
Mathematische Zeitschrift (2023) 303:99
https://doi.org/10.1007/s00209-023-03266-x Mathematische Zeitschrift

Glasner property for linear group actions and their products

Kamil Bulinski1 · Alexander Fish1

Received: 22 December 2022 / Accepted: 7 March 2023 / Published online: 21 March 2023
© The Author(s) 2023

Abstract
A theorem of Glasner from 1979 shows that if Y ⊂ T = R/Z is infinite then for each ε > 0
there exists an integer n such that nY is ε-dense. This has been extended in various works by
showing that certain irreducible linear semigroup actions on T

d also satisfy such a Glasner
property where each infinite set (in fact, sufficiently large finite set) will have an ε-dense
image under some element from the acting semigroup. We improve these works by proving
a quantitative Glasner theorem for irreducible linear group actions with Zariski connected
Zariski closure. This makes use of recent results on linear random walks on the torus. We
also pose a natural question that asks whether the Cartesian product of two actions satisfying
the Glasner property also satisfy a Glasner property for infinite subsets which contain no two
points on a common vertical or horizontal line. We answer this question affirmatively for
many such Glasner actions by providing a new Glasner-type theorem for linear actions that
are not irreducible, as well as polynomial versions of such results.

1 Introduction

1.1 Background

A theorem of Glasner from 1979 [11] shows that if Y ⊂ T = R/Z is infinite then for each
ε > 0 there exists an integer n such that nY is ε-dense. A more quantitative version was
obtained by Berend–Peres [4], which states that there exist contstants c1, c2 > 0 such that
if Y ⊂ T/R satisfies |Y | > (c1/ε)c2/ε then nY is ε-dense in T for some n ∈ N. This was
improved significantly in the seminal work of Alon–Peres [1] which provided the optimal
lower bound as follows.

Theorem 1.1 (Alon-Peres [1]) For δ > 0 there exists εδ > 0 such that for all 0 < ε < εδ

and Y ⊂ T with |Y | > ε−2−δ then there exists n so that nY is ε-dense.

This phenomenom can be extended to other semigroup actions, thus movitating the
following definition.
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Definition 1.2 Let G be semigroup acting on a compact metric space X by continuous maps.
We say that this action is Glasner if for all infinite Y ⊂ X there exists g ∈ G such that gY is
ε-dense. Moreover, we say that it is k(ε)-uniformly Glasner if for all sufficiently small ε > 0
and Y ⊂ X with |Y | > k(ε) we have that there exists g ∈ G such that gY is ε-dense.

For instance Kelly–Lê [15] used the techniques of Alon–Peres [1] to show that the nat-
ural action of the multiplicative semi-group Md×d(Z) of d × d integer matrices on T

d is
cdε−3d2uniformly Glasner. This was later improved by Dong in [8] where he showed, using
the same techniques of Alon–Peres together with the deep work of Benoist–Quint [3], that
the action SLd(Z) � T

d is cδ,dε
−4d−δ-uniformly Glasner for all δ > 0. Later Dong [9] used

a different technique but still based on the work of Benoist–Quint [3] to show that a large
class of subgroups of SLd(Z) have the Glasner property.

Theorem 1.3 (Dong [9]) Let d ≥ 2 and let G ≤ SLd(Z) be a subgroup that is Zariski dense
in SLd(R). Then G � T

d is Glasner, i.e., if Y ⊂ T
d is infinite and ε > 0 then there exists

g ∈ G such that gY is ε-dense.

We remark that this result, unlike the aforementioned G = SLd(Z) case in [8], does not
use the techniques of Alon–Peres and does not establish a uniformGlasner property (Y needs
to be infinite). A uniformGlasner property was obtained for the case whereG acts irreducibly
and is generated by finitely many unipotents in [6].

Theorem 1.4 Let d ≥ 2 and let G ≤ SLd(Z) be a group generated by finitely many unipotent
elements such that the representation G � R

d is irreducible. Then there exists a constant
CG > 0 such that G � T

d is ε−CG -uniformly Glasner, i.e., if Y ⊂ T
d with |Y | > ε−CG then

there exists g ∈ G such that gY is ε-dense.

