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Abstract
Given a Radon probability measure μ supported in R

d , we are interested in those points x
around which the measure is concentrated infinitely many times on thin annuli centered at
x . Depending on the lower and upper dimension of μ, the metric used in the space and the
thinness of the annuli, we obtain results and examples when such points are ofμ-measure 0 or
ofμ-measure 1.Themeasure concentrationwe study is related to “badpoints” for thePoincaré
recurrence theorem and to the first return times to shrinking balls under iteration generated
by a weakly Markov dynamical system. The study of thin annuli and spherical averages is
also important in many dimension-related problems, including Kakeya-type problems and
Falconer’s distance set conjecture.
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1 Introduction andmain results

In the following, μ is a Radon probability measure supported in R
d and dimH denotes the

Hausdorff dimension. We denote by B(x, r) the closed ball {y ∈ R
d : ‖x − y‖ ≤ r}, which

obviously depends on the norm ‖ · ‖ chosen on Rd . We consider norms which are equivalent
with the most common Euclidean one, ||.||2.
Definition 1.1 For every x ∈ R

d , 0 < r < 1 and δ ≥ 1, define the annulus

A(x, r , δ) = B(x, r)\B(x, r − r δ). (1.1)

We say that

Pμ(x, r , δ, η) holds when μ
(
A(x, r , δ)

) ≥ η · μ
(
B(x, r)

)
.

Finally, we set

Eμ(δ, η) = {x ∈ R
d : Pμ(x, rn, δ, η) holds for a sequence (rn)n≥1 → 0}.

Intuitively, around points belonging to Eμ(δ, η), the measure μ concentrates a substantial
part of its local mass on a very thin annulus (since r δ � r ). The larger δ, the thinner the
annulus: Eμ(δ′, η) ⊂ Eμ(δ, η) when δ′ ≥ δ. Our goal is to investigate the size of the sets
Eμ(δ, η).

In this paper, we only consider diffuse measures, i.e. without any Dirac mass:
μ(B(x, 0)) = 0, for every x ∈ R

d . In this case, μ(Eμ(1, η)) = 1 for every η ∈ [0, 1].
The question we investigate hereafter concerns the size of Eμ(δ, η) for δ > 1, and it appears
that the answer depends on the measure μ, the thinness δ and the norm used to define the
annuli, in a subtle manner.

123



Measures, annuli and dimensions Page 3 of 34 79

The sets Eμ(δ, η) appear in various places. For instance, in [2], it is proved that if μ

is the Sinai–Ruelle–Bowen measure associated with a non-uniformly hyperbolic dynamical
system (X , T , μ), then the elements of Eμ(δ, η) are “bad points” for the Poincaré recurrence
theorem, in the sense that given r > 0, when x ∈ Eμ(δ, η), the iterates T j x of x come back
inside B(x, r) not as often as expected.

More recently, Pawelec, Urbański, and Zdunik [17] investigated the first return times to
shrinking balls under iteration generated by a weakly Markov dynamical systems, and had
to deal with what they call the Thin Annuli Property. This property has several versions in
[17], and is very similar to belonging to the complementary set of our sets Eμ(δ, η), except
that the exponent δ in Pμ(x, r , δ, η) depends on r , and may tend to infinity when r tends to
0. In weaker versions of the Thin Annuli Property there are also restrictions on the range of
radii. The conditions we impose to the elements of Eμ(δ, η) are stronger, that is, they imply
that the so-called Full Thin Annuli Property of [17] holds. In the same paper, the authors
prove (Theorem C) that every finite Borel measure μ in a Euclidean space Rd , satisfies the
Thick Thin Annuli Property (this means that for arbitrary measures the range of radii for
which the Thin Annuli Property holds is more limited). Our theorems below state that in
many situations (for instance, for all measures μ with large lower dimensions), Theorem C
can be improved.

Let us also mention that Theorem D of [17] shows that certain measures coming from
conformal geometrically irreducible Iterated Function Systems satisfy the Full Thin Annuli
Property. We will come back to this later in the introduction.

Similar questions appear also when studying orbit distribution of various groups acting
on R

2 (Theorem 3.2 of [18]). See also [8, 19] for other occurrences of such questions.
Connections with other works are also made later in the introduction.

We start byproving that, regardless of the norm inRd ,measureswith large lower dimension
do not charge annuli at small scales if the exponent δ defining the annuli is sufficiently large,
where “sufficiently large” depends on the lower and upper dimensions ofμ, whose definitions
are recalled now.

