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Abstract
We study the portraits of isometries of rooted trees—the labelling of the tree, at each vertex,
by the permutation of its descendants—in terms of languages. We characterize regularly
branched self-similar groups in terms of ω-regular languages. We deduce the algorithmic
decidability of some problems, such as the comparison of regularly branched contracting
groups, and their orbit structure on the boundary of the rooted tree.

Keywords Groups acting on trees · Branched groups · Tree languages · Regular tree
languages
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1 Introduction

There is a rich interplay between group theory and theoretical computer science, and more
precisely the theory of formal languages. We develop it in the context of self-similar groups
acting on rooted trees.

1.1 Regular languages

Let A be a finite set called alphabet. A language is a subset of A∗, where A∗ denotes the
set of all finite words in A. Some languages can be described by a finite state automaton: a
deviceM with a finite amount of memory that reads letter-by-letter words over the alphabet
A as input and decides at the end whether to accept the word. An automaton M accepts the
word w if there exists a run q0, . . . , qn on w such that qn ∈ Q f , where Q f denotes the set
of final states. The language L(M) is the set of words accepted by the automaton M. A
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language K is regular if there exists a finite state automaton M such that K = L(M). For
more information we refer to [15].

Consider a groupG generated (as amonoid) by a set A. The set ofwords in A∗ that represent
the identity in G is a language W (G), called the word problem of G, and determines G. It is
a still active area of research to relate the complexity ofW (G), as a language, with structural
properties of G. The first result in this direction is due to Anisimov, who in 1970 proved that
W (G) is a regular language if and only if the group G is finite [2].

The groupG = 〈A〉may also be understood via a normal form for its elements: a language
N (G) ⊆ A∗ that is in bijection withG under the natural evaluationmap; for example, the free
Abelian groupZ

2 can be represented by the regular language ({x}∗∪{x−1}∗)({y}∗∪{y−1}∗).
Automata may also be used to represent relations: adding an extra padding symbol � to

A, one may represent a relation R ⊆ A∗ × A∗ by its language

{(u�max(0,|v|−|u|), v�max(0,|u|−|v|) : (u, v) ∈ R},
and the relation R is called regular if its language is regular as a subset of ((A 	 {�}) × (A 	
{�}))∗. The rich class of automatic groups are those groups G = 〈A〉 admitting a regular
normal form N ⊆ A∗ and for which the multiplication relations {(u, v) ∈ N 2 : ua =G v}
are regular for all a ∈ A; see [12].

Kharlampovich,Khoussainov, andMiasnikov introducedCayley-automatic groups in [16]
as groups admitting a regular normal form (not necessarily coming from words over a gen-
erating set) for their elements and the group operation. They prove that this class of groups
strictly extends that of automatic groups, while retaining some of the most important algo-
rithmic properties (such as fast solvability of the word problem). In this paper, the groups we
are interested in shall not admit regular normal forms in the above sense; but rather as “tree
languages”, see below.

The theory of regular languages has been extended to infinite words by Büchi, see [9].
In contrast to a classical finite automaton, a Büchi machine is a finite state automaton that
takes infinite words as input and and accepts a run if the set of recurring states intersects the
set of accepting states. An ω-regular language is a language ⊂ Aω recognized by a Büchi
machine. The class of ω-regular languages is closed under all Boolean operations; this was
used to prove decidability of Pressburger arithmetic [8].

The theory was further extended to tree languages. Finite words are seen as A-labels on
the vertices of a finite path, and ω-words are A-labelled infinite paths. In this vein, tree words
are A-labelled rooted trees (infinite in our case), and a tree automaton is a finite machine
accepting certain tree words. It reads trees starting from the root, one node at a time, and
clones itself to process independently and in parallel all descendant subtrees. These tools
are at the heart of Rabin’s proof [21] that the monadic second-order logic of two successor
functions (S2S) is decidable.