Examples of such groups include the subgroup of SLd(Z) preserving a diagonal quadratic
form with coefficients ±1, not all of the same sign (see [6] or Proposition A.5 in [7] for more
details).

1.2 Glasner property for groups with Zariski connected Zariski closures

The first main result of this paper extends Theorem 1.4 by replacing the requirement thatG is
generated by finitely many unipotent elements by the weaker assumption that G has Zariski
connected Zariski closure. It also improves Theorem 1.3 by providing a uniform Glasner
property and also not requiring the Zariski closure to be the full SLd(R).

Theorem A Let G ≤ SLd(Z) be a finitely generated group with Zariski connected Zariski
closure in SLd(R) such that G � R

d is an irreducible representation. Then there exists
CG > 0 such that G � T

d is ε−CG -uniformly Glasner; i.e., if Y ⊂ T
d with |Y | > ε−CG

then there exists g ∈ G such that gY is ε-dense.

1.3 Glasner property for product actions

Let G1 � X1 and G2 � X2 be two actions on compact metric spaces that have the Glasner
property. We consider the product action

G1 × G2 � X1 × X2

(g1, g2) · (x1, x2) = (g1x1, g2x2).
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Clearly, we see that it is not Glasner since a horizontal line Y = X1 × {x2} is infinite and
(g1, g2)Y ⊂ X1 × {g2x2} is another horizontal line, which cannot be ε-dense for all ε > 0.
The same obstruction occurs if Y is a finite union of horizontal and vertical lines. It is thus
natural to ask whether this is the only obstruction by considering infinite sets Y ⊂ X1 × X2

such that no two points are on a common vertical or horizontal line.

Question 1.5 (Glasner for product action) Suppose thatG1 � X1 andG2 � X2 areGlasner.
Suppose Y ⊂ X1 × X2 is an infinite set such that both of the projections onto X1 and X2

are injective on Y (i.e., if y, y′ ∈ Y are distinct then πX1 y �= πX1 y
′ and πX2 y �= πX2 y

′
where πXi : X1 × X2 → Xi is the projection). Then is it true that for all ε > 0 there exists
g ∈ G1 × G2 such that gY is ε-dense in X1 × X2 ?

We are unable to find any counterexample so far. The main goal of this paper is to answer
this question in the affirmative formany of the semigroups of endomorphisms onT

d presented
above. We first present a special case of one of our main results, which verifies this for the
situation of the original Glasner theorem.

Proposition 1.6 Suppose Y ⊂ T
2 is infinite and both of the projections onto theT factors are

injective on Y . Then for all ε > 0 there exists (n,m) ∈ N
2 such that (n,m)Y is ε-dense inT

2.
In fact, if P1(x), P2(x) ∈ Z[x] are polynomials such that no non-trivial linear combination
is constant then for all ε > 0 there exists n ∈ N such that (P1(n), P2(n))Y is ε-dense.

Our nextmain result demonstrates this phenomenom for theGlasner actions of unipotently
generated groups presented in Theorem 1.4.

Theorem B Let G1 ≤ SLd1(Z) and G2 ≤ SLd2(Z) be subgroups generated by finitely many
unipotent elements such that G1 � R

d1 and G2 � R
d2 are irreducible representations,

where d1, d2 ≥ 2 are integers. Then for all ε > 0 there exists k ∈ N such that if Y ⊂ T
d1×T

d2

with |Y | ≥ k satisfies that the projections to T
d1 and T

d2 are injective on Y , then there exists
g ∈ G1 × G2 such that gY is ε-dense in T

d1 × T
d2 .

In light of Theorem A, it is interesting to ask if the condition that G1,G2 are generated by
unipotent elements can be replaced with the (weaker) assumption that G1,G2 have Zariski
connected Zariski closures.

