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Abstract
We compute the Hochschild–Kostant–Rosenberg decomposition of the Hochschild coho-
mology of Fano 3-folds. This is the first step in understanding the non-trivial Gerstenhaber
algebra structure of this invariant, and yields some initial insights in the classification of
Poisson structures on Fano 3-folds of higher Picard rank.
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1 Introduction

In this paper we describe the Hochschild cohomology of Fano 3-folds, with the eventual goal
of understanding the interesting algebraic structures present on this invariant, and completing
the classification of Poisson structures on Fano 3-folds.
Fano 3-folds and the vector bundle method. Fano 3-folds were classified by Iskovskikh
[24, 25] (for Picard rank 1, where there are 17 families) and Mori–Mukai [40, 41] (for Picard
rank≥ 2, where there are 88 families). This classification was obtained by understanding the
birational geometry of Fano 3-folds, and the output is a list of 105 deformation families and
their numerical invariants c1(X)3, ρ(X), and h1,2(X). Only 12 out of 88 families of Picard
rank ≥ 2 are not the blowup of a Fano 3-fold of lower Picard rank.

For the Picard rank 1 caseMukai alternatively described the classification using the vector
bundle method in [43], by writing Fano 3-folds of Picard rank 1 as zero loci of vector bundles
on homogeneous varieties and weighted projective spaces. In higher Picard ranks this was
extended in 2 different ways (which have partial overlap), by giving a description as

(1) zero loci of vector bundles on GIT quotients by products of general linear groups [15];
or

(2) zero loci of homogeneous vector bundles on homogeneous varieties [16].

The ambient variety is often called the key variety, and will be denoted F .
In the first variation on the vector bundle method the group is often (but not always) a

product of tori, so that the Fano 3-fold is described as a complete intersection in a toric
variety F . There are 13 families for which the group is not a product of tori, and then the key
variety is actually a product of Grassmannians.

In the second variation the key variety F is always a homogeneous variety. In particular,
it is shown in [16] that every Fano 3-fold can be realised as the zero locus of a homogeneous
vector bundle in a product of (possibly weighted) Grassmannians.

Hochschild cohomology.Wewill use both these descriptions to determine theHochschild
cohomology of all Fano 3-folds. This is an invariant which measures the deformation theory
of the abelian category (or derived category) of (quasi)coherent sheaves [36, 37, 54]. For the
definition and more details on the algebraic structure on HH•(X), see Sect. 2.1.

An important instrument in describing Hochschild cohomology for varieties is the
Hochschild–Kostant–Rosenberg decomposition [12, 53, 56], which says that

HHi (X) ∼=
⊕

p+q=i

Hp
(
X ,

∧q
TX

)
. (1)

The birational description of Mori–Mukai is not convenient for automating computations
of the right-hand side of (1) for Fano 3-folds, whereas the vector bundle method turns out to
be well-suited for this. Moreover, we need the combination of both descriptions to cover all
Fano 3-folds, together with a separate analysis of some underdetermined cases, i.e. cases for
which the two approaches do not yield a complete description of the cohomology groups we
are aiming at.

In Sect. 3.1 we will show how to compute hp(X ,
∧q TX ) for q �= 2: the summands

with q = 0 and q = 3 are easy, and the summands for q = 1 follow from the knowledge
of the invariants c31, ρ, and h1,2 together with the size of the automorphism group of a Fano
3-fold X . For q = 2 the description is new, and forms the main subject of this paper.
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Theorem A Let X be a Fano 3-fold. Then the cohomology of
∧2 TX is concentrated in

degrees 0, 1, 2, and it is constant in families. The dimensions of the cohomologies (for all q =
0, 1, 2, 3) are given in the tables in Appendix A.

The fact that the dimension of cohomology is constant in families is a by-product of the
calculations, we don’t have an abstract proof for it. Observe that the cohomology of the
tangent bundle is not constant in families, see [47] for the jumping behaviour of Aut0(X)

and therefore h0(X ,TX ) = dimAut0(X).
On the methods. In Sects. 3 and 4 we collect the details for the proof of Theorem A. We
will set up the proof so that we can take advantage of computer algebra methods, with some
explicit calculations in caseswhere automatedmethods fail.Wehave optimised the automated
methods so that only 5 out of 105 deformation families of Fano 3-folds need to be dealt with
by hand (2 of which are nearly immediate).

What is interesting to observe is that the homogeneous methods from [16] are very good
at determining Hodge numbers (and in particular they are expected to help in classifying
Fano 4-folds, see e.g. [8]), with only a dozen deformation families of Fano 3-folds not being
fully determined. But for twisted Hodge numbers (and in particular the cohomology of TX

and
∧2 TX ) the homogeneous approach gives many underdetermined cases.
This is why we first use the toric description from [15], and only use the homogeneous

description when no such description is available or when the toric methods are not giving a
full answer. The combination of these twomethods, in this particular order, gives the cleanest
exposition.
Absence of Poisson structures. When H0(X ,

∧2 TX ) is non-zero, the classification of Pois-
son structures becomes an interesting question. For a global bivector, the vanishing of the
self-bracket (for the Schouten bracket) is equivalent to the Jacobi identity of the associated
Poisson structure.

In [35, §9, Table 1] Poisson structures on Fano 3-folds of Picard rank 1 were classified
(see also [2] for the classification of Poisson structures on smooth projective surfaces, where
the vanishing is automatic). As an immediate corollary of Theorem A we obtain the absence
of Poisson structures on some Fano 3-folds of higher Picard rank. Here the notation MMρ.n

refers to the nth deformation family with Picard rank ρ in the Mori–Mukai classification, see
[40] and [26, §12.2−12.6].

Corollary B The following primitive1 Fano 3-folds with ρ ≥ 2 admit no Poisson structures:

• MM2.2

• MM2.6

• MM3.1.

The following imprimitive Fano 3-folds admit no Poisson structures:

• MM2.4

• MM2.7

• MM3.3.

For all other Fano 3-folds there are non-zero global bivectors, and it is necessary to check
the self-bracket of a global bivector field. Already for Fano 3-folds of Picard rank 1 this is a
highly non-trivial condition [35].

For the imprimitive Fano 3-folds we expect that the birational description of Mori–Mukai
together with [46, §8] should allow for a (partial) classification of Poisson structures. In

1 i.e. cannot be written as the blowup in a curve of a Fano 3-fold of lower Picard rank.
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12 Page 4 of 30 P. Belmans et al.

particular, we expect that the second part of Corollary B has a proof using these techniques,
but this is outside the scope of the current paper.

Relation to other works. In the representation theory of finite-dimensional algebras the
Gerstenhaber algebra structure on Hochschild cohomology is an important invariant, studied
in many cases, see [1, 14, 49, 51] to name a few. In algebraic geometry there are (at the time
of writing) fewer attempts at giving explicit descriptions of Hochschild cohomology and
the Hochschild–Kostant–Rosenberg decomposition. An important case is that of partial flag
varieties [7, 21]. For smooth projective toric varieties (and only the H0, not any possible H≥1)
one is referred to [22]. There are also various cases where the interaction of the Hochschild
cohomology of different varieties (and categories) is studied (see e.g. [6, 23, 32]), with the
Kuznetsov components of Fano 3-folds of Picard rank 1 and index 2 being the subject of [33,
§8.3].

Some of the results in this paper are standard, whilst for Fano 3-folds of Picard rank 1
results can be found in [27, 35].

It would be interesting to understand how mirror symmetry can be used to compute the
invariants investigated in this paper, using the symplectic geometry of the mirror Landau–
Ginzburg model. For Hodge numbers (and hence Hochschild homology, see Sect. 2.1) of
Fano varieties a recipe for this was conjectured by Katzarkov–Kontsevich–Pantev in [28,
Conjecture 3.7], based on the conjectural equivalence

Db(X) ∼= FS(Y , f , ωY ) (2)

from homological mirror symmetry. Here f : Y → A
1 is a (suitably compactified) Landau–

Ginzburg model and ωY an appropriately chosen symplectic form, so that X and (Y , f ) are
mirror. Subsequently this was checked by Lunts–Przyjalkowski for del Pezzo surfaces in
[38] and by Cheltsov–Przyjalkowski for Fano 3-folds in [13]. Hochschild cohomology is
also a categorical invariant, and therefore can be computed from either side of (2) (assuming
an enhancement of the equivalence). An interesting difference is that Hodge numbers (and
hence the dimensions of the Hochschild homology spaces) are constant in families, but this
is not the case for Hochschild cohomology.

Notation. We will number deformation families of Fano 3-folds as MMρ.n as in Mori–
Mukai [40] (see also [26, §12.2−12.6]), with the caveat that MM4.13 refers to the blowup
of P1 × P

1 × P
1 in a curve of degree (1, 1, 3), the case which was originally omitted and

discovered in [42].
Throughout we work over C, so that we can apply the descriptions of [15, 16] for Fano 3-

folds. The calculations using these descriptions are in fact valid over an arbitrary algebraically
closed field of characteristic zero.