1.2 Self-similar groups

Finite state automata also appear in group theory as representations of the actual elements of a
group. For an alphabet X , the set of words X∗ naturally forms the vertex set of a regular rooted
tree T , rooted at the empty word and with an edge between u and ux for all u ∈ X∗, x ∈ X .
Consider a group G acting by tree isometries on T , and g ∈ G. Then the action of g on T is
entirely characterized by its action σg on X , the neighbours of the root, and for each x ∈ X
the induced bijection between the subtrees x X∗ and σg(x)X∗. Identifying these subtrees
with T , we obtain a permutation σg and a collection (g@x)x∈X of tree isometries called the
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states of g. If g@x ∈ G for all x ∈ X , we call the group G self-similar. In this case, the
action of G on T is conveniently recorded by a homomorphism ψ : G → G � X , defined by
g → ((g@x), σg), where G � X stands for the permutational wreath product GX

�Sym(X).
Furthermore, the operations g → g@x may be composed; for v = ux ∈ X∗ we write

g@v = (g@u)@x . If g is such that {g@v : v ∈ X∗} is finite, then g may be represented by
a finite automaton with alphabet X × X : its stateset is Q = {g@v : v ∈ X∗} and it has for
all h ∈ Q, x ∈ X a transition from h to h@x with label (x, σh(x)). As an example, consider
X = {0, 1}, the stateset Q = {a, b, c, d, e}, and the transitions

(a, (0, 1)) → e, (a, (1, 0)) → e,
(b, (0, 0)) → a, (b, (1, 1)) → c,
(c, (0, 0)) → a, (c, (1, 1)) → d,

(d, (0, 0)) → e, (d, (1, 1)) → b,
(e, (0, 0)) → e, (e, (1, 1)) → e,

written in graph form (with the state written inside nodes) as follows:

b d

c

a e

(1, 1)
(0, 0)

(1, 1)

(0, 0)

(1, 1)

(0, 0)

(0, 1), (1, 0)

(0, 0)

(1, 1)

Every choice of initial state q ∈ Q yields a relation Rq ⊂ X∗ × X∗ which is the graph
of a permutation of X∗; the group generated by these permutations is known as the (first)
Grigorchuk group [13] and possesses a wealth of striking properties: it is a finitely generated
torsion groupwhich is infinite but all its proper quotients are finite; it is a group of intermediate
word growth; it is amenable but not elementarily amenable, …. Another close example is
the Gupta-Sidki 3-group, defined as follows. Consider X = {0, 1, 2}, the stateset Q =
{a, a−1, b, b−1, e}, and the transitions

(a, (0, 1)) → e, (a, (1, 2)) → e, (a, (2, 0)) → e,
(a−1, (0, 2)) → e, (a−1, (1, 0)) → e, (a−1, (2, 1)) → e,
(b, (0, 0)) → a, (b, (1, 1)) → a−1, (b, (2, 2)) → b,
(b−1, (0, 0)) → a−1, (b−1, (1, 1)) → a, (b−1, (2, 2)) → b−1,

(e, (0, 0)) → e, (e, (1, 1)) → e, (e, (2, 2)) → e,

and again in graph form as follows:
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b b−1

ea a−1

(2, 2)

(0, 0)
(1, 1)

(2, 2)

(1, 1)
(0, 0)

(0, 1), (1, 2), (2, 0) (0, 2), (1, 0), (2, 1)

(0, 0), (1, 1), (2, 2)

This example easily generalizes to X = {0, 1, . . . , p − 1} for any prime p > 2, yielding
the family of Gupta-Sidki p-groups. The Grigorchuk group and the Gupta-Sidki p-groups
are instances of GGS-groups, and provide a large family of counterexamples to the General
Burnside Problem.

Important subclasses of groups actingon trees have emerged: recurrent groups are those for
which the map ‘g → g@v’ is surjective from the stabilizer of v ∈ T ontoG. Level-transitive
groups are those that act transitively on Xn for all n ∈ N. Loosely speaking, a branched group
is a group whose lattice of subnormal subgroups is similar to the corresponding structure in
the full isometry group Isom T of the tree T . For a self-similar group G, there is a stronger
notion: G is regularly branched if there is a finite-index subgroup K such that G contains,
for all v ∈ T , a copy of K acting only on the subtree vX∗. The aforementioned examples of
the Grigorchuk and Gupta-Sidki torsion groups are recurrent, level-transitive and regularly
branched.

Every f ∈ Isom T can be described by providing, at every vertex v of the tree, a permu-
tation σ f@v ∈ Sym(X) that describes how f acts on the children of v. The portrait of f is
this Sym(X)-labelling v → σ f@v of T , and there is a one-to-one correspondence between
isometries of T and portraits.