1.4 Non-irreducible actions

In the setting of endomorphisms on T
d , any product action is another action by endomor-

phisms. Unfortunately, it is not irreducible hence Theorems 1.4 and A do not apply. It is
thus natural to ask how one can extend these theorems to the non-irreducible case by placing
suitable restrictions on the set Y (in a way that is analogous to the setting in Question 1.5).
Our next main result achieves this for unipotently generated subgroups.

Theorem C Let G ≤ SLd(Z) be a group generated by finitely many unipotent elements. Let
˜Y ⊂ [0, 1)d be infinite such that for all distinct ỹ, ỹ′ ∈ ˜Y we have that ỹ− ỹ′ is not contained
in any G-invariant proper affine subspace. Then for all ε > 0 there exists a constant k such
that if |˜Y | > k then there exists g ∈ G such that gY is ε-dense in T

d , where Y ⊂ T
d is the

projection of ˜Y onto T
d .

As before, it is interesting to ask whether this result holds if one replaces the assumption of
G being finitely generated by unipotents with the weaker assumption that the Zariski closure
of G is Zariski connected.
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Proof of Theorem B using Theorem C Let G = G1 × G2 and let ˜Y ⊂ [0, 1)d1 × [0, 1)d2 be a
set of representatives for Y ⊂ T

d1 × T
d2 . Let a ∈ (˜Y − ˜Y )\{0}. Using Theorem C it suffices

to show that if Ga ⊂ W + a for some subspace W ≤ R
d1 × R

d2 then W = R
d1 × R

d2 .
To see this, write a = (a1, a2) where ai ∈ R

di and notice that a1, a2 are both non-zero (by
assumption). Now for g1, g′

1 ∈ G1 we have that

(g′
1a1 − g1a1, 0) = (g′

1, 1)a − (g1, 1)a ∈ W .

In particular, since d1 ≥ 2 and G1 acts irreducibly on R
d1 , we may find g′

1 ∈ G1 such that
b1 = g′

1a1 − a1 �= 0 (here we use the assumption that a1 �= 0). Now we have that

(g1b1, 0) = (g1g
′
1a1 − g1a1, 0) ∈ W for all g1 ∈ G1.

By irreducibility and b1 �= 0, this means that for all v1 ∈ R
d1 we have that (v1, 0) ∈ W .

Similarly, we may show that (0, v2) ∈ W for all v2 ∈ R
d2 . Thus W = R

d1 × R
d2 . 	


1.5 Glasner property along polynomial sequences

Our technique for provingTheoremCextends the polynomialmethod used in [6]. Throughout
this paper, we let πTd : R

d → T
d denote the quotient map.

Theorem D Fix ε > 0, a positive integer d and let A(x) ∈ Md×d(Z[x]) be a matrix with
integer polynomial entries. Then there exists a constant k = k(ε, A(x), d) > 0 such that the
following is true: Suppose ˜Y ⊂ [0, 1)d with |˜Y | ≥ k satisfies the following condition:

For all v ∈ Z
d \ {0} and distinct ỹ, ỹ′ ∈ ˜Y we have that v · (A(x) − A(0))(ỹ − ỹ′) �= 0 ∈ R[x].

(1)

Letting Y = πTd (˜Y ), there exists n ∈ Z such that A(n)Y is ε-dense in T
d .

Example 1.7 (Proof of Proposition 1.6) Let P1(x), P2(x) ∈ Z[x] be polynomials such that
no non-trivial linear combination of them is constant and let

A(x) =
[

P1(x) 0
0 P2(x)

]

Now suppose ˜Y ⊂ [0, 1)2 is such that any two distinct ỹ, ỹ′ are not on a common vertical
or horizontal line. This means that (a1, a2) := ỹ − ỹ′ satisfies that a1, a2 �= 0. Now the
expression (1) in Theorem D is

a1v1P1(x) + a2v2P2(x) − a1v1P1(0) − a2v2P2(0)

where v = (v1, v2) ∈ Z
2\{(0, 0)}. But (a1v1, a2v2) �= (0, 0) and thus the linear combination

a1v1P1(x)+a2v2P2(x) is a non-constant polynomial and so this expression is non-zero, thus
Theorem D applies.

