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Abstract
Let k be an algebraically closed field, l �= char k a prime number, and X a quasi-projective
scheme over k. We show that the étale homotopy type of the dth symmetric power of X is
Z/l-homologically equivalent to the dth strict symmetric power of the étale homotopy type
of X . We deduce that the Z/l-local étale homotopy type of a motivic Eilenberg–Mac Lane
space is an ordinary Eilenberg–Mac Lane space.
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Introduction

In the first part of this paper we show that the étale homotopy type of the dth symmetric
power of a quasi-projective scheme X over a separably closed field k is Z/l-homologically
equivalent to the dth symmetric power of the étale homotopy type of X , where l �= char k is
any prime. Symbolically,

LZ/l�
ét∞(Sd X) � LZ/lS

d�ét∞(X), (∗)
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where �ét∞ is the étale homotopy type, Sd is the dth symmetric power (more precisely the
strict symmetric power), and LZ/l isZ/l-localization á laBousfield–Kan. The étale homotopy
type �ét∞X of a scheme X is a pro-space originally defined by Artin and Mazur [1] and later
refined by Friedlander [11]. It is characterized by the property that the (nonabelian) étale
cohomology of X with constant coefficients coincides with the cohomology of �ét∞X .

The formula (∗) is related to a theoremofDeligne about the étale cohomologyof symmetric
powers [2, XVII, Théorème 5.5.21], but there are three significant differences:

(1) Deligne’s theorem is about cohomologywith proper support, and so does not say anything
about the cohomology of non-proper schemes.

(2) We give an equivalence at the level of homotopy types, whereas Deligne only gives an
equivalence at the level of cochains.

(3) Deligne’s theorem works over an arbitrary quasi-compact quasi-separated base and with
arbitrary Noetherian torsion coefficients; for our result the base must be a separably
closed field whose characteristic is prime to the torsion of the coefficients.

While there may be a relative version of (∗) over a base, the localization away from the
residual characteristics cannot be avoided when dealing with non-proper schemes.

In his proof, after reducing to the case where the base is a field k, Deligne employs Witt
vectors to further reduce to the case where k has characteristic zero (concluding with a
transcendental argument). In this step it is crucial that X be proper over k. Our arguments are
thus necessarily quite different.We use the existence a schematic topology, finer than the étale
topology but cohomologically equivalent to it, for which the quotient map Xd → Sd X is a
covering; this is the qfh topology used extensively by Voevodsky in his work on triangulated
categories of motives.

Combining (∗) with the motivic Dold–Thom theorem, we show that if k is algebraically
closed and A is an abelian group on which the characteristic exponent of k acts invertibly,
then the Z/l-local étale homotopy type of a motivic Eilenberg–Mac Lane space K (A(q), p)
is the Z/l-localization of an ordinary Eilenberg–Mac Lane space K (A, p).

Conventions

Throughout this paper, we use the language of ∞-categories developed in [24] and [23].
Although our main results can be stated in more classical language, their proofs use the
flexibility of higher category theory in an essential way. We warn the reader that this is the
default language in this paper, so for example the word “colimit” always means “homotopy
colimit”, “unique” means “unique up to a contractible space of choices”, etc. We will use the
following notation:

• S is the ∞-category of small ∞-groupoids, which we also call spaces;
• Set� is the category of simplicial sets;
• Top∞ is the ∞-category of ∞-topoi and geometric morphisms [24, §6.3];
• C≤n is the subcategory of n-truncated objects in an ∞-category C;
• Cω is the subcategory of compact objects in an ∞-category C with filtered colimits;
• hC is the homotopy 1-category of an ∞-category C;
• X∧ is the hypercompletion of an ∞-topos X [24, §6.5.2].
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Historical note

The first draft of this paper was written in 2011 as a step towards the computation of the
motivic Steenrod algebra in positive characteristic. Afterwards I realized that the technology
of étale homotopy types could be avoided completely using theBloch–Kato conjecture,which
was the approach taken in [16]. Since I had no other application in mind I did not attempt to
turn this draft into a publishable paper. More recently however, the main result of this paper
was used by Zargar [31] to compute the weight 0 homotopy groups of the motivic sphere
spectrum in positive characteristic. Given this new application, it seemed important that this
paper be published after all. I want to thank ChuckWeibel for encouraging me to finally take
this paper out of its draft state.

1 Homotopy types of schemes

Let τ be a pretopology on the category of schemes (in the sense of [2, II, Définition 1.3]). If
X is a scheme, the small τ -site of X is the full subcategory of SchX spanned by the members
of the τ -coverings of X and equipped with the Grothendieck topology induced by τ (we
assume that this is an essentially small category). We denote by Xτ the ∞-topos of sheaves
of spaces on the small τ -site of X . The assignment X 	→ Xτ is functorial: a morphism of
schemes f : X → Y induces a geometric morphism of ∞-topoi f∗ : Xτ → Yτ given by
f∗(F)(U ) = F(U ×Y X).
Recall that the functor S → Top∞ associating to an ∞-groupoid its classifying ∞-topos

admits a pro-left adjoint �∞ : Top∞ → Pro(S) associating to any ∞-topos its shape (see
[24, §7.1.6] or [15]). The τ -homotopy type �τ∞X of a scheme X is the shape of the ∞-topos
Xτ :

�τ∞X = �∞(Xτ ).

This construction defines a functor �τ∞ : Sch → Pro(S).
Let X be an ∞-topos and let c : S → X be the constant sheaf functor. By definition of the

shape, we have MapX(∗, cK ) � MapPro(S)(�∞X, K ) for every K ∈ S. In particular, the
cohomology of X with coefficients in an abelian group can be computed as the continuous
cohomology of the pro-space �∞X. If X is locally connected (i.e., if for every X ∈ X the
pro-set π0�∞(X/X ) is constant), we have more generally that the category Fun(�∞X, Set)
of discrete local systems on �∞X is equivalent to the category of locally constant sheaves
of sets on X [15, Theorem 3.13], and, if A is such a sheaf of abelian groups, then H∗(X,A)

coincides with the continuous cohomology of the pro-space �∞X with coefficients in the
corresponding local system [15, Proposition 2.15].

Remark 1.1 In the definition of �τ∞X , we could have used any τ -site of X -schemes contain-
ing the small one. For if X ′

τ is the resulting ∞-topos of sheaves, the canonical geometric
morphism Xτ → X ′

τ is obviously a shape equivalence. It follows that the functor �τ∞
depends only on the Grothendieck topology induced by τ .

Remark 1.2 For schemes over a fixed base scheme S, we can define in the sameway a relative
version of the τ -homotopy type functor taking values in the ∞-category Pro(Sτ ).

Remark 1.3 Let X∧
τ be the hypercompletion of Xτ . By the generalized Verdier hypercovering

theorem [9, Theorem7.6(b)] �∞(X∧
τ ) is corepresented by the simplicially enriched diagram
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1 Page 4 of 28 M. Hoyois

�0 : HCτ (X) → Set� where HCτ (X) is the cofiltered simplicial category of τ -hypercovers
of X and �0(U•) is the simplicial set that has in degree n the colimit of the presheafUn . See
[15, §5] for details.

Remark 1.4 When τ = ét is the étale pretopology and X is locally Noetherian, �∞(X∧
ét)

is corepresented by the étale topological type defined by Friedlander [11, §4]. This follows
easily from Remark 1.3.

Lemma 1.5 Let U be a diagram in the small τ -site of a scheme X whose colimit in Xτ is X.
Then �τ∞X is the colimit of the diagram of pro-spaces �τ∞U.

Proof By [24, Proposition 6.3.5.14], the ∞-topos Xτ is the colimit in Top∞ of the diagram
of ∞-topoi Uτ . Since �∞ : Top∞ → Pro(S) is left adjoint, it preserves this colimit. �


Remark 1.6 Similarly, if U• → X is a representable τ -hypercover of X , then it is a colimit
diagram in X∧

τ , so that �∞(X∧
τ ) is the colimit of the simplicial pro-space �∞((U•)∧τ ). The

trivial proof of this fact can be compared with the rather technical proof of [18, Theorem
3.4]„ which is the special case τ = ét. This is a good example of the usefulness of the
topos-theoretic definition of the shape.

2 Strict symmetric powers in∞-categories

If X is a CW complex, its dth symmetric power Sd X is the set of orbits of the action of the
symmetric group �d on Xd , endowed with the quotient topology. Even though the action of
�d on Xd is not free, it is well known that the homotopy type of Sd X is an invariant of the
homotopy type of X . More generally, if G is a group acting on a CW complex X , the orbit
space X/G can be written as the homotopy colimit

X/G � hocolim
H∈O(G)op

XH , (2.1)

where O(G) is the orbit category of G (whose objects are the subgroups of G and whose
morphisms are the G-equivariant maps between the corresponding quotients) and XH is
the subspace of H -fixed points [10, Chapter 4, Lemma A.3],. In the case of the symmetric
group �d acting on Xd , if H is a subgroup of �d , then (Xd)H � Xo(H) where o(H) is the
set of orbits of the action of H on {1, . . . , d} and where the factor of Xo(H) indexed by an
orbit {i1, . . . , ir } is sent diagonally into the corresponding r factors of Xd . The formula (2.1)
becomes

Sd X � hocolim
H∈O(�d )op

Xo(H).

This shows that Sd preserves homotopy equivalences between CW complexes. In particular,
it induces a functor Sd from the ∞-category of spaces to itself.

This motivates the following definition:

Definition 2.2 LetC be an∞-category with colimits and finite products and d ≥ 0 an integer.
The dth strict symmetric power of X ∈ C is

Sd X = colim
H∈O(�d )op

Xo(H).