The relations between a self-similar groupG and the collection of portraits of its elements
have already been considered in the literature, in particular by Siegenthaler in [22] and his
2008 doctoral thesis; see also [18, 19, 24, 26]. In [20], Penland and Šunić prove that the
closures of certain self-similar groups of rooted trees that satisfy an algebraic law do not
have a regular language of portraits.

1.3 Main results and their consequences

This paper’s main results relate tree languages with group-theoretical properties of branched
groups.

Theorem A (= Theorem1)Let G be a level-transitive, recurrent, closed self-similar subgroup
of Isom T . Then G is regularly branched if and only if its set of portraits is a tree regular
language.

We point out that in the “if” direction of the theorem above, we do not need that G is
level-transitive.

Theorem B (= Theorem 2) Let G be a contracting regularly branched group. Then its set of
portraits is a tree regular language.

Theorems A and B solve some algorithmic decidability problems in regularly branched
groups. In the following statements, a regularly branched group is given by a finite collection
of automata generating it, with the promise that the group is regularly branched.
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Corollary C Let G, H ≤ Isom T be two contracting finitely generated regularly branched
groups; then there exists an algorithm that determines whether G ≤ H. As a consequence,
it is decidable if G = H.

For a group G acting on a tree X∗ and therefore on its boundary Xω, the orbit relation is
the equivalence relation

O = {(ξ, η) ∈ Xω × Xω : η ∈ Gξ} ⊆ (X × X)ω.

Corollary D Let G ≤ Isom T be a finitely generated, contracting, regularly branched group;
then its orbit relation is an ω-regular language, and is computable.

The Hausdorff dimension of profinite groups was first considered by Abercrombie in [1].
In our situation of a closed group G acting on a rooted tree X∗, its Hausdorff dimension is
computed as follows: let Gn be the natural quotient of G acting on Xn ; then

Hdim(G) = lim inf
n→∞

log #Gn

log #(Isom X∗)n
.

Corollary E Let G ≤ Isom T be a finitely generated, closed self-similar regularly branched
group; then the Hausdorff dimension of G is computable.

The paper is organized as follows: in Sect. 2 we define groups acting on trees, with a
particular emphasis onbranchedgroups. InSect. 3,wegive basic notions about tree languages,
in Sect. 4 we prove Theorems A and B, and in the last Sect. 5 we present some applications
and we prove some corollaries of Theorems A and B.

1.4 Finitely constrained groups

We conclude this introduction by pointing out some interesting applications of the corollaries
above that give a better understanding of the closure and algebraic properties of branched
groups.

The article [20] by Penland and Šunić considers closely related questions; in par-
ticular, they point to self-similar branched groups whose language of portraits enjoy
various properties. The definition of regular tree language that we gave is the most gen-
eral; another, more restrictive accepting condition is known as the Büchi condition, and
an example of a group whose language is regular but not Büchi is {g ∈ Isom T :
g(v) and v differ in finitely many positions for all v ∈ X∗}. A yet more restrictive condi-
tion is being a sofic tree shift. In our terminology, this amounts to all subsets of states being
residual, and precisely captures topologically closed tree languages. In [14], Grigorchuk
considered finitely constrained groups, a notion we now recall.

Definition 1 A pattern is an isometry f of a finite truncation of the regular tree T , and an
element g ∈ Isom T is said to avoid the pattern f if its action at every subtree is different
from f .

A closed subgroup G ≤ Isom T is finitely constrained if there exists a finite set F of
patterns such that g ∈ Isom T belongs to G if and only if it avoids all patterns in F .

Not every regular language is defined by a finite collection of forbidden patterns, and
this also applies to groups. In fact, it is not difficult to see that, while admitting a regular

123



96 Page 6 of 13 L. Bartholdi, M. Noce

language of patterns corresponds to being branched, admitting a finitely constrained language
of patterns corresponds to being branched over a level stabilizer (G ∩ the kernel of a map
πm as above).

For closed groups, these notions correspond. Let indeedG be a closed subgroup of Isom T ,
regularly branched over the subgroup K . Then G is also regularly branched over K , the
topological closure of K ; now K is closed and finite-index, and therefore open in G. It
follows that K contains a level stabilizer G ∩ ker πm =: L . We have LX ≤ ψ(K ) because
L ≤ K which is branched, and LX ≤ ψ(ker πm+1) ≤ ψ(ker πm), so LX ≤ ψ(L) and G is
regularly branched over L .