Definition 1.2 Let μ be a Radon probability measure on Rd .
The lower and upper dimensions of μ are defined as

dim(μ) = sup{α ≥ 0 : for μ-a.e x, ∃ rx > 0,∀ 0 < r < rx , μ(B(x, r)) ≤ rα}
and

dim(μ) = inf{β ≥ 0 : for μ-a.e x, ∃ rx > 0,∀ 0 < r < rx , μ(B(x, r)) ≥ rβ}.
Our first result is the following.

Theorem 1.3 Let μ be a probability measure on Rd such that dim(μ) > d − 1.

For every δ >
dim(μ)−(d−1)
dim(μ)−(d−1) and η ∈ (0, 1], one has μ

(
Eμ(δ, η)

) = 0.

Hence, for mono-dimensional measures μ satisfying dim(μ) = dim(μ) > d − 1,
μ

(
Eμ(δ, η)

) = 0 for every δ > 1. Observe that Theorem 1.3 holds true regardless of
the underlying metric used to define A(x, r , δ). Also, in dimension d = 1, Theorem 1.3 is

simpler and rewrites as follows: μ
(
Eμ(δ, η)

) = 0 for every δ >
dim(μ)
dim(μ)

and η ∈ (0, 1],
Next theorem shows that Theorem 1.3 is optimal if the ||.||∞ metric is used.

Theorem 1.4 Suppose that the metric generated by the norm ||.||∞ = max{|xi | : i =
1, . . . , d} is used to define the annuli A(x, r , δ) in (1.1).
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For every d − 1 < d < d < d and every η ∈ (0, 1), there exists a probability measure μ

on R
d such that dim(μ) = d, dim(μ) = d and

μ

(

Eμ

(
d − (d − 1)

d − (d − 1)
, η

))

= 1. (1.2)

Remark 1.5 In Theorem 1.4 the case d = d is trivial since as noticed above,μ(Eμ(1, η)) = 1
is always true for any non-atomic measure.

Still in the ||.||∞ case, we further investigate what happens for measures of lower dimen-
sion less than d−1. The quite surprising result is that for suchmeasuresμ, the worse scenario
may always happen, in the sense that it is possible that μ charges only points around which
the mass is infinitely often concentrated on small annuli.

Theorem 1.6 Suppose that d ≥ 2 and that the metric ||.||∞ is used. For every d ≤ d − 1,
d ≤ d ≤ d, every η ∈ (0, 1) and every δ > 1, there exists a probability measure μ on R

d

such that dim(μ) = d, dim(μ) = d and

μ
(
Eμ(δ, η)

) = 1. (1.3)

Althoughwe do not explicitly state it, an adaptation of their proofs show that Theorems 1.4
and 1.6 remain true when the frontiers of the annuli A(x, r , δ) in the given metric are finite
unions of convex parts of hyperplanes, for instance in the case ||.|| = ||.||1 = ∑d

i=1 |xi |.
While the proof of Theorem 1.3 deals with all measures satisfying its assumptions, the

proofs of Theorems 1.4 and 1.6 are constructive (they are both based on the same arguments):
we explicitly build measures such that (1.2) or (1.3) are true.

Coming back to Theorem 1.3, it is striking that when the Euclidean metric is used, the
uniform bound for δ can be improved, in the sense that μ(Eμ(δ, η)) = 0 even for δ smaller

than d−(d−1)
d−(d−1) . Next theorem illustrates this fact when d = 2, even when d < d − 1 = 1.

Theorem 1.7 Suppose that d = 2 and that the Euclidean metric ||.||2 is used.
Let d ∈ [0.89, 2] and d ∈ [0.89, d]. Suppose that μ is a Radon probability measure such

that dimμ = d and dimμ = d. Then μ(Eμ(30, η)) = 0 for any η ∈ (0, 1).

In the above Theorem 1.7, taking d = 1.01 and d = 1.99, one sees that

d − (d − 1)

d − (d − 1)
= 1.99 − 1

1.01 − 1
= 99.

By Theorem 1.4, one might expect the existence of a probability measure μ for which
μ(Eμ(99, η)) = 1. Since Eμ(30, η) ⊃ Eμ(99, η) the result of Theorem 1.7 goes well
beyond the bound in (1.2) and shows that in the Euclidean metric, annuli are sufficiently
“independent/decorrelated” so that Theorem 1.3 can be sharpened significantly - observe
that Theorem 1.7 holds for all measures satisfying its assumptions.