123



The Étale symmetric KÜnneth theorem Page 5 of 28 1

We will relate strict symmetric powers to the notion of strictly commutative monoid in
Sect. 7. Note that S0X is a final object ofC and that S1X � X . For example, in an∞-category
of sheaves of spaces on a site, Sd is computed by applying Sd objectwise and sheafifying
the result, and in a 1-category it is the usual symmetric power, namely the coequalizer of the
action groupoid �d × Xd ⇒ Xd . We note that any functor that preserves colimits and finite
products commutes with Sd .

Remark 2.3 If the product in C preserves sifted colimits in each variable (for example, if
C is cartesian closed or projectively generated), it follows from [24, Lemma 5.5.8.11] that
the functor Sd : C → C preserves sifted colimits. In particular, Sd : S → S is the left Kan
extension of the functor Sd : Fin → Fin, where Fin is the category of finite sets.

Remark 2.4 More generally, one has a strict symmetric power SϕX for any group homomor-
phism ϕ : G → �d :

SϕX = colim
H∈O(G)op

Xo(H).

Lemma 2.5 Let X be an ∞-topos. Then the inclusion X≤0 ↪→ X of the subcategory of
discrete objects preserves strict symmetric powers.

Proof This is true if X = S since symmetric powers preserve discrete CW complexes, hence
if X is a presheaf ∞-topos. It remains to observe that if a : X → Y is a left exact localization
and the result is true in X, then it is true in Y: this follows from the fact that a preserves
0-truncated objects [24, Proposition 5.5.6.16]. �


3 Homological localizations of pro-spaces

Let Pro(S) denote the ∞-category of pro-spaces. Recall that this is the ∞-category freely
generated by S under cofiltered limits and that it is equivalent to the full subcategory of
Fun(S, S)op spanned by accessible left exact functors [22, Proposition 3.1.6]. Any such func-
tor is equivalent to Y 	→ colimi∈I Map(Xi , Y ) for some small cofiltered diagram X : I → S.
Moreover, combining [24, Proposition 5.3.1.16] and the proof of [2, Proposition 8.1.6], we
can always find such a corepresentation where I is a cofiltered poset such that, for each i ∈ I ,
there are only finitely many j with i ≤ j ; such a poset is called cofinite.

In [19], Isaksen constructs a proper model structure on the category Pro(Set�) of pro-
simplicial sets, called the strict model structure, with the following properties:

• a pro-simplicial set X is fibrant if and only if it is isomorphic to a diagram (Xs)s∈I such
that I is a cofinite cofiltered poset and Xs → lims<t Xt is a Kan fibration for all s ∈ I ;

• the inclusion Set� ↪→ Pro(Set�) is a left Quillen functor;
• it is a simplicial model structure with simplicial mapping sets defined by

Map�(X , Y ) = Hom(X × �•, Y ).

Denote by Pro′(S) the ∞-category associated to this model category, and by c : S → Pro′(S)

the left derived functor of the inclusion Set� ↪→ Pro(Set�). Since Pro′(S) admits cofiltered
limits, there is a unique functor ϕ : Pro(S) → Pro′(S) that preserves cofiltered limits and
such that ϕ ◦ j � c, where j : S ↪→ Pro(S) is the Yoneda embedding.

Lemma 3.1 ϕ : Pro(S) → Pro′(S) is an equivalence of ∞-categories.
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1 Page 6 of 28 M. Hoyois

Proof Let X ∈ Pro(Set�) be fibrant. Then X is isomorphic to a diagram (Xs) indexed by
a cofinite cofiltered poset and such that Xs → lims<t Xt is a Kan fibration for all s, and
so, for all Z ∈ Pro(Set�), Map�(Z , Xs) → lims<t Map�(Z , Xt ) is a Kan fibration. It
follows that the limit Map�(Z , X) � lims Map�(Z , Xs) in Set� is in fact a limit in S, so
that X � lims c(Xs) in Pro′(S). This shows that ϕ is essentially surjective.

Let X ∈ Pro(S) and choose a corepresentation X : I → S where I is a cofinite cofiltered
poset. Using the model structure on Set�, X can be strictified to a diagram X ′ : I → Set�
such that X ′

s → lims<t X ′
t is a Kan fibration for all s ∈ I . By the first part of the proof, we

then have X ′ � lims c(X ′
s) in Pro′(S), whence ϕX � X ′. Given also Y ∈ Pro(S), we have

Map(X ′, Y ′) � lim
t
Map(X ′, cY ′

t ) � holim
t

Map�(X ′, Y ′
t ) � lim

t
colim

s
Map(X ′

s, Y
′
t ),

where in the last step we used that filtered colimits of simplicial sets are always colimits in
S. This shows that ϕ is fully faithful. �


LetS<∞ ⊂ S be the∞-category of truncated spaces. A pro-truncated space is a pro-object
in S<∞. It is clear that the full embedding Pro(S<∞) ↪→ Pro(S) admits a left adjoint

τ<∞ : Pro(S) → Pro(S<∞)

that preserves cofiltered limits and sends a constant pro-space to its Postnikov tower; it
also preserves finite products since truncations do. The τ<∞-equivalences in Pro(S≥1∗ ) are
precisely those maps that become 
-isomorphisms in Pro(hS≥1∗ ) in the sense of Artin and
Mazur [1, Definition 4.2].

Remark 3.2 Themodel structure on Pro(Set�) defined in [17] is the left Bousfield localization
of the strict model structure at the class of τ<∞-equivalences. It is therefore a model for the
∞-category Pro(S<∞) of pro-truncated spaces.

Let R be a commutative ring.Amorphism f : X → Y inPro(S) is called an R-homological
equivalence (resp. an R-cohomological equivalence) if it induces an equivalence of homology
pro-groups H∗(X , R) � H∗(Y , R) (resp. an equivalence of cohomology groups H∗(Y , R) �
H∗(X , R)). By [20, Proposition 5.5], f is an R-homological equivalence if and only if it
induces isomorphisms in cohomology with coefficients in arbitrary R-modules. A pro-space
X is called R-local if it is local with respect to the class of R-homological equivalences, i.e.,
if for every R-homological equivalence Y → Z the induced mapMap(Z , X) → Map(Y , X)

is an equivalence in S. A pro-space is called R-profinite1 if it is local with respect to the class
of R-cohomological equivalences. We denote by Pro(S)R (resp. Pro(S)R) the ∞-category of
R-local (resp. R-profinite) pro-spaces.

The characterization of R-homological equivalences in terms of cohomology shows that
any τ<∞-equivalence is an R-homological equivalence. We thus have a chain of full embed-
dings

Pro(S)R ⊂ Pro(S)R ⊂ Pro(S<∞) ⊂ Pro(S).

Proposition 3.3 The inclusions Pro(S)R ⊂ Pro(S) and Pro(S)R ⊂ Pro(S) admit left adjoints
L R and LR. Moreover, L R preserves finite products.

Proof The existence of the localization functors LR and LR follows from Lemma 3.1 and
the existence of the corresponding left Bousfield localizations of the strict model structure on

1 This terminology is motivated by the case R = Z/l, see Remark 3.8.
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The Étale symmetric KÜnneth theorem Page 7 of 28 1

Pro(Set�) [20, Theorems 6.3 and 6.7]. We also give a self-contained proof in Proposition 3.7
below. For the last statement, we must show that the canonical map

LR(X × Y ) → LR(X) × LR(Y )

is an equivalence for all X , Y ∈ Pro(S). Since both sides are R-local, it suffices to
show that this map an R-homological equivalence. By definition of LR , the canonical
map C∗(X , R) → C∗(LRX , R) induces an isomorphism on homology pro-groups. Since
C∗(−, R) : S → D(R)≥0 is a symmetric monoidal functor, we have a natural equivalence

C∗(X × Y , R) � C∗(X , R) ⊗R C∗(Y , R)

in the ∞-category Pro(D(R)≥0). Since C∗(X , R) → C∗(LR(X), R) is a pro-homology
isomorphism by definition of LR , it remains to show that the tensor product in Pro(D(R)≥0)

preserves pro-homology isomorphisms. A morphism in Pro(D(R)≥0) is a pro-homology
isomorphism if and only if it induces an equivalence on n-truncations for all n, so the claim
follows from the fact that the canonicalmapM⊗R N → τ≤nM⊗Rτ≤nN is a τ≤n-equivalence
for all M, N ∈ D(R)≥0. �


The fact that LR preserves finite products is very useful and we will use it often. It implies
in particular that LR preserves commutative monoids and commutes with the formation of
strict symmetric powers. Here is another consequence:

Corollary 3.4 Finite products distribute over finite colimits in Pro(S)R.

Proof Finite colimits are universal in Pro(S), i.e., are preserved by any base change (since
pushouts and pullbacks can be computed levelwise). The result follows using that LR pre-
serves finite products. �

Remark 3.5 Let X be an ∞-topos and let X∧ be its hypercompletion. The geometric mor-
phism X∧ → X induces an equivalence of pro-truncated shapes (since truncated objects are
hypercomplete [24, Lemma 6.5.2.9]), and a fortiori also of R-local and R-profinite shapes
for any commutative ring R.

Remark 3.6 Let l be a prime number. The Bockstein long exact sequences show that any
Z/l-cohomological equivalence is also a Z/ln-cohomological equivalence for all n ≥ 1. In
particular, ifX is an∞-topos, its Z/l-profinite shape LZ/l�∞X remembers the cohomology
of X with l-adic coefficients.

As shown in [20, Proposition 7.3], if R is solid (e.g., R = Z/n for some integer n) and
X ∈ S is connected, then LRX is the pro-truncation of the Bousfield-Kan R-tower of X [3, I,
§4]. It follows that the limit of the pro-space LRX is the Bousfield-Kan R-completion R∞X .