More generally, Penland and Šunić prove for a closed group G that, under a technical
condition (G must be normalized by a level-transitive, self-similar, recurrent group), the
language of portraits of G is regular if and only if it is finitely constrained.

In [26], Šunić showed that a group defined by forbidden patterns of depth s + 1 is the
topological closure of a self-similar, countable, regularly branched group over its stabilizer
of level s. Furthermore, it is proven in [25] and [3] that all possible values of the Hausdorff
dimension of finitely constrained groups acting on the binary tree can be determined by
understanding its forbidden patterns. Now it is clear that the tree language defined by a finite
collection of forbidden patterns is regular, but there are regular languages that require an
infinite number of forbidden patterns; for example, the GGS-groups defined by a constant
vector, and the “Basilica group” (This is akin to the distinction, in symbolic dynamics,
between subshifts of finite type and sofic shifts).

Thefirst author andSiegenthaler constructed in [4] an example of group, called the “twisted
twin” of the Grigorchuk group, which is not isomorphic to the Grigorchuk group but has
the same closure. Following the notation of the Introduction, its automaton is given by the
alphabet X = {0, 1}, the stateset Q = {a, b, c, d, e}, and the transitions

(a, (0, 1)) → e, (a, (1, 0)) → e,
(b, (0, 0)) → c, (b, (1, 1)) → a,

(c, (0, 0)) → a, (c, (1, 1)) → d,

(d, (0, 0)) → e, (d, (1, 1)) → b,
(e, (0, 0)) → e, (e, (1, 1)) → e

(note the “twist” on the entries for b), in graph form

b d

c

a e

(0, 0)
(1, 1)

(1, 1)

(0, 0)

(1, 1)

(0, 0)

(0, 1), (1, 0)

(0, 0)

(1, 1)

It can be checked algorithmically that the Grigorchuk group and its twisted twin have the
same closure, using Theorem B: since their pattern languages are computable and regular,
so are their closures, and equality of regular tree languages is decidable. On the other hand,
it can also be checked algorithmically that the Grigorchuk group and its twisted twin are not
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isomorphic, by computing their abelianizations. There is code in the first author’s computer
algebra package “FR” that performs these tasks automatically.

Finally, we remark that the growth of the tree language of in the profinite case gives
the Hausdorff dimension, and in the finitely generated case gives growth of portraits. This
growth has been considered for some examples, and in both cases it is doubly exponential
with computable constants, see [27].

However, and this is the main point we wish to stress in this article, these notions do not
correspond for general (non-closed) self-similar groups. This is best seen in the context of
the congruence property. There are groups, such as the “twisted twin ” mentioned above,
that satisfy all the hypotheses of our main theorem—they are self-similar, level-transitive,
contracting, recurrent—and are branched, but not on a level stabilizer. Even more strikingly,
the derived subgroup of the “twisted twin” group ˜G is not closed in the tree topology,
equivalently does not contain ˜G ∩ ker πm for any m. Thus its set of portraits is regular, but
the group is not finitely constrained. This answers an open question in [20].

2 Branched groups

In this Section we briefly summarize and recall the most important notions in the theory
of groups of isometries of rooted trees and, more precisely, of branched groups. For more
information on the topic see, for example, [5–7, 11].

2.1 Groups of isometries of rooted trees

Let T be a d-regular rooted tree: an oriented tree with a designated vertex called the root,
and such that every vertex has d immediate descendants and one immediate ancestor (except
the root which has no ancestor).

Let X be a finite alphabet with d elements, Xn the set of all words of length n and
X∗ = ⋃

n∈N Xn ; then the vertex set of T may be identified with X∗. We denote by ε the
emptyword, namely the root of the tree. The descendants of u ∈ Xn are all words ux ∈ Xn+1,
for x ∈ X . For every vertex u ∈ X∗, the subtree of T hanging from u has vertex set uX∗ and
is naturally identified with T via uw ↔ w. Let Isom T denote the group of bijective maps
of the set X∗ which preserve incidence, so are isometries of the graph T . Let Sym(X) be the
set of all permutations over the alphabet X . Considering separately the action of Isom T on
X and on each subtree x X∗ for x ∈ X , we obtain an isomorphism

ψ : Isom T → (Isom T ) � X := (Isom T )X � Sym(X)

decomposing every isometry into a permutation of X and a tuple of elements of Isom T .
For g ∈ Isom T , we write ψ(g)1, respectively ψ(g)2 the elements of Isom T X , respectively

Sym(X); then ψ(g)1(x) is the map v → xv
g→ g(xv) = yw → w, and ψ(g)2 is the map

x
g→ g(x), which we abbreviate σg .

