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Abstract
We obtain a sharp bilinear restriction estimate for the paraboloid in R

3 for q > 13/4.

Keywords Restriction theory · Bilinear restriction estimate · Extension operator

1 Introduction

Define an extension operator associated to the paraboloid in R3 by

E f (x1, x2, x3) :=
∫

[−1,1]2
f (ξ1, ξ2)e

(
ξ1x1 + ξ2x2 + (ξ21 + ξ22 )x3

)
dξ1dξ2 (1.1)

for f ∈ L1([−1, 1]2). Here, e(a) := e2π ia for a ∈ R. We say that two functions f1 and f2
are separated provided that

dist(supp( f1), supp( f2)) � 1. (1.2)

It is conjectured by Tao et al. [16] that the following bilinear restriction estimate

‖|E f1E f2|1/2‖Lq (R3) ≤ Cp,q
(‖ f1‖L p([−1,1]2)‖ f2‖L p([−1,1]2)

) 1
2 (1.3)

holds true for every pair of separated f1 and f2 if and only if

q ≥ 3,
5

q
+ 3

p
≤ 3, and

5

q
+ 1

p
≤ 2. (1.4)

Our main theorem is as follows.

Theorem 1.1 For every pair p, q satisfying

q > 13/4,
5

q
+ 3

p
< 3, and

5

q
+ 1

p
< 2, (1.5)
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Fig. 1 Diagram

it holds that

‖|E f1E f2|1/2‖Lq (R3) ≤ Cp,q
(‖ f1‖L p([−1,1]2)‖ f2‖L p([−1,1]2)

) 1
2 (1.6)

for every pair of separated functions f1 and f2. Here the constant Cp,q depends on p, q and
the implied constant in (1.2).

The bilinear restriction problem is strongly tied to the restriction problem (Fig. 1). The
restriction conjecture states that the estimate

‖E f ‖Lq (R3) ≤ Cp,q‖ f ‖L p([−1,1]2) (1.7)

holds true for every function f , if and only if

q > 3, and
2

q
+ 1

p
≤ 1. (1.8)

The region (1.8) is the trapezoidal region bounded by the points a, b in Fig. 2, (0, 0), and
(1, 0),1 except for the upper line between a and b inclusive. The region (1.4) is the pentagonal
region bounded by the points a, b, c, (0, 0), and (1, 0), including the upper line mentioned
previously. Note that the region (1.4) is wider than the region (1.8).

The connection between the bilinear restriction estimate and the restriction estimate was
discovered by Tao et al. [16], where they proved that the bilinear restriction estimate for a
pair (p, q) on the region (1.8) implies the restriction estimate for the same pair (p, q). The
converse is also true by a simple application of Hölder’s inequality.

Let us briefly mention the recent progress on the restriction and bilinear restriction prob-
lems for paraboloid in R

3. In 2003, Tao [14] proved the sharp bilinear restriction estimate
for the paraboloid in R

3 for the pair (p, q) = (2, 10/3 + ε) for an arbitrary number ε > 0
(the point c),2 which implies the restriction estimate for the paraboloid for q > 10/3 by
[16]. His proof is based on Wolff’s two ends argument in [18], where Wolff proved the sharp

1 The points (0, 0) and (1, 0) are not represented in Fig. 2.
2 In the paper, it is proved the sharp L2 bilinear restriction estimate for the paraboloid inRn up to the endpoint
for all the dimensions n.
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Fig. 2 Zoomed in

bilinear restriction estimate for the cone. The (linear) restriction estimate of Tao is improved
by Bourgain and Guth [4] to the range q > 3.3 (the point i i), where they introduced the
multilinear technique and combined it with some Kakeya estimate to get a better restriction
estimate. Recently, Guth [6] improved the restriction estimate to the range q > 13/4 (the
point iii). More precisely, he introduced the notion of a broad function and proved a broad
function estimate for q > 13/4 by using polynomial partitioning. This broad function esti-
mate is slightly weaker than the bilinear restriction estimate, but the argument of [16] still
works equally well with the broad function estimate, so he was able to prove the restriction
estimate for the same range of q . The restriction estimate of Guth is extended to the point
iv by Shayya [13] (see also [11]). The most recent result is due to Wang [17] (the point v),
where she proved the restriction estimate for q > 3 + 3/13 by proving the broad function
estimate for the same range of q . Her proof of the broad function estimate combines Wolff’s
two ends argument with polynomial partitioning. For earlier results, we refer to Tao et al.
[16], in particular, Table 1 on page 969 of their paper.

Our bilinear restriction theorem improves Tao’s sharp bilinear restriction estimates (the
point c) to the range q > 13/4 (the point vi). Also, our theorem recovers the broad function
estimate of Guth and the restriction estimate of Shayya by the arguments of [16]. It looks
plausible to generalize our result to improved (n−1)-linear restriction estimate for paraboloid
in R

n as all the tools used in this paper are still available in high dimensions. However, for
the sake of readability, we focus only on the three dimension.

One natural question is whether one can generalize this result to more general surfaces
under certain conditions. Bejenaru introduced interesting curvature conditions in [2], and he
proved sharp L2 → L10/3 bilinear restriction estimates for general surfaces in R3 satisfying
the conditions. His conditions are so general that even a surface with a vanishing principal
curvature (for example, a cone) satisfies the conditions. Interestingly, our theorem is not
always true for surfaces satisfying his conditions. For example, [15] proved that (1.3) is not
true for a cone for any pair (p, q) with q < 10/3 and p = ∞.
The proof of Theorem 1.1 is built on the arguments of [6] and [2]. Let us compare our proof
withGuth’s proof and explain the obstacle of our problem. By thewave packet decomposition
(Lemma 2.1), we can decompose the functions E f into wave packets E fT so that each
wave packet E fT is “essentially supported” on the tube T . In the study of the restriction
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problem, Guth applied polynomial partitioning and reduced the problem to some lower
dimensional restriction problem in the sense that all the “significant” wave packets E fT
are contained in a thin neighborhood of a variety. Then he proved the lower dimensional
restriction estimate. However, in our bilinear restriction problem, since the bilinear operator
involves two functions, even if we can still apply polynomial partitioning to the bilinear
operator, it is difficult to make all of the significant wave packets of E f1 and E f2 be contained
in a thin neighborhood of a variety. This is the main obstacle of our problem.

Here are our ideas. By following the arguments of Guth, we reduce to the situation where
all the significant wave packets of E f1 are contained in a thin neighborhood of a variety. Let
us pretend that the variety is a two-dimensional plane in this paragraph. Then we apply some
pigeonholing argument to the wave packets of E f2 so that all the significant wave packets
form some fixed angle between the tube and the variety. If the angle gets smaller, then our
wave packets of E f2 get closer to the thin neighborhood of the variety, and it gets closer to
the lower dimensional problem, which can be dealt with by following the argument of Guth.
On the hand hand, if the angle gets larger, then we observe that an intersection of the tube and
the thin neighborhood of the variety gets smaller. This geometric observation gives a better
L2-estimate than usual (see Lemma 4.5). We quantify these two observation and combine
them so that no matter what the angle is it gives the desired estimate. However, there is one
additional issue: If the angle between a tube and a variety is “almost” perpendicular, then it
is too far from a lower dimension situation and we cannot imitate the argument of Guth. In
this case, we apply polynomial partitioning one more time as in [2], and this takes care of
the case [see a high angle dominant case (Subsect. 4.1)].