We remark that the d = 1 case recovers the result of Berend–Peres [4] (that was
later improved quantitatively by Alon–Peres [1]) on the Glasner property along polyno-
mial sequences. More precisely, it states that if P(x) ∈ Z[x] is non-constant then for all
ε > 0 there is a constant k = k(ε, P(x)) such that for subsets Y ⊂ T with |Y | > k we have
that P(n)Y is ε-dense for some n ∈ Z.
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Example 1.8 (Diagonal action)Consider now thediagonal actionN � T
2 givenbyn(x, y) =

(ny, ny). Clearly this is not Glasner since the diagonal (or any non-dense subgroup of T
2) is

an infinite invariant set and hence never becomes ε dense for small enough ε > 0. However,
we may still apply Theorem D to obtain natural assumptions on the set Y ⊂ T

2 so that Y has
ε-dense images under the diagonal action. First, we let

A(x) =
[

x 0
0 x

]

The condition says that for any two distinct ỹ, ỹ′ ∈ ˜Y , by setting (a1, a2) := ỹ − ỹ′ we must
have

(a1v1 + a2v2)x �= 0 for all (v1, v2) ∈ Z
2 \ {(0, 0)}.

This is equivalent to the statement that a1, a2 ∈ R are linearly independent over Z.

2 Tools

We now gather some useful tools that have mostly been used in previous works [6, 8, 15] that
are multidimensional generalizations of the techniques originally introduced by Alon–Peres.
We restate them for the convenience of the reader, although one slightly new variation will
be needed (see Lemma 2.3) mainly for the purposes of proving Theorem A.

We start with a bound based on [1] that has been extended by the aforementioned works.
The following formulation can be found exactly in [6] ([8] only demonstrates and uses the
r ≥ 1 case).

Proposition 2.1 Fix an integer d > 0 and any real number r > 0. Then there exists a constant
C = C(d, r) such that the following is true: Given any distinct x1, . . . , xk ∈ T

d let hq denote
the number of pairs (i, j)with 1 ≤ i, j ≤ k such that q is the minimal (if such exists) positive
integer such that q(xi − x j ) = 0. Then

∞
∑

q=2

hqq
−r ≤ Ck2−r/(d+1).

Throughout this paper, we let e(t) = e2π i t and we let

B(M) = { �m ∈ Z
d | �m �= �0 and ‖ �m‖∞ ≤ M}

denote the L∞ ball of radius M in Z
d around �0 with �0 removed.

For u ∈ T
d by |u| we will mean the ‖ · ‖∞ distance from u to the origin in T

d , which may
precisely be defined as the distance from the origin in R

d to the closest point in the lattice
(πTd )−1(u) ⊂ R

d (this is the metric that we use for T
d when defining ε-dense).

Theorem 2.2 (See Corollary 2 in [2]) Let 0 < ε < 1
2 , M = � d

ε
� and u1, . . . , uk ∈ T

d with
|ui | > ε for all i = 1, . . . , k. Then

k

3
≤

∑

�m∈B(M)

∣

∣

∣

∣

∣

k
∑

i=1

e( �m · ui )
∣

∣

∣

∣

∣

.

The following is a more relaxed version of Proposition 2 in [15] which we will need for
both Theorems A and C. It is purely finitistic, rather than asymptotic, which will allow us to
take averages with respect to random walks rather than just Cesàro averages.
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Lemma 2.3 For integers d > 0 there exists a constant C1 = C1(d) > 0 such that the
following is true. Suppose that g ∈ Md×d(Z) and x1, . . . , xk satisfy that {gx1, . . . , gxk} is
not ε-dense. Then for M = � d

ε
� we have

k2 < C1ε
−d

∑

�m∈B(M)

k
∑

i, j=1

e( �m · g(xi − x j )).

Proof Not being ε-dense means that there exists α ∈ T
d such that |α − gxi | > ε for all

i = 1, . . . k. Using Theorem 2.2 with ui = g(α − xi ) and applying Cauchy–Schwartz we
get

k2

9
≤ |B(M)|

∑

�m∈B(M)

∣

∣

∣

∣

∣

k
∑

i=1

e( �m · (α − gxi ))

∣

∣

∣

∣

∣

2

.