The heuristic intuition explaining the difference between Theorems 1.6 and 1.7 is that
when an annulus with a cubic shape centered at a point x is translated by a very small
distance, a large part of the translated annulus is still contained in a cubic annulus centered at
x with comparable sidelength. But this does not hold true anymore for annuli with spherical
shape.

More generally, it is standard that dealing with the Euclidean norm is often more com-
plicated than with polyhedral norms in many dimensional problems (we come back to this
below).
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Our key tool to prove Theorem 1.7 is Lemma 5.1, which is an estimate of the size of
intersecting annuli. This type of estimates were considered by many authors see, for example
[1], [13] or especially Lemma 3.1 of [21]. The order we obtain in Lemma 5.1 is slightly better
than the ones available in the literature, and optimal as we remark in Sect. 5.

Also, it is striking that Theorem 1.7 deals also with lower and upper dimensions for μ

that are less than 1 = d − 1, emphasizing the difference between the ||.||∞ metric (and
Theorem 1.4) and the Euclidean metric.

The values 0.89 and 30 we obtain are not optimal, and obtaining exact bounds in Theo-
rem 1.7 for the Euclidean metric in dimension d seems to be a challenging and interesting
open problem.

Question 1 Suppose that the Euclidean metric is used in Rd . For every 0 < d ≤ d ≤ d , find
the best 1 ≤ δ = δ(d, d) such that for every probability measure μ supported inside [0, 1]d ,
for every δ′ > δ, for every η ∈ (0, 1), μ

(
Eμ(δ′, η)

) = 0.

Given our previous results, it is natural to conjecture the following:

Conjecture 1 When d > d − 1, the optimal δ(d, d) is such that δ(d, d) <
d−(d−1)
d−(d−1) .

Application to dynamical systems. Suppose that (T , X , μ, �) is a metric measure pre-
serving dynamical system, that is (X , �) is a metric space and T : X → X is a Borel
measurable map preserving a Borel probability measure μ on X . Given a ball B(x, r) and
y ∈ X ,

τB(x,r)(y) := min{n ≥ 1 : T n(y) ∈ B(x, r)},
is the first entry time of y to B(x, r). When y ∈ B(x, r), it is called the first return time of y
to B(x, r).

The entry and return times τB(x,r)(y) are studied in [17], for Weakly Markov systems
(T , X , μ, �) (we refer to [17] for precise definitions). From Theorems 1.3 and 1.7, it follows
that for certain measures the Full Thin Annuli Property from [17] is satisfied. This way, based
on Theorem B of [17] one can state the following theorem.

Theorem 1.8 Let (T , X , μ, �) be a Weakly Markov system, with X ⊂ R
d . If one of the

following two conditions is satisfied:

(i) dim(μ) > d − 1 and the metric used is any of the equivalent metrics used in Rd ;
(ii) d = 2, the metric is the Euclidean and dim(μ) ≥ 0.89;

then the distributions of the normalized first entry time and first return time converge to the
exponential one law, that is

lim
r→0

sup
t>0

∣∣∣μ
({

y ∈ X : τB(x,r)(y) >
t

μ(B(x, r))

})
− e−t

∣∣∣ = 0 (1.4)

and

lim
r→0

sup
t>0

∣∣∣
1

μ(B(x, r))
μ

({
y ∈ B(x, r) : τB(x,r)(y) >

t

μ(B(x, r))

})
− e−t

∣∣∣ = 0. (1.5)

In [17], the conclusions are true for every Weakly Markov system (T , X , μ, �), with the
restriction that the limits in (1.4) and (1.5) are taken only on a subsequence of radii (more
precisely, the limit is limr→0, r∈Rx , where Rx is a β-thick class of radii - for the exact details
see [17]). Our main improvement is to show that the limit holds true for every measure
provided that one of the two conditions is satisfied.
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It is interesting that in [17] it is also shown that the Full Thin Annuli Property holds
for (essentially all) Conformal Iterated Function Systems (I FSs). Without getting into the
details of definitions which can be found in [17] we briefly recall this result. Suppose that
X ⊂ R

d , E is a countable alphabet and S = {φe : X → X}e∈E is a conformal I FS. The
limit set of S is denoted by JS , the coding map (projecting from the symbolic space onto JS)
is denoted by π . The authors study a sufficiently large class of Borel probability measures,
denoted by ME defined on the symbol space EN. These measures satisfy two assumptions,
one is called Property (A), Weak Independence, the other one is a more technical Property
(B). Many Gibbs/equilibrium measures of Hölder continuous summable potentials on the
symbol space EN belong to this class.

