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Abstract
Wegive a short geometric proof of a result of Soardi andWoess and Salvatori that a quasitran-
sitive graph is amenable if and only if its automorphism group is amenable and unimodular.
We also strengthen one direction of that result by showing that if a compactly generated
totally disconnected locally compact group admits a proper Lipschitz action on a bounded
degree amenable graph then that group is amenable and unimodular. We pass via the notion
of geometric amenability of a locally compact group, which has previously been studied by
the second author and is defined by analogy with amenability, only using right Følner sets
instead of left Følner sets. We also introduce a notion of uniform geometric non-amenability
of a locally compact group, and relate this notion in various ways to actions of that group on
graphs and to its modular homomorphism.
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1 Introduction

Awell-known result of Soardi andWoess [16, Corollary 1] states that a vertex-transitive graph
is amenable if and only if its automorphism group is amenable and unimodular. Salvatori
[15, Theorem 1] generalised this result to quasitransitive graphs. Benjamini, Lyons, Peres
and Schramm [4, Remarks 3.11 and 6.3] later gave an alternative proof. Each of these proofs
emerged as a corollary of broader work: Soardi and Woess’s and Salvatori’s proofs came out
of work on random walks (see also [14]), whilst one direction of Benjamini, Lyons, Peres
and Schramm’s proof came out of work on percolation. Lyons and Peres subsequently gave
a geometric proof of this direction [11, Proposition 8.14]. The initial purpose of this paper
is to offer a quick, geometric proof of the Soardi–Woess–Salvatori theorem, and strengthen
one direction of it by showing that the presence of a proper action on a bounded-degree
amenable graph that is merely Lipschitz, and not necessarily quasitransitive, is enough to
imply that a compactly generated totally disconnected locally compact group is amenable
and unimodular.

We start by presenting the necessary definitions. Let � be a graph. Given a set A ⊆ � of
vertices, we define the boundary ∂A to consist of those vertices that do not belong to A but
have a neighbour in A. The (vertex) Cheeger constant h(�) of � is defined via

h(�) = inf
A⊂V|A|<∞

|∂A|
|A| ,

and � is then called amenable if h(�) = 0.
The group Aut (�) of automorphisms of � is a locally compact group with respect to the

topology of pointwise convergence, which is metrisable. Every closed subgroup of Aut (�)

is then a compactly generated, totally disconnected, locally compact group in which vertex
stabilisers are compact and open. This is classical, and treated in detail in [19–21] for instance.

Now let G be an arbitrary compactly generated locally compact group. An action of G
by automorphisms on � is called continuous if the homomorphism G → Aut (�) it induces
is continuous. In this paper, we assume by definition that all actions of topological groups
on graphs are continuous. An action is called proper if vertex stabilisers are compact in G;
in particular, every closed subgroup of Aut (�) acts properly on �. It is called transitive if
there is a unique orbit of vertices, and quasitransitive if there are only finitely many orbits of
vertices. A theorem of Abels [1] (see [5, Proposition 2.E.9.] or [10, Theorem 2.2+]) states that
every compactly generated, totally disconnected, locally compact group admits a transitive
proper continuous action on some connected, locally finite graph.

Suppose G is a compactly generated locally compact group acting properly continuously
by automorphisms on a locally finite graph �. Given C > 0, we say that this action is C-
Lipschitz with respect to a given compact symmetric generating set S if in each orbit there
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exists some vertex x such that the orbit map

(G, S) → G · x
g �→ g · x

is C-Lipschitz (here, (G, S) means the group G endowed with the word metric with respect
to S). We will say that the action is C-Lipschitz to mean that there exists some S with respect
to which it is C-Lipschitz, and simply Lipschitz to mean that there exists some C > 0 such
that the action is C-Lipschitz.

Every quasitransitive action is Lipschitz. Indeed, if vertices x1, . . . , xk are representatives
of the orbits, then the action is C-Lipschitz where C is the maximal integer n such that
S · xi ⊂ B(xi , n) for every i = 1, . . . , k.

A locally compact groupG admits a (left) Haarmeasureμ, the properties ofwhich include
that

(i) μ(K ) < ∞ if K is compact,
(ii) μ(U ) > 0 if U is open and nonempty,
(iii) μ(gA) = μ(A) for every Borel set A ⊂ G and every g ∈ G, and
(iv) if μ′ is another Haar measure on G then there exists λ > 0 such that μ′ = λ · μ.

See [8, §15] for a detailed introduction to Haar measures. Note that since a right translate
of a Haar measure is again a Haar measure, by property (iv) there exists a homomorphism
�G : G → R

+, called the modular homomorphism, such that

μ(Ag) = �G(g)μ(A)

for every Borel set A. Property (iv) also implies that �G depends only on G, and not on μ.
The group G is called unimodular if �G ≡ 1, in which case μ(gA) = μ(Ag) = μ(A) for
every Borel set A ⊂ G and every g ∈ G. Note that if G is unimodular then we may define
another Haar measure μ′ by μ′(A) = μ(A−1), and then by property (iv) we have μ = μ′ so
that μ is symmetric.

A locally compact group G with Haar measure μ is called amenable if for every compact
subset K ⊆ G and every ε > 0 there exists a compact set U ⊆ G of positive measure such
that

μ(KU )

μ(U )
� 1 + ε.

The group G is called geometrically amenable if for every compact subset K ⊆ G and every
ε > 0 there exists a compact set U ⊆ G of positive measure such that

μ(UK )

μ(U )
� 1 + ε.

In a unimodular group these notions coincide by the symmetry of μ. In a non-unimodular
group G, there exists k ∈ G such that �G(k) > 1, and then since μ(Uk) = �G(k)μ(U ) for
all compact setsU of positive measure, G is not geometrically amenable. Thus, we have the
following lemma, previously noted by the first author [18, §11].

Lemma 1.1 A locally compact group is geometrically amenable if and only if it is amenable
and unimodular.

This opens a new avenue to understanding which groups are both amenable and unimodular,
which we exploit to prove the following result, which in some sense shows that simultaneous
amenability and unimodularity of an arbitrary compactly generated, totally disconnected,
locally compact group necessarily reflects an action of that group on an amenable graph.
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Theorem 1.2 Let G be a compactly generated, totally disconnected, locally compact group.
Then the following are equivalent:

(i) G is amenable and unimodular;
(ii) G is geometrically amenable;
(iii) there exists a bounded-degree amenable graph admitting a proper Lipschitz action of

G;
(iv) there exists an amenable graph admitting a proper quasitransitive action of G;
(v) there exists an amenable graph admitting a proper transitive action of G;
(vi) every graph admitting a proper quasitransitive action of G is amenable.