2 Polyector fields and their structure

2.1 Hochschild cohomology and the Hochschild–Kostant–Rosenberg decomposition

There exist various approaches to defining the Hochschild cohomology of a variety, which
are known to agree in the setting we are interested in. One of the more economical definitions
is the following.
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Definition 2.1 Let X be a smooth and projective variety. Its Hochschild cohomology is

HH•(X) :=
2 dim X⊕

i=0

HHi (X) (3)

for

HHi (X) := ExtiX×X (�∗OX ,�∗OX ), (4)

where � : X ↪→ X × X denotes the diagonal embedding.

The Hochschild–Kostant–Rosenberg decomposition gives a convenient description of the
summands HHi (X) in terms of polyvector fields, and it is obtained via the Hochschild–
Kostant–Rosenberg quasi-isomorphism L�∗ ◦ �∗OX ∼= ⊕dim X

i=0 �i
X [i] considered in [12,

39, 56].

Theorem 2.2 (Hochschild–Kostant–Rosenberg decomposition) Let X be a smooth projective
variety. Then there exists an isomorphism

HHi (X) ∼=
⊕

p+q=i

Hp
(
X ,

∧q
TX

)
(5)

for i = 0, . . . , 2 dim X induced by the Hochschild–Kostant–Rosenberg quasi-isomorphism.

Hence as a first approximation (disregarding any algebraic structures present on
Hochschild cohomology) determining the Hochschild cohomology of a variety reduces to a
question in sheaf cohomology.

Remark 2.3 There is also the Hochschild homology of X , defined as

HH•(X) :=
dim X⊕

i=− dim X

HHi (X) (6)

where

HHi (X) := Exti+dim X
X×X (�∗OX ,�∗ωX ). (7)

Moreover there is theHochschild–Kostant–Rosenberg decomposition for Hochschild homol-
ogy, which now reads

HHi (X) ∼=
⊕

p−q=i

Hq(X ,�
p
X ) (8)

for i = − dim X , . . . , dim X . Hence the dimension of the Hochschild homology of X is
determined by the Hodge numbers hp,q = hq(X ,�

p
X ). These numbers admit symmetries

under Serre duality and Hodge symmetry, and therefore are often written down in the form
of the Hodge diamond. In particular for Fano 3-folds the Hodge diamond is of the form

HH−3(X) HH−2(X) HH−1(X) HH0(X) HH1(X) HH2(X) HH3(X)

1
0 0

0 ρ 0
0 h1,2 h1,2 0

0 ρ 0
0 0

1

(9)
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and it is determined by the invariants from the classification. The dimensions of the
Hochschild homology spaces now correspond to different columns in this diamond (as
opposed to the rows which describe the dimensions of singular cohomology spaces).

To mimic this economical description of the Hochschild–Kostant–Rosenberg decompo-
sition of Hochschild homology using the Hodge diamond, the first author introduced the
polyvector parallelogram. If we denote pp,q := dimk Hp(X ,

∧q TX ), then for a 3-fold it is
given by

HH0(X) 1
HH1(X) p1,0 p0,1

HH2(X) p2,0 p1,1 p0,2

HH3(X) p3,0 p2,1 p1,2 p0,3

HH4(X) p3,1 p2,2 p1,3

HH5(X) p3,2 p2,3

HH6(X) p3,3

(10)

with an obvious generalisation to other dimensions. There are no symmetries present in the
numbers pp,q , and the presentation reflects this absence.

Remark 2.4 Another important difference between the Hodge diamond and the polyvector
parallelogram is that the former is constant in families, whilst the latter is not necessarily so.
We will explain this for Fano 3-folds in Sect. 3.1.

Additional structure. There is a rich algebraic structure on Hochschild cohomol-
ogy HH•(X), and on the polyvector fields

⊕
p+q=• Hp(X ,

∧q TX ). Namely there exist:

• a graded-commutative product (of degree 0);
• a graded Lie bracket (of degree −1)

which are related via the Poisson identity, yielding the structure of a Gerstenhaber algebra.
On Hochschild cohomology this structure can be either induced using a localised version

of the Hochschild cochain complex of an algebra [30, 56], or the general machinery of
Hochschild cohomology for dg categories [29]. The product corresponds to the Yoneda
product on self-extensions in (4), whilst the Gerstenhaber bracket [−,−] does not have a
direct sheaf-theoretic interpretation in the definition (4).

For polyvector fields the product structure is given by the cup product in sheaf cohomology
together with the wedge product of polyvector fields, whilst the Lie bracket is given by the
Schouten bracket [−,−]S. In this case the Gerstenhaber algebra structure is even compatible
with the bigrading.

The isomorphism used in Theorem 2.2 is not compatible with the Gerstenhaber algebra
structures on both sides. This was remedied by Kontsevich (see [31, Claim 8.4] and [12,
Theorem 5.1]) for the algebra structure and Calaque–Van den Bergh [11, Corollary 1.5] for
the full Gerstenhaber algebra structure, by modifying it using the square root of the Todd
class.Wewill denote the isomorphismHH•(X) ∼= ⊕

p+q=• Hp(X ,
∧q TX ) of graded vector

spaces obtained from Theorem 2.2 by IHKR.

Theorem 2.5 (Kontsevich, Calaque–Van den Bergh) We have an isomorphism of Gersten-
haber algebras

IHKR ◦ √
tdX ∧ −:

⊕

p+q=•
Hp

(
X ,

∧q
TX

) ∼=→ HH•(X). (11)
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By describing the algebraic structure on polyvector fields we can therefore deduce prop-
erties of the algebraic structure on Hochschild cohomology of X .

We can identify certain interesting substructures:

• (HH1(X), [−,−]) is a Lie algebra,
• HHi (X) is a representation of (HH1(X), [−,−]),
• the self-bracket [α, α] ∈ HH3(X) forα ∈ HH2(X)measures the obstruction to extending

a first-order deformation of the abelian or derived category of coherent sheaves (classified
by HH2(X), see [36, 37]) to higher order,

whilst on the polyvector fields and using the finer bigrading we have that:

• (H0(X ,TX ), [−,−]S) is the Lie algebra Lie Aut0(X);
• ⊕

p+q=i H
p(X ,

∧q TX ) is a bigraded representation of Lie Aut0(X);

• the self-bracket [β, β]S ∈ H2(X ,TX ) for β ∈ H1(X ,TX ) measures the obstruction
to extending a first-order deformation of the variety X to higher order in the Kodaira–
Spencer deformation theory of varieties.

For a Fano variety the latter obstruction vanishes as H2(X ,TX ) = 0 by Kodaira–Akizuki–
Nakano vanishing, see also Lemma 3.1. By [47] the Lie algebra Lie Aut0(X) is non-trivial
in many cases, and it would be interesting (but outside the scope of this article) to describe
this aspect of the Gerstenhaber algebra structure.

There is also the self-bracket [π, π]S ∈ H0(X ,
∧3 TX ) for π ∈ H0(X ,

∧2 TX ), which
we will now elaborate on. By Kodaira vanishing H2(X ,OX ) will play no role in this article.

2.2 Poisson structures

APoisson structure is aC-bilinear operation {−,−}: OX ×OX → OX satisfying the axioms
of a Poisson bracket; in particular it satisfies the Jacobi identity. It can also be encodedglobally
as a section π ∈ H0(X ,

∧2 TX ), using the equality { f , g} = 〈d f ∧dg, π〉 obtained from the
pairing between vector fields and differential forms. The vanishing of the Schouten bracket

[π, π]S = 0 ∈ H0
(
X ,

∧3
TX

)
(12)

encodes the Jacobi identity for the corresponding Poisson structure.Wewill use the following
terminology.

Definition 2.6 Let X be a smooth projective variety. A Poisson structure on X is a bivector
field π ∈ H0(X ,

∧2 TX ) such that (12) holds. We denote

Pois(X) ⊆ H0
(
X ,

∧2
TX

)
(13)

the subvariety of Poisson structures.

In general Pois(X) is cut out by homogeneous equations of degree 2, and one can also
consider them up to rescaling, so that one is interested in P(Pois(X)) ⊆ P(H0(X ,

∧2 TX )).
There can be multiple irreducible components, of varying dimension. For an excellent intro-
duction to Poisson structures, one is referred to [48]. Let us just recall that Poisson structures
are important to construct deformation quantisations, or noncommutative deformations, as
e.g. explained in [9].
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12 Page 8 of 30 P. Belmans et al.

The classification of Poisson structures on smooth projective surfaces is done in [2],
with the vanishing of the Schouten bracket being automatic for dimension reasons. The
classification of Poisson structures Fano 3-folds of Picard rank 1 is summarised in [35, §9,
Table 1]. We don’t need the full classification, let us just mention the following examples.