The existence of the localization functors LR and LR is a special case of a more general
result which we now formulate. If C is any locally small ∞-category, Pro(C)op is the full
subcategory of Fun(C, S) spanned by small filtered colimits of corepresentable functors [24,
Remark 5.3.5.9]. If K is any collection of objects of C, a morphism X → Y in Pro(C)

is called a K-equivalence if it induces equivalences Map(Y , K ) � Map(X , K ) for every
K ∈ K, and an object Z ∈ Pro(C) is called K-local if every K-equivalence X → Y
induces an equivalence Map(Y , Z) � Map(X , Z). Note that K-equivalences are preserved
by cofiltered limits, since K ⊂ C and the objects of C are cocompact in Pro(C). We denote
by

Pro(C)K ⊂ Pro(C)

the full subcategory of K-local objects.
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Proposition 3.7 Let C be a presentable ∞-category and K a collection of objects of C.
Suppose thatK is the essential image of an accessible functor. Then the inclusion Pro(C)K ⊂
Pro(C) admits a left adjoint. Moreover, Pro(C)K = Pro(̂K) where ̂K ⊂ C is the closure of
K under finite limits.

Proof With no assumptions on K, there is an obvious inclusion Pro(̂K) ⊂ Pro(S)K. If K
is small, then every functor ̂K → S is a small colimit of corepresentables, so the inclusion
Pro(̂K) ⊂ Pro(C) has a left adjoint L given by restricting a functor C → S to ̂K. If X ∈
Pro(C)K, then the canonical map X → LX is a K-equivalence between K-local objects,
hence it is an equivalence. This proves the proposition when K is small.

The proof of the general case follows [20, Proposition6.10]. For any X ∈ Pro(C), we must
construct aK-equivalence X → Y where Y isK-local. Suppose thatK is the essential image
of a functor ϕ : L → C that preserves κ-filtered colimits, where C and L are κ-accessible.
For λ � κ , letKλ = ϕ(Lλ) whereLλ ⊂ L is the subcategory of λ-compact objects. Choose
λ0 � κ such that X is a cofiltered limit of λ0-compact objects of C, and let X → Y0 be the
Kλ0 -localization of X . Inductively, choose λn � λn−1 such that Yn−1 is a cofiltered limit of
λn-compact objects, and let X → Yn be theKλn -localization of X . Finally, let Y = limn Yn .
Then Y isK-local, and it remains to show that the induced map X → Y is aK-equivalence.

Let K ∈ K be the image of L ∈ L. For any n ≥ 0, let Ln be the λn-filtered ∞-category
(Lλn )/L . Since ϕ preserves λn-filtered colimits, K is the colimit of ϕ|Ln for any n. The
conclusion now follows by evaluating the colimit

colim
m,n

colim
A∈Ln

Map(Ym, ϕ(A))

in two ways. Setting m = n, we have

colim
n

colim
A∈Ln

Map(Yn, ϕ(A)) � colim
n

colim
A∈Ln

Map(X , ϕ(A)) � Map(X , K ),

since X → Yn is aKλn -equivalence and X is a cofiltered limit of λn-compact objects for any
n. Setting m = n − 1, we have

colim
n

colim
A∈Ln

Map(Yn−1, ϕ(A)) � colim
n

Map(Yn−1, K ) � Map(Y , K ),

sinceYn−1 is a cofiltered limit ofλn-compact objects. This concludes the proof of the existence
of the left adjoint. By construction, Y is in factKλ-local for any large enough λ � κ , so we
have also proved that

Pro(C)K =
⋃

λ�κ

Pro(C)Kλ .

This implies that Pro(C)K ⊂ Pro(̂K), since we already know it when K is small. �

Proposition 3.7 applies in particular whenever K is small. For example, if K is the col-

lection of Eilenberg–Mac Lane spaces K (R, n) with n ≥ 0, then Pro(S)K = Pro(S)R .
Proposition 3.7 also applies with K the collection of Eilenberg–Mac Lane spaces K (M, n)

for M any R-module and n ≥ 0, this being the image of a filtered-colimit-preserving func-
tor from a countable disjoint union of copies of the category of R-modules. In this case,
Pro(S)K = Pro(S)R .

Remark 3.8 If l is a prime number, the spaces that can be obtained from the Eilenberg–Mac
Lane spaces K (Z/l, n) using finite limits are precisely the truncated spaces with finite π0 and
whose homotopy groups are finite l-groups. Hence, Pro(S)Z/l coincides with the∞-category
of l-profinite spaces studied in [22, §3].
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Lemma 3.9 Let C be a presentable ∞-category, let (Kα)α be a small filtered diagram of
collections of objects of C satisfying the assumption of Proposition 3.7, and letK = ⋃

α Kα .
Then the localization functors induce an equivalence

Pro(C)K � lim
α

Pro(C)Kα
.

Proof Note that K also satisfies the assumption of Proposition 3.7, so that Pro(C)K =
Pro(̂K). Since ̂K = colimα

̂Kα , we have an equivalence

Fun(̂K, S) � lim
α

Fun(̂Kα, S),

which implies that the functor Pro(C)K → limα Pro(C)Kα
is fully faithful. It remains to

show that a functor F : ̂K → S is a small filtered colimit of corepresentables if each of its
restrictions F |̂Kα is. This is true since F � colimα Fα where Fα is the left Kan extension of
F |̂Kα to ̂K. �


For n ≥ 0, we define Pro(S≤n)R to be the subcategory of K-local objects in Pro(S)

whereK is the collection of Eilenberg–Mac Lane spaces K (M, i) with M an R-module and
0 ≤ i ≤ n. Since K consists of n-truncated R-local objects, we have2

Pro(S≤n)R ⊂ Pro(S≤n) ∩ Pro(S)R .

By Proposition 3.7, the inclusion Pro(S≤n)R ⊂ Pro(S) admits a left adjoint LR,≤n . We
define Pro(S≤n)

R and the localization functor LR≤n similarly (using only the R-module R).
By Lemma 3.9, the localization functors LR,≤n induce an equivalence

Pro(S)R � lim
n

Pro(S≤n)R (3.10)

and similarly for Pro(S)R .
The following proposition shows that the localizations LR and LR agree in many cases

of interest, partially answering [20, Question 11.2].

Proposition 3.11 Let F be a prime field and let X be a pro-space whose F-homology pro-
groups are pro-finite-dimensional vector spaces. Then LF X is F-profinite. In other words,
the canonical map LF X → LF X is an equivalence.

Proof First we claim that any F-profinite pro-space with profinite π0 satisfies the given
condition on X . Such a pro-space is a cofiltered limit of spaces with finite π0 that are obtained
from K (F, n)’s using finite limits. By [3, Proposition 5.3], each connected component of
such a space is obtained from the point by a finite sequence of principal fibrations with fibers
K (F, n) with n ≥ 1. Using Eilenberg–Moore [22, Corollary 1.1.10], it thus suffices to show
that Hm(K (F, n), F) is finite-dimensional for everym ≥ 0 and n ≥ 1,which is awell-known
computation. Thus, both X and LF X have pro-finite-dimensional F-homology pro-groups.
It follows that the canonical map X → LF X induces an isomorphism on F-cohomology
ind-groups, whence on F-homology pro-groups. �

Remark 3.12 It is clear that the class of pro-spaces X satisfying the hypothesis of Proposi-
tion 3.11 is preserved by LF , retracts, finite products, and finite colimits (it suffices to verify
the latter for pushouts).

2 Beware that this inclusion is strict for n ≥ 1. In particular, Pro(S≤n)R is not the subcategory of n-truncated
objects in Pro(S)R .
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Proposition 3.13 Let F be a prime field and let X be a pro-space whose F-homology pro-
groups in degrees ≤ n are pro-finite-dimensional vector spaces. Then the canonical map
LF,≤n X → LF≤n X is an equivalence. Furthermore, LF,≤n preserves finite products of such
pro-spaces.

Proof As in the proof of Proposition 3.11, LF≤n X has pro-finite-dimensional F-homology
pro-groups, hence the canonicalmap X → LF≤n X induces an isomorphismon F-cohomology
ind-groups in degrees ≤ n. Since these groups are finite-dimensional F-vector spaces, this
remains true for cohomology with coefficients in any F-vector space, which implies the first
statement. For the second statement, we must show that the canonical map

X × Y → LF≤n X × LF≤nY

induces an isomorphism on F-cohomology in degrees ≤ n. Since F is a field, we have an
isomorphism of graded pro-vector spaces H∗(X × Y , F) � H∗(X , F) ⊗F H∗(Y , F), which
are pro-finite-dimensional in degrees ≤ n. Dualizing and taking the colimit, we find that

Hm(X × Y , F) �
⊕

r+s=m

Hr (X , F) ⊗ Hs(Y , F)

for any m ≤ n. The same formula applies to LF≤n X and LF≤nY . By definition of LF≤n , we
have Hm(X , F) � Hm(LF≤n X , F) for all m ≤ n and similarly for Y , so we are done. �


4 The h and qfh topologies

Let X be a Noetherian scheme. An h covering of X is a finite family {Ui → X} of morphisms
of finite type such that the induced morphism

∐

i Ui → X is universally submersive (a
morphism of schemes f : Y → X is submersive if it is surjective and if the underlying
topological space of X has the quotient topology). If in addition eachUi → X is quasi-finite,
it is a qfh covering. These notions of coverings define pretopologies on Noetherian schemes
which we denote by h and qfh, respectively. The h and qfh topologies are both finer than the
fppf topology, and they are not subcanonical.

Proposition 4.1 Let X be a Noetherian scheme.

(1) The canonical map �
qfh∞ X → �ét∞X induces an isomorphism in cohomology with any

local system of abelian coefficients. In particular, for any commutative ring R,

LR�
qfh∞ X � LR�ét∞X .