According to Theorem D of [17], if S is a conformal geometrically irreducible I FS, then
for every μ ∈ ME , the projection measure μ ◦ π−1 has the Full Thin Annuli Property. In
fact, one has

lim
r→0

μ ◦ π−1(B(x, r + r3) \ B(x, r))

μ ◦ π−1(B(x, r))
= 0, μ ◦ π−1-a.e. x ∈ X .

Let us mention that the problems concerning intersecting annuli in Sect. 5 are reminiscent
to questions arising when studying for instance Falconer’s distance set conjecture (for which
recentlymany striking resultswere obtained [4, 5, 7, 9, 15]) and the (circular)Kakeya problem
[10, 11]. Distribution of measures on annuli plays an important role in these problems as
well, mainly through the study of cubic or spherical averages, and it is a standard issue
that the choice of the norm influences the results. In Sect. 6 we discuss this in more detail,
in particular, based on standard arguments [4, 15, 20] in Fourier and potential theory, the
following proposition is proved.

Proposition 1.9 Let t > 1/2, and let μ be a finite t-regular measure on R
2, i.e. a Radon

measure satisfying

ctr
t ≤ μ(B(x, r)) ≤ Ctr

t , ∀x ∈ spt(μ) and 0 < r < diam(sptμ). (1.6)

Assume that μ has compact support.
Then, for δ = 4, for every η > 0

lim
r→0

μ({x ∈ R
2 : Pμ(x, r , 4, η) holds)}) = 0. (1.7)

Unfortunately, this convergence in measure, or similar arguments, do not help improving
our bounds (in fact, as far as we checked they do not even yield Theorems 1.3 to 1.7). But it
is quite interesting that similar issues arise in both problems.

The paper is organized as follows.
In Sect. 2, Theorem 1.3 is proved. The proof is natural and quite short, based on the Radon

measure version of Lebesgue’s density theorem, Corollary 2.1.
In Sect. 3, we explicitly build a measure μ such that μ(Eμ(δ, η)) = 1, for any choice of

δ and η. The construction is based on two subdivision schemes A and B that allow to spread
the mass of a cube on its boundaries in a controlled manner.

In Sect. 4, we show that the construction of Sect. 3 can be adapted to prove Theorem 1.6.
In Sect. 5, the Euclidean case (and Theorem 1.7) is studied.
Finally, in Sect. 6 we prove Proposition 1.9 and explain why such arguments, though

interesting, are for the moment not strong enough to reach Theorems 1.3 to 1.7.

123



Measures, annuli and dimensions Page 7 of 34 79

2 Proof of Theorem 1.3

Before starting the proof we recall with slight change of notation part (1) of 2.14 Corollary
from [14].

Corollary 2.1 Suppose that μ is a Radon measure onRn and E ⊂ R
n is μ measurable. Then

the limit

lim
r↘0

μ(E ∩ B(x, r))

μ(B(x, r))

exists and equals 1 for μ-almost all x ∈ E and equals 0 for μ-almost all x ∈ R
n \ E.

Proof of Theorem 1.3 Fix δ > (d − (d − 1))/(d − (d − 1)) and ε > 0 so small that

(d − ε + (d − 1))δ > d + ε + (d − 1). (2.1)

Observe that there exists a constant Cd > 0, depending on d and the chosen norm only,
such that for any ball B(x, r), the associated annulus A(x, r , δ) can be covered by at most
Cdr (d−1)(1−δ) smaller balls B of radius r δ .

Also, choose 0 < η < 1, and consider Eμ(δ, η).
Proceeding towards a contradiction, suppose that μ(Eμ(δ, η)) > 0.
Consider for every r , ε > 0 the set

Dε,r = {x ∈ R
d : ∀ 0 < s ≤ r , sd+ε ≤ μ(B(x, s)) ≤ sd−ε}. (2.2)

By definition, for every ε > 0, the set Eμ(δ, η) ∩ ⋃
p≥1 Dε,1/p has full μ-measure in

Eμ(δ, η). This holds especially for ε fixed in (2.1).
We put E = Eμ(δ, η) ∩ Dε,1/p with a choice of a sufficiently large p such that μ(E) ≥

μ(Eμ(δ, η))/2 > 0.
Finally, we choose 0 < γ < 1/p so small that for every 0 ≤ r ≤ γ ,

r (d−ε−(d−1))δ ≤ η2ε−d

2Cd
rd+ε−(d−1). (2.3)

For every x ∈ E , there exists rx > 0, such that

rx < γ/2, rd+ε
x ≤ μ(B(x, rx )) ≤ r

d−ε
x and Pμ(x, rx , δ, η) holds. (2.4)