Definition 2 (Portraits) Anticipating Sect. 3, a tree word is a map T → A for some alphabet
A. The set of tree words is naturally a topological space for the product topology on AT ; it
is a Cantor set as soon as A has more than one element and X is non-empty.

The portrait of g ∈ Isom T is the tree word pg : T → Sym(X) defined inductively
by pg(ε) = σg and pg(xv) = pψ(g)1(x)(v). The portrait map induces a homeomorphism
between Isom T and the set of all tree words T → Sym(X).
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For g ∈ Isom T and v ∈ X∗, the state of g at v, written g@v, is defined inductively by
g@ε = g and g@(xv) = ψ(g)1(x)@v.

When considering subgroups G ≤ Isom T , the following definitions clarify additional
properties of the restriction to G of the map ψ : Isom T → Isom T � X .
Definition 3 (Self-similar and recurrent groups) Consider G ≤ Isom T . It is self-similar if
ψ restricts to a map G → G � X , and recurrent if furthermore for every g ∈ G, v ∈ X∗ there
exists h ∈ G with h(v) = v and h@v = g.

In other words, G is self-similar precisely when g@v ∈ G for all g ∈ G, v ∈ X∗, and is
recurrent if (Gv)@v = G for all v ∈ X∗.

The portrait of g ∈ Isom T may then be defined directly by pg(v) := σg@v . Note that
if G is self-similar then its set of portraits is a “differentially closed” language, namely
a language L such that for every w ∈ L and every x ∈ X one has ∂w/∂x ∈ L, where
(∂w/∂x)(v) = w(xv).

Definition 4 (Level-transitive groups) A group G acting on T is level-transitive if it acts
transitively on Xn for all n ∈ N; so the quotient of T by the action is a single ray.

Definition 5 (Contracting groups) A self-similar group G ≤ Isom T is contracting if there
exists a finite subset F ⊆ G such that for every g ∈ G the state g@v belongs to F for all
v ∈ X∗ except finitely many. There is a minimal such set F called the nucleus of G, and
denoted by N .

2.2 Branched groups and branch structure

In this section we describe one of the most important classes of groups of isometries of rooted
trees: branched groups.

Definition 6 (Regularly branched groups) A groupG acting on T is regularly branched (over
K ) if there exists a finite index subgroup K ≤ G with K X ≤ ψ(K ).

This definition can be conveniently expressed as the existence of a branch structure: a finite
quotient Q of G, a subgroup Q1 ≤ Q � X , and epimorphisms π : G � Q and φ : Q1 � Q.
Indeed, with K as above and assumed without loss of generality normal, set Q := G/K and
Q1 := ψ(G)/K X , with π : G → Q the natural map and φ : ψ(G)/K X → ψ(G)/ψ(K ) ∼=
G/K .

3 Automata on infinite trees

In this section we define automata on infinite trees, and defer to [10] for a thorough intro-
duction on automata on trees and tree languages.

Recall that an alphabet is a finite set, and a regular tree is a set of the form T = X∗
for an alphabet X . Its vertices are thus finite sequences (X∗), and its boundary consists of
infinite sequences (Xω) called rays. For example, if X = {t}, the corresponding regular tree
is geometrically an infinite half-line, with vertex set {tn : n ∈ N}, and it has a single ray tω.

A tree word is a map w : T → A, for a regular tree T and an alphabet A. For example,
if T = {t}∗, a tree word is a usual ω-word. As we saw in Definition 2, the portrait of a tree
isometry is a tree word, with A = Sym(X).
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A tree language is a set of tree words, all with the same tree and alphabet; so again if a
group acts on a tree T = X∗ then the set of portraits of its elements is a tree language with
alphabet Sym(X).