Now expanding this square and using the estimate |B(M)| = (2M+1)d −1 = O(2dddε−d)

gives the result. 	


3 Proof of the Glasner property in the case of Zariski connected Zariski
closures

Now let G ≤ SLd(Z) be a subgroup with Zariski connected Zariski closure such that the
action of G on R

d is irreducible and let μ be a probability measure on G with finite mean
such that μ({g}) > 0 for all g ∈ G. Our main tool is the following powerful result on
the equidistribution of random linear walks on T

d that extends the deep work of Bourgain–
Furman–Lindenstrauss–Mozes [5].

Theorem 3.1 (See Theorem 1.2 in [12]) There exists a λ > 0 and a constant C > 0 such
that for every x ∈ T

d and 0 < t < 1
2 , if a ∈ Z

d\{0} is such that

|μ̂∗n ∗ δx (a)| ≥ t and n ≥ C log
‖a‖
t

then there exists a q ∈ Z>0 and x ′ ∈ 1
q Z

d/Z
d such that

q <

(‖a‖
t

)C

and d(x, x ′) ≤ e−λn .

Letting n → ∞ and taking contrapositives, we obtain the following simple corollary.

Lemma 3.2 There exists a constant C > 0 such that for every x ∈ Q
d/Z

d of the form
x = 1

q v, where v ∈ Z
d and gcd(v, q) = 1, and every a ∈ Z

d\{0} we have that

lim sup
n→∞

|μ̂∗n ∗ δx (a)| ≤ 2‖a‖q−1/C .

Furthermore, if y ∈ T
d is irrational then

lim sup
n→∞

|μ̂∗n ∗ δy(a)| = 0.
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Proof Let t = ‖a‖q−1/C . If t ≥ 1
2 then the result is clearly true since |̂ν(a)| ≤ 1 for any

probabilitymeasure ν onT
d . On the other hand, if 0 < t < 1

2 thenwemay apply Theorem 3.1
and proceed by contradition to show the sharper (by a factor of 1

2 ) bound

lim sup
n→∞

|μ̂∗n ∗ δx (a)| ≤ t .

More precisely, if this bound were to fail then we can find large enough n ≥ C log ‖a‖
t so

that |μ̂∗n ∗ δx (a)| ≥ t and thus there exists

q ′ <

(‖a‖
t

)C

= q

(meaning that q ′ �= q) such that x ′ ∈ 1
q ′ Zd/Z

d such that d(x, x ′) < e−λn . For sufficiently
large n, this leads to a contradiction as q �= q ′. 	


Intuitively, this can be interpreted as saying that an irrational orbit equidistributes to the
Haar measure while the orbit of a rational point with large enough denominator almost
equidistributes to the Haar measure. We remark that the proof for G = SLd(Z) given by
Dong in [8] instead used an explicit calculation (Ramanujan sum) for this convolution in the
rational case and used the work of Benoist–Quint [3] for the irrational case.

Proof of Theorem A. Suppose for contradiction that x1, . . . xk ∈ T
d are distinct points such

that {gx1, . . . , gxk} is not ε-dense in T
d for all g ∈ G. Using Lemma 2.3, for M = � d

ε
� we

have

k2 < C1ε
−d

∑

�m∈B(M)

k
∑

i, j=1

e( �m · g(xi − x j )) for all g ∈ G.

Now letμ be the probability measure onG as above. Integrating this estimate with respect
to the n-fold convolution μ∗n we obtain

k2 < C1ε
−d

∑

�m∈B(M)

∫

G

k
∑

i, j=1

e( �m · g(xi − x j ))d(μ∗n)(g)

= C1ε
−d

∑

�m∈B(M)

k
∑

i, j=1

̂μ∗n ∗ δxi−x j ( �m).