1.1 Notation

For each ball BR of radius R with the center c(BR), define the weight function

wBR (x) :=
(
1 +

∣∣∣∣ x − c(BR)

R

∣∣∣∣
)−100

, (1.9)

and the weighted integral

‖F‖L p(wBR ) :=
(∫

|F(x)|pwBR (x) dx

)1/p

(1.10)

for every function F ∈ L∞(R3). For everymeasurable set Awith positive Lebesguemeasure,
we define the averaged L2 integral by

‖ f ‖L2
avg(A) :=

⎛
⎝ 1

|A|
∫

A

| f |2
⎞
⎠

1/2

. (1.11)

Note that
‖ f ‖L2

avg(A) ≤ ‖ f ‖L∞(A). (1.12)

We write A(R) ≤ RapDec(R)B to mean that for any power β, there is a constant Cβ such
that

A(R) ≤ Cβ R
−βB for all R ≥ 1. (1.13)
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Let us introduce the notation
∏2

i=1 ai := |a1a2|1/2. For f1, f2 and some quantities A( f1, f2)
and B( f1, f2), we write A( f1, f2) � B( f1, f2) to mean that

A( f1, f2) ≤ CB( f1, f2) + RapDec(R)

2∏
i=1

‖ fi‖2. (1.14)

Here, the constantC is independent of f1, f2 and R.Note that this notation is not conventional.
For two non-negative numbers A1 and A2, we write A1 � A2 to mean that there exists

a constant C such that A1 ≤ CA2. Similarly, we use O(A1) to denote a number whose
absolute value is smaller than CA1 for some constant C . We write A1 � A2 if A1 � A2 and
A2 � A1. We also write A1 	 A2 if CA1 ≤ A2 for some sufficiently large number C .

For every set S ⊂ R
3 and number ρ > 0, we denote by Nρ(S) the ρ-neighborhood of S.

For every polynomial P , we denote by Z(P) the zero set of the polynomial P . We introduce
two parameters ε > 0 and δ > 0. The parameter δ > 0 will be much smaller than ε.

2 Preliminaries

We review a wave packet decomposition. Let us define some notation first. We decom-
pose the square [−1, 1]2 into the dyadic squares θ of side length R−1/2. Let wθ denote
the bottom left corner of θ . Let vθ denote the normal vector to the paraboloid at the point
(wθ , |wθ |2). We denote by P(R−1/2) the collection of the squares. Let T(θ) denote a set of
tubes covering BR ⊂ R

3, that are parallel to vθ with radius R1/2+δ and length CR. Denote
T := ∪θ∈P(R−1/2)T(θ). For each T ∈ T(θ), let v(T ) denote the direction vθ of the tube.

Lemma 2.1 (Wave packet decomposition) If f ∈ L2([−1, 1]2) then for each T ∈ T we can
choose a function fT so that the following holds true:

(1) If T ∈ T(θ) then supp( fT ) ⊂ 3θ ;
(2) If x ∈ BR \ T , then |E fT (x)| = RapDec(R)‖ f ‖2;
(3) For any x ∈ BR, |E f (x) − ∑

T∈T E fT (x)| = RapDec(R)‖ f ‖L2 ;
(4) If T1, T2 ∈ T(θ) and T1, T2 are disjoint, then | ∫ fT1 f̄T2 | = RapDec(R)

∫
θ
| f |2;

(5)
∑

T∈T(θ)

∫
[−1,1]2 | fT |2 �

∫
θ
| f |2.

This is the formulation of the wave packet decomposition in [6]. We refer to Proposition
2.6 of [6] for the proof; see Lemma 4.1 of [14] and Lemma 2.2 of [12] for another formulation.
The functions E fT are calledwave packets.We need some L2-orthogonality of wave packets.
Here is one version of it. We refer to Lemma 2.7 and 2.8 of [6] for the proof.

Lemma 2.2 (L2-orthogonality) For any subset Ti ⊂ T, square θ ∈ P(R−1/2) and function
f , it holds that ∫

3θ

∣∣∣ ∑
T∈Ti

fT
∣∣∣2 �

∑
T∈Ti

∫

10θ

| fT |2 + RapDec(R)‖ f ‖L2(10θ)

�
∫

20θ

| f |2
(2.1)

and ∫

[−1,1]2

∣∣∣ ∑
T∈Ti

fT
∣∣∣2 �

∫

[−1,1]2
| f |2. (2.2)
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Our proof of Theorem 1.1 relies on polynomial partitioning. The interested readers should
consult the introduction of [6] for the historical backgrounds on polynomial partitioning.

We first introduce some terminology. For every polynomial P : Rn → R, we denote by
Z(P) the zero set of the polynomial P , and by cell(P) the collection of the connected com-
ponents of Rn \Z(P). A set Z(P1, . . . , Pn−m) := ⋂n−m

i=1 Z(Pi ) is called an m-dimensional
transverse complete intersection if it satisfies

n−m∧
j=1

∇Pj (z) 
= 0 (2.3)

for all z ∈ Z(P1, . . . , Pn−m). A degree of the transverse complete intersection
Z(P1, . . . , Pn−m) is defined as the maximum of the degrees of Pi . This definition of the
degree is non-standard in the sense that the set depends on the choice of polynomials defin-
ing the variety. It might be possible to define the degree in a more natural way, but this
definition does not make a trouble in our application, so we use this definition.

The following is the polynomial partitioning lemma used in [7] (see also Sect. 6 of [9]).

Lemma 2.3 (Polynomial partitioning lemma) Let 1 ≤ m ≤ n and d ≥ 0. Let F be a non-
negative L1 function on R

n supported on BR ∩ NR1/2+δ (Z) where Z := Z(P1, . . . , Pn−m)

is an m-dimensional transverse complete intersection of degree at most d. Then at least one
of the following holds:

(1) There exists a polynomial P : R
n → R of degree at most O(d) with the following

properties:

• #cell(P) � dm.
• For every O ′ ∈ cell(P), we define the cells O := O ′ \ NR1/2+δ (Z(P)). Then there

exists a subcollection cell◦(P) of cell(P) such that for every O generated by O ′ ∈
cell◦(P) ∫

Rn

F � dm
∫

O

F . (2.4)

Moreover, the number of the cells O generated by cell◦(P) is comparable to dm.

(2) There exists an (m − 1)-dimensional transverse complete intersection Z1 of degree at
most d such that ∫

Rn

F �
∫

BR∩NR1/2+δ (Z1)

F . (2.5)

Since we use the polynomial method and the wave packet decomposition, it is necessary
to understand the interplay between a variety and tubes. In particular, we need to answer two
questions:

• Describe the intersection of a tube and a thin neighborhood of a variety.
• How many tubes pointing in “separated” directions can be contained in a thin

neighborhood of a variety?