Example 2.7 By [35, §9, Table 1] we have that

• for P3 there are 6 irreducible components, of varying dimension;
• in the family MM1.10 there exists a unique member for which P(Pois(X)) is non-empty

in P(H0(X ,
∧2 TX )) ∼= P

2, in which case it is a point: the Mukai–Umemura 3-fold XMU

for which Aut0(XMU) = PGL2;
• in the family MM1.9 we have for all X that P(Pois(X)) = ∅ inside P(H0(X ,

∧2 TX )) =
pt.

As mentioned in [48, §3.4], the full classification of Poisson structures on Fano 3-folds
of higher Picard rank is still open, and Corollary B gives the first step towards such a classi-
fication.

3 Computing the Hochschild cohomology of Fano 3-folds

In this section we discuss the aspects of the computation of Hochschild cohomology of Fano
3-folds which are common to all cases. After introducing some general results in Sect. 3.1
we will set up the computation in Sect. 3.2 and discuss the two approaches in Sects. 3.3 and
3.4. For the remaining cases one is referred to Sect. 4.

3.1 General results

The following lemma is straightforward, but significantly reduces the number of cohomolo-
gies one needs to compute for a Fano 3-fold.

Lemma 3.1 Let X be a Fano 3-fold. Then

H•(X ,OX ) = H0(X ,OX )

H•(X ,TX ) = H0(X ,TX ) ⊕ H1(X ,TX )

H•(X ,
∧2

TX ) = H0
(
X ,

∧2
TX

)
⊕ H1(X ,

∧2
TX ) ⊕ H2

(
X ,

∧2
TX

)

H•(X ,
∧3

TX ) = H0(X , ω∨
X ).

(14)

Proof This is immediate from the Kodaira–Akizuki–Nakano vanishing

Hq(X ,L ⊗ �
p
X ) = 0 ∀p + q > dim X (15)

for an ample line bundleL, by considering (p,L) = (3, ω∨
X ), (2, ω∨

X ), (1, ω∨
X ), (3, ω∨

X ⊗ω∨
X )

and using the identification
∧i TX ∼= ω∨

X ⊗ �3−i
X . ��
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In particular, the polyvector parallelogram introduced in Sect. 2.1 has the form

HH0(X) 1
HH1(X) 0 p0,1

HH2(X) 0 p1,1 p0,2

HH3(X) 0 0 p1,2 p0,3

HH4(X) 0 p2,2 0
HH5(X) 0 0
HH6(X) 0

(16)

Next we describe the Euler characteristic of the vector bundles appearing in Lemma 3.1.
Recall that Hirzebruch–Riemann–Roch for a vector bundle E on a 3-fold takes on the fol-
lowing form, where we abbreviate ci = ci (TX ):

χ(X , E) =
∫

X
ch(E)tdX

= 1

24
rank(E)c1c2 + 1

12
c1(E)

(
c21 + c2

) + 1

4

(
c1(E)2 − 2c2(E)

)
c1

+ 1

6

(
c1(E)3 − 3c1(E)c2(E) + 3c3(E)

)
.

(17)

We obtain the following identities, expressing the Euler characteristic of the bundles we are
interested in in terms of the usual invariants ρ, h1,2 and c31 in the classification of Fano 3-folds.

Lemma 3.2 Let X be a Fano 3-fold.

χ(X ,TX ) = 1

2
c31 + ρ − 18 − h1,2; (18)

χ

(
X ,

∧2
TX

)
= c31 − 18 − ρ + h1,2; (19)

χ
(
X , ω∨

X

) = 1

2
c31 + 3. (20)

Proof By (17) for OX and Kodaira vanishing we have that χ(X ,OX ) = c1c2
24 = 1, so

c1c2 = 24. (21)

And c3 is the topological Euler characteristic, so

c3 = 2 + 2ρ − 2 h1,2 . (22)

Hence (18) and (20) follow from (17).
For (19) we use that

ch(
∧2

TX ) = ch(�1
X ) ch(ω∨

X )

= ch(T∨
X ) ch(ω∨

X )

=
(
3 − c1 + 1

2
(c21 − 2c2) + 1

6
(−c31 + 3c1c2 − 3c2)

)(
1 + c1 + 1

2
c21 + 1

6
c31

)

= 3 + 2c1 + c21 − c2 + 1

3
c31 − 1

2
c1c2 − 1

2
c3

(23)
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12 Page 10 of 30 P. Belmans et al.

so that reading off the degree three part of ch(
∧2 TX )tdX gives

χ

(
X ,

∧2
TX

)
= c31 − 17

24
c1c2 − 1

2
c3 (24)

and the identity in (19) follows from the observations made in the previous paragraph. ��
This observation, together with the classification of infinite automorphism groups of

Fano 3-folds (see [34, Theorem 1.1.2] for Picard rank 1, and [47, Theorem 1.2] for Picard
rank ≥ 2), makes it straightforward to determine h0(X ,TX ) and h1(X ,TX ).

Proposition 3.3 Let X be a Fano 3-fold. We have that

h0(X ,TX ) = dimAut0(X);
h1(X ,TX ) = −

(
1

2
c31 + ρ − 18 − h1,2

)
− dimAut0(X).

(25)

The computation of Aut0(X) can be found in [47, Table 1]. It is important to note that the
dimension of Aut0(X) can vary in families.

For
∧2 TX we need to determine 3 possibly non-zero cohomologies, and none is known a

priori. Some cases are easy (e.g. for toric Fano 3-folds Bott–Steenbrink–Danilov vanishing,
see e.g. [45, Theorem 2.4], yields that H≥1(X ,

∧i TX ) = 0) but others take more effort.

3.2 Setting up the computation

As discussed in the previous section, it suffices to compute the cohomology of
∧2 TX to

fully determine the Hochschild cohomology of a Fano 3-fold. By Lemma 3.1 we know that
its cohomology is concentrated in degrees 0, 1, 2.

To perform this computation we will use suitable descriptions of Fano 3-folds X inside
key varieties F provided in [15, 16]. A key variety will be either a product of Grassmannians
or a toric variety. In the former case X is given as the zero locus of a general global section of a
homogeneous vector bundle E on F . In the latter case X is given as an intersection of divisors
inside a possibly singular F . It turns out that this second description involves non-Cartier
divisors only for MM2.1 and MM2.3: this will lead us to deal with these two cases separately
in Sect. 4.

The twomethods outlined in this section allow for a near uniform treatment using computer
algebra methods. We implemented them using Macaulay2 [20] and Magma [10]; our code
is publicly available at [5] and can be used to check our computations. As it turns out, this
automated treatment leaves the cohomology of

∧2 T underdetermined for only 5 Fano 3-
folds, which require additional computations by hand (2 of which straightforward). These
cases will be treated in Sect. 4.

Remark 3.4 For many deformation families of Fano 3-folds one can of course envision alter-
native methods, e.g. using descriptions as a blowup, double cover or product. We will not
discuss the details for these alternative methods as they do not allow for an automated
approach. One potential benefit (for certain applications) of these methods could be that they
give a more intrinsic description of the cohomology. Let us just point out that they are used
for 5 explicit instances in Sect. 4.

Setup and notation. Let us introduce some notation, which is also the notation we use in (the
documentation of) the ancillary code. Let X be a Fano 3-fold (not of type MM2.1 or MM2.3),
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defined by the vanishing of a global section of a vector bundle E inside a key variety F
with codimF X = rank E . By Theorems 3.5 and 3.11 the key variety can be chosen as either
a product of Grassmannians or a (possibly singular) toric variety. We wish to compute the
cohomology of

∧2
TX ∼= �1

X ⊗ ω∨
X . (26)

We will do this by using the conormal sequence, using that the ideal sheaf I cutting out X
gives (I/I2)|X ∼= E∨|X . Since X is smooth and locally complete intersection within F , one
has that X ⊂ F sm, hence �1

F |X is locally free. From [52, Tags 06AA and 0B3P] it follows
that the conormal sequence

0 → E∨|X → �1
F |X → �1

X → 0 (27)

is an exact sequence of vector bundles on X . We will twist this sequence by the anticanonical
bundle ω∨

X
∼= ω∨

F |X ⊗ det E|X . We are interested in computing the cohomologies of the last
term of

0 → (E∨ ⊗ ω∨
F ⊗ det E)|X → (�1

F ⊗ ω∨
F ⊗ det E)|X → �1

X ⊗ (ω∨
F ⊗ det E)|X → 0.

(28)

The first two terms can be resolved by suitable twists of the Koszul complex

0 → det E∨ →
∧rank E−1 E∨ → . . . → E∨ → OF → OX → 0. (29)

The whole point of this reduction is that the tensor product of
∧i E∨ with either of the first

two bundles from (28) can now be expressed in terms of vector bundles on F for which good
computational methods exist:

• for toric varieties we can use the work of Eisenbud–Mustaţă–Stillman [18], as imple-
mented in [50], even when the cotangent sheaf is not locally free by using the reflexive
hull of Zariski 1-forms;

• for homogeneous varieties we can use the Borel–Weil–Bott theorem.