(2) If X is excellent, the canonical map �h∞X → �
qfh∞ X induces an isomorphism in coho-

mology with any local system of torsion abelian coefficients. In particular, for any torsion
commutative ring R,

LR�h∞X � LR�
qfh
∞ X .

Proof Recall that the cohomology of�∞Xwith coefficients in a local system coincides with
the cohomology of X with coefficients in the associated locally constant sheaf (see Sect. 1).
The first statements are thus translations of [29, Theorem 3.4.4] and [29, Theorem 3.4.5],
respectively (the excellence of X is a standing assumption in loc. cit., but it is not used in
the proof of (1); see also [28, §10] for self-contained proofs). The statements about the R-
local shapes follow immediately, since LR inverts morphisms that induce isomorphisms in
cohomology with coefficients in any R-module (see Sect. 3). �
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Remark 4.2 Voevodsky’s proof also shows that H1
ét(X ,G) � H1

qfh(X ,G) for any locally
constant étale sheaf of groups G. It follows from [17, Proposition 18.4] (and Remark 3.2)
that �qfh∞ X → �ét∞X is in fact a τ<∞-equivalence.

For C a small ∞-category, we denote by r : C ↪→ PSh(C) the Yoneda embedding, and if
τ is a topology on C, we denote by rτ = aτ r the τ -sheafified Yoneda embedding.

Lemma 4.3 Let S be a Noetherian scheme and let τ ∈ {h, qfh, ét}. Then, for any n ≥ 0, the
image of the Yoneda functor rτ : SchftS → Shvτ (Sch

ft
S )≤n consists of compact objects.

Proof The category SchftS has finite limits and the topology τ is finitary, and so the ∞-topos
Shvτ (SchftS ) is locally coherent and coherent. The result now follows from [22, Corollary
2.3.10(1)]. �


The advantage of the qfh topology over the étale topology is that it can often cover singular
schemes by smooth schemes. Let us make this explicit in the case of quotients of smooth
schemes byfinite group actions.Wefirst recall the classical existence result for such quotients.

A groupoid scheme X• is a simplicial scheme such that, for every scheme Y , Hom(Y , X•)
is a groupoid. If P is any property of morphisms of schemes that is stable under base change,
we say that X• has property P if every face map in X• has property P (of course, it suffices
that d0 : X1 → X0 have property P).

Lemma 4.4 Let S be a scheme and let X• be a finite and locally free groupoid scheme over
S. Suppose that for any x ∈ X0, d1(d

−1
0 (x)) is contained in an affine open subset of X0 (for

example, X0 is quasi-projective over S). Then X• has a colimiting cone p : X• → Y in the
category of S-schemes. Moreover,

(1) p is integral and surjective, and in particular universally submersive;
(2) the canonical morphism X• → cosk0(p) is degreewise surjective;
(3) if S is locally Noetherian and X0 is of finite type over S, then Y is of finite type over S.

Proof The claim in parentheses follows from [13, Corollaire 4.5.4] and the definition of
quasi-projective morphism [13, Définition 5.3.1]. An integral and surjective morphism is
universally submersive because integral morphisms are closed [13, Proposition 6.1.10]. The
existence of p which is integral and surjective and (2) are proved in [7, III, §2, 3.2] or [8, V,
Théorème 4.1]. Part (3) is proved in [8, V,Lemme 6.1(ii)]. �

Proposition 4.5 Let S be a Noetherian scheme and X• a groupoid scheme of finite type over S
as in Lemma 4.4 with colimit Y . Then rqfhX• → rqfhY is a colimiting cone in Shvqfh(SchftS ).

Proof By Lemma 4.4, the colimiting cone X• → Y is a qfh hypercover, and it is 2-coskeletal
since X• is a groupoid scheme. Hence, if F is a qfh sheaf, we have F(Y ) � limF(X•) by
[24, Lemma 6.5.3.9]. �

Corollary 4.6 Let S be a Noetherian scheme and X a quasi-projective S-scheme. Then the
Yoneda functor rqfh : SchftS → Shvqfh(SchftS ) preserves strict symmetric powers of X, i.e., it
sends the schematic symmetric power Sd X to the sheafy symmetric power SdrqfhX.

Proof Since the strict symmetric power is the usual symmetric power in a 1-category, we
have rqfhSd X � SdrqfhX in Shvqfh(SchftS )≤0 by Proposition 4.5, whence in Shvqfh(SchftS ) by
Lemma 2.5. �
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Proposition 4.7 Let k be a perfect field and i : C ↪→ Schftk the inclusion of a full subcategory
such that every smooth k-scheme is Zariski-locally in C. Let i∗ : PSh(Schftk ) → PSh(C) be
the restriction functor and let i! be its left adjoint. For every F ∈ PSh(Schftk ), the counit
morphism i!i∗F → F is an a∧

h -equivalence.

Proof By awell-known theorem of de Jong [5, Theorem 4.1], every scheme of finite type over
a perfect field k is h-locally smooth, hence is h-locally in C. It follows that there is an induced
h topology on C whose covering sieves are the restrictions of h-covering sieves in Schftk ,
or equivalently those sieves that generate an h-covering sieve in Schftk . By the comparison
lemma [2, III, Théorème 4.1], the restriction functor i∗ and its right adjoint i∗ restrict to an
equivalence between the subcategories of h sheaves of sets, hence between the ∞-categories
of hypercomplete h sheaves (since they are the hypercompletions of the associated 1-localic
∞-topoi). �


5 The Étale homotopy type of symmetric powers

Proposition 5.1 Let k be a separably closed field, l �= char k a prime number, and X and Y
schemes of finite type over k. Let τ ∈ {h, qfh, ét}. Then

LZ/l�
τ∞(X ×k Y ) � LZ/l�

τ∞X × LZ/l�
τ∞Y .

Proof By Proposition 4.1, it suffices to prove the lemma for τ = ét. Since LZ/l preserves
finite products and X ét and X∧

ét have the same Z/l-local shape (see Remark 3.5), it suffices
to show that the canonical map

�∞(X ×k Y )∧ét → �∞X∧
ét × �∞Y∧

ét (5.2)

is a Z/l-homological equivalence or, equivalently, that it induces an isomorphism in coho-
mology with coefficients in any Z/l-module M . Both sides of (5.2) are corepresented by
cofiltered diagrams of simplicial sets having finitely many simplices in each degree (by
Remark 1.3 and the fact that any étale hypercovering of a Noetherian scheme is refined by
one that is degreewise Noetherian). If K is any such pro-space, C∗(K ,Z/l) is a cofiltered
diagram of degreewise finite chain complexes of vector spaces. On the one hand, this implies

C∗(K , M) � C∗(K ,Z/l) ⊗ M,

so we may assume that M = Z/l. On the other hand, it implies that the Küneth map

H∗(�∞X∧
ét,Z/l) ⊗ H∗(�∞Y∧

ét ,Z/l) → H∗(�∞X∧
ét × �∞Y∧

ét ,Z/l)

is an isomorphism. The composition of this isomorphism with the map induced by (5.2) in
cohomology is the canonical map

H∗
ét(X ,Z/l) ⊗ H∗

ét(Y ,Z/l) → H∗
ét(X ×k Y ,Z/l),

which is also an isomorphism by [6, Th. finitude, Corollaire 1.11]. �

Remark 5.3 Let X be a Noetherian scheme and let τ ∈ {h, qfh, ét}. We observed in the proof
of Proposition 5.1 that the pro-space �∞(X∧

τ ) is the limit of a cofiltered diagram of spaces
whose integral homology groups are finitely generated. It follows from Proposition 3.11
that LF�τ∞X is F-profinite for any prime field F , which answers [20, Question 11.3] quite
generally.
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Now let τ and σ be pretopologies on SchS with τ finer than σ , and let C be a small full
subcategory of SchS closed under σ -coverings (but not necessarily under τ -coverings). Then
the functor �τ∞ : C → Pro(S) takes values in a cocomplete ∞-category and is a σ -cosheaf
according to Lemma 1.5, so it lifts uniquely to a left adjoint functor

C Pro(S).

Shvσ (C)

�τ∞

�τ∞

Remark 5.4 If C is such that C/X contains the small τ -site of X for any X ∈ C, then �τ∞ is
simply the composition

Shvσ (C) Shvτ (C) Top∞ Pro(S),
aτ �∞

where for X an ∞-topos the inclusion X ↪→ Top∞ is X 	→ X/X . Indeed, this composition
preserves colimits (by [24, Proposition 6.3.5.14]), and it restricts to�τ∞ onC (cf. Remark 1.1).
However, the reader should bewarned that wewill use�τ∞ in situationswhere this hypothesis
on C is not satisfied.

Remark 5.5 The extension �τ∞ involves taking infinite colimits in Pro(S), which are some-
what ill-behaved (they are not universal, for example).Aswewill see inSect. 9, it is sometimes
advantageous to consider a variant of �τ∞ taking values in ind-pro-spaces.

Theorem 5.6 Let k be a separably closed field, l �= char k a prime number, and X a quasi-
projective scheme over k. Let τ ∈ {h, qfh, ét}. Then for any d ≥ 0 there is a canonical
equivalence

LZ/l�
τ∞(Sd X) � LZ/lS

d�τ∞(X).

Proof Let C be the category of quasi-projective schemes over k. By Corollary 4.6, the rep-
resentable sheaf functor rqfh : C → Shvqfh(C) preserves strict symmetric powers. Using

Proposition 5.1 and the fact that LZ/l�
qfh∞ preserves colimits, we deduce that LZ/l�

qfh∞
preserves strict symmetric powers on C. For τ ∈ {h, qfh, ét}, we get

LZ/l�
τ∞(Sd X) � LZ/l�

qfh∞ (Sd X) � Sd LZ/l�
qfh∞ (X) � Sd LZ/l�

τ∞(X),

the first and last equivalences being from Proposition 4.1. The functor LZ/l itself also pre-
serves finite products (Proposition 3.3) and hence strict symmetric powers, so we are done.