The implication (v) �⇒ (iv) is trivial, and we discussed the implication (iv) �⇒ (iii)
above. The implication (vi) �⇒ (v) follows from Abels’s theorem, whilst of course the
equivalence (i) ⇐⇒ (ii) is a special case of Lemma 1.1.

The equivalence of (i), (iv) and (vi) recovers the Soardi–Woess–Salvatori theorem.
However, we prove the implication (i) �⇒ (vi) via the following version of the Soardi–
Woess–Salvatori theorem, in particular giving a more direct proof of that result than any
previous reference we are aware of.

Theorem 1.3 Suppose � is a connected, locally finite graph, and that G is locally compact
group admitting a proper quasitransitive action on �. Then � is amenable if and only if G
is amenable and unimodular.

We prove the one outstanding implication of Theorem 1.2, (iii) �⇒ (ii), via the following
result, which we believe to be completely new.

Theorem 1.4 Suppose G is a compactly generated, totally disconnected, locally compact
group admitting a proper Lipschitz action on a bounded-degree amenable graph. Then G is
geometrically amenable.

If one is willing to replace Lipschitz by 1-Lipschitz, then we can drop the assumption that
the graph must have bounded degree (see the first part of Theorem 1.9). Note that, thanks to
the absence of any quasitransitivity assumption, Theorem 1.3 is a significant strengthening
of one direction of the Soardi–Woess–Salvatori theorem.

We prove Theorem 1.3 in Sect. 2. Theorem 1.4 follows from the first part of Theorem 1.9,
which itself results from Proposition 4.1.

Remark 1.5 The properness of the actions in statements (iii)–(vi) of Theorem 1.2 cannot be
removed. On the one hand, if � is Cayley graph of degree d on some group H , and G is a
free group of rank greater than d , then one may define a transitive (and hence quasitransitive
and Lipschitz) action of the free group G on � by projecting Fr → H and letting H
act on � by translations. In particular, amenability of � in this instance does not imply
amenability of G. Conversely, defining them as HNN-extensions, one can let the lamplighter
and solvable Baumslag–Solitar groups act faithfully and transitively on regular trees (see for
instance [12]), so that amenability and unimodularity of G does not preclude the existence
of improper transitive actions of G on nonamenable graphs.

Remark 1.6 Statement (vi). of Theorem1.2 cannot be strengthened to say that every bounded-
degree graph admitting a proper Lipschitz action of G is amenable. For example, if G is a
finitely generated group and T is a tree then the obvious action of G on G × T is both proper
and Lipschitz.
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In light of the lamplighter and Baumslag–Solitar examples described in Remark 1.5, one
might reasonably wonder whether Sol admits a faithful, transitive action on a regular tree.
In Proposition 7.1 we show that it does not, in fact, admit any quasitransitive action on any
non-amenable locally finite graph.

Uniform non-amenability

Arzhantseva, Burillo, Lustig, Reeves, Short and Ventura [2] define a uniform notion of non-
amenability for finitely generated groups (Osin [13] considers a related notion called weak
amenabilty). In this paper we extend this definition to locally compact groups, and to geo-
metric amenability. First, given a compactly generated locally compact group G, we follow
Arzhantseva et. al. in defining

FølG = inf
S
inf
U

μ(SU\U )

μ(U )
,

where the infima are over all compact symmetric generating sets S for G and all compact
subsets U ⊆ G. (In fact, this differs slightly from Arzhantseva et al.’s definition in that they
consider the interior boundary, where we consider the exterior boundary.) If G is amenable
then FølG = 0 by definition; we call a group G satisfying FølG > 0 uniformly non-
amenable.

In the context of the present work it is natural to define analogously uniform geometric
non-amenability. Given a compactly generated locally compact group G, we therefore set

Føl∗ G = inf
S
inf
U

μ(US\U )

μ(U )
,

where again the infima are over all compact symmetric generating sets S for G and all
compact subsetsU ⊆ G. If G is geometrically amenable then Føl∗ G = 0 by definition, and
we call a group G uniformly geometrically non-amenable if Føl∗ G > 0.

Recall that a connected Lie group is generated by any neighbourhood of the identity. It
follows that ifG is such a group then FølG = 0 and Føl∗ G = 0; indeed, ifU is any compact
subset of positive measure, and (Sn)∞n=1 is a sequence of compact symmetric neighbourhoods
of the identity converging to the identity, then

μ(SnU\U )

μ(U )
→ 0,

μ(USn\U )

μ(U )
→ 0.

These notions are therefore more appropriately studied in the setting of totally disconnected
locally compact groups.

It turns out that, in that setting, these notions relate to unimodularity and the presence of
certain actions on graphs in a number of ways that are strongly analogous to Theorem 1.2.
For example, the following statement (which we prove in a more detailed form in Propo-
sition 6.3) shows that in an amenable group G, uniform geometric non-amenability can be
characterised in terms of the modular homomorphism, just as geometric amenability can be
by the equivalence (i) ⇐⇒ (ii).

Theorem 1.7 Suppose G is a compactly generated totally disconnected locally compact
group. Suppose further that G is amenable and non-unimodular. Then Føl∗ G = 0 if and
only if the image of G under the modular homomorphism is dense in R

∗+.

The following result, on the other hand, is directly analogous to the equivalence (ii) ⇐⇒
(v).
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Theorem 1.8 Let G be a compactly generated locally compact totally disconnected group.
Then Føl∗ G = 0 if and only if there exists a sequence of G-transitive proper locally finite
graphs �n which are asymptotically amenable in the sense that there exists a sequence
An ⊆ �n such that |∂An |/|An | → 0.

Theorem 1.8 actually follows from the more refined Theorem 1.12, below.
Finally, we have an analogue of the equivalence (ii) ⇐⇒ (iii). To state it requires a further

definition. Suppose G is a compactly generated locally compact group acting properly on a
locally finite graph �. Given C > 0, we say that this action is contingently C-Lipschitz if for
every x ∈ � there exists a compact symmetric generating subset Sx ⊂ G such that the orbit
map

(G, Sx ) → G · x
g �→ g · x

is C-Lipschitz. We will say that the action is contingently Lipschitz to mean that there exists
some C > 0 such that the action is contingently C-Lipschitz.