Definition 7 (Müller automata) A Müller tree automaton on the tree T = X∗ is a quintuple
M = (Q, A, δ, Qi , Q f ), where

• Q is a finite (non-empty) set of states;
• A is an alphabet;
• δ ⊆ Q × A × QX is the transition rule;
• Qi ⊆ Q is the set of initial states;
• Q f ⊆ 2Q is the set of residual statesets.

Definition 8 (Run of automata, see [17]) A run of a Müller tree automatonM is a tree word
w with alphabet δ such that

• w(ε)1 ∈ Qi ;
• for every v ∈ X∗ one has w(v)3(x) = w(vx)1;
• for every ray ξ ∈ Xω one has {w(v)1 : v is a prefix of ξ texto f lengthatleastn} ∈ Q f

for all n large enough.

In words, the run must start at an initial state, the states match along edges according to some
rules in δ, and for every ray in T the set of states appearing infinitely often along it is residual.

The value of a run w is the tree word w with alphabet A defined by w(v) = w(v)2. A tree
word T → A is accepted by M if it is the value of a run of M.

Definition 9 (Regular tree languages) A tree language is regular if it is the set of accepted
tree words of some Müller tree automaton.

We note the fundamental (and non-trivial) fact that the class of languages definable by
non-deterministic Müller tree automata is closed under all Boolean operations.

4 Main results

Here we prove our main results Theorems A and B.

Theorem 1 Let G be a level-transitive, recurrent, closed self-similar subgroup of Isom(X∗).
Then G is regularly branched if and only if its set of portraits is a regular language.

Proof In the first direction, supposeG is regularly branched, and let (π : G → Q, φ : Q �X ≥
Q1 → Q) be a branch structure. Consider the following Müller automaton M:

• Q (defined above) is the set of states;
• A = Sym(X);
• δ ⊆ Q × A × QX with (q, a, (qx )) ∈ δ whenever ((qx ), a) defines an element q1 ∈ Q1

and φ(q1) = q;
• Qi = Q;
• Q f = 2Q .

Given g ∈ G, construct a run w of M by w(v) = (π(g@v), σg@v, (π(g@vx))x∈X ),
and note that its value is the portrait of g. Conversely, given a run w of M, note that its
value defines a portrait and therefore an isometry t of X∗. Furthermore, the run defines an
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element w(ε)1 ∈ Q so there exists g ∈ G such that g and t have same image in Q. Now the
construction of M implies that for every v ∈ X∗ there exists q1,v = (w(v)3, w(v)2) ∈ Q1

with φ(q1,v) = w(v)1; thus there exists a lift g1 ∈ G of q1,ε such that g1 and t have same
image in Q1. Continuing, there exists a subgroup Q2 ≤ Q1 � X and an element q2,v ∈ Q2

obtained by assembling q1,v, (q1,vx ), and a lift g2 ∈ G of q2,ε such that g2 and t have same
image in Q2. We obtain thus for all n an element gn ∈ G such that gn and t have same image
in Qn . Since the Qn converge to G and G is closed, we get t = lim gn ∈ G.

Note that we did not yet use the hypotheses that G be level-transitive nor recurrent.
In the other direction: assume that the language of portraits of the self-similar group G is

a regular language, and let M be a Müller machine recognizing it, with stateset Q. Without
loss of generality, assume M is trim: every state can be reached from an initial state, and
leads to a residual set. Fix a letter x ∈ X . For every g ∈ G and n ∈ N, define

Qn(g) = {ρ(xn)1 : ρ is a run accepting an element f with f (xn) = xn and f@xn = g}.
Since G is recurrent, Qn(g) is non-empty for all g ∈ G, n ∈ N; and Qn+1(g) ⊆ Qn(g), so
their intersection Q∞(g) is also non-empty for all g ∈ G. Let K0 denote the subgroup of G
generated by {gh−1 : Q∞(g) ∩ Q∞(h) �= ∅}.