The author learned the answer of the first question in [21], where Zahl uses a result of Basu
et al. [1] and obtains a satisfactory answer (see (4.29)). The second question is answered by
[6] in three dimensions, by [20] in four dimensions, and by [10] in all the dimensions, whose
results are called the polynomial Wolff axioms. We will use Lemma 2.6, which is a slightly
more general version of them.
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Definition 2.4 (Semi-algebraic set) A set S ⊂ R
n is called semi-algebraic if it can be written

as a finite union of sets of the form

{x ∈ R
n : P1(x) > 0, . . . , Pk(x) > 0, Pk+1(x) = . . . = Pk+l(x) = 0}, (2.6)

where P1, . . . , Pk+l are polynomials. A union of such sets is called a presentation of S. The
complexity of a presentation is the sum of the degrees of the polynomials. The complexity
of a semi-algebraic set S is the minimum complexity of its presentation.

Lemma 2.5 ([1], cf. Theorem 2.3 of [21]) Let S ⊂ R
n be a semi-algebraic set of complexity

D. Then there exists a constant C(n, D) so that S has atmost C(n, D) connected components.

Lemma 2.6 (Lemma 2.11 of [21], cf. Theorem 1.4 of [8]) Let n, E and K be integers with
n ≥ 2, and let ε > 0. Then there is a constant C(n, E, K , ε) > 0 so that the following holds.
Let Z be a semi-algebraic set of complexity at most E. Let r > 0. Suppose that Z ⊂ R

n has
diameter r and obeys

|Nρ(Z) ∩ B(x, r)| ≤ Eρrn−1 for all balls B(x, r). (2.7)

Let 0 < δ < ρ/r , and let L be a set of lines in Rn pointing in δ-separated directions with the
property that for each L ∈ L

L ∩ Nρ Z contains a line segment o f length r/K .

Then

#L ≤ C(n, E, K , ε)

(
r

ρ

)−1+ε

δ1−n−ε . (2.8)

3 A proof of theorem 1.1: polynomial partitioning

Theorem 1.1 can be deduced from the following:

Proposition 3.1 For every ε > 0, it holds that∥∥∥∥∥
2∏

i=1

|E fi |
∥∥∥∥∥
L13/4(BR)

≤ CεR
10ε

(
2∏

i=1

‖ fi‖L2

) 12
13+ε (

2∏
i=1

max
θ∈P(R−1/2)

‖ fi‖L2
avg(θ)

) 1
13−ε

(3.1)

for every R ≥ 1 and separated functions f1 and f2.

Let us assume the above proposition and prove Theorem 1.1. Recall that Tao [14] proved
a sharp bilinear restriction estimate for (p, q) = (2, 10/3 + ε) for arbitrary ε > 0. By the
trivial estimate (1.12), the average norm in (3.1) can be bounded by L∞-norm. Applying the
resulting inequality with fi = χFi for separated measurable sets Fi ⊂ [−1, 1]2 we obtain

‖|EχF1EχF2 |1/2‖L13/4(BR) ≤ CεR
10ε

2∏
i=1

|Fi |6/13+ε/2. (3.2)

By applying Hölder’s inequality and using Tao’s result, we obtain

‖|E f1E f2|1/2‖Lq (BR) ≤ Cp,q,εR
10ε(‖ f1‖L p‖ f2‖L p

)1/2 (3.3)
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88 Page 8 of 23 C. Oh

for every pair (p, q) satisfying (1.5) and every fi = χFi . We apply Lemma 1.4.20 of
Grafakos’s book [5] componentwise to the bilinear operator, and obtain (3.3) for every pair
(p, q) satisfying (1.5) and every fi ∈ L p . Applying the epsilon-removal lemma (Lemma 2.4
in [15]) completes the proof of Theorem 1.1.
In the rest of the paper, we focus on the proof of Proposition 3.1. Our proof relies on the
induction on scales. Let us fix ε > 0. We may assume that ε is sufficiently small. We take
Cε large enough so that (3.1) trivially holds true for small R. Hence, it suffices to consider
a large R and prove (3.1) under the assumption that it holds true for < R/2. We record our
induction hypothesis.

Induction hypothesis

(3.1) holds true all the radii smaller than ≤ R/2. (3.4)

In order to close the induction, it is important to keep in mind that we need to prove (3.1)
with the same constant Cε . The constant Cε will not vary from line-to-line.

3.1 Polynomial partitioning

Let δ > 0 be some number much smaller than ε. Let D be a sufficiently large number inde-
pendent of R, which will be determined later. We apply the polynomial partitioning lemma
(Lemma 2.3) to the function |E f1E f2|1/2 and Z = R

3. Then there are two possibilities:

The cellular case

There exists a polynomial P of degree at most D such that

R
3 \ Z(P) =

M⊔
k=1

O ′
k, (3.5)

where M � D3, and O ′
k is a connected component of R3\Z(P), and if we define the cells

Ok := BR ∩ (
O ′
k\NR1/2+δ (Z(P))

)
, then

‖|E f1E f2|1/2‖13/4L13/4(BR)
� D3‖|E f1E f2|1/2‖13/4L13/4(Ok )

(3.6)

for � D3 many cells Ok .

The wall case

There exists a two-dimensional transverse complete intersection Z(P1) of degree at most D
such that

‖|E f1E f2|1/2‖L13/4(BR) � ‖|E f1E f2|1/2‖L13/4(BR∩NR1/2+δ (Z(P1))). (3.7)

It is well-known that a transverse complete intersection can be thought of as a smooth
manifold locally. This will enable us to define a tangent plane on a point of the transverse
complete intersection.
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3.2 The cellular case

In this subsection, we will consider the cellular case and prove (3.1). This case can be dealt
with by following the arguments of [6] line by line.We include the details for the completeness
of the paper. Recall that T is a collection of the tubes defined at the beginning Sect. 2. By
abuse the notation, we pretend that cells always indicate the cells Ok satisfying (3.6). In this
subsection, the constant C may vary from line-to-line. This constant C is independent of the
parameters ε, D and R.

We first note that, by property (2) and (3) of Lemma 2.1, on each cell Ok

E fi =
∑

T∈T:T∩Ok 
=∅
E fi,T + RapDec(R)‖ fi‖2. (3.8)

For simplicity, we introduce the notation fi,Ok := ∑
T∈T:T∩Ok 
=∅ fi,T . By the equality above,

for every k, it holds that

‖|E f1E f2|1/2‖L13/4(BR) � D
12
13 ‖|E f1,Ok E f2,Ok |1/2‖L13/4(Ok )

, (3.9)

where the notation � is introduced in (1.14). Notice that, by the fundamental theorem of
algebra, each tube T ∈ T passes through at most D + 1 cells Ok (see Lemma 3.2 of [6]).
Hence, by the orthogonality of wave packets (Lemma 2.2), it holds that∑

Ok

‖ fi,Ok‖22 ≤ C
∑
Ok

∑
Ti∈T:Ti∩Ok 
=∅

‖ fi,Ti ‖22

≤ C
∑
Ti∈T

∑
Ok :Ok∩Ti 
=∅

‖ fi,Ti ‖22 ≤ 2CD‖ fi‖22
(3.10)

for some constant C . It is straightforward to see that 9
10#Ok many cells Ok satisfy the

following:

‖ fi,Ok‖22 ≤
(
100

#Ok

)
CD‖ fi‖22. (3.11)

Thus, by recalling that #Ok � D3 and by pigeonhling, we can choose a cell Ok0 such that

‖ fi,Ok0
‖22 � D−2‖ fi‖22. (3.12)

for both i = 1, 2. Let us fix such Ok0 and decompose Ok0 into smaller balls of radius at most
R/2 and apply the induction hypothesis (3.4) to the right hand side of (3.9) on each smaller
ball BR/2. Then the left hand side of (3.9) is bounded by

CCεD
12
13 R10ε

(
2∏

i=1

‖ fi,Ok0
‖L2

) 12
13+ε (

2∏
i=1

max
θ

‖ fi,Ok0
‖L2

avg(θ)

) 1
13−ε

. (3.13)

We now apply (3.12) to the L2-norm and the L2-orthogonality (Lemma 2.2) to the L2
avg-norm.