�

Remark 5.7 It is possible to define a natural map

�∞((Sd X)∧τ ) → Sd�∞(X∧
τ )

in Pro(S) inducing the equivalence of Theorem 5.6. It suffices to make the square

�∞((Xd)∧τ ) �∞(X∧
τ )d

�∞((Sd X)∧τ ) Sd�∞(X∧
τ )

(5.8)

commute. Using the model for the τ -homotopy type discussed in Remark 1.3 and the
commutativity of the functor of connected components with symmetric powers, the task
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to accomplish is the following: associate to any τ -hypercover U• → X a τ -hypercover
V• → Sd X refining SdU• → Sd X and such that V• ×Sd X Xd → Xd refines Ud• → Xd , in
a simplicially enriched functorial way (i.e., we must define a simplicial functor HCτ (X) →
HCτ (Sd X) and the refinements must be natural). If τ = h or τ = qfh, SdU• → Sd X is itself
a τ -hypercover and we are done, but things get more complicated for τ = ét as symmetric
powers of étale maps are not étale anymore.

We refer to [21, §4.5] and [27, §3] for more details on the following ideas. Given a finite
group G and quasi-projective G-schemes U and X , a map f : U → X is G-equivariant if
and only if it admits descent data for the action groupoid ofG on X . The map f is fixed-point
reflecting if it admits descent data for the Čech groupoid of the quotient map X → X/G (this
condition can be expressedmore explicitly using the fact thatG×X → X×X/G X is faithfully
flat: f is fixed-point reflecting if and only if it is G-equivariant and induces a fiberwise
isomorphism between the stabilizer schemes). Since étale morphisms descend effectively
along universally open surjective morphisms [26, Theorem 5.19], such as X → X/G, the
condition that f reflects fixed points is equivalent to the induced map U/G → X/G being
étale and the square

U X

U/G X/G

being cartesian. If f is G-equivariant, there exists a largest G-equivariant open subset
fpr( f ) ⊂ U on which f is fixed-point reflecting. Moreover, if f : U → X is an étale
cover, the restriction of f d to fpr( f d) is still surjective. Now given an étale hypercover
U• → X , we can define an étale hypercover V• → Sd X refining SdU• → Sd X as follows.
Let W0 ⊂ Ud

0 be the locus where Ud
0 → Xd reflects fixed points. If W• has been defined up

to level n − 1, define Wn by the cartesian square

Wn fpr(Ud
n → (coskn−1U

d• )n)

(coskn−1 W•)n (coskn−1U
d• )n

in which the vertical maps are �d -equivariant fixed-point reflecting étale covers (because
fixed-point reflecting morphisms are stable under base change). Finally, let Vn = Wn/�d . It
is then easy to prove that V• → Sd X is an étale hypercover with the desired functoriality.

Using the commutativity of (5.8), one can also show that the map induced by
�∞((Sd X)∧ét) → Sd�∞(X∧

ét) in cohomology with coefficients in a Z/l-module coincides
with the symmetric Künneth map defined in [2, XVII, (5.5.17.2)]. Thus, for X proper, it is
possible to deduce Theorem 5.6 from [2, XVII, Théorème 5.5.21].

6 A1-localization

Let S be a quasi-compact quasi-separated scheme and C a full subcategory of SchS such that

(1) objects of C are of finite presentation over S;
(2) S ∈ C and A1

S ∈ C;
(3) if X ∈ C and U → X is étale, separated, and of finite presentation, then U ∈ C;
(4) C is closed under finite products and finite coproducts.
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Following [30, §0], we call such a category C admissible. Note that every smooth S-scheme
admits an open covering by schemes in C. Let ShvNis(C) denote the ∞-topos of sheaves
of spaces on C for the Nisnevich topology, and let ShvNis(C)A1 ⊂ ShvNis(C) be the full
subcategory of A1-invariant Nisnevich sheaves. We shall denote by

LNis,A1 : PSh(C) → ShvNis(C)A1

the left adjoint to the inclusion.
From now on we fix a prime number l different from the residual characteristics of S. In

Sect. 1, we defined the functor

�ét∞ : C → Pro(S),

and we observed in Sect. 5 that it lifts to a left adjoint functor

�ét∞ : ShvNis(C) → Pro(S).

By [14, VII, Corollaire 1.2], the composition

ShvNis(C) Pro(S) Pro(S)Z/l
�ét∞ LZ/l

sends any morphism A1 × X → X in C to an equivalence and therefore factors through
the A1-localization functor LNis,A1 . That is, there is a commutative square of left adjoint
functors

ShvNis(C) Pro(S)

ShvNis(C)A1 Pro(S)Z/l .

�ét∞

LNis,A1

Étl

LZ/l

The functor Étl is called theZ/l-local étale homotopy type functor.Note that if S isNoetherian
(resp. Noetherian and excellent), we could also use �

qfh
∞ (resp. �h∞) instead of �ét∞ in the

above diagram, according to Proposition 4.1.

Remark 6.1 The Z/l-profinite completion LZ/l Étl is the ∞-categorical incarnation of the
étale realization functor defined by Isaksen in [18] as a left Quillen functor, but our results do
not require this stronger completion. Note that Étl X is alreadyZ/l-profinite if S is Noetherian
and X ∈ (ShvNis(C)A1)ω, by Remarks 5.3 and 3.12.

We now assume that S = Spec k where k is a separably closed field.

Lemma 6.2 The restriction of Étl to the subcategory of compact objects (ShvNis(C)A1)ω

preserves finite products.

Proof By Proposition 5.1, the functor LZ/l�
ét∞ preserves finite products on C. Since the

functor LNis,A1r : C → ShvNis(C)A1 also preserves finite products, the restriction of Étl to
the image of C preserves finite products. Finally, since (ShvNis(C)A1)ω is the closure of the
image of C under finite colimits and retracts, the result follows from Corollary 3.4. �


Let p ≥ q ≥ 0. We define the Z/l-local mixed spheres S p,q
l ∈ Pro(S)Z/l,∗ by

S1,0l = LZ/l S
1 = K (Zl , 1), S1,1l = K (Tlμ, 1), S p,q

l = (S1,0l )∧p−q ∧ (S1,1l )∧q ,

whereμ is the group of roots of unity in k and Tlμ = limn μln is its l-adic Tate module. Here
we regardZl and Tlμ as pro-groups. Of course, S p,q

l � LZ/l S p , but if q > 0 this equivalence
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depends on infinitely many noncanonical choices ( viz., an isomorphism Zl � Tlμ). By
Proposition 3.11, S p,q

l is Z/l-profinite.
Note that the functor Étl preserves pointed objects, since �ét∞(Spec k) � ∗.

Proposition 6.3 Let p ≥ q ≥ 0. Then Étl S p,q � S p,q
l .

Proof This is obvious if q = 0. By Lemma 6.2, it remains to treat the case p = q = 1. The
étale μln -torsor ln : Gm → Gm is classified by a morphism �ét∞Gm → K (μln , 1). In the
limit over n ≥ 0, we obtain a morphism of pro-spaces ϕ : �ét∞Gm → K (Tlμ, 1). We claim
that ϕ is a Z/l-homological equivalence, i.e., it induces an isomorphism in cohomology with
coefficients in any Z/l-module M . By [14, VII, Proposition 1.3(i)(c)], we have

Hi
ét(Gm, M) =

⎧

⎪

⎨

⎪

⎩

M if i = 0,

Hom(μl , M) ifi = 1,

0 if i ≥ 2.

In fact, this computation shows that the morphism �ét∞Gm → K (μl , 1) induces an isomor-
phism on Hi (−, M) for i ≤ 1. The same is true for the projection K (Tlμ, 1) → K (μl , 1),
hence also for ϕ. Since both the source and the target of ϕ have vanishing cohomology in
degrees ≥ 2, this completes the proof. �


7 Group completion and strictly commutative monoids

Let C be an ∞-category with finite products. Recall from [23, §2.4.2] that a commutative
monoid in C is a functor M : Fin∗ → C such that for all n ≥ 0 the canonical map M(〈n〉) →
M(〈1〉)n is an equivalence. We let CMon(C) denote the full subcategory of Fun(Fin∗,C)

spanned by the commutative monoids.
A commutative monoid M in C has an underlying simplicial object, namely its restriction

along the functor Cut : �op → Fin∗ sending [n] to the finite set of cuts of [n] pointed at the
trivial cut, which can be identified with 〈n〉. The commutative monoid M is called grouplike
if its underlying simplicial object is a groupoid object in the sense of [24, Definition 6.1.2.7].
This is equivalent to requiring both shearing maps M × M → M × M to be equivalences.
We denote by CMongp(C) ⊂ CMon(C) the full subcategory of grouplike objects.

If f : C → Dpreservesfinite products (andC andD admit finite products), then it induces a
functor CMon(C) → CMon(D) by postcomposition; this functor clearly preserves grouplike
objects and hence restricts to a functor CMongp(C) → CMongp(D). We will continue to use
f to denote either induced functor.

Lemma 7.1 Suppose that f : C → D preserves finite products and has a right adjoint g.
Then the functors CMon(C) → CMon(D) and CMongp(C) → CMongp(D) induced by f
are left adjoint to the corresponding functors induced by g.

Proof The functors f and g induce adjoint functors between∞-categories ofFin∗-diagrams,
and it remains to observe that they both preserve the full subcategory of (grouplike) commu-
tative monoids. �

Definition 7.2 An ∞-category C is distributive if it is presentable and if finite products
in C distribute over colimits. A functor f : C → D between distributive ∞-categories is
distributive if it preserves colimits and finite products.
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For example, for any ∞-topos X, the truncation functors τ≤n : X → X≤n are distributive,
and for any admissible category C ⊂ SchS and any topology τ on C, the localization functor
Lτ,A1 : PSh(C) → Shvτ (C)A1 is distributive.