By using Corollary 2.1 we can also assume that for μ-almost all x ∈ E , we have chosen
rx so small that

μ(E ∩ B(x, rx )) > (1 − η/10)μ(B(x, rx ))

and hence

μ(B(x, rx ) \ E) < (η/10)μ(B(x, rx )). (2.5)

Let us write Bx = B(x, rx ) and Ax = A(x, rx , δ) for every x ∈ E . Such a ball satisfies
by (2.4)

rd+ε
x ≤ μ(Bx ) ≤ r

d−ε
x (2.6)

together with Pμ(x, rx , δ, η).
Since μ(E) > 0, it is possible to select an x ∈ E for which (2.5) holds.
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Since Pμ(x, rx, δ, η) is satisfied, we have

η · μ(Bx) ≤ μ(Ax). (2.7)

In addition, by definition of Cd , Ax is covered by at most Cd(rx)(d−1)(1−δ) many balls
B of radius r δ

x . For each of these balls B, either μ(E ∩ B) = 0, or μ(E ∩ B) > 0 and in
this case E ∩ B ⊂ B(y, 2r δ

x) for some y ∈ E . Observe that by δ ≥ 1 and (2.4), we have
2r δ

x < 2rx < γ < 1/p. By (2.2)

μ(E ∩ B) ≤ μ(B(y, 2r δ
x)) ≤ (2r δ

x)
d−ε.

Hence, summing over the (at most Cd(rx)(d−1)(1−δ)) balls that cover Ax, we get by (2.3) and
(2.6) that

μ(Ax ∩ E) ≤ Cd(rx)
(d−1)(1−δ)(2r δ

x)
d−ε ≤ η

2
rd+ε
x ≤ η

2
μ(Bx).

Since by (2.5) and (2.7)

μ(Ax ∩ E) ≥ μ(Ax) − μ(Bx \ E) ≥ 0.9 · η · μ(Bx)

we obtain a contradiction with the previous equation. ��
Remark 2.2 Looking closely at the above proof, the unique geometric property used in it is
the existence of the constant Cd such that any annulus A(x, r , δ) can be covered by at most
Cdr (d−1)(1−δ) balls B of radius r δ , the other arguments being of metric nature. Hence it is
likely that the result can be extended tomore general metric spaces satisfying such properties.

3 Proof of Theorem 1.4

In this section we construct a Cantor-like measure μ which satisfies the assumptions of
Theorem 1.4. The main idea is that the construction steps leading to μ are similar to the
ones of a standard Cantor set and measure, except that for some exceptional steps where we
impose that some annuli carry the essential weight of the mass.

3.1 Preliminaries

Fix 0 < η < 1, d − 1 < d < d < d , and put

δ = d − (d − 1)

d − (d − 1)
> 1, (3.1)

where the equality is equivalent to

(d − 1)(1 − δ) + δd = d. (3.2)

We call Dn , n = 0, 1, . . . the family of half-open dyadic cubes of side length 2−n , that
is cubes Q = ∏d

i=1[ki · 2−n, (ki + 1)2−n), ki ∈ Z, i = 1, . . . , d . Observe that Q contains
exactly one of its vertices, namely the one with coordinates (k1 · 2−n, . . . , kd · 2−n). We call
this vertex the smallest vertex of Q and denote it by vmin,Q . The sum of the coordinates of
vmin,Q is denoted by s(vmin,Q), that is

s(vmin,Q) = k1 · 2−n + · · · + kd · 2−n . (3.3)
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Definition 3.1 For every cube Q ∈ Dm , for every n > m denote by ∂nQ ⊂ Dn the set of
n-boundary cubes of Q, that is those Q′ ∈ Dn which are included in Q, but at least one of
their neighbors is not included in Q. We denote by dn(Q) the number of Dn cubes in ∂nQ.

Out of the 2d faces of Q, we call ∂n,1Q the face consisting of those cubes Q′ ∈ ∂nQ for
which the first coordinate of its smallest vertex is k1 · 2−n : ∂n,1Q will be called the smallest
face of Q. We also put ∂m,1Q = {Q}.

We denote by dn,1(Q) the number of Dn cubes in ∂n,1Q. It is clear that

dn,1(Q) = 2(d−1)(n−m). (3.4)

In the rest of this section, we construct a sequence of mass distributions (μm)m≥1 which
converges to a measure μ that will satisfy the assumptions of Theorem 1.4.