We first note that K0 is a finite index subgroup of G; more precisely, the index of
K0 is at most #Q. Indeed, let g0, g1, . . . , g#Q be arbitrary elements of G. Then the sets
Q∞(g0), . . . , Q∞(g#Q) cannot all be disjoint, since they are non-empty and more numerous
than Q. Thus there exists i and j such that Q∞(gi ) and Q∞(g j ) intersect, so gi g

−1
j ∈ K0,

and so g0, . . . , g#Q cannot be left coset representatives of K0.
Consider next an element k = gh−1 ∈ K0, and choose q ∈ Q∞(g)∩Q∞(h). In particular,

there exists a run ρg accepting an element fg ∈ G and such that ρg(x)1 = q and fg(x) = x
and fg@x = g; and similarly a run ρh accepting an element f ′

h ∈ G with ρh(x)1 = q and
f ′
h(x) = x and f ′

h@x = h. Define fh now to coincidewith fg on X∗\x X∗, and acting as h on
the subtree x X∗. The tree isometry fh thus defined belongs to G; indeed it is accepted by the
run equal to ρg on X∗ \ x X∗ and equal to ρh on x X∗. Furthermore, fg, fh agree everywhere
except on the x X∗, so fg f

−1
h acts as k on that subtree and trivially elsewhere. The elements

fg, fh are accepted by runs with the same initial state q ′, so Q∞( fg)∩ Q∞( fh) � q ′ is non-
empty. Thus, for every generator k of K0, we have constructed an element  = fg f

−1
h ∈ K0

with @x = k and (x) = x and (v) = v for all v /∈ x X∗.
We now let K denote the normal closure of K in G, all the more of finite index, and

continue our reasoning with @v = k. Since G is recurrent and acts transitively on X , we
obtain for arbitrary y ∈ X , g ∈ G an element y,k ∈ K acting as kg on the subtree yX∗ and
fixing its complement. In other words, K X is a subgroup of ψ(K ), and we have shown that
G is regularly branched. �	
The following lemma will be useful for the proof of Theorem B. It states that, in a regularly
branched group, a finite amount of data is sufficient to determine whether an element ofG � X
belongs to ψ(G).

Lemma 1 Let G be a regularly branched group over its subgroup K , and denote by π : G →
G/K the natural map. Let (gx )x∈X and a ∈ Sym(X) be such that there exists g ∈ G with
ψ2(g) = a and π(ψ1(g)(x)) = π(gx ) for all x ∈ X.

Then there exists an element g′ ∈ G with ψ2(g′) = a and ψ1(g′)(x) = gx for all x ∈ X.

Proof By hypothesis we have kx := gxψ1(g)(x)−1 ∈ K for all x ∈ X ; so there exists k ∈ K
with k@x = kx . Write g′ = kg, and compute ψ1(g′)(x) = kxψ1(g)(x) = gx . �	
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Theorem 2 If G is a contracting regularly branched group, then its set of portraits is a regular
language.

Proof Wemodify the construction in the proof of Theorem 1 as follows. LetN be the nucleus
of G. As stateset, we use Q′ = Q 	 N . We set Q′

i = Q′ and Q′
f = 2N . We extend the

transitions δ ⊆ Q × A× QX to δ′ ⊆ Q′ × A× (Q′)X by allowing transitions from Q′ toN .
More precisely, we add to δ for all g ∈ G the transitions (π(g), σg, (g@x)x∈X ) whenever
g@x ∈ N for all x ∈ X , and for all g ∈ N the transitions (g, σg, (g@x)x∈X ). Thus an
accepting run must reach a state inN on every ray, and so by König’s lemma may have only
finitely many states in Q′ \ N .

On the one hand, it is clear that every g ∈ G is accepted, since all states g@v for v

sufficiently long belong toN . Conversely, consider an accepting run. It yields by restriction
a finite subtree of X∗, with elements ofN at its leaves and elements of Q × A at its internal
vertices. We construct by induction an element of G from it. If the subtree has a single
vertex, then it is labelled by an element of N and therefore directly produces an element
of G. Otherwise, consider an internal vertex of maximal height, so all its descendants are
labelled by elements of G. We may replace the internal vertex’s label by an element of G,
and proceed by induction, owing to Lemma 1. �	

5 Applications

In this last section, we list some consequences of Theorems A and B. These all pertain to
decidability questions.

When given a contracting regularly branched group, the data defining it are assumed to
be in the form of a finite generating set S, the restriction of ψ to S, and an oracle promising
that the action is faithful, contracting and regularly branched.

Corollary 1 Let G, H ≤ Isom T be two finitely generated contracting regularly branched
groups. Then there exists an algorithm that determines whether G ≤ H. As a consequence,
it is decidable if G = H.