Now using Lemma 3.2 and letting n → ∞, we get that

k2 < C1ε
−d

∑

�m∈B(M)

∞
∑

q=1

hq · 2‖ �m‖q−1/C + C1ε
−dk|B(M)|,

where hq denotes the number of pairs xi , x j such that q is the least positive integer for
which q(xi − x j ) = 0. We apply Proposition 2.1 to obtain that

k2 < 2C1ε
−d

∑

�m∈B(M)

C2k
2− 1

C(d+1) ‖ �m‖ + C1ε
−dk|B(M)|

≤ Cε−3dk2−
1

C(d+1) + Cε−2dk

123



99 Page 8 of 12 K. Bulinski, A. Fish

for a large enough constant C that depends on d and G. Thus, for large enough k ≥ ε−CG

for some constant CG > 0 this inequality must fail, contradicting the initial assumption that
for some distinct x1, . . . , xk ∈ T

d the set {gx1, . . . , gxk} is not ε-dense in T
d for all g ∈ G.

	


4 Proof of main polynomial theorem

Lemma 4.1 (GCD bound lemma) Let T0 : Z
d → Z

r be a Z-linear transformation. Then
there exists a constant Q = Q(T0) > 0 and a surjective Z-linear map R : Z

d → W
(where W ∼= Z

d ′
is an abelian group) such that T0 = T R for some injective Z-linear map

T : W → Z
r and such that for all q ∈ Z≥0 we have that

gcd(Tw, q) ≤ Q for all w ∈ W with gcd(w, q) = 1.

Proof By the Smith normal form we may write

T0 = LDR′

where L : Z
r → Z

r , R′ : Z
d → Z

d are automorphisms and D : Z
d → Z

r is diagonal.
This means that Dei = Die′

i where ei ∈ Z
d and e′

i ∈ Z
r is the i-th standard basis vector

and Di ∈ Z. We also have the divisibility conditions D1|D2| · · · |Dd . Now suppose that k is
maximal such that Dk �= 0 (thus Di = 0 for all i > k). We let W = Z-span{e1, . . . , ek}. We
let R = PW R′ where PW : Z

d → W is the orthogonal projection and we let T = (LD)|W :
W → Z

r be the restriction of LD to W . It follows that

T0 = T R

and that T is injective while R is surjective. Indeed, for a ∈ Z
d we write R′a = w +u where

w ∈ W and u ∈ Z-span{ei+1, . . . , ed}, thus
DR′a = Dw = DPW R′a = DRa.

Moreover, we see T is injective since L is an automorphism and D|W is injective.
Now fix q ∈ Z>0 and w ∈ W such that gcd(w, q) = 1. We see that gcd(Dw, q) ≤ Dk .

Now since L is an automorphism we have that

gcd(LDw, q) = gcd(Dw, q) ≤ Q

where we set Q = Dk . 	

Proof of TheoremD Suppose ˜Y = {x1, . . . , xk} where the xi are distinct and suppose that
A(n)Y is not ε-dense in T

d for all n ∈ Z (where Y = πTd (˜Y )). So we can apply Lemma 2.3
to all such g ∈ {A(1), . . . , A(N )} and average over n = 1, . . . , N to obtain that

k2 ≤ C1

εd

∑

�m∈B(M)

∑

1≤i, j≤k

1

N

N
∑

n=1

e( �m · A(n)(xi − x j )),

where M = � d
ε
�. Now for each �m ∈ B(M) we have a linear map T �m : R

d → R[x] given by
T �mu = �m · (A(x) − A(0))u.

Observe that T �m maps Z
d to Z[x] and in fact the image of T �m is isomorphic (as an abelian

group) to Z
r for some r ≤ D where D is the degree of A(x). Using the GCD bound lemma
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above we may write T �m = T ′
�m R �m where T ′

�m : Z
d ′ → Z

d is an injective linear map for some

d ′ ≤ d and R �m : Z
d → Z

d ′
is surjective and linear. We may also view these maps as integer

matrices and thus as linear maps between Euclidean spaces or between tori. By assumption,
we have that T �m(xi − x j ) ∈ R[x] is non-zero for distinct i, j . Thus R �m must be injective on
˜Y hence |˜Y �m | = k where we define

˜Y �m = R �m˜Y ⊂ R
d ′

.