We put μ0([0, 1)d) = 1, and for Q �= [0, 1)d , Q ∈ D0, we impose that μ0(Q) = 0.
At themth step, the mass distributionμm will be defined by fixing theμm-weight of every

cube Q ∈ Dm , and this μm-mass will be uniformly distributed inside every such Q. Then
μm+1 will be a refinement of μm in the sense that

for every Q ∈ Dm, μm+1(Q) = μm(Q). (3.5)

Due to Kolmogorov’s extension theorem (see for example [16], [20] or [12]) this ensures the
weak convergence of (μm) to a measure μ defined on [0, 1]d .

Set η∗ = √
η > η.

Fix a constant cd > 0 so large that

cd ≥ 210d+1, η∗ > c−1
d (3.6)

1 − η > 1 − η∗ ≥ c−1
d , and η∗2d+1+δ ≤ cd . (3.7)

Denote by D+
m the subset of Dm containing those cubes Q ∈ Dm for which the mea-

sure μm(Q) > 0. The sequence of measures (μm)m≥1 will satisfy that for some C > 1,
for every m ≥ 1, for all Q ∈ D+

m ,

C−12−md ≤ μm(Q) ≤ C2−md .

We are going to alternate between two subdivision schemes. The subdivision scheme of
type A is meant to distribute quite uniformly the mass of a cube into some of its subcubes,
while the subdivision scheme of typeBwill concentrate themass of Q into a very thin “layer”
close to the boundary near the smallest face of Q and around its center.

3.2 Subdivision scheme of type A

Assuming thatμm is defined onDm , this schemeA is applied to one individual cube Q ∈ Dm

to define ameasureμm+1 on the subcubesQ′ ∈ Dm+1 included inQ. This subdivision scheme
A distinguishes three cases:

(A1) If μm(Q) = 0, then for any Q′ ⊂ Q with Q′ ∈ Dm+1, we put μm+1(Q′) = 0.
(A2) If 2−dμm(Q) ≥ 2−(m+1)d then for any Q′ ⊂ Q with Q′ ∈ Dm+1, we setμm+1(Q′) =

2−dμm(Q).

(A3) If 2−dμm(Q) < 2−(m+1)d , then we concentrate all the mass on the subcube Q′ ∈
Dm+1 included in Q whose smallest vertex is the same as that of Q. In other words,
μm+1(Q′) = μm(Q) and vmin,Q = vmin,Q′ .
For all the other cubes Q′′ ⊂ Q, Q′′ ∈ Dm+1, we put μm+1(Q′′) = 0.

123



79 Page 10 of 34 Z. Buczolich, S. Seuret

It is clear that with this process μm+1(Q) = μm(Q), so μm+1 is indeed a refinement of
μm on Q.

Remark that (A2) tends to spread the mass of Q uniformly on its subcubes (hence to make
the local dimension increase since d < d) while (A3) tends to concentrate the mass (hence
to make the local dimension decrease from generation m to generation m + 1).

Lemma 3.2 Assume that μm satisfies

c−2
d 2−md ≤ μm(Q) ≤ c2d2

−md , (3.8)

with Q ∈ Dm, and apply subdivision scheme A to define μm+1 on the subcubes Q′ ⊂ Q,
Q′ ∈ Dm+1.

Then, for every Q′ ∈ Dm+1 with Q′ ⊂ Q, such that μm+1(Q′) �= 0, (3.8) holds with the
measure μm+1 and generation m + 1, i.e.

c−2
d 2−(m+1)d ≤ μm+1(Q

′) ≤ c2d2
−(m+1)d . (3.9)

Proof Assume that we are in situation (A2). Hence, initially we had

2d2−(m+1)d ≤ μm(Q) ≤ c2d2
−md .

The construction ensures that for Q′ ⊂ Q, Q′ ∈ Dm+1,

2−(m+1)d ≤ μm+1(Q
′) = 2−dμm(Q) ≤ 2−dc2d2

−md ≤ c2d2
−(m+1)d

which implies (3.9) (the last inequality holds since d < d).
Assume that we are now in situation (A3), which implies that

c−2
d 2−md ≤ μm(Q) < 2d2−(m+1)d < 2d2−(m+1)d .

Thus μm+1(Q′) = μm(Q) for one selected Q′ ⊂ Q, Q′ ∈ Dm+1, and by (3.6)

c−2
d 2−(m+1)d ≤ c−2

d 2−md ≤ μm+1(Q
′) < 2d2−(m+1)d < c2d2

−(m+1)d .

