

and in particular one may check that:

O
E�

−
(E�

−)|
F�

−
� OP(OF− (1)⊕2)(−1)|F�

−
� O

F�
−
(−1).

By Nakano Contractibility Criterion ([3, Theorem 3.2.8]) there exists a proper map q− :
P�

− → P− which is the blowup of a smooth proper variety P− along a subvariety isomorphic

to B−. Note that q−|W− contracts E�
− ∩ W− to a variety isomorphic to Z−; in other words,

it is the blowdown map W− → Y−.
Finally, since C∗ is connected, q− is proper and satisfies that q−∗OP�

−
= OP− , it follows

by Blanchard’s lemma (see [8, Theorem 7.2.1], [6, I.1]) that the C∗-action on P�
− descends

to an action on P− so that q− is C∗-equivariant.
The construction of P�

− and P− has been illustrated in Fig. 2.
Step 3: Description of the varieties P± and their orbit graphs.

By construction, the fixed-point components of P− are:

• the image via q− of the sink of P�
−, which is isomorphic to Y−;

• the image via q− of σ+(E−), which is isomorphic to σ+(Z−);
• the source q−(W+) � W+.

We denote them respectively by Y−, S−, W+ ⊂ P−. Denoting by Ei− the irreducible com-
ponents of E−, by δi− the image in P− of a line in a fiber of (Ei−)� → Ei−, by γ i− the strict
transform of a fiber of π meeting Ei−, and by γ the strict transform of a fiber of π not meeting
E−, the action on P− has the following orbit graph:

•Y− •Si− •W+δi−

γ

γ i− (12)

In the small modification P+, obtained blowing up P along E+ and blowing down the
resulting variety P�

+ to P+, the induced action on P+ has three fixed-point components W−,
S+, Y+ and orbit graph (for every component E j

+ ⊂ E j ):

•W− •
S j
+ •Y+γ

j
+

γ

δ
j
+ (13)
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Step 4: Merging ϕ± into a C
∗-equivariant small modification ϕ : P ��� X with indetermi-

nacy locus E− ∪ E+.
The centers of the two birational transformations ϕ− : P ��� P− and ϕ+ : P ��� P+

described above are disjoint; therefore they can be performed simultaneously to define a
small modification ϕ : P ��� X . More concretely, we may write P as the union of the two
C

∗-invariant open subsets P \ W+, P \ W−; then the two birational transformations

ϕ− : P \ W+ ��� P− \ W+, ϕ+ : P \ W− ��� P+ \ W−

can be glued together into a map ϕ : P ��� X onto a smooth variety, which is obvi-
ously a small modification. Furthermore, this construction also shows that, since ϕ± are
C

∗-equivariant, the action of C∗ extends via ϕ to X . By construction it has fixed-point com-
ponents Y−, S−, S+ and Y+.

Denoting by γ± the strict transform of a fiber of π meeting E± but not E∓ and by εi j the
strict transform of a fiber of π meeting both Ei− and E j

+ we have the following orbit graph:

•Y− •Si−
•

S j
+ •Y+δi− δ

j
+

γ
j

+ γ i−

εi j

γ

(14)

We are not assuming that εi j exists for every i, j , but we claim that it does for some i, j . In
fact, by formulae (5, 7a, 7b) we have E−|F+ � OF+(m−), so E− ∩ E+ �= ∅.
Step 5: Projectivity of the variety X .

Let us now show that X is a projective variety, by finding an ample line bundle on X . In
view of [23, Lemma 2.2] and the Kleiman’s criterion, a line bundle on X is ample if and
only if it has positive degree on the classes of closures of orbits and on the classes of curves
contained in the fixed components. We first claim that the normal bundle of Y± in X is given
by

Y±|Y± ∼ −μ± H±. (15)

Let us prove the claim for Y−, noting first that the line bundle associated to Y−|Y− equals the
normal bundle NY−|P− of Y− in P−. In order to compute this bundle we first study N

W−|P�
−
.