Theorem 1.9 Suppose G is a compactly generated totally disconnected locally compact
group. Then

• G is geometrically amenable if and only if it admits a 1-Lipschitz proper action on a
locally finite amenable graph; and

• Føl∗ G = 0 if and only if G admits a contingently 1-Lipschitz proper action on a locally
finite amenable graph.

We actually prove a slightly more detailed result than Theorem 1.9, which we state below as
Theorem 6.5.

Remark 1.10 Lemma 1.1 implies that geometric amenabillity is stronger than amenability.
However, it is not clear whether Føl∗ G = 0 is a stronger property than FølG = 0. Clearly
the two conditions coincide when G is unimodular. If G is non-unimodular and amenable
then FølG = 0. On the other hand, it is easy to see that Føl∗ G is not 0 if the modular
homomorphism has discrete image; this is the case, for example, in the affine group over Qp ,
where the image of the modular homomorphism is the powers of p. Note that Theorem 1.7
shows that if G is amenable, then the converse holds as well. We do not know what happens
if G is neither unimodular nor amenable.

Qustion 1.11 If FølG = 0 and �G has dense image in R
∗+, must it be the case that Føl∗ G =

0?

The space of G-transitive graphs

Let G be the set of isomorphism classes of locally finite vertex transitive graphs. Given a
compactly generated totally disconnected locally compact group G, we define G(G) to be
the subset ofG consisting of graphs admitting a proper transitive action of G. We then define
hG = inf�∈G(G) h(�), where h(�) is the Cheeger constant of � as above. This allows us to
formulate the following refinement of Theorem 1.8.

Theorem 1.12 Suppose G is a compactly generated totally disconnected locally compact
group. Then hG = Føl∗ G.
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We recall thatG comes with a natural topology, obtained from the following distance: we say
that two graphs�,�′ ∈ G are at distance at most 2−n if their balls of radius n are isomorphic.
We observe that two graphswith different degrees are at distance 1 apart.Moreover a standard
compactness argument shows that two graphs at distance 0 must be isomorphic, so that this
indeed defines a distance on G. Write G(G) the closure of G(G) in G for this topology.

Theorem 1.13 The map � �→ h� is upper semicontinuous on G. In particular, if G is a
compactly generated totally disconnected locally compact group such that G(G) contains
an amenable graph, then hG = 0.

We prove Theorems 1.12 and 1.13 in Sect. 5.
For every k ∈ N, let Gk be the set of isomorphism classes of vertex transitive graphs

of degree at most k, and let Gk(G) = G(G) ∩ Gk . It is natural to consider the quantity
hG,k = inf�∈Gk (G) h(�).

Qustion 1.14 Can we have hG,k > 0 for all k but hG = 0?

We strongly expect the answer to be positive although we do not currently have an example.

Qustion 1.15 Does hG,k = 0 for some k imply that G(G) contains an amenable graph?

2 The Soardi–Woess–Salvatori theorem

In this section we prove Theorem 1.3. Our proof consists of combining Lemma 1.1 with the
following two results, the second of which is similar to a reduction appearing in [15] and [4,
Lemma 3.10].

Proposition 2.1 Suppose � is a connected, locally finite vertex-transitive graph, and G is a
locally compact group admitting a proper transitive action on �. Then � is amenable if and
only if G is geometrically amenable.

Lemma 2.2 Suppose � is a connected, locally finite quasitransitive graph, and G is a locally
compact group admitting a proper quasitransitive action on�. Then there exists a connected,
locally finite vertex-transitive graph�′ quasi-isometric to�, and a compact normal subgroup
H � G such that G/H acts properly transitively on �′.

Given these results, it is straightforward to deduce Theorem 1.3, as follows.

Proof of Theorem 1.3 Let �′ be the graph and H �G be the compact normal subgroup given
by Lemma 2.2. Since � and �′ are quasi-isometric, either both are amenable or neither is
[6, Theorem 18.13]. Moreover, since H is compact, G is amenable if and only if G/H is
amenable, and unimodular if and only if G/H is unimodular, and hence, by Lemma 1.1,
geometrically amenable if and only if G ′ is geometrically amenable. The theorem therefore
follows from applying Proposition 2.1 to �′ and G/H . ��

All that remains, then, is to prove Proposition 2.1 and Lemma 2.2. We start with the
following result, which is basically the key reason why geometric amenability of a group
relates to amenability of a graph it acts on transitively. Here, and throughout this paper, given
a group G acting on a graph �, and a vertex o ∈ � and a subset X ⊆ � of vertices, we write
Go for the stabiliser of o in G, and

Go→X = {g ∈ G : g · o ∈ X}.
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Moreover, given a subset X of a graph � and a natural number r , we write [X ]r = {y ∈ � :
d(y, X) � r} for the r -neighbourhood of X , and ∂r X = [X ]r\X for the r -exterior boundary
of X .

Proposition 2.3 Suppose � is a connected, locally finite vertex-transitive graph, and G is
a locally compact group admitting a proper transitive action on �. Let o ∈ �, and let
S = {g ∈ G : d(g · o, o) � 1}. Then S is a symmetric compact open generating set for G,
and for every subset X ⊆ � the set Go→X is compact and open and satisfies

μ(Go→X ) = |X | · μ(Go), (2.1)

and more generally

μ(Go→X S
r ) = |[X ]r | · μ(Go) (2.2)

for every r ∈ N.

Proof The first part is essentially [21, Lemma 3]. To see that S is symmetric, note that

d(g−1 · o, o) = d(g−1 · o, g−1g · o) = d(g · o, o).
We will prove by induction on n that d(g · o, o) � n for a given n � 1 if and only if g ∈ Sn ,
which implies in particular that S generates G. The base case n = 1 is true by definition,
whilst for n � 2 we have

d(g · o, o) � n ⇐⇒ d(g · o, x) � 1 for some x with d(x, o) � n − 1

⇐⇒ d(g · o, h · o) � 1 for some h ∈ Sn−1 (by induction)

⇐⇒ h−1g ∈ S for some h ∈ Sn−1 (by the n = 1 case)

⇐⇒ g ∈ Sn,

as claimed.
By transitivity of the action, we may pick, for each x ∈ �, an automorphism gx ∈ G such

that gx · o = x . Note then that

Go→X =
⋃

x∈X
gxGo

for an arbitrary subset X ⊆ �, which immediately implies (2.1). Furthermore,Go is compact
by properness and open by continuity, so this also means that Go→X is compact and open
whenever X is finite, and in particular that S is compact and open, as required.