3.3 Complete intersections in toric varieties

The majority of the cases will be covered by this method. The starting point is the follow-
ing theorem, which follows from the case-by-case analysis performed in [15] for Picard
ranks 2, . . . , 5, whilst for Picard ranks 1, 6, . . . , 10 it follows from the description using
weighted projective spaces and del Pezzo surfaces. The result is valid for every member of
the deformation family, which is checked in each section of op. cit. in the paragraph titled
“The two constructions coincide”.

Theorem 3.5 (Coates–Corti–Galkin–Kasprzyk) Let X be a Fano 3-fold. Assume its defor-
mation family is not of type

Picard rank 1:MM1.5, MM1.6, MM1.7, MM1.8, MM1.9, MM1.10, MM1.15;
Picard rank 2:MM2.14, MM2.17, MM2.20, MM2.21, MM2.22, MM2.26.

Then X has a description as a complete intersection of codimension at most 3 in a projective
toric variety F.

Here it is important to point out that
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• F is singular if the deformation family of X is of type

Picard rank 1: MM1.1, MM1.11, MM1.12;
Picard rank 2: MM2.1, MM2.2, MM2.3, MM2.8;
Picard rank 3: MM3.1, MM3.4, MM3.14, MM3.16;
Picard rank 4: MM4.5;
Picard rank 5: MM5.1;
Picard rank 9: MM9.1;
Picard rank 10: MM10.1;

• X is the intersection of Cartier divisors if its deformation family is not of type

Picard rank 2: MM2.1, MM2.3.

So 90 (resp. 92) out of 105 deformation families admit a description in terms of a toric
variety F and a vector bundle E (resp. reflexive sheaf) so that we can use the combination
of the Koszul sequence and the conormal sequence. We will restrict ourselves to the case
where E is a vector bundle, and we will deal with the 2 remaining cases MM2.1, MM2.3

using birational methods in Sect. 4. We remark that it is certainly possible to find suitable
models for them as complete intersections of Cartier divisors in different toric varieties, but
we did not manage to fully determine the cohomology of

∧2 TX in this way.

Remark 3.6 Comparing Theorem 3.5 to what is written in [15] one notices that we write
that F is possibly singular, whereas op. cit. seems to require F is smooth for the computation
of the quantum period of X , see [15, Assumption D.1]. The argument in the “The two
constructions coincide” paragraph of [15] in fact uses a resolution of singularities G of the
varietywe denote F , wherewe have obtained F usingMagma’sFanWithWeightsmethod
to translate the GIT description into a toric description. The discrepancy between G and F
is explained in detail for MM5.1 in [55, §11].

Because one can check that X ⊂ G is disjoint of the exceptional locus of the small
contractionG → F (e.g. by computing the Hodge numbers of X , which show no contraction
of X takes place) we can indeed perform the computation for X ⊂ F using the sheaf of
Zariski 1-forms �̂1

F , for every X in the deformation family.

In Table 1 we give an overview of the codimension of X in F , and whether the computa-
tional methods can give a fully determined answer for the cohomology of

∧2 TX .

• The case MM1.1 can be easily determined from the toric computation together with
Kodaira vanishing, see Proposition 4.1.

• The caseMM4.13 can be computed using the description as a blowup, see Proposition 4.6.
• The caseMM10.1 readily follows from applying the Künneth formula toP1×dP8 (Propo-

sition 4.7). For MM9.1 a similar argument using P1 × dP7 holds, but we chose to use its
description as a homogeneous zero locus, see Table 2.

Remark 3.7 The description in [15] describes F as the GIT quotient of an affine space by a
torus. To compute cohomology of coherent sheaves on the toric variety F we need to translate
this description to a toric fan, and describe the divisors cutting out X in this language. See
[15, §C] for some background.

Remark 3.8 It is easy to find examples of deformation families of Fano 3-folds in which the
cohomology of TX is not constant in families, see [47] for a detailed study. A famous example
of this is the 6-dimensional family MM1.10, members of which are zero loci of (

∧2 U∨)⊕3
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Table 1 Overview of Fano 3-folds with a toric description as a complete intersection of Cartier divisors

Type Number of deformation families Underdetermined cases

toric Fano 3-fold 18 None

toric hypersurface 53 MM1.1, MM4.13, MM9.1 and MM10.1

toric codimension 2 15 None

toric codimension 3 4 None

total 90

Table 2 Description as homogeneous zero loci

X F E Codimension

MM1.5 Gr(2, 5) O(2) ⊕ O(1)⊕2 3

MM1.6 Gr(2, 5) U∨(1) ⊕ O(1) 3

MM1.7 Gr(2, 6) O(1)⊕5 5

MM1.8 Gr(3, 6)
∧2 U∨ ⊕ O(1)⊕3 6

MM1.9 Gr(2, 7) Q∨(1) ⊕ O(1)⊕2 7

MM1.10 Gr(3, 7) (
∧2 U∨)⊕3 9

MM1.15 Gr(2, 5) O(1)⊕3 3

MM2.14 Gr(2, 5) × P
1 O(1, 0)⊕3 ⊕ O(1, 1) 4

MM2.17 Gr(2, 4) × P
3 U∨ � O

P3 (1) ⊕ O(1, 1) ⊕ O(1, 0) 4

MM2.20 Gr(2, 5) × P
2 U∨ � O

P2 (1) ⊕ O(1, 0)⊕3 3

MM2.21 Gr(2, 4) × P
4 (U∨ � O

P4 (1))
⊕2 ⊕ O(1, 0) 5

MM2.22 Gr(2, 5) × P
3 Q(1) � O

P3 ⊕ O(0, 1)⊕3 6

MM2.26 Gr(2, 4) × Gr(2, 5) Q � U∨ ⊕ O(1, 0) ⊕ O(0, 1)⊕2 7

MM9.1 P
1 × P

2 × P
1 O(2, 2, 0) 1

on Gr(3, 7), which generically has finite automorphism group and thus h0(X ,TX ) = 0, but
theMukai–Umemura 3-fold has automorphismgroupPGL2 [44, §6] and thus h0(X ,TX ) = 3.
An arguably easier example is that of the family MM2.24 [47, §10], members of which
are (1, 2)-divisors on P2 ×P

2. Using coordinates xi for the first factor and yi for the second,
the bihomogeneous equation x0y20 + x1y21 + x2y2 = 0 will give h0(X ,TX ) = 2 whereas the
generic X in this family has h0(X ,TX ) = 0.

An example:MM2.8. We now describe an example of a toric complete intersection, and the
different steps in the computation. We will consider the deformation family MM2.8, whose
Mori–Mukai description is given by

(1) a double cover of Blp P3 with anticanonical branch locus B such that B ∩ E is smooth,
(2) a double cover of Blp P3 with anticanonical branch locus B such that B ∩ E is singular

but reduced,

where E denotes the exceptional divisor of the blowup Blp P3 → P
3, and the second is a

specialisation of the first.

Proposition 3.9 Let X be a Fano 3-fold in the deformation family MM2.8. Then we have
that hi (X ,

∧2 TX ) = 3, 1, 1 for i = 0, 1, 2.
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L 1 1 1 −1 0 1
M 0 0 0 1 1 1

By [15, §25] the GIT description of the toric key variety F for X is given by the weights
so that the nef cone of F is spanned by L and L + M . Then X is a divisor in the linear
system |2L + 2M |. Translating this to a description using the set of rays R and the set of
cones C gives

R = {(−1,−1, −1, 1), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (1, 1, 1, −2)};
C = {(1, 2, 3, 4, 5), (0, 2, 4, 5), (0, 1, 3, 4), (0, 1, 2, 4), (0, 1, 2, 3), (0, 3, 4, 5), (0, 2, 3, 5)}.(30)

The key variety F is now singular, but as explained in Remark 3.6 we can apply the same
method as for F smooth.

Proof of Proposition 3.9 We want to compute the cohomology of the first two terms in the
sequence (27) twisted by ω∨

F (−2L −2M) (which is ω∨
X before adjunction), so by the Koszul

sequence we want to compute the cohomology of the first two terms in the sequences

0 → ω∨
F (−6L − 6M) → ω∨

F (−4L − 4M) → ω∨
F (−4L − 4M)|X → 0 (31)

and

0 → �1
F ⊗ ω∨

F (−4L − 4M) → �1
F ⊗ ω∨

F (−2L − 2M) → �1
F ⊗ ω∨

F (−2L − 2M)|X → 0.