IfC is distributive, then the∞-categoryCMon(C) is presentable by [23, Corollary 3.2.3.5],
and the subcategoryCMongp(C) is strongly reflective since it is accessible (by [24, Proposition
6.1.2.9] and [24, Proposition 5.4.6.6]) and is clearly closed under limits and sifted colimits.
That is, there exists a group completion functor

CMon(C) → CMongp(C), M 	→ Mgp,

which exhibits CMongp(C) as an accessible localization of CMon(C).3

Lemma 7.3 Let f : C → D be a distributive functor and let M ∈ CMon(C). Then f (Mgp) �
f (M)gp.

Proof By Lemma 7.1, the square

CMon(C) CMon(D)

CMongp(C) CMongp(D)

f

gp

f

gp

has a commutative right adjoint and hence is commutative. �

Remark 7.4 If X is an ∞-topos, group completion of commutative monoids in X preserves
0-truncated objects. As in the proof of Lemma 2.5, it suffices to prove this for X = S, where
it follows from the McDuff-Segal group completion theorem (see [25] for a modern proof of
the latter).

We can define a generalized “free Z-module” functor in any distributive ∞-category as
follows. Let FFreeN (resp. FFreeZ) be the full subcategory of CMon(Set) spanned by (Nn,+)

(resp. by (Zn,+)) for n ≥ 0. If C is an ∞-category with finite products, we shall denote by

ModN(C) ⊂ Fun(FFreeopN ,C) and ModZ(C) ⊂ Fun(FFreeopZ ,C)

the full subcategories of finite-product-preserving functors. The objects of ModN(C) are
called strictly commutative monoids in C. Since FFreeN is semiadditive [23, Definition
6.1.6.13], the ∞-category ModN(C) is also semiadditive [12, Corollary 2.4] and the for-
getful functor

ModN(C) → C, M 	→ M(N),

factors uniquely through the ∞-category CMon(C) [12, Corollary 2.5(iii)]. Similarly,
as FFreeZ is additive, the ∞-category ModZ(C) is additive and the forgetful functor
ModZ(C) → C factors uniquely through CMongp(C).

Assume now thatC is distributive. The forgetful functorsModN(C) → C andModZ(C) →
C then preserve limits and sifted colimits, hence admit left adjoints

N : C → ModN(C) and Z : C → ModZ(C).

3 In fact, CMon(C) and CMongp(C) are presentable whenever C is, and the group completion functor exists in
that generality, see [12, §4] However, these constructionsmay not behave as expected ifC is not distributive; for
example, the forgetful functor CMon(C) → C and the inclusion CMongp(C) ⊂ CMon(C) need not preserve
sifted colimits.
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Since the ∞-categories ModN(C) and ModZ(C) are pointed, we also have reduced versions
ÑX and Z̃X when X is a pointed object of C. More precisely, Ñ is the unique colimit-
preserving extension of N to C∗, and similarly for Z̃.

Lemma 7.5 If C is an ∞-category with finite products, the square

ModZ(C) ModN(C)

CMongp(C) CMon(C)

forget forget

is cartesian. If C is distributive, the top functorModZ(C) → ModN(C) admits a left adjoint
such that the following square commutes:

ModZ(C) ModN(C)

CMongp(C) CMon(C).

forget

gp

forget

In particular, Z̃X � (ÑX)gp for any X ∈ C∗.

Proof Since FFreeN is semiadditive and FFreeZ is additive, the forgetful functors
CMongp(C) → CMon(C) → C induce equivalences

ModN(C) � ModN(CMon(C)),

ModZ(C) � ModZ(CMongp(C)).

The key point is that the ∞-category FFreeZ is obtained from FFreeN be group-completing
the mapping spaces, so that FFreeN → FFreeZ is the universal finite-product-preserving
functor to an additive ∞-category. Therefore, the forgetful functor

ModZ(C) → ModN(C)

can be identified with the functor

ModZ(CMongp(C)) � ModN(CMongp(C)) → ModN(CMon(C)).

This description immediately implies the claims: the first claim follows since a finite-product-
preserving functor M : FFreeopN → CMon(C) lands in CMongp(C) if and only if M(N) is
grouplike, and the second claims follows since group completion preserves finite products.

�

Wecan describe free strictly commutativemonoidsmore concretely using strict symmetric

powers (see Sect. 2):

Lemma 7.6 Let C be a distributive ∞-category. Then the composite functor

C
N−→ ModN(C)

forget−−−→ C

is given by X 	→
∐

d≥0

Sd X.

Proof It suffices to check this for the universal X , which lives in the distributive ∞-category
Fun(Fin, S). Wemay thus assume C = S. In that case, the forgetful functor ModN(S) → S is
modeled by the right Quillen functor ModN(Set�) → Set� [24, Proposition 5.5.9.1], whose
left adjoint is given by the desired formula. Since the functor Sd on S can be computed using
symmetric powers of CW complexes, this completes the proof. �
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Remark 7.7 Lemma 7.6 shows that the endofunctor X 	→ ∐

d≥0 S
d X of any distributive

∞-category has a canonical structure ofmonad. Its multiplication involves a canonical equiv-
alence Sd(X � Y ) � ∐

e+ f =d S
e X × S f Y and a canonical map SdSe X → SdeX .

If C is presentable and A is a small ∞-category with finite products, we have

Fun×(A,C) � C ⊗ Fun×(A, S)

where ⊗ denotes the tensor product of presentable ∞-categories (this follows immediately
from [23, Proposition 4.8.1.17]). Hence, the presentable ∞-category ModZ(C) of grouplike
strictly commutative monoids in C is a module over ModZ(S), which is the ∞-category of
connective HZ-modules. For X ∈ ModZ(C) and A a connective HZ-module, we will write
X ⊗ A for the result of the action of A on X . Note that the construction X 	→ X ⊗ A is
preserved by any colimit-preserving functor f : C → D.

In particular, if C is distributive and X ∈ C, one can form the strictly commutative monoid
ZX ⊗ A for any connective HZ-module A, which can be described more concretely as
follows. Any connective HZ-module A can be obtained from Z in the following steps:

(1) take finite products of copies of Z to get finitely generated free Z-modules;
(2) take filtered colimits of finitely generated freeZ-modules to get arbitrary flatZ-modules;
(3) take colimits of simplicial diagrams of free Z-modules to get arbitrary connective HZ-

modules [24, Lemma 5.5.8.13].

Since the forgetful functor ModZ(C) → C preserves finite products and sifted colimits, the
object ZX ⊗ A in C can be obtained from ZX using the same steps.

In the distributive ∞-category S, ZX ⊗ A has its “usual” meaning. For instance, if A is
an abelian group, then Z̃S p ⊗ A is an Eilenberg–Mac Lane space K (A, p).

8 Sheaves with transfers

Let S be a Noetherian scheme, C ⊂ SchS an admissible category consisting of separated
S-schemes, and R a commutative ring. We denote by Cor(C, R) the additive category whose
objects are those of C and whose morphisms are the finite correspondences with coefficients
in R [4, §9],4 We denote by PSh∗(C) the ∞-category of pointed presheaves on C, by

PShtr(C, R) = Fun×(Cor(C, R)op, S)

the ∞-category of presheaves with R-transfers, and by

Rtr : PSh∗(C) � PShtr(C, R) : utr
the free-forgetful adjunction. The functor utr preserves limits and sifted colimits and factors
through the ∞-category CMongp(PSh(C)); in fact, it factors through the ∞-category of
grouplike strictly commutative monoids, using the finite-product-preserving functor

FFreeZ → Cor(C, R), Zn 	→ S�n .

Since finite products and finite coproducts coincide in semiadditive∞-categories, the functor

utr : PShtr(C, R) → ModZ(PSh(C))

4 In loc. cit. it is assumed that R ⊂ Q. For general R, we define Cor(C, R) by extending scalars from the
largest possible subring of Q.
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preserves all colimits.
For τ a topology on C, we denote by Shvtrτ (C, R) the ∞-category of τ -sheaves with R-

transfers on C, and by Shvtrτ (C, R)A1 the ∞-category of homotopy invariant τ -sheaves with
R-transfers on C; these are defined by the cartesian squares

Shvtrτ (C, R)A1 Shvtrτ (C, R) PShtr(C, R)

Shv∗
τ (C)A1 Shv∗

τ (C) PSh∗(C).

utr utr utr

By [24, Proposition 5.5.4.15], the ∞-categories Shvtrτ (C, R) and Shvtrτ (C, R)A1 are pre-
sentable and there exist localization functors

atrτ : PShtr(C, R) → Shvtrτ (C, R),

L tr
τ,A1 : PShtr(C, R) → Shvtrτ (C, R)A1 .

Furthermore, by [24, Proposition 5.4.6.6], the forgetful functors utr in the above diagram are
accessible. Since they preserve limits, they admit left adjoint functors, which we will denote
by Rtr (it will always be clear from the context which category Rtr is defined on).

We say that a topology τ on C is compatible with R-transfers if for any presheaf with
R-transfers F on C, the canonical map

aτutrF → utra
tr
τ F

is an equivalence. The following lemma shows that τ is compatible with transfers if and only
if it is weakly compatible with transfers in the sense of [4, Definition 9.3.2]. For example,
it follows from [4, Proposition 9.3.3] that the Nisnevich and étale topologies are compatible
with any transfers on any admissible category.

Lemma 8.1 A topology τ on C is compatible with R-transfers if and only if, for every τ -
covering sieve U ↪→ X, the morphism

aτutrRtr(U+) → aτutrRtr(X+)

is an equivalence in Shv∗
τ (C).