Finally, for every g ∈ G we have

g ∈ Go→X S
r ⇐⇒ there exists q ∈ Go→X such that d(q−1g · o, o) � r

⇐⇒ there exists q ∈ Go→X such that d(g · o, q · o) � r

⇐⇒ g · o ∈ [X ]r
⇐⇒ g ∈ Go→[X ]r ,

and so (2.2) follows from (2.1). ��
Proof of Proposition 2.1 First, suppose that � is amenable, and let (An)

∞
n=1 be a sequence of

finite subsets of � such that |∂An |/|An | → 0. Since � is transitive, and hence has uniformly
bounded degrees, we in fact have that |∂r An |/|An | → 0 for all r . Let K be a compact subset
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of G. Proposition 2.3 says that S is a symmetric open generating set for G, so we have
K ⊆ Sr for some r . This in turn implies that Go→An K ⊆ Go→An S

r for each n, and hence,
by Proposition 2.3, that

μ(Go→An K )

μ(Go→An )
� μ(Go→An S

r )

μ(Go→An )
= |[An]r |

|An | → 1.

Conversely, ifG is geometrically amenable then since S is compact there exists a sequence
(Un)

∞
n=1 of compact subsets of positive measure in G such that μ(UnS)/μ(S) → 1. Since

Go ⊆ S, this implies in particular that μ(UnS)/μ(UnGo) → 1. Using the fact that
SGo = S and S = S−1 we have GoS = (SGo)

−1 = S, and so we deduce further that
μ(UnGoS)/μ(UnGo) → 1. SinceUnGo = Go→Un ·o, this combines with Proposition 2.3 to
show that |∂(Un · o)|/|Un · o| → 0, and so � is amenable. ��
Proof of Lemma 2.2 It is well known that if G has n orbits, then if we fix one of these orbits
V , and define E = {(x, y) ∈ V ×V : 1 � d(x, y) � 2n}, the resulting graph �′ = (V , E) is
connected, locally finite and quasi-isometric to � (see e.g. the proof of [9, Proposition 2.13]).
We claim we may take H to be the kernel of the homomorphism G → Aut (�′) given by
the restriction to V of the G-action on �. Indeed, the action of G/H on �′ induced by this
homomorphism is transitive by definition, whilst H = {g ∈ G : g · v = v for all v ∈ V } is
a closed subset of a vertex stabiliser, and hence compact. ��

3 Equivalent formulations of amenability and geometric amenability

It is well known that in order to decidewhether a locally compact group is amenable it suffices
to consider the individual elements of a single compact generating set, as follows.

Lemma 3.1 Suppose G is a locally compact group, and S ⊆ G is a compact set generating
G as a semigroup. Then G is amenable if and only if for each ε > 0 there exists a compact
set F ⊆ G of positive measure such that sups∈S μ(sF � F)/μ(F) � ε.

Although this is well known, we have not been able to locate a convenient self-contained
reference, so we provide a proof.

Proof If G is amenable then by definition there exist compact sets (Fn)∞n=1 of posi-
tive measure such that μ((S ∪ S−1)Fn\Fn)/μ(Fn) → 0. In particular, for each s ∈ S
we have μ(sFn\Fn)/μ(Fn) → 0 and μ(Fn\sFn)/μ(Fn) = μ(s(s−1Fn\Fn))/μ(Fn) =
μ(s−1Fn\Fn)/μ(Fn) → 0.

Conversely, suppose (Fn)∞n=1 is a sequence of compact subsets of positive measure in G
such that μ(sFn � Fn)/μ(Fn) � 1

n for all s ∈ S. We claim more generally that μ(gFn �
Fn)/μ(Fn) → 0 for all g ∈ G. Indeed, since S generates G as a semigroup, an arbitrary
element g ∈ G can be written in the form g = s1 · · · sm with si ∈ S, and then using the
well-known and easily verified fact thatμ(A � B) satisfies the triangle inequality we obtain

μ(gFn � Fn)

� μ(s1 · · · sm−1(sm Fn � Fn)) + μ(s1 · · · sm−2(sm−1Fn � Fn)) + · · · + μ(s1Fn � Fn)

� m

n
μ(Fn) → 0.

The implication (iv) �⇒ (v) of [3, Theorem G.3.1] then implies that L∞(G) admits an
invariant mean, so thatG is amenable in the sense of [7], and then the implication (amenable)
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�⇒ (A) proved in [7, Sect. 1.2] implies that G is amenable in our sense by the remarks at
the end of [7, Sect. 1.2]. ��
In the present work we need the following analogous result for geometric amenability.

Lemma 3.2 Suppose G is a locally compact group, and S ⊆ G is a compact set generating
G as a semigroup. Then G is geometrically amenable if and only if for each ε > 0 there
exists a compact set F ⊆ G of positive measure such that sups∈S μ(Fs � F)/μ(F) � ε.

Proof We first show that if G is not unimodular then neither condition holds. It is convenient
to prove the contrapositive. If G is geometrically amenable this is immediate from Lemma
1.1. On the other hand, if (Fn)∞n=1 is a sequence of compact subsets of positive measure in
G such that μ(Fns � Fn)/μ(Fn) � 1

n for all s ∈ S, then μ(Fns) � (1+ 1
n )μ(Fn) for every

s ∈ S and n ∈ N, hence �G(s) � 1 + 1
n for every s ∈ S and n ∈ N, and hence �G(s) � 1

for every s ∈ S. Since S generates G as a semigroup, this implies that �G ≡ 1 on G as
claimed.

We may therefore assume that G is unimodular, and in particular that μ is symmetric. By
Lemma 1.1, G is then geometrically amenable if and only if it is amenable; by Lemma 3.1,
G is amenable if and only if for each ε > 0 there exists a compact set F ⊆ G of positive
measure such that supt∈S−1 μ(sF � F)/μ(F) � ε; and by symmetry of μ, this occurs if
and only if for each ε > 0 there exists a compact set F−1 ⊆ G of positive measure such that
sups∈S μ(F−1s � F−1)/μ(F−1) � ε. ��

4 Lipschitz proper actions and geometric amenability

In this section we generalise Theorem 1.4 to graphs of unbounded degree. This generalisation
necessitates a further definition: wewill say that a locally finite graph is r -amenable for r � 1,
and for all ε > 0, there exists a finite set of vertices F such that |∂r F |/|F | � ε. When r = 1,
we simply recover the usual notion of amenability. Note that if the graph has uniformly
bounded degrees then amenability implies r -amenability for all r .