(32)

One computes that

hi (F, ω∨
F (−6L − 6M)) = 0, 0, 0, 0, 1

hi (F, ω∨
F (−4L − 4M)) = 0, 0, 0, 0, 0

hi (F,�1
F ⊗ ω∨

F (−4L − 4M)) = 0, 0, 1, 0, 0

hi (F,�1
F ⊗ ω∨

F (−2L − 2M)) = 3, 0, 0, 0, 0

(33)

for i = 0, . . . , 4, which implies the statement after a diagram chase. ��
Remark 3.10 The homogeneous description from [16] involves a vector bundle on P2 ×P

3×
P
12 which is not completely reducible, making the description as a toric complete intersection

much more economical.

3.4 Zero loci of sections of homogeneous vector bundles

By combining the description in [15] and [16, Theorems 1.1 and 1.2] for the remaining cases
we can state the following.

Theorem 3.11 Let X be a Fano 3-fold. Assume its deformation type is not covered by Theo-
rem 3.5, or isMM9.1. Then X is the zero locus of a global section of a completely reducible
homogeneous vector bundle on a product of Grassmannians. The description is given in
Table 2.
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In [16] this is only stated for a generic member for 85 out of 105 deformation families
of Fano 3-folds. We need it for every member of the deformation family, but only for the
14 cases specified in Theorem 3.11 which are listed in Table 2, which is why we explain now
why Theorem 3.11 holds for every member in those families.

Proof In rank 1 the description is due to Mukai and is classical. Likewise for MM9.1 we just
use the classical description of a del Pezzo double plane as a (2, 2)-divisor in P

2 × P
1.

Let us check the remaining cases. For MM2.14 we take the description as a (1, 1)-divisor
on MM1.15 × P

2 from [15, §31] (which encodes the blowup) and write the factor MM1.15
using Gr(2, 5). By loc. cit. every member of the deformation family is realised in this way.

For MM2.17, MM2.20 and MM2.21 the description we use in Table 2 is verbatim that of
[15, §34, §37, §38], and by loc. cit. every member of the deformation family can be written
as such. For MM2.22 it suffices to observe that [16, Lemma 2.2] applies to every member of
the deformation family. Finally, for MM2.26 the proof of the identification in [16, page 676]
is given for every member of the deformation family. ��
An example: MM2.17. In this subsection we exhibit a detailed example of the computation
where the Fano 3-fold does not admit (at least a priori) a model as a complete intersection
in a suitable toric variety. We will use the description given in [15, §34] and [16, Table 1]
and recalled in Table 2. The deformation family MM2.17, originally described by Mori and
Mukai as the blow up of the quadric 3-fold in an elliptic quintic, is realised as the zero
locus Z (E) ⊂ F := Gr(2, 4) × P

3 where

E := U∨
Gr(2,4)(0, 1) ⊕ O(1, 1) ⊕ O(1, 0) (34)

is a rank 4 vector bundle.

Proposition 3.12 Let X be a Fano 3-fold in the deformation family MM2.17. Then we have
that hi (X ,

∧2 TX ) = 5, 0, 0 for i = 0, 1, 2.

Proof We will follow the strategy used in [16, §3.3] and summarised in Sect. 3.2. We need
to compute the cohomologies of the first two terms in (28), which are resolved by exact
complexes of locally free sheaves, namely the twists of the Koszul complex (29) by E∨ ⊗
ω∨
F ⊗ det E and �1

F ⊗ ω∨
F ⊗ det E . In this case we have

�1
F = UGr(2,4) ⊗ Q∨

Gr(2,4) ⊕ Q∨
P3

(−1),

ωF = OF (−4,−4).
(35)

Each term of the locally free resolutions is a completely reducible vector bundle on F , and
we can use the Borel–Weil–Bott theorem to compute its cohomology. It turns out that there
are only 2 non-zero cohomology groups for the first two terms of (28) tensored with

∧i E∨
before restriction, for with i = 0, . . . , 4 = rank E , namely

h0(F, E∨ ⊗ ω∨
F ⊗ det E) = 9

h1(F, (�1
F ⊗ ω∨

F ⊗ det E) ⊗ E∨) = 14.
(36)

From this we get that the only non-zero cohomologies of the first two terms of (28) are

h0(X , (E∨ ⊗ ω∨
F ⊗ det E)|X ) = 9

h0(X , (�1
F ⊗ ω∨

F ⊗ det E)|X ) = 14
(37)

and the statement follows. ��
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Remark 3.13 It is possible to apply the description as a zero locus in a homogeneous variety
to every family of Fano 3-folds, but for the purpose of this paper we only do this for the 14
cases listed in Table 2.

The benefit of the toric description is that the codimension is usually (much) lower,
making the computation faster and having less places where indeterminacies can occur.
E.g. for MM3.9 the description from [16] has codimension 25, which requires a lengthy
Koszul computation. Another complication in the computations in the homogeneous setting
is that for someFano3-folds the homogeneous bundle used in the description is not completely
reducible.

4 Underdetermined cases

As discussed above there are just a few cases which require additional computations. These
are MM1.1, MM2.1, MM2.3, MM4.13, and MM10.1. We will collect the details for them here.
For MM2.1, MM2.3 and MM4.13 they are somewhat tedious cohomology computations using
the birational description. If it were not for the efficiency of the toric and homogeneous
computations the majority of the Fano 3-folds would have to be tackled in this way.

The first one is straightforward.

Proposition 4.1 Let X be a Fano 3-fold in the deformation family MM1.1. Then we have
that hi (X ,

∧2 TX ) = 0, 0, 35 for i = 0, 1, 2.

Proof In this case X is a sextic hypersurface in the weighted projective space P(14, 3). Using
the method from Sect. 3.3 on this description for the toric variety P(14, 3) we immediately
obtain that hi (X ,

∧2 TX ) = 0, 0, 35 + a, a for i = 0, 1, 2, 3 for some a ≥ 0. But by
Lemma 3.1 we have that h3(X ,

∧2 TX ) = 0, so a = 0.
Alternatively, one can use that this is a double cover f : X → Y of P3 = Y with a smooth

sextic surface S as branch locus. To do so, recall the short exact sequence

0 → �1
Y → �1

Y (log S) → OS → 0 (38)

and the isomorphism

f∗(�1
X ) ∼= �1

Y ⊕ �1
Y (log S) ⊗ OY (−3) (39)

from [19, §2.3 and Lemma 3.16(d)], together with the isomorphism

ω∨
X

∼= f ∗(ω∨
Y ⊗ OY (3)). (40)

This allows one to compute Hi (X ,�1
X ⊗ω∨

X ), and the only non-vanishing cohomology lives
in degree 2 and is isomorphic to

H2(Y ,OS(−2)) ∼= H3(Y ,OY (−8)) ∼= H0(Y ,OY (4)) (41)

which is 35-dimensional. ��
For the next three cases we will resort to the birational description by Mori–Mukai.

Namely we will consider the situation of a Fano 3-fold X which is the blowup of a complete
intersection curve Z inside another Fano 3-fold Y . Let us denote the blowup square as

E X

Z Y

j

p f

i

(42)
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and consider the short exact sequence

0 → f ∗(�1
Y ) → �1

X → j∗(�1
E/Z ) → 0. (43)

We wish to compute the cohomology of the middle term after twisting by ω∨
X = f ∗(ω∨

Y ) ⊗
OX (−E), i.e. we will consider the short exact sequence

0 → f ∗(�1
Y ⊗ ω∨

Y ) ⊗ OX (−E) →
∧2

TX → j∗(�1
E/Z ) ⊗ ω∨

X → 0. (44)

Lemma 4.2 With the setup from (42) we have that

H•(X , j∗(�1
E/Z ) ⊗ ω∨

X ) = 0. (45)

Proof Since Z has codimension 2, we have that �1
E/Z

∼= Op(−2) ⊗ p∗(L) for some line

bundle L on Z , whilst ωX |E = Op(−1). This implies that j∗(�1
E/Z ) ⊗ ω∨

X
∼= j∗(Op(−1) ⊗

p∗L). But then the vanishing of Rp∗Op(−1) ensures that

H•(X , j∗(�1
E/Z ) ⊗ ω∨

X ) ∼= H•(E,Op(−1) ⊗ p∗L) ∼= H•(Z ,Rp∗Op(−1) ⊗ L) = 0,

(46)

which is what we wanted to show. ��
Corollary 4.3 With the setup from (42) we have that

H•(X ,
∧2

TX ) ∼= H•(Y ,�1
Y ⊗ ω∨

Y ⊗ IZ ). (47)

Proof This follows from (44), the vanishing in Lemma 4.2, the isomorphismR f∗(OX (−E))
∼= IZ , and adjunction. ��

Wenowconsider the underdetermined casesMM2.1 andMM2.3. In this case themethods of
Sect. 3.3 don’t necessarily apply: both are described as a codimension-2 complete intersection
in a singular toric projective variety, and in both cases one of the divisors is not Cartier.
Therefore we cannot ensure that the computational (underdetermined) answer is correct,2

so we will combine Corollary 4.3 with Dolgachev’s computation of sheaf cohomology on
weighted projective spaces.Wewill repeatedlymake use of Dolgachev’s formulae for twisted
Hodge numbers on weighted projective spaces, cf. [17, §2.3.2-−2.3.5].