��
We prove now that if we apply scheme A a sufficiently large number of times, then we

obtain cubes Q ∈ Dn which all satisfy

either 2−nd ≤ μn(Q) < cd2
−nd , or μn(Q) = 0. (3.10)

Lemma 3.3 Assume that μm satisfies (3.8) with Q ∈ Dm, and apply subdivision scheme A
to Q to define μm+1 on the subcubes Q′ ⊂ Q, Q′ ∈ Dm+1, then apply subdivision scheme
A to all Q′ ⊂ Q, Q′ ∈ Dm+1, to define μm+2 on all subcubes Q′′ ⊂ Q, Q′′ ∈ Dm+2, etc.

There exists an integer φ(Q) > m such that for every n ≥ φ(Q) and every cube Q′ ∈ Dn

with Q′ ⊂ Q, (3.10) holds for Q′ and μn.

Proof We separate two cases depending on whether at stepm we need to apply (A2) or (A3).
The second case can be reduced to the first. Indeed, taking into consideration (3.8), suppose

that we have

c−2
d 2−md ≤ μm(Q) < 2d2−(m+1)d

and we start with subdivision (A3). Then for Q′ ⊂ Q, Q′ ∈ Dm+1, either μm+1(Q′) = 0,
or

c−2
d 2−(m+1)d ≤ μm+1(Q

′) = μm(Q) < 2d2−(m+1)d < c2d2
−md .
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At the next step, we either have to apply division step (A3), or we can apply division step
(A2). It is also clear that after finitely many steps we get to a situation when the first time step
(A2) must be applied. In that case, at level n ≥ m, we have exactly one Q′ ⊂ Q, Q′ ∈ Dn

such that

2d2−(n+1)d ≤ μn(Q
′) < c2d2

−nd (3.11)

and for all other descendants Q′′ ⊂ Q, Q′′ ∈ Dn , μn(Q′′) = 0. Then we can start an
argument which is the same as if we started with a subdivision (A2) from the very beginning.

Observe that d < d and (3.11) imply that 2−nd < 2d2−(n+1)d ≤ μn(Q′).
For ease of notation we suppose that at stepm we can already start with a subdivision step

(A2), that is (3.11) holds with m instead of n.
Nowwe apply (A2) to Q andμm , and iteratively to all subcubes of Q of generation n > m,

as long as μn(Q′) ≥ 2d2−(n+1)d for Q′ ∈ Dn .
Observe that for a cube Q′ ∈ Dn with Q′ ⊂ Q, as long as

2−dμn(Q
′) ≥ 2−(n+1)d , that is μn(Q

′) ≥ 2d2−(n+1)d > 2d2−(n+1)d = 2−nd ,

the mass of every subcube Q′′ ⊂ Q′ of next generation is such thatμn+1(Q′′) = 2−dμn(Q′).
Hence

logμn+1(Q′′)
log 2−(n+1)

= −d log 2 + logμn(Q′)
−(n + 1) log 2

>
logμn(Q′)
log 2−n

. (3.12)

This means that the local dimension increases from generation n to generation n + 1.
The construction ensures that all the subcubes of Q at a given generation n > m have the

same μn-mass.
Further, by (3.12), the sequence logμn(Q′)

log 2−n (for Q′ ⊂ Q, Q′ ∈ Dn) is strictly increasing.
Assuming that this process (A2) is iterated a number of times very large when compared

to m, we would have logμn(Q′)
log 2−n ∼ log(2−dn)

log 2−n = d so μn(Q′) ∼ 2−dn � 2d2−(n+1)d , since

d < d .
Hence, after a finite number of iterations, we necessarily have μn(Q′) < cd2−nd .
Call φ(Q) ≥ m the first integer such that for all Q′ ⊂ Q, Q′ ∈ Dφ(Q),

2−φ(Q)d ≤ μφ(Q)(Q
′) ≤ cd2

−φ(Q)d .

Remark 3.4 In case we started with subdivision steps (A3) before getting to a subcube in
which we could apply (A2), then we define φ(Q) starting from this subcube. Recall that for
ease of notation at the beginning of this part of the argument, we supposed that we start with
subdivision steps (A2) at the mth step.

Recall that at generation φ(Q), all the cubes Q′ ⊂ Q, Q′ ∈ Dφ(Q), have the same μφ(Q)-
mass. This also shows that (3.10) holds at generation φ(Q).

Assume that (3.10) holds at generation n ≥ φ(Q) for Q′ ∈ Dn , Q′ ⊂ Q. Then

• if 2−dμn(Q′) ≥ 2−(n+1)d , then we apply (A2) and for every Q′′ ∈ Dn+1, Q′′ ⊂ Q′,

2−(n+1)d ≤ μn+1(Q
′′) ≤ 2−dcd2

−nd ≤ cd2
−(n+1)d .