Now observe that since there are only finitely many �m (we consider ε as fixed and B(M)

is a finite set) there must exist a constant L such that

R �m([0, 1)d) ⊂ [0, L)d
′

for all �m ∈ B(M). This means that if we set Y �m = π
Td′ (˜Y �m) then we must have

|Y �m | ≥ |˜Ym |
Ld ′ ≥ kL−d .

Thus we can rewrite our bound as

k2 ≤ C1

εd

∑

�m∈B(M)

∑

ỹ ,̃y′∈˜Y �m

1

N

N
∑

n=1

e
(

(T ′
�m(ỹ − ỹ′))(n) + �m · A(0)(ỹ − ỹ′)

)

≤ C1

εd
L2d

∑

�m∈B(M)

∑

y,y′∈Y �m

1

N

N
∑

n=1

e
(

(T ′
�m(y − y′))(n) + �m · A(0)(y − y′)

)

where the extra L2d factor comes from the fact that a pair y, y′ ∈ Y �m arises as the projection
of at most Ld Ld pairs ỹ, ỹ′ ∈ ˜Y �m .

Now we consider two cases.
Case 1: y− y′ is not rational, i.e., y− y′ /∈ Q

d ′
/Z

d ′
. We claim that T ′

�m(y− y′)(x) ∈ T[x]
has an irrational non-constant term (the constant term is zero). This follows from basic
Linear Algebra: If A is a matrix with entries in Q and with trivial kernel then a solution to
Ax = u, with u a rational vector, must be rational. Thus if T ′

�m(y − y′)(x) ∈ (Q/Z)[x] then
y − y′ ∈ Q

d ′
/Z

d ′
, a contradiction. It now follows by the polynomial Weyl Equidistribution

theorem (Theorem 1.4 in [10]) that

lim
N→∞

1

N

N
∑

n=1

e
(

(T ′
�m(y − y′))(n) + �m · A(0)(y − y′)

) = 0.

Case 2: y − y′ ∈ Q
d ′

/Z
d ′
. We thus write y − y′ = w

q where w ∈ Z
d and gcd(w, q) = 1.

We now use the GCD bound lemma to see that

T ′
�m(y − y′)(n) = 1

q

r
∑

j=1

b jn
j

where gcd(b1, . . . , br , q) ≤ Q( �m) for some constant Q( �m) as in the GCD bound lemma.
Thus we may apply Hua’s bound (see [14] or [13]) to obtain for any 0 < δ < 1

D a constant
C2 = C2(D, δ) depending only on D and δ such that
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∣

∣

∣

∣

∣

lim
N→∞

1

N

N
∑

n=1

e
(

(T ′
�m(y − y′))(n) + �m · A(0)(y − y′)

)

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣

1

q

q
∑

n=1

e

⎛

⎝

1

q

r
∑

j=1

b jn
j + �m · A(0)(y − y′)

⎞

⎠

∣

∣

∣

∣

∣

∣

≤ C2

(

Q( �m)

q

) 1
D −δ

.

Let Q = max �m∈B(M) Q( �m). Also, let hq, �m denote the number of pairs y, y′ ∈ Y �m such
that y − y′ = w

q where w ∈ Z
d and gcd(w, q) = 1. In other words, hq, �m is the number of

pairs y, y′ ∈ Y �m such that q is the least positive integer for which q(y − y′) = 0. Letting
N → ∞ and combining the two cases above we obtain the bound

k2 ≤ C1L2d

εd

∑

�m∈B(M)

⎛

⎝

∞
∑

q=2

hq, �mC2

(

Q

q

) 1
D −δ

+ k

⎞

⎠

Now apply Proposition 2.1 to get that

∞
∑

q=2

hq, �mqδ− 1
D ≤ C3k

2−( 1
D −δ)/(d+1)

for some constant C3 = C3(d, D) depending only on d and D. Thus we have shown that

k2 ≤ Q
1
D −δC2(2M)d

C1L2d

εd
C3k

2−( 1
D −δ)/(d+1) + C1L2d

εd
(2M)dk.