Then the above term is further bounded by

CCεD
−εR10ε

(
2∏

i=1

‖ fi‖L2

) 12
13+ε (

2∏
i=1

max
θ

‖ fi‖L2
avg(θ)

) 1
13−ε

. (3.14)

It suffices to take D sufficiently large so thatCD−ε ≤ 1, and thus, we can close the induction.
To summarize, we have proved (3.1) in the cellular case. It remains to prove (3.1) in the wall
case, which will be done in the following sections.
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4 A proof of theorem 1.1: the wall case

In this section,we consider thewall case.Weneed to prove that under the induction hypothesis
(3.4) ∥∥∥∥∥

2∏
i=1

|E fi |
∥∥∥∥∥
L13/4(BR∩NR1/2+δ (Z(P1)))

≤ CCεR
10ε

(
2∏

i=1

‖ fi‖L2

) 12
13+ε (

2∏
i=1

max
θ∈P(R−1/2)

‖ fi‖L2
avg(θ)

) 1
13−ε

(4.1)

for some small constantC . Here,Z(P1) is a two-dimensional transverse complete intersection
of degree at most D. Recall that the constant D is independent of the parameter R, and this
fact will play a role in the proof.

Let D1 be a large constant compared to D and be independent of the parameter R. We con-
sider two subcases according to whether there exists an one-dimensional transverse complete
intersection Z(Q1, Q2) of degree at most D1 such that

∥∥∥∥∥
2∏

i=1

|E fi |
∥∥∥∥∥
L13/4(BR∩NR1/2+δ (Z(P1)))

�
∥∥∥∥∥

2∏
i=1

|E fi |
∥∥∥∥∥
L13/4(BR∩NR1/2+δ (Z(Q1,Q2)))

.

(4.2)

If such Z(Q1, Q2) exists, then we apply the following lemma and prove (4.1).

Lemma 4.1 For every pair of separated functions g1 and g2, one-dimensional transverse
complete intersection Z(Q1, Q2) of degree at most D1, it holds that

∥∥∥∥∥
2∏

i=1

|Egi |
∥∥∥∥∥
L13/4(BR∩NR1/2+δ (Z(Q1,Q2)))

≤ CεR
−cδεR10ε

(
2∏

i=1

‖gi‖L2

) 12
13+ε (

2∏
i=1

max
θ∈P(R−1/2)

‖gi‖L2
avg(θ)

) 1
13−ε

(4.3)

under the induction hypothesis (3.4).

Let us postpone the proof of the lemma to the next section and consider the case that such
Z(Q1, Q2) does not exist. The advantage of this case is that we can control tangent spaces
of a variety. Let us explain more.

Let γ be a fixed constant smaller than the implied constant in (1.2). This constant γ is
independent of all the parameters, for example, ε, δ, and R. Recall that since P1 is a transverse
complete intersection, the tangent planes are well-defined at every point of the variety.We say
that a ball B(x0, R1/2+δ) ⊂ NR1/2+δ (Z(P1))∩BR is regular if on each connected component
of Z(P1) ∩ B(x0, 10R1/2+δ) the tangent space T (Z(P1)) is constant up to angle γ . For a
regular ball B, we pick a point z ∈ B ∩ Z(P1) and define VB to be the two-dimensional
tangent plane Tz(Z(P1)). It is proved on page 126 of [7] (see also page 16 of [2]) that, by
the assumption that such Z(Q1, Q2) does not exist, there exists a two-dimensional plane V
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such that ∥∥∥∥∥
2∏

i=1

|E fi |
∥∥∥∥∥
L13/4(BR∩NR1/2+δ (Z(P1)))

�
∥∥∥∥∥

2∏
i=1

|E fi |
∥∥∥∥∥
L13/4(

⋃
B∈BV

B)

, (4.4)

where BV is the set of regular balls such that the angle between VB and V is smaller than γ .
Since this statement is proved several times in the literature, we omit the details.

For simplicity, we introduce the notation

N1 :=
⋃

B∈BV

B ⊂ BR ∩ NR1/2+δ (Z(P1)). (4.5)

Define
T≥4γ := {T ∈ T : Angle(v(T ), V ) ≥ 4γ },
T<4γ := {T ∈ T : Angle(v(T ), V ) < 4γ }. (4.6)

We split functions E fi into three parts:

E fi = E fi,≥4γ + E fi,<4γ + RapDec(R)‖ fi‖2, (4.7)

where
fi,≥4γ :=

∑
T∈T≥4γ

fi,T , fi,<4γ :=
∑

T∈T<4γ

fi,T . (4.8)

By the triangle inequality, the right hand side of (4.4) is bounded by

� ‖|E f1,≥4γ E f2,≥4γ |1/2‖L13/4(N1)

+ ‖|E f1,<4γ E f2,≥4γ |1/2‖L13/4(N1)

+ ‖|E f1,≥4γ E f2,<4γ |1/2‖L13/4(N1)

+ ‖|E f1,<4γ E f2,<4γ |1/2‖L13/4(N1)
.

(4.9)

We say that we are in a high angle dominant case if the first three terms dominate the last
term. Otherwise, we say that we are in a low angle dominant case.

4.1 The high angle dominant case

In this case, by the symmetric role of f1 and f2 and the L2-orthogonality, the desired estimate
(4.1) follows from

‖|E f1,≥4γ E f2|1/2‖L13/4(N1)

≤ CCεR
10ε

(
2∏

i=1

‖ fi‖L2

) 12
13+ε (

2∏
i=1

max
θ∈P(R−1/2)

‖ fi‖L2
avg(θ)

) 1
13−ε (4.10)

for some small constant C .
Let us consider two subcases according to whether there exists a one-dimensional

transverse complete intersection Z(Q1, Q2) of degree at most D1 satisfying

‖|E f1,≥4γ E f2|1/2‖L13/4(N1)
� ‖|E f1,≥4γ E f2|1/2‖L13/4(BR∩NR1/2+δ (Z(Q1,Q2)))

. (4.11)

If suchZ(Q1, Q2) exists, then we apply Lemma 4.1, and by the L2-orthogonality, we obtain
(4.10). Hence, we may assume that such Z(Q1, Q2) does not exist.
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Recall that N1 ⊂ BR ∩ NR1/2+δ (Z(P1)). We apply the polynomial partitioning lemma
(Lemma 2.3) to the function χN1 |E f1,≥4γ E f2|1/2 with the degree D1. Then the second case
of Lemma 2.3 cannot happen. Thus, there exist a polynomial P2 : R3 → R of degree at most
D1 such that

R
3 \ Z(P2) =

M⊔
k=1

Õ ′
k, (4.12)

where M � (D1)
2, and Õ ′

k is a connected component of R3 \ Z(P2), and if we define the
cells Õk := BR ∩ (