Proof Suppose that there exists an oracle that recognises whether a group is contracting and
branched. Then one can algorithmically determine its nucleus and its branching subgroup.
Now given two contracting regular branched groups G and H , by Theorem 2 their languages
of portraits are regular, and the inclusion in regular languages is decidable. This completes
the proof. �	

On the other hand, a closed regularly branched group is determined by the finite data of
its branched structure.

Corollary 2 Let G ≤ Isom T be a finitely generated, closed self-similar regularly branched
group. Then the Hausdorff dimension of G is computable.

Proof By Theorem 1, there exists a tree automaton that recognizes elements of the portrait of
a closed group G. The Hausdorff dimension of G is the entropy of its language of portraits,
so is computable from the automaton.

More directly, a linear system of equations can easily be set up, one variable per state of
the automaton, whose solution yields the Hausdorff dimension of G, see [23]. �	
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We finally to turn to the orbit structure of contracting, regularly branched groups. Say the
group G acts on the regular tree T = X∗; so it acts on its boundary ∂T = Xω. The orbit
relation is the subset

O = {(ξ, η) ∈ Xω × Xω : η ∈ Gξ} ⊆ (X × X)ω.

Corollary 3 Let G ≤ Isom T be a finitely generated, contracting, regularly branched group.
Then the equivalence relation O is an ω-regular language, and is computable.

Proof LetM be a Müller tree automaton recognizing the portraits of G. Define a (classical)
Müller automatonM′ with same stateset Q, same initial and residual states Q f , Qi , alphabet
A′ = X × X , and transitions δ′ ⊂ Q × A′ × Q, by

δ′ = {(q, (y, z), qy) : ∃(q, a, (qx )x∈X ) ∈ δ with a(y) = z}.
Then every run of M, recognizing an element g ∈ G leads to runs, for all ξ ∈ Xω, of M′
recognizing (ξ, gξ); thus the language of M′ is O.

In particular, for every preperiodic ray ξ , the orbit of ξ is computable as an ω-regular
language ⊆ Xω, by intersecting O with the ω-regular language {ξ} × Xω and projecting to
the second coordinate. �	
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13. Grigorčuk, R.I.: On Burnside’s problem on periodic groups. Funkt. Anal. i Prilozhen. 14(1), 53–54 (1980)
14. Grigorchuk, R.: Solved and unsolved problems around one group. Infinite Groups Geometr. Combin.

Dyn. Aspects 248, 117–218 (2006)
15. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computa-

tion. Addison-Wesley Longman Publishing Co., Inc, USA (2006)
16. Kharlampovich, O., Khoussainov, B., Miasnikov, A.: From automatic structures to automatic groups.

Groups Geom. Dyn. 8, 157–198 (2011)
17. Muller, D.E.: Infinite sequences and finite machines. In: Proceedings of the 1963 Proceedings of the

Fourth Annual Symposium on Switching Circuit Theory and Logical Design. IEEE Computer Society,
USA, pp. 3–16 (1963). https://doi.org/10.1109/SWCT.1963.8

18. Noce, M., Thillaisundaram, A.: Hausdorff dimension of the second Grigorchuk group. Int. J. Algebra
Comput. 31(6), 1037–1047 (2021). https://doi.org/10.1142/S0218196721400038
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27. Šunić, Z., Uria-Albizuri, J.: Portrait growth in contracting, regular branch groups. J. Algebra Appl. (2022).
https://doi.org/10.1142/S0219498823501803

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://books.google.es/books?id=cRT01C5ADroC
https://doi.org/10.1109/SWCT.1963.8
https://doi.org/10.1142/S0218196721400038
https://doi.org/10.1017/S144678871500018X
https://doi.org/10.1016/j.jalgebra.2019.07.017
https://doi.org/10.1515/JGT.2008.034
https://doi.org/10.1016/j.ejc.2012.03.025
https://doi.org/10.1016/j.ejc.2012.03.025
https://doi.org/10.1007/s13373-011-0007-2
https://doi.org/10.1007/s13373-011-0007-2
https://doi.org/10.1142/S0219498823501803

	Tree languages and branched groups
	Abstract
	1 Introduction
	1.1 Regular languages
	1.2 Self-similar groups
	1.3 Main results and their consequences
	1.4 Finitely constrained groups

	2 Branched groups
	2.1 Groups of isometries of rooted trees
	2.2 Branched groups and branch structure

	3 Automata on infinite trees
	4 Main results
	5 Applications
	References