Proof If τ is compatible with transfers, then for any F ∈ PSh∗(C),

aτutrRtrF � utra
tr
τ RtrF � utrRtraτF.

Since aτ (U+) � aτ (X+), this proves the “only if” direction.
Conversely, define

E = {RtrU+ → RtrX+ |U ↪→ X is aτ − covering sieve}
so that Shvtrτ (C, R) ⊂ PShtr(C, R) is the subcategory of E-local objects, and suppose that
the functor aτutr sends elements of E to equivalences. Let Ē be the strong saturation of E ,
i.e., the smallest class of morphisms containing E , satisfying the 2-out-of-3 property, and
closed under colimits in Fun(�1,PShtr(C, R)). By [24, Proposition 5.5.4.15(4) and Propo-
sition 5.2.7.12], the localization functor atrτ : PShtr(C, R) → Shvtrτ (C, R) is the universal
functor sending elements of Ē to equivalences. We claim that aτutr sends morphisms in Ē
to equivalences. It will suffice to show that the class of morphisms f such that aτutr( f ) is
an equivalence is closed under the 2-out-of-3 property (which is obvious) and colimits. The
functor utr : PShtr(C, R) → PSh∗(C, R) does not preserve colimits, but it preserves sifted
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colimits and transforms finite coproducts into finite products. Since aτ is left exact and any
colimit can be built out of finite coproducts and sifted colimits, this proves the claim. Thus,
there exists a functor f : Shvtrτ (C, R) → Shv∗

τ (C) making the diagram

Shvtrτ (C, R) PShtr(C, R) Shvtrτ (C, R)

Shv∗
τ (C) PSh∗(C) Shv∗

τ (C)

atrτ

utr utr f

aτ

commute. Since the horizontal compositions are the identity, f � utr and aτutr � utratrτ . �

Lemma 8.2 Suppose that τ is compatible with R-transfers. Then the square

PShtr(C, R) Shvtrτ (C, R)A1

ModZ(PSh(C)) ModZ(Shvτ (C)A1)

L tr
τ,A1

utr
L

τ,A1

utr

commutes.

Proof Consider the diagram

Shvtrτ (C, R)A1 PShtr(C, R) Shvtrτ (C, R)A1

ModZ(Shvτ (C)A1) ModZ(PSh(C)) ModZ(Shvτ (C)A1).

utr

L tr
τ,A1

utr
L

τ,A1

f

It will suffice to show that a functor f exists as indicated. Define

Eτ = {RtrU+ → RtrX+ |U ↪→ X is aτ − covering sieve inC},
EA1 = {Rtr(X × A1)+ → RtrX+ | X ∈ C},

so that Shvtrτ (C, R)A1 ⊂ PShtr(C, R) is the full subcategory of (Eτ ∪ EA1)-local objects. The
functor Lτ,A1utr carries morphisms in Eτ and EA1 to equivalences: for Eτ , this is because
τ is compatible with R-transfers and for EA1 it is because utrRtr(X × A1)+ → utrRtrX+ is
an A1-homotopy equivalence (see the last part of the proof of [30, Theorem 1.7]). By [24,
Proposition 5.5.4.20], there exists a functor f making the above diagram commutes. �

Corollary 8.3 Suppose that τ is compatible with R-transfers. Then the forgetful functor
utr : Shvtrτ (C, R)A1 → ModZ(Shvτ (C)A1) preserves colimits.

Proof This follows immediately from Lemma 8.2. �

The ∞-category Shvtrτ (C, R)A1 is tensored over connective HR-modules. For p ≥ q ≥ 0

and A a connective HR-module, the motivic Eilenberg–Mac Lane space

K (A(q), p)C ∈ Shv∗
Nis(C)A1

is defined by

K (A(q), p)C = utr(RtrS
p,q ⊗ A),

where S p,q ∈ Shv∗
Nis(C)A1 is the motivic p-sphere of weight q . Although this construction

depends on the coefficient ring R in general, it does not if either the schemes in C are regular
or if the positive residual characteristics of S are invertible in R [4, Remark 9.1.3(3)]; the
latter will always be the case in what follows.
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9 The Étale homotopy type of motivic Eilenberg–Mac Lane spaces

Let k be a separably closed field, l �= char k a prime number, and C ⊂ Schk an admissible
category. One defect of the Z/l-local étale homotopy type functor Étl : ShvNis(C)A1 →
Pro(S)Z/l is that it does not preserve finite products and hence does not preserve commutative
monoids. We have seen in Lemma 6.2 that Étl preserves finite products between compact
motivic spaces, but motivic Eilenberg–Mac Lane spaces are certainly not compact. We will
fix this problem by constructing a factorization

ShvNis(C)A1
Ét×l−−→ E → Pro(S)Z/l

of Étl such that Ét×l is distributive and E is a “close approximation” of Pro(S)Z/l by a
distributive ∞-category (see Definition 7.2). For our applications, we will also need Ét×l
to factor through Shv∧

h (Schftk )A1 . The fact that the latter ∞-category may not be compactly
generated explains some of the complexity of the following construction.

Construction 9.1 Let i : C ↪→ Schftk be the inclusion and let i! : ShvNis(C) → ShvNis(Schftk )

be its colimit-preserving extension. Since C is admissible and in particular closed under finite
products, the functor i! is distributive. Note that we have a commuting triangle

ShvNis(C) Shvh(Sch
ft
k )

Pro(S),

ahi!

�h∞ �h∞

where �h∞ was defined in Sect. 5, and that the functor �h∞ on the right is simply �∞, in
the sense of Remark 5.4. For any ∞-topos X, we have a commutative square

X X≤n

Pro(S) Pro(S≤n),

τ≤n

τ≤n

�∞ �n

where the horizontal maps are given by truncation and �n = τ≤n ◦ �∞. We can therefore
factor the Z/l-local shape functor LZ/l�∞ : X → Pro(S)Z/l as

X → X∧ τ≤∗−−→ lim
n

X≤n → lim
n

Pro(S≤n)Z/l � Pro(S)Z/l ,

where the last equivalence is (3.10). Since truncations preserve colimits and finite products,
the functor τ≤∗ is distributive. Applying this procedure to the ∞-toposX = Shvh(Schftk ), we
obtain a factorization of LZ/l�

h∞ as

ShvNis(C)
a∧
h i!−−→ Shv∧

h (Schftk )
τ≤∗−−→ lim

n
Shvh(Sch

ft
k )≤n → lim

n
Pro(S≤n)Z/l � Pro(S)Z/l .

Let Pro′(S) be the smallest full subcategory of Pro(S) containing�h∞X for every k-scheme
of finite type X and closed under finite products, finite colimits, and retracts. We similarly
define the ∞-categories Pro′(S)Z/l , Pro′(S≤n), and Pro′(S≤n)Z/l to be generated by the
respective localizations of �h∞X . Recall that the localization functors LZ/l and τ≤n preserve
finite products (Proposition 3.3). By Remarks 5.3 and 3.12, the pro-spaces in Pro′(S) satisfy
the assumption of Proposition 3.13, so that the localization functor LZ/l,≤n : Pro′(S) →
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Pro′(S≤n)Z/l also preserves finite products. It follows that finite products distribute over
finite colimits in each of these ∞-categories, so that their ind-completions are distributive.

Consider the colimit-preserving functor

LZ/l,≤n�
h∞ : Shvh(Sch

ft
k )≤n → Pro(S≤n)Z/l .

By Lemma 4.3, the ∞-category Shvh(Schftk )≤n is compactly generated by representables,
so that (Shvh(Schftk )≤n)

ω is generated by representables under finite colimits and retracts.
Hence, this functor restricts to a functor

LZ/l,≤n�
h∞ : (Shvh(Sch

ft
k )≤n)

ω → Pro′(S≤n)Z/l

that preserves finite colimits. It also preserves finite products by Proposition 5.1, so that the
induced functor on ind-completions

Shvh(Sch
ft
k )≤n → Ind(Pro′(S≤n)Z/l)

is distributive. Thus, the composition

ShvNis(C)
τ≤∗a∧

h i!−−−−→ lim
n

Shvh(Sch
ft
k )≤n → lim

n
Ind(Pro′(S≤n)Z/l)

is distributive, and it inverts X ×A1 → X for every X ∈ C since LZ/l�
h∞ does, so it induces

a distributive functor

Ét
×
l : ShvNis(C)A1 → lim

n
Ind(Pro′(S≤n)Z/l).

By construction, Étl is the composition of Ét
×
l and the colimit functor

lim
n

Ind(Pro′(S≤n)Z/l) → lim
n

Pro(S≤n)Z/l � Pro(S)Z/l .

�

The next theorem is our étale version of [30, Proposition3.41]. We point out that the

category C in the statement below need not be closed under symmetric powers, so the the-
orem applies directly with C the category of smooth separated k-schemes with no need for
resolutions of singularities.

Theorem 9.2 Let k be an algebraically closed field of characteristic exponent e, l �= e a
prime number, andC ⊂ Schk an admissible subcategory consisting of semi-normal separated
schemes. Then for any pointed object X in ShvNis(C)A1 and any connective HZ[1/e]-module
A, there is an equivalence

θX ,A : Z̃Ét×l X ⊗ A � Ét
×
l utr(ZtrX ⊗ A)

of grouplike strictly commutative monoids in limn Ind(Pro′(S≤n)Z/l), natural in X and A,
with the following properties:

(1) the triangle

Ét
×
l X Z̃Ét

×
l X ⊗ Z[1/e]

Ét
×
l utrZ[1/e]trX

1

Ét
×
l (unit)

θX ,Z[1/e]�

is commutative;
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(2) given X, Y , A, and B, the square

(Z̃Ét
×
l X ⊗ A) ∧ (Z̃Ét

×
l Y ⊗ B)

Z̃Ét
×
l (X ∧ Y ) ⊗ (A ⊗ B)

Ét
×
l utr(ZtrX ⊗ A) ∧ Ét

×
l utr(ZtrY ⊗ B)

Ét
×
l utr(Ztr(X ∧ Y ) ⊗ (A ⊗ B))

θX ,A ∧ θY ,B �

θX∧Y ,A⊗B�

is commutative.