This bundle fits into the following exact sequence of sheaves over W−:

0 → N
W−|P�

−
−→ NW−|P −→ T

E�
−|E−(E�

−)|σ−(E−) → 0.

Observing that NW−|P � L− − L+ by Eq. (8c), and that

T
E�

−|E−(E�
−)|σ−(E−) � OE−(μ−L− − E−) � OE−(L− − L+)

by Eqs. (9), (10), (5), we get that

N
W−|P�

−
� OW−(L− − L+ − E−) � OW−(L− − L+ − m−L− + L+) � OW−(−μ−L−).

Since OW−(−μ−L−) � π∗−(−μ− H−) we finally conclude that

NY−|P− � OY−(−μ− H−).
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Since B− = PZ−(OZ− ⊕ OZ−(μ− H−)), every curve in B± is numerically equivalent to
a linear combination with nonnegative coefficients of the class of a curve in Z± ⊂ Y± and
the class of the closure of a 1-dimensional orbit joining Y− and S−. In particular, in order to
show that a line bundle in X is ample it is enough to test positivity on the classes of closures
of orbits. And on the classes of curves contained in Y±. By abuse of notation, we will denote
again by H the strict transform of the line bundle H on P . Its intersection number with
γ, γ i±, εi j , which are strict transforms of fibers of P → W is one, while H · δi± = 0.

By using Remark 2.8 we compute the intersection numbers of closures of 1-dimensional
orbits with Y±. Summing up, we have:

δi− γ i− δ
j
+ γ

j
+ εi j γ

H 0 1 0 1 1 1
Y− 1 0 0 1 0 1
Y+ 0 1 1 0 0 1

In particular any linear combination of Y± and H with positive coefficients has positive
degree on all the closures of 1-dimensional orbits. Moreover

H |Y± � H±, Y±|Y± � −μ± H±, Y±|Y∓ � OY∓ ,

so any divisor A in X that is an integral multiple of a Q-divisor of the form:

H + ε−Y− + ε+Y+, 0 < ε−, ε+ � 1,

is ample on X . It is straightforward to check that the criticality of (X , A) is three; this is also
the criticality of X , by Lemma 2.4, because there exists a chain of closures of 1-dimensional
orbits joining the sink and the source of the form δi− + εi j + δ

j
+.

Step 6: Uniqueness of the geometric realization X .
We will show that the geometric realization X of ψ that we have constructed above is

uniquely determined by the property of being of B-type, equalized and having criticality
three. The proof of this Step will follow the line of argumentation of [21, Section 8], and [20,
Section 3].

Let us assume that X ′, together with an action of C∗, is a geometric realization of ψ

satisfying the requirements of the theorem. Then we may consider the inner fixed-point
sets Y ′

1, Y ′
2, that (see [21, Lemma 8.5]) are isomorphic to Exc(ψ) and Exc(ψ−1). Then [20,

Theorem 3.1] tells us that the blowup of X ′ along X ′+(Y ′
1) and X ′−(Y ′

2) admits a second
divisorial contraction onto a smooth variety P ′ with a B-type action with no inner fixed-point
components, and whose sink and source are the blowup of Y− along Exc(ψ), and the blowup
of Y+ along Exc(ψ−1).

It follows that these two blowups are isomorphic to the resolution W of the bispecial
transformation ψ , and that P ′ is a P1-bundle over W . The sink and the source of the induced
C

∗-action on P ′, that we denote by W ′±, are two sections of P ′ → W . Arguing as in the first
part of Step 5, one may compute the normal bundle of Y± in X ′ out of the normal bundle
of W± in P ′; since the latter is, by hypothesis, Y±|Y± � (1 − m±)H±, one may check that
NW±|P ′ � L± − L∓. It then follows that P ′ � PW (L− ⊕ L+) � P , and so also X ′ � X . ��
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Table 1 Nef and Mori cones of P, P±, X