Proposition 4.1 Let r ∈ N. Suppose G is a compactly generated, totally disconnected, locally
compact group acting r-Lipschitz properly on a locally finite r-amenable graph �. Then G
is geometrically amenable.

Before proving Proposition 4.1 we present two lemmas.

Lemma 4.2 Suppose G is a compactly generated locally compact group acting properly on
a locally finite graph �. Then the action of G on � is contingently 1-Lipschitz if and only if
every subgraph induced by an orbit of G on � is connected.

Proof Suppose first that the action is contingently 1-Lipschitz. Given x ∈ �, there therefore
exists a generating set Sx such that g �→ g · x is a 1-Lipschitz map from the Cayley graph
(G, Sx ) to X . The fact that (G, Sx ) is connected implies that the range of thismap is connected
as well, hence the orbit of x is connected.

Conversely, suppose that the orbit of x is connected. Then the subgraph �x induced by
G · x is a connected locally finite vertex-transitive graph, and by Proposition 2.3 the set
Sx = {g ∈ G : d�x (g · x, x) � 1} is a symmetric compact open generating set for G, with
respect to which g �→ g · x is trivially 1-Lipschitz. ��
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Lemma 4.3 Suppose G is a locally compact group with Haar measure μ acting transitively
on a locally finite graph �. Suppose further that this action is 1-Lipschitz with respect to
some compact symmetric generating set S for G. Then for every finite subset F ⊆ � there
exists a compact open subset A ⊆ G such that

μ(AS\A)

μ(A)
� |∂F |

|F | .

Proof Let x ∈ � such that the orbit map (G, S) → �, g �→ g · x is 1-Lipschitz. Let
Ŝ = {g ∈ G : d(x, g · x) � 1}. Proposition 2.3 implies that Gx→F is a compact open set
satisfying

μ(Gx→F Ŝ\Gx→F )

μ(Gx→F )
= |∂F |

|F | .

Moreover, the fact that the orbit map is 1-Lipschitz implies that d(x, gx) � |g|S for all
g ∈ G. Applying this to g ∈ S implies that S ⊆ Ŝ, hence thatGx→F S ⊆ Gx→F Ŝ, and hence
that μ(Gx→F S\Gx→F ) � μ(Gx→F Ŝ\Gx→F ), so that we may take A = Gx→F . ��
Proof of Proposition 4.1 Upon adding edges between all pairs of vertices at distance at most r ,
we may assume that r = 1. By Lemma 4.2, the subgraph induced by each orbit is connected.
Pick a compact symmetric generating set S, and a vertex z in each orbit such that the orbit
map g → g · z is 1-Lipschitz with respect to S, and write Z for the set of such z. For every
z ∈ Z , denote by Yz the graph induced by the orbit of z, and let Y = ⊔

z∈Z Yz . In other
words, Y is obtained from � by removing all edges joining different orbits. Note that each
Yz is a vertex-transitive graph such that the orbit map (G, S) → Yz , g �→ g · z is 1-Lipschitz.

Let ε > 0. By amenability of � there exists F ⊆ � be such that |∂F |/|F | � ε. Write ∂Y F
for the external boundary of F in Y , noting that ∂Y F ⊆ ∂F and that ∂Y F = ⊔

z∈Z ∂Y Fz ,
where Fz = F∩G ·z. By the pigeonhole principle, there exists z ∈ Z , such that |∂Y1 Fz |/|Fz | �
|∂Y F |/|F | � |∂F |/|F | � ε. Applying Lemma 4.3 to the action of G on the vertex-transitive
graph Yz , we therefore conclude that there exists a compact open set A ⊆ G such that
μ(AS\A)/μ(A) � ε. In particular, this implies that

sup
s∈S

μ(As � A)

μ(A)
= sup

s∈S
μ(As\A) + μ((As−1\A)s)

μ(A)

�
(
1 + sup

s∈S
�G(s)

)μ(AS\A)

μ(A)
�

(
1 + sup

s∈S
�G(s)

)
ε,

so that G is geometrically amenable by Lemma 3.2. ��

5 The space ofG-transitive graphs

In this section we prove Theorems 1.12 and 1.13.

Proof of Theorem 1.12 Let us start proving that Føl∗ G � hG . Assume the existence of a
sequence �n of proper G-transitive graphs, and of finite subsets An such that |∂An |/|An | →
Føl∗ G. Let on be some vertex in �n , denote by Kn the stabilizer of on in G, and let Sn =
{g ∈ G : d(g · on, on) � 1}. By Proposition 2.3, Sn is a compact open generating subset of
G, and we have that

μ(Gon→An Sn)/μ(Gon→An ) = |[An]1|/|An |.
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Hence we deduce that Føl∗ G � hG .
Observe that compact subsets of the form {g ∈ G : d(g · o, o) � 1} for a proper G-

transitive pointed graph (�, o) satisfy S = K SK for some compact open subgroup K . The
main point of the converse inequality is to show that in the definition of Føl∗ G, we only
need to take the infimum over such generating subsets. Precisely: given ε > 0, two compact
subsets S and F such that μ(F) > 0, we claim that there exists a compact open subgroup
K such that μ(FK SK\FS) � εμ(FS). Since the Haar measure is regular, one can find
an open neighbourhood of the identity W of G such that μ(FSW\FS) � εμ(FS). We
now have to find a compact open subgroup K such that FK SK ⊆ FSW . Using that the
multiplication is continuous, we see that there exist neighbourhoods S′ and F ′ of S and F
such that F ′S′ ⊆ FSW . Now because S and F are compact, such neighbourhoods can be
taken to be of the form S′ = SU and F ′ = FU for some neighbourhood U of the neutral
element in G. But since G is totally disconnected,U contains some compact open subgroup
K . So we finally have that FK SK ⊆ FSW , and so the claim follows.