O ′
k\NR1/2+δ (Z(P2))

)
, then

‖|E f1,≥4γ E f2|1/2‖13/4L13/4(N1)
� (D1)

2‖|E f1,≥4γ E f2|1/2‖13/4L13/4(N1∩Õk )
(4.13)

for (D1)
2 many cells Õk . By abusing the notation, we pretend that the cells Õk always satisfy

the above inequality.
Define T≥4γ,k by a sub-collection of the tubes in T≥4γ that intersect Õk and Tk by a

sub-collection of the tubes in T that intersect Õk . Since each tube T ∈ T can pass through at
most D1 + 1 many Õk , we know that

∑
k

∥∥∥ ∑
T∈Tk

f2,T
∥∥∥2
L2

� D1‖ f2‖22. (4.14)

As observed in [2], each T ∈ T≥4γ can intersect Õk ∩ N1 at most O(D3) times. This is
because T ∩Z(P1) is contained in at most O(D3) balls of radius R1/2+δ (see Lemma 5.7 of
[7]). By this observation and the L2-orthogonality, we obtain

∑
k

∥∥∥ ∑
T∈T≥4γ,k

f1,T
∥∥∥2
L2

� D3‖ f1‖22. (4.15)

By pigeonholing, we can choose k0 such that

∥∥∥ ∑
T∈Tk0

f2,T
∥∥∥2
L2

� D−1
1 ‖ f2‖22,

∥∥∥ ∑
T∈T≥4γ,k0

f1,T
∥∥∥2
L2

� D3D−2
1 ‖ f1‖22. (4.16)

Therefore, if we use (4.13) with k = k0 and apply the induction hypothesis (3.4), by the
above inequalities, we have

‖|E f1,≥4γ E f2|1/2‖L13/4(N1)

� D
9
13+εD

− 1
13

1 CεR
10ε

(
2∏

i=1

‖ fi‖L2

) 12
13+ε (

2∏
i=1

max
θ∈P(R−1/2)

‖ fi‖L2
avg(θ)

) 1
13−ε

.
(4.17)

It suffices to take D1 large enough compared to the constant D.
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4.2 The low angle dominant case

In this case, we prove the following.

∥∥∥∥∥
2∏

i=1

|E fi,<4γ |
∥∥∥∥∥
L13/4(N1)

≤ CεR
−cεδR10ε

(
2∏

i=1

‖ fi‖L2

) 12
13+ε (

2∏
i=1

max
θ∈P(R−1/2)

‖ fi‖L2
avg(θ)

) 1
13−ε

.

(4.18)

One advantage of working with the wave packets with low angles is that it allows for an
L4-estimate as good as in [6]. This is one observation already appeared in [2]. We will make
use of it later.
Recall that N1 is a subset of BR ∩ NR1/2+δ (Z(P1)). For simplicity, we define W := BR ∩
NR1/2+δ (Z(P1)). We decompose the ball BR into smaller balls Bj of radius R1−δ . For each
ball Bj , we define transverse and tangential tubes as in [6].

Definition 4.2 (Tangential tubes) T j,− is the set of all T ∈ T<4γ obeying the following two
conditions.

• T ∩ W ∩ Bj 
= ∅
• If z is any point of Z(P1) lying in 2Bj ∩ 10T , then

Angle(v(T ), Tz(Z(P1))) ≤ R−1/2+2δ. (4.19)

Here Tz(Z(P1)) denotes the tangent space of Z at the point z.

Definition 4.3 (Transverse tubes) T j,+ is the set of all T ∈ T<4γ obeying the following two
conditions.

• T ∩ W ∩ Bj 
= ∅
• There exists a point of Z(P1) lying in 2Bj ∩ 10T , so that

Angle(v(T ), Tz(Z(P1))) > R−1/2+2δ. (4.20)

Notice that any tube T<4γ that intersects W ∩ Bj lies in exactly one of T j,+ and T j,−.
Thus, on the set W ∩ Bj ,

E fi,<4γ =
∑

T∈T j,+
E f1,T +

∑
T∈T j,−

E f1,T + RapDec(R)‖ f ‖2. (4.21)

For simplicity, we define fi, j,+ := ∑
T∈T j,+ fi,T and define fi, j,− similarly.
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We decompose N1 into smaller parts Bj ∩ N1 and bound the left hand side of (4.18) by

�

⎛
⎝∑

Bj

‖|E f1, j,+E f2, j,+|1/2‖13/4
L13/4(N1∩Bj )

⎞
⎠

4
13

+
⎛
⎝∑

Bj

‖|E f1, j,−E f2, j,+|1/2‖13/4
L13/4(N1∩Bj )

⎞
⎠

4
13

+
⎛
⎝∑

Bj

‖|E f1, j,+E f2, j,−|1/2‖13/4
L13/4(N1∩Bj )

⎞
⎠

4
13

+
⎛
⎝∑

Bj

‖|E f1, j,−E f2, j,−|1/2‖13/4
L13/4(N1∩Bj )

⎞
⎠

4
13

.

(4.22)

If the first term dominates the others, we say that we are in a transverse wall case. Otherwise,
we say that we are in a tangential wall case.

4.2.1 The transverse wall case

In this case, we do not use much information on N1. In this subsubsection, the constant C
may vary from line-to-line. This constant is independent of all the parameters, for example,
ε, δ, and R. We start with the following bound.

‖|E f1,<4γ E f2,<4γ |1/2‖13/4
L13/4(N1)

�
∑
Bj

‖|E f1, j,+E f2, j,+|1/2‖13/4
L13/4(W∩Bj )

. (4.23)

This case can be dealt with by following the argument in [6] line by line. Let us give the
details. We apply the induction hypothesis (3.4) and the right hand side of (4.23) is bounded
by

CC
13
4

ε R
13
4 ·(1−δ)10ε

∑
Bj

(
2∏

i=1

‖ fi, j,+‖L2

)3+ 13ε
4

(
2∏

i=1

max
θ

‖ fi, j,+‖L2
avg(θ)

) 1
4− 13ε

4

. (4.24)

Nextwe apply the L2-orthogonality, and replace‖ fi, j,+‖L2
avg(θ) by‖ fi‖L2

avg(θ). By the relation
‖ · ‖l3+13ε/4 ≤ ‖ · ‖l2 and Cauchy–Schwarz inequality, (4.24) is further bounded by

CC
13
4

ε R− 65
2 ·δεR

13
4 ·10ε

⎛
⎜⎜⎝

2∏
i=1

⎛
⎝∑

Bj

‖ fi, j,+‖2L2

⎞
⎠

1
2

(
3+ 13ε

4

)⎞
⎟⎟⎠

(
2∏

i=1

max
θ

‖ fi‖L2
avg(θ)

) 1
4− 13ε

4

.

(4.25)
By Lemma 5.7 of [7], each tube T ∈ T belongs to T j,+ at most O(D3) many j (see also
Lemma 3.5 of [6]). Hence, by the L2-orthogonality, as in (3.10), we obtain

∑
Bj

‖ fi, j,+‖2L2 � D3‖ fi‖22. (4.26)
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Therefore, (4.25) is bounded by

CC
13
4

ε D10R− 65
2 ·δεR

13
4 ·10ε

(
2∏

i=1

‖ fi‖L2

)3+ 13ε
4

(
2∏

i=1

max
θ

‖ fi‖L2
avg(θ)

) 1
4− 13ε

4

. (4.27)

It suffices to note that D is a fixed number independent of R and we were able to assume that
R is large enough compared to D by the base of the induction.