Proposition 4.4 Let X be a Fano 3-fold in the deformation family MM2.1. Then we have
that hi (X ,

∧2 TX ) = 1, 2, 7 for i = 0, 1, 2.

Proof Such a variety is described as the blowup of a Fano 3-fold Y of deformation
type MM1.11 in an elliptic curve obtained as complete intersection of two half-anticanonical
divisors, and Y is given as a sextic hypersurface in the weighted projective space P :=
P(13, 2, 3).

Alternatively, X is a (1, 1)-section of F := Y × P
1. We will first use this description to

determine h0 and h2 − h1, and then use the blowup description to determine h2 (and h1 − h0),
which determines everything.

2 The underdetermined result from the toric computation is nevertheless consistent with the final answer, so
a more detailed analysis of the toric description might be valid. But the indeterminacy needs to be dealt with
by alternative methods in any case.
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First step: weighted projective space computation. Consider the conormal sequence for
the inclusion X ↪→ F twisted by the anticanonical line bundle, which by the adjunction
formula is

ω∨
X

∼= (OF (2, 2) ⊗ OF (−X))|X ∼= OF (1, 1)|X , (48)

which yields

0 → OX → �1
F (1, 1)|X → �1

X (1, 1) → 0. (49)

We claim that
{

h0(X ,�1
X (1, 1)) = 1

h2(X ,�1
X (1, 1)) − h1(X ,�1

X (1, 1)) = 5.
(50)

This claim follows fromh0(F,�1
F (1, 1)|X ) = 2 andh2(F,�1

F (1, 1)|X )−h1(F,�1
F (1, 1)|X )

= 5 together with (49), so let us prove this. Consider the twisted Koszul sequence

0 → �1
F → �1

F (1, 1) → �1
F (1, 1)|X → 0. (51)

As �1
F is the direct sum of the pullbacks of the cotangent bundles of Y and P

1, one readily
gets from the Hodge numbers of P1 and MM1.11 that hi (F,�1

F ) = 0, 2, 21, 0, 0 for i =
0, 1, 2, 3, 4. Thus it remains to compute the cohomologies of the middle term of (51). To do
that, we apply the Künneth formula to

�1
F (1, 1) = �1

Y (1) � OP1(1) ⊕ OY (1) � OP1(−1); (52)

the second term is acyclic since OP1(−1) is, whilst for the first one we get

h j (F,�1
F (1, 1)) = 2 h j (Y ,�1

Y (1)). (53)

To compute the latter, we consider the twisted conormal sequence for Y , seen as a sextic
hypersurface in P:

0 → OY (−5) → �1
P
(1)|Y → �1

Y (1) → 0. (54)

By [17, §2.3.2-−2.3.5] the first termhas only one non-vanishing cohomology h3(Y ,OY (−5))
= 14. Thus, we have

h0(Y ,�1
Y (1)) = h0(Y ,�1

P
(1)|Y )

h1(Y ,�1
Y (1)) = h1(P,�1

P
(1)|Y )

h2(Y ,�1
Y (1)) − h3(Y ,�1

Y (1)) = 14 − h3(P,�1
P
(1)|Y ) + h2(P,�1

P
(1)|Y ). (55)

The cohomologies of�1
P
(1)|Y can be obtained as usual bymeans of a twistedKoszul complex

0 → �1
P
(−5) → �1

P
(1) → �1

P
(1)|Y → 0. (56)

Now [17, §2.3.2-−2.3.5] yields the cohomologies for the first two terms, whence we deduce
that

hi (P,�1
P
(1)|Y ) = 0 for i = 0, 1, 2

h3(P,�1
P
(1)|Y ) = 1.

(57)

We plug the last equalities into (55) and get

h0(Y ,�1
Y (1)) = 0, h1(Y ,�1

Y (1)) = 0,
h2(Y ,�1

Y (1)) = α + 13, h3(Y ,�1
Y (1)) = α

(58)
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for some integer α ≥ 0. By (53) and (51) we get

h0(F,�1
F (1, 1)|X ) = 2, h1(F,�1

F (1, 1)|X ) = β,

h2(F,�1
F (1, 1)|X ) = β + 2α + (2 · 13 − 21), h3(F,�1

F (1, 1)|X ) = 2α
(59)

for some integers α, β ≥ 0. But by (49) and Lemma 3.1 we get 2α = h3(X ,
∧2 TX ) = 0,

hence the claim.
Second step: blowup computation. We consider the short exact sequence cutting out Z
inside Y and tensor it with �1

Y ⊗ ω∨
Y to obtain

0 → IZ ⊗ �1
Y ⊗ ω∨

Y → �1
Y ⊗ ω∨

Y → (�1
Y ⊗ ω∨

Y )|Z → 0. (60)

The cohomology of the middle term is determined by the methods in Sect. 3.3 and is given
by

hi (Y ,�1
Y ⊗ ω∨

Y ) = 3, 0, 7 for i = 0, 1, 2. (61)

To compute the cohomology of the third term, consider the conormal sequence for Z in Y
twisted by ω∨

Y |Z ∼= OZ (2) (because Y is of index 2), which, since Z is an elliptic curve,
reads

0 → IZ/I2
Z ⊗ OZ (2) → (�1

Y ⊗ ω∨
Y )|Z → OZ (2) → 0. (62)

As Z is cut out by twohalf-anticanonical divisors,we obtain thatIZ/I2
Z⊗OZ (2) ∼= OZ (1)⊕2.

It now suffices to compute the cohomology of the line bundles OZ (1) and OZ (2), which is
concentrated in degree 0 by degree reasons, and is determined by aHilbert series computation
on the weighted projective space. We obtain hi (Z , (�1

Y ⊗ ω∨
Y )|Z ) = 4, 0 for i = 0, 1.

Combining this with (61) we get that
{

h0(X ,�1
Y ⊗ ω∨

Y ⊗ IZ ) − h1(X ,�1
Y ⊗ ω∨

Y ⊗ IZ ) = −1

h2(X ,�1
Y ⊗ ω∨

Y ⊗ IZ ) = 7.
(63)

Together with (50) and Corollary 4.3 this finishes the computation. ��
Next we tackle the underdetermined case MM2.3 in exactly the same way. In the proof we

will explain which details of the computation change.

Proposition 4.5 Let X be a Fano 3-fold in the deformation family MM2.3. Then we have
that hi (X ,

∧2 TX ) = 1, 3, 1 for i = 0, 1, 2.

Proof Such a variety is described as the blowup of a Fano 3-fold Y of deformation
type MM1.12 in an elliptic curve obtained as complete intersection of two half-anticanonical
divisors, and Y is given as a quartic hypersurface in the weighted projective space P :=
P(14, 2).

Alternatively, X is a (1, 1)-section of F = Y × P
1. Computing hi (X ,

∧2 TX ) =
hi (X ,�1

X (1, 1)) is analogous to the two-step procedure from Proposition 4.4, so we only
summarise the relevant differences in the numerology appearing.
First step: weighted projective space computation (abbreviated). This goes along the
same lines as the first step in the proof of Proposition 4.4, except that the claim (50) now
becomes

{
h0(X ,�1

X (1, 1)) = 1

h2(X ,�1
X (1, 1)) − h1(X ,�1

X (1, 1)) = −2.
(64)
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From the Hodge numbers of P1 and MM1.12 we now get hi (F,�1
F ) = 0, 2, 10, 0, 0 for i =

0, 1, 2, 3, 4. The twisted conormal sequence for Y , which is a quartic hypersurface in P,
gives h3(Y ,OY (−3)) = 4. We obtain

h0(Y ,�1
Y (1)) = 0, h1(Y ,�1

Y (1)) = 0,
h2(Y ,�1

Y (1)) = α + 4, h3(Y ,�1
Y (1)) = α

(65)

for some integer α ≥ 0. As in the proof of Proposition 4.4 we get

h0(X ,�1
F (1, 1)|X ) = 2, h1(X ,�1

F (1, 1)|X ) = β,

h2(X ,�1
F (1, 1)|X ) = β + 2α + (2 · 4 − 10), h3(X ,�1

F (1, 1)|X ) = 2α
(66)

for some integers α, β ≥ 0. But by Lemma 3.1 we get 2α = h3(X ,
∧2 TX ) = 0, hence the

claim.
Second step: blowup computation. This goes along the same lines as the second step in the
proof of Proposition 4.4, except that (61) now becomes

hi (Y ,�1
Y ⊗ ω∨

Y ) = 6, 0, 1 for i = 0, 1, 2 (67)

and that the Hilbert series computation is performed for an elliptic curve in the weighted
projective space P(14, 2). We obtain hi (Z , (�1

Y ⊗ ω∨
Y )|Z ) = 8, 0 for i = 0, 1. Combining

this with (67) we get that
{

h0(Y ,�1
Y ⊗ ω∨

Y ⊗ IZ ) − h1(Y ,�1
Y ⊗ ω∨

Y ⊗ IZ ) = −2

h2(Y ,�1
Y ⊗ ω∨

Y ⊗ IZ ) = 1.
(68)

Together with (64) and Corollary 4.3 this finishes the computation. ��
The next underdetermined case is the Fano 3-fold which was originally missed in the

classification [42]. The method is similar to what we did for MM2.1 and MM2.3 using the
birational description, but requires less work.