We are now ready to prove that hG � Føl∗ G. Consider a sequence of compact symmetric
generating subsets Sn and a sequence of compact subsets of positive measure Fn such that
μ(FnSn\FnSn)/μ(Fn) tends to Føl∗ G. By our claim, we deduce the existence of a sequence
of compact open subgroups Kn such that μ(FnKnSnKn\FnSn)/μ(Fn) tends to zero. Hence,
μ(FnKnSnKn\Fn)/μ(Fn) tends to Føl∗ G. Letting S′

n = KnSnKn , we deduce that

lim inf μ(FnKnS
′
n\FnKn)/μ(FnKn) � Føl∗ G.

Consider now the Cayley–Abels graph �n obtained as right quotient of (Gn, S′
n) by Kn

(see [5, Proposition 2.E.9.] for the definition of a Cayley–Abels graph, originally due to
Abels [1]). Denote by πn the projection modulo Kn . Let An = πn(Fn). Since FnKn and
FnKnS′

n\FnKn are unions of Kn left cosets, we have

∂An = π(FnKnS
′
n)\π(FnKn) = π(FnKnS

′
n\FnKn).

Now, because μ is left-invariant, we deduce that |∂An |μ(Kn) = μ(FnKnS′
n\FnKn), and

|An |μ(Kn) = μ(FnKn). Hence lim inf |∂An |/|An | � Føl∗ G as required. ��
We now turn to the proof of Theorem 1.13. Recall that the isoperimetric profile of a graph

� is defined via

j�(n) = inf|A|�n

{ |∂A|
|A|

}
.

Proposition 5.1 For every n ∈ N, the map � �→ j�(n) is continuous on G.

Proof Let A be a finite subset of a graph �, and assume that A = A1 � A2 are such that
d(A1, A2) � 3. Then we have ∂A = ∂A1 � ∂A2. We therefore deduce that |∂A| = |∂A1| +
|∂A2|. Hence we deduce that

|∂A|
|A| � min

{ |∂A1|
|A1| ,

|∂A2|
|A2|

}
.

Hence j�(n) is attained on subsets A that are 2-connected: meaning that every pair of vertices
x, y can be joined by a chain of vertices x = x0, . . . , xk = y such that d(xi , xi+1) � 2.
Since such sets are contained in a ball of radius 2n, we have that j�(n) = j�′(n) as soon as
d(�, �′) � 2−2n−1, meaning that the balls of radius n+1 of these two graphs coincide. This
proves the proposition. ��

123



Geometric amenability in totally disconnected… Page 13 of 19 4

Proof of Theorem 1.13 Note that h� = infn j�(n), so � �→ h� is an infimum of continuous
functions by Proposition 5.1, hence is upper semicontinuous. ��

6 Føl∗ G

In this section we prove our various results about Føl∗ G, which recall we defined via

Føl∗ G = inf
S
inf
U

μ(US\U )

μ(U )
,

where the infima are over all compact symmetric generating sets S for G and all compact
subsets U ⊆ G. We start by observing that one direction of Theorem 1.7 does not need the
amenability assumption.

Proposition 6.1 Suppose G is a non-unimodular locally compact group, and that �G(G) is
discrete. Then G is uniformly geometrically non-amenable, i.e. Føl∗ G > 0.

Note that �G(G) is either discrete or dense, so that this really does prove one direction of
Theorem 1.7.

Proof of Proposition 6.1 The fact that �G(G) is non-trivial and discrete implies that it is
cyclic, so that we may fix a generator t > 1. Note, then, that every symmetric generating set
S for G must contain an element s such that �G(s) � t , so that for every compact subset F
of positive measure we have

μ(FS\F) � μ(Fs\F) � μ(Fs) − μ(F) = (t − 1)μ(F).

��
Example 6.2 Here is an example of a group with discrete image of the modular homomor-
phism: the affine groupA(Qp) = Qp � Z (for which t = p in the proof of Proposition 6.1).
On the other hand, modular homomorphism of the direct productA(Qp)×A(Qq) has dense
image whenever p and q are not powers of a common integer. It turns out that this group is
not uniformly geometrically non-amenable, as shown by the following proposition.

Proposition 6.3 Suppose thatG is anamenable, non-unimodular compactly generated totally
disconnected locally compact group. Then Føl∗ G = 0 if and only if the image of the modular
homomorphism is dense in R

∗+. Moreover, if �G is split and Føl∗ G = 0, then there exists a
sequence (Sn)∞n=1 of generating subsets of the form Sn = K �Tn, where K is a fixed compact
subset of ker�G and (Tn)∞n=1 is a sequence of finite subsets of bounded cardinality satisfying

μ(FnSn\Fn)
μ(Fn)

→ 0

for some sequence (Fn)∞n=1 of compact subsets of G.

We start with a lemma to help us construct the required generating sets Sn .

Lemma 6.4 Suppose that G is a compactly generated locally compact group, that 1 → N →
G → Q → 1 is a short exact sequence of locally compact groups. Then given any compact
generating set U for Q, and any relatively compact lift V of U in G, there exists a compact
symmetric subset R of N such that R ∪ V generates G. Moreover, if the sequence is split
then there exists a fixed compact symmetric subset K ⊆ N such that given any compact
generating set U for Q, the set K ∪U generates G.

123



4 Page 14 of 19 R. Tessera, M. Tointon

Proof Write π : G → Q for the quotient homomorphism. Let S be a compact symmetric
generating set for G, and fix n ∈ N so that π(S) ⊆ Un . We claim that we may take R to
be the (compact) closure of (SV−n ∪ V nS) ∩ N . Indeed, this set is symmetric by definition,
and given s in S, there exists g in V n such that sg−1 ∈ N , hence sg−1 ∈ R, and hence
s = sg−1g ∈ RV n .

If the sequence is split then let V = π(S), and let K be the (compact) closure of (SV−1 ∪
V S) ∩ N , noting that K ∪ V generates G by the previous paragraph. Then ifU is a compact
generating set for Q, we have V ⊆ Um for some m ∈ N, so that K ∪ U generates G as
required. ��

Proof of Proposition 6.3 As noted above, �G(G) is either discrete or dense in R
∗+, so Propo-

sition 6.1 implies that it is dense if Føl∗ G = 0. It therefore remains to prove that Føl∗ G = 0
assuming that �G(G) is dense.