4.2.2 The tangential wall case

In this case, the first term in (4.22) is bounded by the other terms. Therefore, it suffices to
prove the following proposition.

Proposition 4.4 For every pair of separated functions g1 and g2, and ball B j , it holds that

‖|Eg1, j,−Eg2,<4γ | 12 ‖L13/4(Bj∩N1)

≤ CεR
O(δ)

(
2∏

i=1

‖gi‖L2

) 12
13

(
2∏

i=1

max
θ

‖gi‖L2
avg(θ)

) 1
13

.

(4.28)

Recall that N1 is a subset of W = BR ∩ NR1/2+δ (Z(P1)) and Z(P1) is a two-dimensional
complete intersection of degree at most D.

The proof of the above proposition is the main part of this paper. We start with the
observation on page 27 of [21]: For every tube T ∈ T, there exist some tubes T̃T ,m of
dimension 5R1/2+δ × 5R1/2+δ × lm for some lm ≥ R1/2+δ such that

T ∩ NR1/2+δ (Z(P1)) ⊂
�CD⊔
m=1

T̃T ,m ⊂ N20R1/2+δ (Z(P1)), (4.29)

and
dist(T̃T ,m, T̃T ,m′) ≥ 2R1/2+δ (4.30)

for anym,m′. The property (4.30) is not crucial, but it helps to avoid some technical issue. Let
us prove the observation. By Theorem 2.5, there are at mostCD many connected components
of NR1/2+δ (T ) ∩ Z(P1). We take the smallest union of subtubes of NR1/2+δ (T ) such that the
union covers NR1/2+δ (T ) ∩ Z(P1). We slightly enlarge each subtube so that their union
covers T ∩ NR1/2+δ (Z(P1)). Note that each subtube is contained in N20R1/2+δ (Z(P1)) by
the construction of the subtubes. The distance condition (4.30) can be easily attained by
modifying the subtubes. This completes the proof of the observation.

We take the characteristic function χT̃T ,m
of a tube T̃T ,m . By the observation (4.29), it

holds that

Eg2,<4γ (x) =
∑

T∈T<4γ

�CD∑
m=1

χT̃T ,m
(x)Eg2,T (x) + RapDec(R)‖g2‖2 (4.31)
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for every x ∈ Bj ∩W . Note that the above identity does not need to be true outside of Bj ∩W .
Using (4.31), we obtain

‖|Eg1, j,−Eg2,<4γ |1/2‖L13/4(Bj∩N1)

�

∥∥∥∥∥∥|Eg1, j,−|1/2∣∣ ∑
T∈T<4γ

�CD∑
m=1

χT̃T ,m
Eg2,T

∣∣1/2
∥∥∥∥∥∥
L13/4(Bj∩N1)

.
(4.32)

By the triangle inequality and taking the maximum, the right-hand side above is bounded by

C(CD)1/2

∥∥∥∥∥∥|Eg1, j,−|1/2∣∣ ∑
T∈T<4γ

χT̃T ,m
Eg2,T

∣∣1/2
∥∥∥∥∥∥
L13/4(Bj∩N1)

(4.33)

for some m. For simplicity, let us use the notation χT̃T for χT̃T ,m
. Recall that the length of

the longest direction of the tube T̃T is greater than R1/2+δ and smaller than R. Thus, by a
dyadic pigeonhling and taking a sub-collection, we may assume that the longest directions
of all the nonempty tubes T̃T are comparable and we denote the length by l. Recall that the
constant D is independent of the parameter R. Hence, what we need to prove becomes

∥∥∥∥∥∥|Eg1, j,−|1/2∣∣ ∑
T∈T<4γ

χT̃T Eg2,T
∣∣1/2

∥∥∥∥∥∥
L13/4(Bj∩N1)

� RO(δ)

(
2∏

i=1

‖gi‖L2

) 12
13

(
2∏

i=1

max
θ

‖gi‖L2
avg(θ)

) 1
13

,

(4.34)

where T̃T has a longest direction with length 0 or l.
We will interpolate the L2 estimate and the L4 estimate by Hölder’s inequality:

∥∥∥∥∥∥∥
|Eg1, j,−| 12

∣∣∣∣∣∣
∑

T∈T<4γ

χT̃T Eg2,T

∣∣∣∣∣∣

1
2

∥∥∥∥∥∥∥
L13/4(Bj∩N1)

�

∥∥∥∥∥∥∥
|Eg1, j,−| 12

∣∣∣∣∣∣
∑

T∈T<4γ

χT̃T Eg2,T

∣∣∣∣∣∣

1
2

∥∥∥∥∥∥∥

3
13

L2(Bj∩N1)

×

∥∥∥∥∥∥∥
|Eg1, j,−| 12

∣∣∣∣∣∣
∑

T∈T<4γ

χT̃T Eg2,T

∣∣∣∣∣∣

1
2

∥∥∥∥∥∥∥

10
13

L4(Bj∩N1)

.

(4.35)

Let us first estimate the L4-norm. We define �Leng(l) by the collection of directions of the
tubes T ∈ T for which the intersection of the tube andW ∩ Bj contains a tube of dimensions
R1/2+δ × R1/2+δ × l. Define

TLeng(l) := {T ∈ T<4γ : v(T ) ∈ �Leng(l)}, g2,Leng(l) :=
∑

T∈TLeng(l)

g2,T . (4.36)

123



An improved bilinear restriction estimate... Page 17 of 23 88

We claim that∥∥∥∥∥∥∥

∣∣∣∣∣∣Eg1, j,−| 12
∣∣∣∣

∑
T∈T<4γ

χT̃T Eg2,T

∣∣∣∣∣∣

1
2

∥∥∥∥∥∥∥
L4(Bj∩N1)

� R− 1
8+O(δ)

⎛
⎜⎝

⎛
⎝ ∑

T∈T j,−
‖g1,T ‖22

⎞
⎠

1
2
⎛
⎝ ∑

T∈TLeng(l)

‖g2,T ‖22
⎞
⎠

1
2
⎞
⎟⎠

1
2

.

(4.37)

Recall that Bj ∩ W is a union of regular balls Q of radius R1/2. Define T j,−,Q by the set of
tubes inT j,− intersecting Q and defineTLeng(l),Q similarly. Note that on each set Q∩W ∩Bj

Eg1, j,− =
∑

T∈T j,−,Q

Eg1,T + RapDec(R)‖g1‖2. (4.38)

Similarly, on each set Q ∩ W ∩ Bj

∑
T∈T<4γ

χT̃T Eg2,T =
∑

T∈TLeng(l),Q,∼
Eg2,T + RapDec(R)‖g2‖2, (4.39)

where
TLeng(l),Q,∼ := {T ∈ TLeng(l),Q : T̃T ∩ Q ∩ W ∩ Bj 
= ∅}. (4.40)

Here, the set T<4γ was defined in (4.6), Bj is a ball of radius R1−δ , and T̃T is a sub-tube of
T ∈ T<4γ the longest length of which is 0 or l. By the above identities, we know that

∥∥∥∥∥∥|Eg1, j,−| 12
∣∣∣∣

∑
T∈T<4γ

χT̃T Eg2,T
∣∣ 12

∥∥∥∥∥∥
L4(Bj∩N1)

�

⎛
⎜⎜⎝

∑
Q:Q∩W∩Bj 
=∅

∥∥∥∥∥∥∥

∣∣∣∣∣∣
∑

T∈T j,−,Q

Eg1,T
∑

T∈TLeng(l),Q,∼
Eg2,T

∣∣∣∣∣∣

1
2

∥∥∥∥∥∥∥

4

L4(Q)

⎞
⎟⎟⎠

1
4

.