Variety Nef cone Mori cone

P 〈H , H − W−, H − W+〉 〈[e−], [e+], [γ ]〉
P−, μ− > 0 〈H , H − W+, H + Y−

μ− , H + Y−
μ− − W+〉 〈[δ−], [e+], [�−], [γ−]〉

P−, μ− = 0 〈H , H − W+, Y−〉 〈[e+], [δ−], [γ−]〉
P+, μ+ > 0 〈H , H − W−, H + Y+

μ+ , H + Y+
μ+ − W−〉 〈[δ+], [e−], [�+], [γ+]〉

P+, μ+ = 0 〈H , H − W−, Y+〉 〈[e−], [δ+], [γ+]〉
X , μ−μ+ > 0 〈H , H + Y−

μ− , H + Y+
μ+ , H + Y−

μ− + Y+
μ+ 〉 〈[δ−], [�+], [�−], [δ+]〉

X , μ+ = 0 〈H , H + Y−
μ− , Y+〉 〈[δ−], [�−], [δ+]〉

5 Birational geometry of the geometric realization

In this section, we describe some properties of the Nef and Movable cones of our geometric
realization X of a bispecial transformationψ between (Y−, H−) and (Y+, H+). Then we will
apply this information to study contractions of X in two particular situations (Sects. 5.1, 5.2).
Our arguments provide information about a linear section of Nef(X) (precisely, the section
generated by Y± and the strict transform of the tautological bundle H ). For simplicity, we
will work under the following assumptions:

Setup 5.1 We consider two smooth projective varieties Y± of dimension n such that
Pic(Y±) � Z, and we denote by H± ∈ Pic(Y±) the ample generators of these groups. We
consider a bispecial transformation ψ between (Y−, H−) and (Y+, H+) of type (m−, m+),
and the corresponding B-type equalized geometric realization of criticality three X satisfying
that Y±|Y± � (1−m±)H± provided by Theorem 4.6; as usual we setμ± := m± −1.We will
denote by [e±] the classes of lines in the fibers of E± → Z±, and set [�±] := π±∗([e∓]),
which are classes of curves of H±-degree 1 in Y± (see Remark 4.2). We will consider them as
classes in X via the immersions of Y± as the sink and source of X , respectively.Wewill freely
use the notation for auxiliary varieties, curves and divisors introduced in Sect. 4, particularly
the classes of C∗-invariant curves described in the graphs (12), (12) and (14). Furthermore,
we will assume that the fundamental locus of ψ is irreducible, so that, in particular, the inner
components S± ⊂ X are irreducible (and so we may avoid the superscripts in the notation
of the C∗-invariant curves δi±, γ i±, εi j ).

Proposition 5.2 Let (Y±, H±), ψ and X be as in Setup 5.1, and let P, P−, P+ be the varieties
constructed in the proof of Theorem 4.6. Then the Nef cone and the Mori cone of these varieties
are as described in Table 1.

Proof (Sketch of proof) The idea of the proof is the same in all cases: we check that the listed
line bundles are nef, by checking that they are nef when restricted to the sink and the source
and on the closures of 1-dimensional orbits. Then we check that each of them has degree
zero on a two-dimensional face of the Mori cone. ��

For the reader’s convenience we have represented the Mori cones of the varieties P , P+
(P− is analogous) and X described in the statement in Fig. 3.

We can now use the information provided by Proposition 5.2 to prove:
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Fig. 3 Cones

Proposition 5.3 Let Y±, ψ and X be as in Setup 5.1. If μ−μ+ > 0 then

Mov(X) = 〈H − Y−, H − Y+, H + Y−
μ− − Y+, H + Y−

μ− + Y+
μ+ , H − Y− + Y+

μ+ 〉.
If μ− > 0, μ+ = 0 then

Mov(X) = 〈H − Y−, H − Y+, H + Y−
μ− − Y+, Y+〉.
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Fig. 4 The Movable cone Mov(X)