Being totally disconnected, G has a compact open subgroup [8, Theorem 7.7]. The image
of this subgroup under �G is a compact subrgoup of R, and hence trivial, so �G factors
through a discrete, and hence finitely generated, quotient. Since R

∗+ is abelian and torsion-
free, �G factors through a finitely generated torsion-free abelian quotient G → A ∼= Z

d .
Write π : G → A for the quotient homomorphism, and let �′ : A → R

∗+ be an injective
homomorphism such that �G = �′ ◦ π . If �G is split, let K be the symmetric compact set
given by Lemma 6.4.

We claim that V ∩ �′(A) spans �′(A) for every neighbourhood V of 1 ∈ R
∗+. It is more

convenient to work additively: consider δ′ = log ◦�′ : A → (R,+), and takeW = log V of
the form W = (−t, t) for some t > 0. Let a ∈ δ′(A). By density of �′(A) = �G(G), there
exists a sequence 0 = a1, a2, . . . , am = a of elements of δ′(A) such that |ai+1 − ai | < t
for each i , and hence ai+1 − ai ∈ W ∩ δ′(A) for each i , so that δ′(A) ∩ W generates δ′(A)

as claimed. In particular, for all such V we can find a basis (x1, . . . , xd) of A ∼= Z
d whose

image under �′ lies in V .
Let n ∈ N. Note that for any t > 0 close enough to 1, we have tn+1 � 1

n (
∑n

i=−n t
i ) (as

for t = 1 we have strict inequality). We may therefore pick Vn ⊆ ( 12 , 2) small enough such
that

vn+1 � 1

n

(
n∑

i=−n

vi

)
∀ v ∈ Vn, (6.1)

and fix some basis (x1, . . . , xd) for A whose image under �′ lies in Vn . From now on, we
identify A with Z

d via this basis.
Let j : A → G be a cross section of π satisfying j(0) = 1, chosen to be the natural

embedding A ↪→ ker π � A if �G is split, and set Tn = { j(x1)±1, . . . , j(xd)±1}. Lemma
6.4 then implies that there exists a compact subset Rn ⊆ ker π such that Sn = Rn ∪Tn forms
a symmetric compact generating subset of G. Moreover, if �G is split then by definition of
K we may take Sn = K � Tn for each n, as required.

Let Kn = j([−n, n]d ∩ Z
d) ⊆ G. Define Xn = ⋃

k∈Kn
kRnk−1, which is a compact

subset of ker π . Finally, for all a ∈ Kn , we have π(a) = (a1, . . . , ad) with ai ∈ [−n, n],
and for each permutation σ ∈ S(d) the elements a and j(xσ(1))

aσ(1) . . . j(xσ(d))
aσ(d) differ

by an element of ker π . Let Ln ⊆ ker π be the (finite) subset of all such elements and their
inverses.

We now form a compact subset Mn ⊆ ker π by setting Mn = L ′
n ∪ Ln ∪ Xn . Note that

since ker π is open in G, the restriction of μ to ker π is a Haar measure on ker π . Moreover,
since ker π is the kernel of �G , it is unimodular, and since it is a closed subgroup of G, it is
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also amenable. Hence ker π is geometrically amenable by Lemma 1.1, and so there exists a
compact subset Qn ⊆ ker π such that

μ(QnMn\Qn) � 1
nμ(Qn).

Let Fn = QnKn .
We claim that

μ(FnSn\Fn) � Od(
1
n )μ(Fn), (6.2)

which will immediately finish the proof of the proposition. To see this, first note that Fn =⊔
k∈Kn

Qk, and hence

μ(Fn) =
⎛

⎝
∑

k∈Kn

�G(k)

⎞

⎠ μ(Qn). (6.3)

Note also that by definition of Xn we have

Fn Rn = QnKn Rn ⊆ QnXnKn ⊆ QnMnKn =
⊔

k∈Kn

QnMnk,

hence

Fn Rn\Fn ⊆
⊔

k∈Kn

(QnMn\Qn)k,

and hence

μ(Fn Rn\Fn) �

⎛

⎝
∑

k∈Kn

�G(k)

⎞

⎠ μ(QnMn\Qn).

It then follows from (6.3) and the definition of Qn that

μ(Fn Rn\Fn) � 1
nμ(Fn). (6.4)

We now turn to Tn . By symmetry in x1, . . . , xd and in xd , x
−1
d , it is enough to show that

μ(Fn j(xd)\Fn) � O( 1n )μ(Fn); (6.5)

this will combine with (6.4) to prove (6.2), as claimed. To that end, let

K ′
n = { j(x1)a1 . . . j(xd)

ad : (a1, . . . , ad) ∈ [−n, n]d ∩ Z
d},

and let F ′
n = QnK ′

n . By definition of L ′
n , we have Fn ⊆ QnLnK ′

n and F ′
n ⊆ QnLnKn . We

claim that

μ(Fn � F ′
n) � O( 1n )μ(Fn). (6.6)

To see this, first note that by definition of L ′
n we have F ′

n ⊆ QnLnKn ⊆ QnMnKn , and
hence

F ′
n\Fn ⊆ QnMnKn\QnKn =

⊔

k∈Kn

(QnMn\Qn)k.
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In particular, this implies that

μ(F ′
n\Fn) �

⎛

⎝
∑

k∈Kn

�G(k)

⎞

⎠ μ(QnMn\Qn),

so that by (6.3) and definition of Qn we have μ(F ′
n\Fn) � 1

nμ(Fn), as required. On the
other hand, we similarly have Fn ⊆ QnLnK ′

n , and a similar argument then shows that
μ(Fn\F ′

n) � 1
nμ(F ′

n) � 2
nμ(Fn), giving (6.6) as claimed. Since �′(xd) < 2, (6.6) in turn

implies that

μ(Fn j(xd)\F ′
n j(xd)) = μ((Fn\F ′

n) j(xd)) = �′(xd)μ((Fn\F ′
n) < 2

nμ(Fn).

which then combines with (6.6) to show that in order to prove (6.5)—and hence the
proposition—it is enough to prove that

μ(F ′
n j(xd)\F ′

n) � 1
nμ(F ′

n). (6.7)

Let K ′′
n = { j(x1)a1 . . . j(xd−1)

ad−1 : (a1, . . . , ad−1) ∈ [−n, n]d−1 ∩ Z
d−1}. We have

F ′
n =

n⊔

i=−n

QnK
′′
n j(xd)

i ,

so that

μ(F ′
n) =

(
n∑

i=−n

�G( j(xd))
i

)
μ(QnK

′′
n ) =

(
n∑

i=−n

�′(xd)i
)

μ(QnK
′′
n )

and

F ′
n j(xd)\F ′

n ⊆ QnK
′′
n j(xd)

n+1,

and hence

μ(F ′ j(xd)\F ′
n) � �G( j(xd))

n+1μ(QnK
′′
n ) = �′(xd)n+1μ(QnK

′′
n ).