(4.41)

Wefix Q. Since Q∩W 
= ∅, we can choose a point z ∈ Z(P1)∩NR1/2+δ (Q). Notice that by
the definition of T j,−, every T ∈ T j,−,Q satisfies that Angle(v(T ), TzZ(P1)) ≤ R−1/2+2δ .
Thus, the function

∑
T∈T j,−,Q

g1,T is supported on some strip of width R−1/2+O(δ). By a

simple change of variables, we may assume that the strip is [0, 1] × [0, R−1/2+O(δ)]. On the
other hand, by the definition, we know that TLeng(l),Q,∼ ⊂ T<4γ , and thus, the support of∑

T∈TLeng(l),Q,∼ g2,T is contained in [0, 1] × [0, 100γ ]. Since g1 and g2 are separated and the
constant γ is much smaller than the implied constant in the definition of the separation (1.2),
we can conclude that

dist

⎛
⎝π

⎛
⎝supp

⎛
⎝ ∑

T∈T j,−,Q

g1,T

⎞
⎠

⎞
⎠ , π

⎛
⎝supp

⎛
⎝ ∑

T∈TLeng(l),Q,∼
g2,T

⎞
⎠

⎞
⎠

⎞
⎠ � 1, (4.42)

whereπ : R2 → R is a projectionmap defined asπ(ξ1, ξ2) := ξ1. Therefore, we can perform
the the standard L4-argument (see Lemma 3.10 of [6]), or simply apply Theorem 1.3 of [3],
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and obtain
∥∥∥∥∥∥∥

∣∣∣∣∣∣
∑

T∈T j,−,Q

Eg1,T
∑

T∈TLeng(l),Q,∼
Eg2,T

∣∣∣∣∣∣

1
2

∥∥∥∥∥∥∥
L4(Q)

� R− 1
8+O(δ)

⎛
⎜⎝

⎛
⎝ ∑

T∈T j,−,Q

‖g1,T ‖22
⎞
⎠

1
2
⎛
⎝ ∑

T∈TLeng(l),Q,∼
‖g2,T ‖22

⎞
⎠

1
2
⎞
⎟⎠

1
2

.

(4.43)

We bound the sum over TLeng(l),Q,∼ by that over TLeng(l),Q . Define a function χ(T , Q)

whose value is 1 if T and Q intersect, and 0 otherwise. Notice that
∑

T∈T j,−,Q

‖g1,T ‖22 =
∑

T∈T j,−
χ(T , Q)‖g1,T ‖22. (4.44)

We have a similar property for TLeng(l),Q . Notice that for every T1 and T2 whose direction is
separated by � 1 it holds that

∑
Q

χ(T1, Q)χ(T2, Q) � RO(δ). (4.45)

By this inequality, we obtain

∑
Q

∑
T∈T j,−,Q

‖g1,T ‖22
∑

T∈TLeng(l),Q

‖g2,T ‖22

� RO(δ)
∑

T1∈T j,−

∑
T2∈TLeng(l)

‖g1,T1‖22‖g2,T2‖22.
(4.46)

Therefore, by (4.43) and the above inequality, we know that

∑
Q

∥∥∥∥∥∥∥

∣∣∣∣∣∣
∑

T∈T j,−,Q

Eg1,T
∑

T∈TLeng(l),Q,∼
Eg2,T

∣∣∣∣∣∣

1
2

∥∥∥∥∥∥∥

4

L4(Q)

� R− 1
2+O(δ)

∑
T∈T j,−

‖g1,T ‖22
∑

T∈TLeng(l)

‖g2,T ‖22.
(4.47)

The claim (4.37) follows by combining (4.41) and (4.47).
Let us move on to the L2-estimate. A main estimate is the following.

Lemma 4.5
∥∥∥∥∥∥

∑
T∈T<4γ

χT̃T Eg2,T

∥∥∥∥∥∥
2

L2(Bj∩W )

� RO(δ)

(
l

R

) ∑
T∈TLeng(l)

‖Eg2,T ‖2L2(wB j )
. (4.48)

Onemay think of this estimate as a counterpart of [21, eq. (4.16)] in the restriction problem
setting.
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We assume this lemma for a moment and finish the proof of Proposition 4.4. By the
Cauchy–Schwarz inequality,∥∥∥∥∥∥∥

|Eg1, j,−| 12
∣∣∣∣∣∣

∑
T∈T<4γ

χT̃T Eg2,T

∣∣∣∣∣∣

1
2

∥∥∥∥∥∥∥
L2(Bj∩N1)

�
∥∥Eg1, j,−∥∥ 1

2
L2(Bj )

∥∥∥∥∥∥
∑

T∈T<4γ

χT̃T Eg2,T

∥∥∥∥∥∥

1
2

L2(Bj∩W )

.

(4.49)

By Lemma 4.5, the above term is bounded by

RO(δ)

(
l

R

) 1
4 ‖Eg1, j,−‖

1
2
L2(Bj )

⎛
⎝ ∑

T∈TLeng(l)

‖Eg2,T ‖2L2(wB j )

⎞
⎠

1
4

. (4.50)

By the standard L2-estimate
‖Eg‖2L2(Bj )

� R1−δ‖g‖22, (4.51)

the term (4.50) is further bounded by

RO(δ)

(
l

R

) 1
4

(R1−δ)
1
2

⎛
⎝ ∑

T∈T j,−
‖g1,T ‖22

⎞
⎠

1
4
⎛
⎝ ∑

T∈TLeng(l)

‖g2,T ‖22
⎞
⎠

1
4

. (4.52)

By (4.35), the L4-estimate (4.37), and the L2-estimate, we obtain∥∥∥∥∥∥∥
|Eg1, j,−| 12

∣∣∣∣∣∣
∑

T∈T<4γ

χT̃T Eg2,T

∣∣∣∣∣∣

1
2

∥∥∥∥∥∥∥
L13/4(Bj∩N1)

� R− 1
26+O(δ)l

3
52

⎛
⎝ ∑

T∈T j,−
‖g1,T ‖22

⎞
⎠

1
4
⎛
⎝ ∑

T∈TLeng(l)

‖g2,T ‖22
⎞
⎠

1
4

.