Proposition 4.6 Let X be a Fano 3-fold in the deformation family MM4.13. Then we have
that hi (X ,

∧2 TX ) = 4, 0, 0 for i = 0, 1, 2.

Proof Such a variety is described as the blowup of the Fano 3-fold Y = P
1 × P

1 × P
1 of

deformation type MM3.27 in a rational curve Z of tridegree (1, 1, 3). The curve Z is given
as a complete intersection of type (2, 1, 1) and (1, 1, 0), see [15, §86].

ByCorollary 4.3wewant to computeH•(Y ,�1
Y ⊗ω∨

Y ⊗IZ ). Denote by pi, j : Y → P
1×P

1

the three projections. Using the isomorphism

�1
Y ⊗ ω∨

Y
∼=

⊕

1≤i< j≤3

p∗
i, j (OP1×P1(2, 2)) (69)

and the projection formula we want to compute the cohomology of

OP1×P1(2, 2) ⊗ pi, j,∗IZ . (70)

But pi, j,∗IZ = IZi, j where Zi, j is the image of Z under pi, j , which is in turn a divisor
of bidegree (1, 1), resp. (1, 3) and (1, 3) on P

1 × P
1. This reduces the computation to the

cohomology ofOP1×P1(1, 1) andOP1×P1(1,−1)⊕2, where the latter is cohomology-free and
the former has cohomology concentrated in degree 0, where it is 4-dimensional. ��

The final case is the product of a del Pezzo surface of degree 1withP1, and the computation
is immediate (e.g. using the description of Appendix B and the Künneth formula).
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Proposition 4.7 Let X be a Fano 3-fold in the deformation family MM10.1. Then we have
that hi (X ,

∧2 TX ) = 2, 24, 0 for i = 0, 1, 2.
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Appendix A: Dimensions for Fano 3-folds

In this appendix we have collected all the polyvector parallelograms of Fano 3-folds. The
notationwe use for this is introduced in (10): writing pp,q := dimk Hp(X ,

∧q TX ), and using
that X is a Fano3-fold,we can summarise theHochschild–Kostant–Rosenberg decomposition
of Hochschild cohomology as

HH0(X) 1
HH1(X) 0 p0,1

HH2(X) 0 p1,1 p0,2

HH3(X) 0 0 p1,2 p0,3

HH4(X) 0 p2,2 0
HH5(X) 0 0
HH6(X) 0

(71)

In the case of jumping of hi (X ,TX ), we have given the lowest value, and indicated with a *
next to the value h0(X ,TX ) that jumping occurs.

This information (and more) is also available in a more interactive way at [3].
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Rank 1.

Polyvectors
of MM1.1

1
0 0
0 68 0
0 0 0 4

0 35 0
0 0

0

Polyvectors
of MM1.2

1
0 0
0 45 0
0 0 0 5

0 15 0
0 0

0

Polyvectors
of MM1.3

1
0 0
0 34 0
0 0 0 6

0 7 0
0 0
0

Polyvectors
of MM1.4

1
0 0
0 27 0
0 0 0 7

0 3 0
0 0
0

Polyvectors
of MM1.5

1
0 0
0 22 0
0 0 0 8

0 1 0
0 0
0

Polyvectors
of MM1.6

1
0 0
0 18 0
0 0 0 9

0 0 0
0 0
0

Polyvectors
of MM1.7

1
0 0
0 15 0
0 0 0 10

0 0 0
0 0

0

Polyvectors
of MM1.8

1
0 0
0 12 0
0 0 0 11

0 0 0
0 0

0

Polyvectors
of MM1.9

1
0 0
0 10 1
0 0 0 12

0 0 0
0 0

0

Polyvectors
of MM1.10

1
0 0∗
0 6∗ 3
0 0 0 14

0 0 0
0 0

0

h0(X ,TX ) ∈
{0, 1, 3}

Polyvectors
of MM1.11

1
0 0
0 34 3
0 0 0 7

0 7 0
0 0
0

Polyvectors
of MM1.12

1
0 0
0 19 6
0 0 0 11

0 1 0
0 0

0

Polyvectors
of MM1.13

1
0 0
0 10 10
0 0 0 15

0 0 0
0 0

0

Polyvectors
of MM1.14

1
0 0
0 3 15
0 0 0 19
0 0 0

0 0
0

Polyvectors
of MM1.15

1
0 3
0 0 21
0 0 0 23
0 0 0

0 0
0

Polyvectors
of MM1.16

1
0 10
0 0 35
0 0 0 30

0 0 0
0 0

0

Polyvectors
of MM1.17

1
0 15
0 0 45
0 0 0 35

0 0 0
0 0

0
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Rank 2.

Polyvectors
of MM2.1

1
0 0
0 36 1
0 0 2 5

0 7 0
0 0
0

Polyvectors
of MM2.2

1
0 0
0 33 0
0 0 0 6

0 6 0
0 0
0

Polyvectors
of MM2.3

1
0 0
0 23 1
0 0 3 7

0 1 0
0 0
0

Polyvectors
of MM2.4

1
0 0
0 21 0
0 0 0 8

0 0 0
0 0
0

Polyvectors
of MM2.5

1
0 0
0 16 1
0 0 3 9

0 0 0
0 0
0

Polyvectors
of MM2.6

1
0 0
0 19 0
0 0 0 9

0 1 0
0 0
0

Polyvectors
of MM2.7

1
0 0
0 14 0
0 0 1 10

0 0 0
0 0

0

Polyvectors
of MM2.8

1
0 0
0 18 3
0 0 1 10

0 1 0
0 0

0

Polyvectors
of MM2.9

1
0 0
0 13 1
0 0 0 11

0 0 0
0 0

0

Polyvectors
of MM2.10

1
0 0
0 11 1
0 0 2 11

0 0 0
0 0

0

Polyvectors
of MM2.11

1
0 0
0 12 3
0 0 0 12

0 0 0
0 0

0

Polyvectors
of MM2.12

1
0 0
0 9 3
0 0 0 13
0 0 0
0 0

0

Polyvectors
of MM2.13

1
0 0
0 8 2
0 0 0 13
0 0 0
0 0

0

Polyvectors
of MM2.14

1
0 0
0 7 1
0 0 0 13
0 0 0
0 0

0

Polyvectors
of MM2.15

1
0 0
0 9 6
0 0 0 14
0 0 0
0 0

0

Polyvectors
of MM2.16

1
0 0
0 7 4
0 0 0 14
0 0 0
0 0

0

Polyvectors
of MM2.17

1
0 0
0 5 5
0 0 0 15
0 0 0
0 0

0

Polyvectors
of MM2.18

1
0 0
0 6 6
0 0 0 15
0 0 0
0 0

0

Polyvectors
of MM2.19

1
0 0
0 5 8
0 0 0 16
0 0 0
0 0

0

Polyvectors
of MM2.20

1
0 0∗
0 3∗ 6
0 0 0 16

0 0 0
0 0

0

h0(X ,TX ) ∈
{0, 1}

Polyvectors
of MM2.21

1
0 0∗
0 2∗ 8
0 0 0 17

0 0 0
0 0

0

h0(X ,TX ) ∈
{0, 1, 3}

Polyvectors
of MM2.22

1
0 0∗
0 1∗ 10
0 0 0 18

0 0 0
0 0

0

h0(X ,TX ) ∈
{0, 1}

Polyvectors
of MM2.23

1
0 0
0 2 11
0 0 0 18
0 0 0

0 0
0

Polyvectors
of MM2.24

1
0 0∗
0 1∗ 10
0 0 0 18

0 0 0
0 0

0

h0(X ,TX ) ∈
{0, 1, 2}

Polyvectors
of MM2.25

1
0 0
0 1 13
0 0 0 19
0 0 0

0 0
0
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Polyvectors
of MM2.26

1
0 1∗
0 0∗ 14
0 0 0 20

0 0 0
0 0

0

h0(X ,TX ) ∈
{1, 2}

Polyvectors
of MM2.27

1
0 3
0 0 18
0 0 0 22
0 0 0

0 0
0

Polyvectors
of MM2.28

1
0 4
0 1 21
0 0 0 23
0 0 0

0 0
0

Polyvectors
of MM2.29

1
0 4
0 0 20
0 0 0 23
0 0 0

0 0
0

Polyvectors
of MM2.30

1
0 7
0 0 26
0 0 0 26
0 0 0

0 0
0

Polyvectors
of MM2.31

1
0 7
0 0 26
0 0 0 26
0 0 0

0 0
0

Polyvectors
of MM2.32

1
0 8
0 0 28
0 0 0 27
0 0 0

0 0
0

Polyvectors
of MM2.33

1
0 11
0 0 34
0 0 0 30

0 0 0
0 0

0

Polyvectors
of MM2.34

1
0 11
0 0 34
0 0 0 30

0 0 0
0 0

0

Polyvectors
of MM2.35

1
0 12
0 0 36
0 0 0 31

0 0 0
0 0

0

Polyvectors
of MM2.36

1
0 15
0 0 42
0 0 0 34

0 0 0
0 0

0

Rank 3.