Proof If μ−μ+ > 0 then the Movable cone of X is contained in

C = 〈[γ ], [γ−], [�−], [�+], [γ+]〉∨,

since all these curves move in codimension at least one. Computing intersection numbers we
see that C is the cone appearing in the statement. To prove that C ⊂ Mov(X) it is enough to
check that C has a chamber decomposition in which each chamber corresponds to the Nef
cone of one of the birational modifications of X described in Sect. 4. In fact these birational
modifications are isomorphisms in codimension one, hence their Nef cones are contained
in Mov(X). We use the description of the cones given in Proposition 5.2 to identify the
chambers, as shown in Fig. 4 which represents a cross-section of Mov(X). ��

With similar arguments we can prove the statement also in the case μ+ > 0, μ+ = 0,
where the chamber decomposition is shown in the right part of Fig. 4; againweuseProposition
5.2 to identify the chambers.

5.1 Bispecial transformations with�−�+ �= 0

In this section, we will consider a bispecial transformation ψ between (Y−, H−), (Y+, H+)

as in Setup 5.1, and assume that μ−μ+ > 0. We will consider the geometric realization X
of ψ constructed in Theorem 4.6, and show that it admits a C∗-equivariant contraction onto
a variety X � of Picard number one, which is another geometric realization of ψ . We will
finally study the smoothness of X �.

Along this section, we will use the following notation:

μ := lcm(μ−, μ+), H ′ := μH + μ
μ− Y− + μ

μ+ Y+.

By the description of the Mori cone NE(X) given in Proposition 5.2, H ′ is nef and defines a
2-dimensional face σ of NE(X), whose extremal rays are generated by the numerical classes
[�±]. We start by proving the following statement:

Lemma 5.4 The face σ is contained in the K X -negative part of NE(X).
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Proof Denote by r± the codimension of Z± in Y±. By adjunction we have,

−K P · [s+(e+)] = (−KW− + W−) · [s+(e+)] = r+,

where the last equality is obtained using (8c) and the blowup formula for the canonical bundle
of W−. Denote by p : P� → P the blowup along E− and E+, by q : P� → X the blowdown,
by ẽ+ the strict transform of s+(e+) in P�. We can compute K P� in two different ways using
the blow-up formula for p and q and obtain:

p∗K P − q∗K X ∼ (r− − 2)E�
− + (r+ − 2)E�

+, (16)

Then

−K X · [�+] = q∗K X · [ẽ+] ≥ p∗K P · [ẽ+] = −K P · [s+(e+)] = r+.

A similar argument shows that −K X · [�−] > 0. ��
We may now construct the geometric realization X � of Picard number one, and show that

it is smooth if and only if ψ is of type (2, 2) between two projective spaces. Note that in this
case we have a complete classification of these realizations (see Sect. 3).

Theorem 5.5 Let (Y±, H±), ψ and X be as in Setup 5.1, and assume that μ−μ+ �= 0. Then
there exists a Mori contraction ϕσ : X → X �, which contracts Y− and Y+ to points.

The variety X � is smooth if and only if Y− and Y+ are projective spaces and ψ is of type
(2, 2). In this case there exists an ample L ∈ Pic(X �) such that (X �, L) is a bandwidth three
variety with isolated extremal fixed points.

Proof As a consequence of Lemma 5.4, we have aMori contraction ϕσ : X → X � associated
to the face σ , which contracts Y± to points. On the other hand, if C is a curve not contained
in Y± contracted by ϕσ we have H ′ · C = 0, from what if follows that H · C = Y± · C = 0,
a contradiction. We conclude that ϕσ is an isomorphism outside of Y±.

Let L ∈ Pic(X �) be a line bundle such that ϕ∗
σ L = H ′. Then the bandwidth of the induced

action on (X �, L) can be computed intersecting L with a general orbit (which is the image
of γ ), obtaining

L · γ = μ + μ/μ− + μ/μ+.