(4.53)

We now apply Lemma 2.63 to the function g1, j,− with n = 3, r = R, and ρ = R1/2, by the
L2-orthogonality, we obtain∑

T∈T j,−
‖g1,T ‖22 �

∑
θ

∑
T∈T j,−

∥∥g1,T ∥∥2
L2(θ)

� R1/2+O(δ) max
θ

⎛
⎝ ∑

T∈T(θ)

∥∥g1,T ∥∥2
L2(θ)

⎞
⎠

� R−1/2+O(δ) max
θ

∥∥g1∥∥2L2
avg(θ)

,

(4.54)

and similarly, ∑
T∈TLeng(l)

‖g2,T ‖22 � l−1R1/2+O(δ) max
θ

‖g2‖2L2
avg(θ)

. (4.55)

3 ByWongkew’s theorem [19], one can see that the assumption (2.7) is satisfied and we can apply the lemma.
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Therefore, by combining these estimates with the L2-orthogonality, we conclude that
∥∥∥∥∥|Eg1, j,−| 12 ∣∣ ∑

T∈T
χT̃T Eg2,T

∣∣ 12
∥∥∥∥∥
L13/4(Bj∩N1)

� R− 1
26+O(δ)l

1
26

(
2∏

i=1

‖gi‖2
) 1

2 · 1213 (
2∏

i=1

max
θ

‖gi‖L2
avg(θ)

) 1
2 · 1

13

.

(4.56)

Proposition 4.4 follows by the upper bound l ≤ R.
It remains to prove Lemma 4.5

Proof of Lemma 4.5 We cover Bj ∩ W by smaller balls Q of radius R1/2. By the L2-
orthogonality, we see that

∥∥∥∥∥∥
∑

T∈T<4γ

χT̃T Eg2,T

∥∥∥∥∥∥
2

L2(Q)

� RO(δ)
∑

T∈TLeng(l):T̃T ∩Q 
=∅
‖Eg2,T ‖2L2(wQ )

. (4.57)

We sum over all the balls Q intersecting Bj ∩ W and obtain

∥∥∥∥∥∥
∑

T∈T<4γ

χT̃T Eg2,T

∥∥∥∥∥∥
2

L2(Bj∩W )

� RO(δ)
∑

T∈TLeng(l)

‖Eg2,T ‖2L2(
∑

Q:Q∩T̃T 
=∅ wQ)
. (4.58)

By an standard application of the essentially constant property (Lemma 6.4 of [7]), the right
hand side of (4.58) is bounded by

RO(δ) |T̃T |
|T ∩ Bj |

∑
T∈TLeng(l)

‖Eg2,T ‖2L2(wB j )
. (4.59)

It suffices to recall that T̃T has the dimension 5R1/2+δ × 5R1/2+δ × l. ��

5 A proof of theorem 1.1: The remaining case

In the previous two sections, we proved Proposition 3.1 by assuming Lemma 4.1. In this
section, we prove the lemma. Let us recall the lemma.

Lemma 5.1 For every pair of separated functions g1 and g2, one-dimensional transverse
complete intersection Z(Q1, Q2) of degree at most D1, it holds that

∥∥∥∥∥
2∏

i=1

|Egi |
∥∥∥∥∥
L13/4(BR∩NR1/2+δ (Z(Q1,Q2)))

≤ CεR
−cεδR10ε

(
2∏

i=1

‖gi‖L2

) 12
13+ε (

2∏
i=1

max
θ∈P(R−1/2)

‖gi‖L2
avg(θ)

) 1
13−ε

(5.1)

under the induction hypothesis (3.4).
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The proof of this lemma shares some similarity to that for the low angle dominant case
(Subsect. 4.2). We only sketch the proof here.
Let us use the notation Y := BR∩NR1/2+δ (Z(Q1, Q2)) for simplicity.We cover Y by smaller
balls Bj of radius R1−δ . Define transverse and tangential tubes with respect to the transverse
complete intersection Z(Q1, Q2) as follows.

Definition 5.2 (Tangential tube with respect to Z(Q1, Q2)) T j,tang is the set of all T ∈ T

obeying the following two conditions.

• T ∩ Bj ∩ Y 
= ∅
• If z is any point of Z(Q1, Q2) lying in 2Bj ∩ 10T , then

Angle(v(T ), Tz(Z(Q1, Q2))) ≤ R−1/2+2δ. (5.2)

Definition 5.3 (Transverse tube with respect to Z(Q1, Q2)) T j,trans is the set of all T ∈ T

obeying the following two conditions.

• T ∩ Bj ∩ Y 
= ∅
• There exists a point of Z(Q1, Q2) lying in 2Bj ∩ 10T , so that

Angle(v(T ), Tz(Z(Q1, Q2))) > R−1/2+2δ. (5.3)

Define gi, j,trans := ∑
T∈T j,trans

gi,T and define gi, j,tang similarly. Note that

Egi = Egi, j,tang + Egi, j,trans + RapDec(R)‖gi‖2. (5.4)

By the triangle inequality, the left hand side of (5.1) is bounded by

�

⎛
⎝∑

Bj

‖|Eg1, j,transEg2, j,trans|1/2‖13/4L13/4(Y∩Bj )

⎞
⎠

4
13

+
⎛
⎝∑

Bj

‖|Eg1, j,tangEg2, j,trans|1/2‖13/4L13/4(Y∩Bj )

⎞
⎠

4
13

+
⎛
⎝∑

Bj

‖|Eg1, j,transEg2, j,tang|1/2‖13/4L13/4(Y∩Bj )

⎞
⎠

4
13

+
⎛
⎝∑

Bj

‖|Eg1, j,tangEg2, j,tang|1/2‖13/4L13/4(Y∩Bj )

⎞
⎠

4
13

.

(5.5)

Let us consider the case that the first term dominates the others. By Lemma 5.7 of [7],
each tube T ∈ T belongs to T j,trans at most O((D1)

3) many j . By the L2-orthogonality, this
implies the following inequality:

∑
Bj

‖gi, j,trans‖22 � (D1)
3‖gi‖22. (5.6)

Hence, by following the arguments in the transversewall case (Subsect. 4.2.1) line by linewith
gi, j,trans replacing fi, j,+, one can get the desired bound. Since the arguments are identical,
we leave out the details.
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Let us consider the case that the first term is dominated by the others. In this case, by
replacing the summation by the maximum, it suffices to prove

‖|Eg1, j,tangEg2|1/2‖L13/4(Y∩Bj )

� RO(δ)

(
2∏

i=1

‖gi‖L2

) 12
13

(
2∏

i=1

max
θ∈P(R−1/2)

‖gi‖L2
avg(θ)

) 1
13 (5.7)

for every function g1 and g2. By Hölder’s inequality, the left hand side is bounded by a
constant multiple of

‖|Eg1, j,tangEg2|1/2‖1/26L2(Y∩Bj )
‖|Eg1, j,tangEg2|1/2‖25/26L10/3(Y∩Bj )

. (5.8)

To treat the L2-norm, we simply apply the Cauchy-Schwarz inequality and the standard L2-
estimate (4.51). For the L10/3-norm, we apply Tao’s bilinear restriction estimate [14]. Then
the above term is bounded by

R1/52+O(δ)‖g1, j,tang‖1/22 ‖g2‖1/22 . (5.9)

By the polynomial Wolff axioms (Lemma 2.6) with n = 3, r = R, and ρ = R1/2, we know
that

‖g1, j,tang‖22 � R−1RO(δ) max
θ

‖g1‖2L2
avg(θ)

. (5.10)

Therefore, (5.9) is bounded by

RO(δ)

(
2∏

i=1

‖gi‖L2

) 12
13

(
2∏

i=1

max
θ∈P(R−1/2)

‖gi‖L2
avg(θ)

) 1
13

(5.11)

and this completes the proof of the lemma.
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