Observe that as ε, A(x) and d are fixed, we have that M , Q and L are fixed and so for
large enough k this inequality must fail. In other words, if |Y | is larger than some function
of ε, A(x) and d then there must exist n ∈ Z≥0 such that A(n)Y is ε-dense in T

d . 	


5 Applications to unipotent subgroups

Lemma 5.1 Let G be a semigroup generated by a finite set U and let

Gn = {u1 · · · ur | 0 ≤ r ≤ n and u1, . . . , ur ∈ U }
be the ball of radius n in the Cayley graph of G. Suppose that G acts on R

d by linear maps
and a ∈ R

d satisfies that Ga is not contained in any proper affine subspace. Then Gda is
not contained in any proper affine subspace.

Proof Let Hn denote the smallest affine subspace containing Gna. In other words, Hn =
Wn + a where

Wn = R-span{ga − a | g ∈ Gn}.
Clearly Hn ⊂ Hn+1. We claim that if HN = HN+1 then Hn = HN for all n ≥ N . First note
that if u ∈ U is a generator then uWn ⊂ Wn+1, since for g ∈ Gn we have that

u(ga − a) = uga − ua = (uga − a) − (ua − a) ∈ Wn+1 + W1 ⊂ Wn+1.
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Consequently, for w ∈ Wn we have

u(w + a) = uw + ua = uw + (ua − a) + a ∈ Wn+1 + W1 + a = Wn+1 + a

and thus

uHn ⊂ Hn+1.

Thus if HN = HN+1 then uHN ⊂ HN+1 = HN for all generators u and thus gHN ⊂ HN

for all g ∈ G. Recalling that, by definition, HN contains GNa and thus by G-invariance HN

contains Gna for all n ≥ N , meaning that HN contains Hn for all n ≥ N . Thus HN = Hn

for all n ≥ N . Consequently, the smallest such N for which HN = HN+1 satisfies N ≤ d
(by dimension arguments). Thus Hn = Hd for all n ≥ d which means that Hd contains Gna
for all n ≥ d and thus Ga ⊂ Hd . By assumption that Ga is not in any proper affine subspace,
this means that Hd = R

d . 	


Proof of Theorem C Let U = {u1, . . . , um} be a finite set of generators for G where each ui
is a unipotent element and use cyclic notation so that ui = ui+ jm for all i, j ∈ Z. Note that
for each fixed i the matrix uni has entries that are integer polynomials in n hence

QN (n1, . . . , nN ) =
N

∏

i=1

unii ∈ Md×d(Z[n1, . . . , nN ])

is a matrix with multivariate integer polynomial entries in the variables n1, . . . , nN . Now let
N = dm and use Lemma 5.1 to get that {QN (n1, . . . nN )a | n1, . . . nN ∈ Z} is not contained
in any proper affine subspace of R

d for all fixed non-zero a ∈ ˜Y − ˜Y . In other words, for
each fixed a ∈ (˜Y − ˜Y ) \ {0} if we let P1, . . . , Pd ∈ R[n1, . . . , nN ] be the polynomials such
that

Q(n1, . . . , nN )a = (P1(n1, . . . , nN ), . . . , Pd(n1, . . . , nN ))

then P1, . . . , Pd , 1 are linearly independent over R. But there exists a large enough
R ∈ Z>0 (independent of a) such that the substitutions ni �→ nRi−1

i induce a map
Z[n1, . . . , nN ] → Z[n] that is injective on the monomials appearing in QN (n1, . . . , nN ).
Thus P1, . . . , Pd , 1 remain linearly independent over R after making this substitution, thus
{Q(n, nR, . . . , nRN−1

)a | n ∈ Z} is also not contained in any proper affine subspace. So the
proof is complete by applying Theorem D to the polynomial A(x) = Q(x, x R, . . . , x R

N−1
),

which is independent of ˜Y and thus the lower bound k is uniform (once G is fixed). 	
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