Applying (6.1) with v = �′(xd), we deduce that (6.7) holds as required. ��
Finally, we prove the following slight refinement of Theorem 1.9.

Theorem 6.5 Suppose G is a compactly generated totally disconnected locally compact
group. Then

• G is geometrically amenable if and only if it admits a 1-Lipschitz proper action on a
locally finite amenable graph; and

• Føl∗ G = 0 if and only if G admits a contingently 1-Lipschitz proper action on a locally
finite amenable graph, if and only if there exists r ∈ N such that G admits a contingently
r-Lipschitz proper action on a locally finite r-amenable graph for some r � 1.

Proof If G is geometrically amenable then by Theorem 1.2 there exists r ∈ N such that G
admits an r -Lipschitz proper action on a bounded-degree amenable graph �0. Then G acts
1-Lipschitz properly on the bounded-degree amenable graph obtained from �0 by adding
edges between all pairs of vertices at distance at most r . The converse is given by Proposition
4.1.

Now suppose that Føl∗ G = 0. By Theorems 1.8 (which recall followed from Theorem
1.12), there exists a sequence �n of G-vertex transitive proper locally finite graphs and a
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sequence of finite subsets An ⊂ �n such that |∂An |/|An | → 0. Consider the disjoint union
� = ⊔

�n : since the graphs induced by the orbits are connected, we deduce from Lemma
4.2 that the action is contingently 1-Lipschitz. Besides, � is obviously amenable, and the
G-action on it is proper.

Conversely, assume that G admits a contingently r -Lipschitz proper action on a locally
finite r -amenable graph for some r � 1. On adding edges between all pairs of points at
distance at most r , we reduce to the case r = 1. Hence we can assume that G admits a
1-Lipschitz proper action on a locally finite amenable graph �. Removing edges from �

does not change the fact that it is amenable, so we may assume that � is a disjoint union
of vertex-transitive proper locally finite graphs �n . Now if F ⊆ �, we have F = ⊔

n Fn ,
where Fn ⊆ �n , and ∂F = ⊔

n ∂Fn . By the pigeonhole principle, there exists n such that
|∂Fn |/|Fn | � |∂F |/|F |. We deduce that if (Ak) is a sequence of subsets of � such that
|∂Ak |/|Ak | → 0, there exists A′

k ⊆ Ak such that |∂A′
k |/|A′

k | → 0 and such that A′
k is

contained in some �nk for each k. Hence the sequence �nk is asymptotically amenable,
which implies that Føl∗ G = 0 by Theorem 1.8. ��

7 Sol

Recall that the group Sol is defined as the semi-direct product Z
2

� Z, where the generator

of Z acts on Z
2 via the matrix

(
2 1
1 1

)
.

Proposition 7.1 Sol does not admit a continuous quasitransitive action on a locally finite
non-amenable graph.

Proof Assume by contradiction that such action exists on a graph X . Then since the image
of Sol is cocompact in the automorphism group of X , its closure G is quasi-isometric to
X . But because Sol is amenable, then so is G. Since X is non amenable though, G is not
geometrically amenable, and so the only way this can happen is if G is non-unimodular.
Hence we are reduced to proving that Sol does not admit any continuous morphism with
dense image π : Sol → G, where G is totally disconnected and non-unimodular.

We start observing that since Sol is metabelian, then so is G, we deduce that A := [G,G]
is abelian. Recall that Sol is isomorphic to Z

2
� Z, where Z

2 coincides with the derived
subgroup. We therefore have that Z

2 ⊂ [G,G]. On the other hand, we have Z ∩ A = {1}.
Indeed, since [G,G] is abelian, this would imply that the image of Sol is virtually abelian,
which would be incompatible with the fact that G is non-unimodular. This implies that
Sol ∩ A = Z

2, and therefore that Z
2 is dense in A.

Moreover, the image of G in Gab := G/A coincides with the image of Z, which is
dense. We have two possibilities: either Gab is compact, which again would be at odd with
the fact that G is non-unimodular, or it is discrete and therefore isomorphic to Z. Hence
G = A � Z. Now let K be an open compact subgroup of A. Since it is open and Z

2 is
dense in A, HK = Z

2 ∩ K is dense in K . Since G is not discrete, HK must be non-trival.
Let u ∈ HK \{1G}. Since the conjugation by the generator t in Z is continuous, we have
that t−1ut must also be contained in a compact subgroup of A. But since A is abelian, this
implies that t−1ut and u are contained in a compact subgroup of A. But since these are
linearly independent vectors in Q

2, they generate a finite index subgroup of Z
2. Hence since

Z
2 is dense in A, this would imply that A is compact, again not compatible with G being

non-unimodular. So we are done. ��
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8 Edge boundaries

In this paper, we chose to focus on the exterior boundary. The important aspect of this choice
is that this boundary is a set of vertices, not of edges. The main reason for this choice comes
from the fact that it is well suited for Cayley graphs of locally compact compactly generated
groups: indeed the measure of the exterior boundary is well-behaved despite the fact that the
graph may have infinite degree. Moreover, as seen in Lemma 4.3, there is a nice connection
between Følner sets in the group, and Følner sets in the graph on which G acts transitively.

Say that a graph � is edge-amenable if there exists a sequence of finite subset Fn such that
|∂eFn |/|Fn | tends to zero, where the edge-boundary ∂eFn is the set of edges joining a vertex
of Fn to a vertex of its complement. Since amenability and edge-amenability are obviously
equivalent for bounded degree graphs, this discussion is only relevant for the statements
involving locally finite graphs with unbounded degree. Let us focus our discussion here on
Theorem 1.9. The first statement remains true for the edge boundary: one implication is
immediate by the previous discussion, and the other one follows from the simple observation
that the size of the edge boundary is always larger than than that of the exterior boundary.

However, the second statement of Theorem 1.9 does not have an obvious analogue, moti-
vating the following question.

Qustion 8.1 Characterise those locally compact groups G admitting a contingently 1-
Lipschitz proper action on a locally finite edge-amenable graph.
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