Proof Any k-scheme of finite type is Zariski-locally quasi-projective, so we can assume that
the schemes in C are quasi-projective without changing the categories and functors involved.
As X varies, the source and target of θX ,A are functors taking values in strictly commutative
monoids in limn Ind(Pro′(S≤n)Z/l), and as such they preserve colimits: for the left-hand side
this is clear and for the right-hand side it follows from Corollary 8.3. In particular, these
functors are left Kan extended from their restriction to C. To show the existence of θX ,A, it
will therefore suffice to define θX ,A for X representable, i.e., X = LNis,A1r(Z)+ for some
Z ∈ C, and this construction should be natural in Z and A. Furthermore, since utr is HZ-linear
and Ét

×
l is distributive, we have

Ét
×
l utr(ZtrX ⊗ A) � Ét

×
l utr(ZtrX) ⊗ A

sowe can assume A = Z[1/e]. Let i : C ↪→ Schftk be the inclusion.By themotivicDold-Thom
theorem [30, Theorem3.7] (see also [28, Theorem 6.8]), there is an equivalence

utrZ[1/e]trZ+ � aNis((
∐

d≥0

i∗r(Sd Z))gp[1/e])

of pointed presheaves on C, natural in Z . Note that the validity of this formula does not
depend on the scheme Sd Z belonging to C. By Lemma 8.2 and the distributivity of LNis,A1 ,
we obtain equivalences

utrZ[1/e]trX � LNis,A1

⎛

⎝

⎛

⎝

∐

d≥0

i∗r(Sd Z)

⎞

⎠

gp

[1/e]
⎞

⎠ �
⎛

⎝

∐

d≥0

LNis,A1 i∗r(Sd Z)

⎞

⎠

gp

[1/e]

inShvNis(C)A1 . Since Ét
×
l preserves group completions of commutativemonoids (Lemma7.3)

and colimits,

Ét
×
l utrZ[1/e]trX �

⎛

⎝

∐

d≥0

Ét
×
l LNis,A1 i∗r(Sd Z)

⎞

⎠

gp

[1/e].

On the other hand, by Lemmas 7.5 and 7.6 and since Ét
×
l LNis,A1 commutes with Sd ,

Z̃Ét
×
l X ⊗ Z[1/e] �

⎛

⎝

∐

d≥0

Ét
×
l LNis,A1SdrNis(Z)

⎞

⎠

gp

[1/e].
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We then define θX ,Z[1/e] : Z̃Ét×l X ⊗ Z[1/e] → Ét
×
l utrZ[1/e]trX to be the map induced by

the obvious canonical map

ϕ : SdrNis(Z) → i∗r(Sd Z)

in ShvNis(C)≤0. To show that θX ,Z[1/e] is an equivalence, it suffices to show that

Ét
×
l LNis,A1(ϕ) is an equivalence. By definition of Ét

×
l , the functor Ét

×
l LNis,A1 factors through

a∧
h i! : ShvNis(C) → Shv∧

h (Schftk ), so it suffices to show that a∧
h i!(ϕ) is an equivalence. This

follows fromCorollary 4.6 and Proposition 4.7 (since k is perfect and every smooth k-scheme
is Zariski-locally in C).

The strategy to prove (1) and (2) is the following: we first reduce as above to the rep-
resentable case, where the statements follow from properties of the motivic Dold–Thom
equivalence. For (1), we may assume that X is represented by Z ∈ C. Then the adjunction
map X → utrZ[1/e]trX corresponds, through the Dold–Thom equivalence, to the map

Z+ � S0Z � S1Z ↪→
∐

d≥0

Sd Z →
⎛

⎝

∐

d≥0

Sd Z

⎞

⎠

gp

[1/e],

which proves the result. For (2), we may assume that X and Y are represented by Z and W
and that A = B = Z[1/e]. Moreover, we can replace Z̃ with Ñ. It then suffices to note that
the pairing

utrZ[1/e]trX ∧ utrZ[1/e]trY → utrZ[1/e]tr(X ∧ Y )

arising from the monoidal structure of Z[1/e]tr is induced, via the Dold-Thom equivalence,
by the obvious maps Sa Z × SbW → Sab(Z × W ). �


For A a connective HZ-module, let Al be the pro-HZ-module limn A/ln . Note that
Al � A if A admits an HZ/ln-module structure for some n ≥ 1.

Lemma 9.3 Let A be a connective HZ-module and p ≥ 1. Then

LZ/l K (A, p) � τ<∞K (Al , p).

Proof We can assume A truncated, as both sides preserve the limit of the Postnikov tower of
A. Then A is a finite product of HZ-modules of the form B[i]with B discrete and i ≥ 0. Since
K (B[i], p) � K (B, p+i) and since both sides preserve finite products (see Proposition 3.3),
we can assume A discrete. By the principal fibration lemma [3, III,3.6], we can reduce to
the case p = 1 and A free abelian. In this case we have πn LZ/l K (A, 1) = 0 for n ≥ 2 [3,
IV,Lemma 4.4] and π1LZ/l K (A, 1) � Al by the proof of [3, IV, Lemma 2.4]. �


Given q ∈ Z, we let Al(q) = Al ⊗Zl Tlμ
⊗q (which is noncanonically isomorphic to Al ).

For example, Z/ln(q) � μ
⊗q
ln .

Theorem 9.4 Let k be an algebraically closed field of characteristic exponent e, l �= e a prime
number, and C ⊂ Schk an admissible subcategory consisting of semi-normal separated
schemes. For any connective HZ[1/e]-module A and any integers p, q with p ≥ 1 and
p ≥ q ≥ 0, there is a canonical equivalence

Étl K (A(q), p)C � τ<∞K (Al(q), p)

of pointed objects in Pro(S)Z/l , natural in A, and Étl preserves smash products between such
spaces. Furthermore, under these equivalences,
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(1) Étl sends the canonical map

Sp,q → K (Z[1/e](q), p)C

to the canonical map

Sp,q
l → K (Zl(q), p);

(2) Étl sends the canonical map

K (A(q), p)C ∧ K (B(s), r)C → K ((A ⊗ B)(q + s), p + r)C

to the canonical map

τ<∞K (Al(q), p) ∧ τ<∞K (Bl(s), r) → τ<∞K ((A ⊗ B)l(q + s), p + r).

Proof By Theorem 9.2, we have

Ét
×
l K (A(q), p)C � Z̃Ét

×
l S

p,q ⊗ A.

By Proposition 6.3 and the definition of Ét
×
l (see Construction 9.1), we have

Ét
×
l S

p,q � LZ/l,≤∗S p,q
l ,

where S p,q
l ∈ Pro′(S)Z/l is considered as a constant ind-Z/l-local pro-space. Thus,

Ét
×
l K (A(q), p)C � Z̃LZ/l,≤∗S p,q

l ⊗ A.

Now we apply the colimit functor

c : lim
n

Ind(Pro′(S≤n)Z/l) → lim
n

Pro(S≤n)Z/l � Pro(S)Z/l

to both sides. The left-hand side becomes Étl K (A(q), p)C, by definition of Ét
×
l . We are thus

reduced to proving that

c(Z̃LZ/l,≤∗S p,q
l ⊗ A) � τ<∞K (Al(q), p). (9.5)

For this, we consider the following commutative diagram:

Sω Ind(Sω) lim
n

Ind(Pro′(S≤n)) lim
n

Ind(Pro′(S≤n)Z/l)

S Pro(S<∞) Pro(S)Z/l .

i j ind

c�
j

c

L ind

c
LZ/l

Note that LZ/l,≤∗S p,0
l is the image of S p by the top row of this diagram. The functor j ind

is clearly distributive and L ind is distributive by Proposition 3.13. We therefore have equiv-
alences

c(Z̃LZ/l,≤∗S p,0l ⊗ A) � c(Z̃(L ind j indi S p) ⊗ A) � cL ind j ind(Z̃i S p ⊗ A) � LZ/l j K (A, p),

which concludes the case q = 0 by Lemma 9.3. It also concludes the general case if
one is willing to choose an isomorphism Zl � Tlμ. However, the twisting for q > 0
makes the equivalence (9.5) independent of such a choice, as a consequence of the follow-
ing observation: if α is an automorphism of Zl , then the automorphism id∧(p−q) ∧ α∧q
of S p,0

l induces α⊗q on the top homology pro-group Zl . A similar argument shows that
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Étl(X ∧ Y ) � Étl(X) ∧ Étl(Y ) whenever Ét
×
l X and Ét

×
l Y belong to the essential image

of L ind j ind. The remaining statements are easily deduced from properties (1) and (2) in
Theorem 9.2. �


In conclusion, let us emphasize the two most important special cases of Theorem 9.4:

Corollary 9.6 Let k be an algebraically closed field of characteristic exponent e, l �= e a
prime number, andC ⊂ Schk an admissible subcategory consisting of semi-normal separated
schemes.

(1) For any Z[1/e] ⊂ � ⊂ Z(l), there is a canonical equivalence

Étl K (�(q), p)C � K (Tlμ
⊗q , p),

where Tlμ⊗q is the l-adic Tate module of μ⊗q viewed as a pro-group.
(2) For any n ≥ 1, there is a canonical equivalence

Étl K (Z/ln(q), p)C � K (μ
⊗q
ln , p).

In particular, Étl K (Z/ln(q), p)C is a constant pro-space.

In both cases, the Z/l-local étale homotopy type is already Z/l-profinite.
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