ThedivisorY± is contracted to a smoothpoint if andonly if (Y±, Y±|Y±) � (Pn−1,OPn−1(−1));
by formula (15) the condition on the normal bundle is satisfied if and only if μ± = 1, and in
this case the bandwidth of theC∗-action on (X �, L) is three by Lemma 2.4. Summing up, we
have shown that every bispecial transformationψ between two smooth projective varieties of
Picard number one admits a geometric realization with isolated extremal fixed points, which
is smooth if and only if ψ is a bispecial Cremona transformation of type (2, 2). ��

5.2 Bispecial transformations with�+ = 0

In the situation of Setup 5.1, we will consider now the case in which μ+ = 0; note that in
this case we know that μ− > 0 (see Definition 4.1). In analogy with the previous case, we
will study contractions of the geometric realization of criticality three; we will show that ψ
corresponds to the birational map associated to a C∗-action on a fibration over P1 of Picard
number two, and study its smoothness.

We will consider now the extremal ray R := R≥0[�−] ⊂ NE(X), and the 2-dimensional
face σ ⊂ NE(X) generated by [�−], [�+]. As in Lemma 5.4, both faces are K X -negative,
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and we have two associated Mori contractions ϕR : X → X �, and ϕσ : X → T ; they
are supported, respectively, by the nef line bundles H ′ := μ− H + Y− + Y+ and Y+ (see
Proposition 5.2).

The map ϕR contracts the curves in the class [�−], therefore it contracts Y− to a point. If
it contracted a curve C not contained in Y−, we would have H ′ · C = 0. Since Y+ and H are
nef, this implies that H ·C = Y± ·C = 0, a contradiction. It follows that ϕR is the contraction
of Y− to a point. In particular, X � is smooth if and only if (Y−, Y−|Y−) � (Pn−1,OPn−1(−1))
which (again by formula (15)) is equivalent to say that μ− = 1, that is if m− = 2.

On the other handwe consider the contractionϕσ : X → T , that factors viaϕR : X → X �.
The fact that ϕσ is supported by Y+, together with the equality Y+|Y+ = OY+ (see Step 5
of Theorem 4.6) implies that ϕσ : X → T is a fiber type contraction, and that T is a curve.
Since Y+ · δ+ = 1, we obtain that T = ϕσ (δ+) is necessarily rational, that is T � P

1.
Summing up we get the last statement of the paper:

Theorem 5.6 Let (Y±, H±), ψ and X be as in Setup 5.1, and assume that μ− > 0, μ+ = 0.
Then there exists a Mori contraction ϕR : X → X �, which is the contraction of Y− to a point.
Moreover, X � is a variety of Picard number two admitting a fiber type Mori contraction onto
P
1, that is smooth if and only if Y− is a projective space and ψ is of type (2, 1).
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9. Buczyński, J., Wiśniewski, J.A., with an appendix of Weber. A.: Algebraic torus actions on contact
manifolds. J. Differ. Geom., 121(2), 227–289 (2022)

10. Carrell, J.B.: Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the
Adjoint Action, Volume 131 of EncyclopaediaMathematical Science, pp. 83–158. Springer, Berlin (2002)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2104.14442


45 Page 22 of 22 G. Occhetta et al.

11. Coble, A.B.: Cremona transformations and applications to algebra, geometry, and modular functions.
Bull. Am. Math. Soc. 28(7), 329–364 (1922)

12. Cremona, L.: Sulle trasformazioni geometriche delle figure piane. Nota I. Mem. Accad. Sci. Ist. Bologna
Tomo II(serie II), 621–630 (1863)

13. Cremona, L.: Sulle trasformazioni geometriche delle figure piane Nota II. Mem. Accad. Sci. Ist. Bologna
Tomo V(serie II), 3–35 (1865)

14. Ein, L., Shepherd-Barron, N.I.: Some special Cremona transformations. Am. J. Math. 111(5), 783–800
(1989)

15. Iversen, B.: A fixed point formula for action of tori on algebraic varieties. Inv. Math. 16(3), 229–236
(1972)

16. Knop, F., Kraft, H., Luna, D., Vust, T.: Local Properties of Algebraic Group Actions. Algebraische
Transformationsgruppen und Invariantentheorie, pp. 63–75. Birkhäuser, Basel (1989)
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