Polyvectors
of MM3.1

1
0 0
0 17 0
0 0 2 9

0 1 0
0 0
0

Polyvectors
of MM3.2

1
0 0
0 11 2
0 0 6 10

0 0 0
0 0

0

Polyvectors
of MM3.3

1
0 0
0 9 0
0 0 0 12
0 0 0
0 0

0

Polyvectors
of MM3.4

1
0 0
0 8 2
0 0 3 12
0 0 0
0 0

0

Polyvectors
of MM3.5

1
0 0∗
0 5∗ 3
0 0 4 13

0 0 0
0 0

0

h0(X ,TX ) ∈
{0, 1}

Polyvectors
of MM3.6

1
0 0
0 5 2
0 0 0 14
0 0 0
0 0

0

Polyvectors
of MM3.7

1
0 0
0 4 4
0 0 0 15
0 0 0
0 0

0

Polyvectors
of MM3.8

1
0 0∗
0 3∗ 3
0 0 0 15

0 0 0
0 0

0

h0(X ,TX ) ∈
{0, 1}

Polyvectors
of MM3.9

1
0 1
0 6 8
0 0 0 16
0 0 0
0 0

0

Polyvectors
of MM3.10

1
0 0∗
0 2∗ 5
0 0 0 16

0 0 0
0 0

0

h0(X ,TX ) ∈
{0, 1, 2}
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Polyvectors
of MM3.11

1
0 0
0 2 8
0 0 0 17
0 0 0
0 0

0

Polyvectors
of MM3.12

1
0 0∗
0 1∗ 7
0 0 0 17

0 0 0
0 0

0

h0(X ,TX ) ∈
{0, 1}

Polyvectors
of MM3.13

1
0 1∗
0 1∗ 9
0 0 0 18

0 0 0
0 0

0

h0(X ,TX ) ∈
{1, 3}

Polyvectors
of MM3.14

1
0 1
0 1 12
0 0 0 19
0 0 0

0 0
0

Polyvectors
of MM3.15

1
0 1
0 0 11
0 0 0 19
0 0 0

0 0
0

Polyvectors
of MM3.16

1
0 2
0 0 13
0 0 0 20
0 0 0

0 0
0

Polyvectors
of MM3.17

1
0 3
0 0 15
0 0 0 21
0 0 0

0 0
0

Polyvectors
of MM3.18

1
0 3
0 0 15
0 0 0 21
0 0 0

0 0
0

Polyvectors
of MM3.19

1
0 4
0 0 17
0 0 0 22
0 0 0

0 0
0

Polyvectors
of MM3.20

1
0 4
0 0 17
0 0 0 22
0 0 0

0 0
0

Polyvectors
of MM3.21

1
0 4
0 0 17
0 0 0 22
0 0 0

0 0
0

Polyvectors
of MM3.22

1
0 5
0 0 19
0 0 0 23
0 0 0

0 0
0

Polyvectors
of MM3.23

1
0 6
0 0 21
0 0 0 24
0 0 0

0 0
0

Polyvectors
of MM3.24

1
0 6
0 0 21
0 0 0 24
0 0 0

0 0
0

Polyvectors
of MM3.25

1
0 7
0 0 23
0 0 0 25
0 0 0

0 0
0

Polyvectors
of MM3.26

1
0 8
0 0 25
0 0 0 26
0 0 0

0 0
0

Polyvectors
of MM3.27

1
0 9
0 0 27
0 0 0 27
0 0 0

0 0
0

Polyvectors
of MM3.28

1
0 9
0 0 27
0 0 0 27
0 0 0

0 0
0

Polyvectors
of MM3.29

1
0 10
0 0 29
0 0 0 28

0 0 0
0 0

0

Polyvectors
of MM3.30

1
0 10
0 0 29
0 0 0 28

0 0 0
0 0

0
Polyvectors
of MM3.31

1
0 11
0 0 31
0 0 0 29

0 0 0
0 0

0
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Rank 4.

Polyvectors
of MM4.1

1
0 0
0 3 3
0 0 0 15
0 0 0
0 0

0

Polyvectors
of MM4.2

1
0 1
0 2 7
0 0 0 17
0 0 0
0 0

0

Polyvectors
of MM4.3

1
0 1
0 0 8
0 0 0 18
0 0 0
0 0

0

Polyvectors
of MM4.4

1
0 2
0 0 10
0 0 0 19
0 0 0

0 0
0

Polyvectors
of MM4.5

1
0 2
0 0 10
0 0 0 19
0 0 0

0 0
0

Polyvectors
of MM4.6

1
0 3
0 0 12
0 0 0 20
0 0 0

0 0
0

Polyvectors
of MM4.7

1
0 4
0 0 14
0 0 0 21
0 0 0

0 0
0

Polyvectors
of MM4.8

1
0 5
0 0 16
0 0 0 22
0 0 0

0 0
0

Polyvectors
of MM4.9

1
0 6
0 0 18
0 0 0 23
0 0 0

0 0
0

Polyvectors
of MM4.10

1
0 7
0 0 20
0 0 0 24
0 0 0

0 0
0

Polyvectors
of MM4.11

1
0 8
0 0 22
0 0 0 25
0 0 0

0 0
0

Polyvectors
of MM4.12

1
0 9
0 0 24
0 0 0 26
0 0 0

0 0
0

Polyvectors
of MM4.13

1
0 0∗
0 1∗ 4
0 0 0 16

0 0 0
0 0

0

h0(X ,TX ) ∈
{0, 1}
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Rank 5.

Polyvectors
of MM5.1

1
0 1
0 0 5
0 0 0 17
0 0 0
0 0

0

Polyvectors
of MM5.2

1
0 5
0 0 13
0 0 0 21
0 0 0

0 0
0

Polyvectors
of MM5.3

1
0 5
0 0 13
0 0 0 21
0 0 0

0 0
0

Rank 6.

Polyvectors
of MM6.1

1
0 3
0 0 6
0 0 0 18
0 0 0
0 0

0

Rank 7.

Polyvectors
of MM7.1

1
0 3
0 2 5
0 0 6 15
0 0 0
0 0

0

Rank 8.

Polyvectors
of MM8.1

1
0 3
0 4 4
0 0 12 12
0 0 0

0 0
0

Rank 9.

Polyvectors
of MM9.1

1
0 3
0 6 3
0 0 18 9
0 0 0

0 0
0
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Rank 10.

Polyvectors
of MM10.1

1
0 3
0 8 2
0 0 24 6
0 0 0

0 0
0

Appendix B: Dimensions for del Pezzo surfaces

For ease of reference and completeness’ sake we give the Hochschild–Kostant–Rosenberg
decomposition of the Hochschild cohomology of del Pezzo surfaces. We use the notation
introduced in (10), suitably modified for surfaces.

One can compute this in many ways, e.g. using the methods from Sect. 3.1. There is no
cohomology jumping in this case. What is interesting to remark is that one does observe
cohomology jumping when extending to noncommutative del Pezzo surfaces, as in [4].

Polyvectors
of P2

1
0 8
0 0 10
0 0

0

Polyvectors
of P1 × P

1

1
0 6
0 0 9
0 0
0

Polyvectors
of Bl1 P2

1
0 6
0 0 9
0 0
0

Polyvectors
of Bl2 P2

1
0 4
0 0 8
0 0
0

Polyvectors
of Bl3 P2

1
0 2
0 0 7
0 0
0

Polyvectors
of Bl4 P2

1
0 0
0 0 6
0 0
0

Polyvectors
of Bl5 P

2

1
0 0
0 2 5
0 0
0

Polyvectors
of Bl6 P2

1
0 0
0 4 4
0 0
0

Polyvectors
of Bl7 P2

1
0 0
0 6 3
0 0
0

Polyvectors
of Bl8 P2

1
0 0
0 8 2
0 0
0
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