• if 2−dμn(Q′) ≤ 2−(n+1)d , then we apply (A3) and for every Q′′ ∈ Dn+1, either
μn+1(Q′′) = 0 or

2−(n+1)d ≤ 2−nd ≤ μn+1(Q
′′) ≤ 2d2−(n+1)d ≤ cd2

−(n+1)d .

In all cases, (3.10) holds at generation n + 1. Hence the result. ��
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3.3 Subdivision scheme of type B

Let m ∈ N. Consider some Q ∈ Dm , and assume that,

2−md ≤ μm(Q) < cd2
d2−md (3.13)

holds for μm and Q at generation m.
The purpose of the second subdivision scheme is to concentrate the mass μm(Q) on two

subparts of Q, first in a thin region close to the (inner part of the) boundary of Q (very close
to its smallest ψ(m)-face), and second around its center. More precisely, we will assign η∗
of the initial mass μm(Q) to part of an annulus very thin close to the border of Q (on Fig. 1
this is the thin blue shaded rectangular region), and 1−η∗ in a small cube located around the
center of Q (on Fig. 1, this is the small blue shaded central square). The remaining subcubes
of Q will receive zero μ-mass.

3.3.1 Distributing (part of) the mass on the smallest face:

Choose the smallest integer ψ(m) such that

2−(m+1)δ−1 ≤ 2−ψ(m) < 2−(m+1)δ. (3.14)

Since δ > 1, we have ψ(m) > m + 1.
Consider ∂ψ(m),1Q the set of ψ(m)-boundary cubes on the smallest face of Q. Recalling

(3.4), we have

dψ(m),1(Q) = 2(d−1)(ψ(m)−m). (3.15)

For all Q′ ∈ ∂ψ(m),1Q, Q′ ∈ Dψ(m), we put

μψ(m)(Q
′) = η∗ · 1

dψ(m),1(Q)
μm(Q). (3.16)

Combining (3.2), (3.13), (3.14), (3.15) and (3.16), we see that for all Q′ ∈ ∂ψ(m),1Q,

μψ(m)(Q
′) ≥ η∗2−(d−1)(ψ(m)−m)2−md

= η∗2−(d−1)ψ(m)2−m(d−(d−1))

= η∗2−(d−1)ψ(m)2−mδ(d−(d−1))

≥ η∗2−(d−1)ψ(m)2−ψ(m)(d−(d−1))

> c−1
d 2−ψ(m)d , (3.17)

where (3.6) has been used for the last lower bound. By (3.14), (m + 1)δ + 1 ≥ ψ(m), hence

− (d − 1)ψ(m) − mδ(d − (d − 1))

≤ −ψ(m)d + (d − (d − 1))ψ(m) − mδ(d − (d − 1))

≤ −ψ(m)d + (d − (d − 1))((m + 1)δ + 1) − mδ(d − (d − 1))

= −ψ(m)d + (d − (d − 1))(δ + 1). (3.18)
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Fig. 1 Subdivision scheme B for a cube Q ∈ Dm

Using (3.1), (3.7), (3.13), (3.14) and (3.18), one gets

μψ(m)(Q
′) ≤ η∗2−(d−1)(ψ(m)−m)cd2

d2−md

= η∗2dcd2−(d−1)ψ(m)2−m(d−(d−1))

≤ η∗2dcd2−(d−1)ψ(m)2−mδ(d−(d−1))

≤ η∗2dcd2−ψ(m)d · 2(1+δ)(d−(d−1))

≤ c2d2
−ψ(m)d . (3.19)

Finally, for all Q′ ∈ ∂ψ(m),1Q we have

c−2
d 2−ψ(m)d ≤ μψ(m)(Q

′) ≤ c2d2
−ψ(m)d . (3.20)

In particular, these cubes satisfy (3.8).
Intuitively, starting with a cube Q such that μ(Q) ∼ |Q|d , we end up with many small

cubes Q′ ⊂ Q, all located on the border of Q, and such that μ(Q′) ∼ |Q′|d .

3.3.2 Distributing part of the mass close to the center of Q:

Let ψ ′(m) ≥ m be the unique integer satisfying

2−md−1 ≤ 2−ψ ′(m)d ≤ 2−md . (3.21)
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Then it is easy to see that whenm becomes large,m < ψ ′(m) < ψ(m) (intuitively,ψ ′(m) ∼
md/d while ψ(m) ∼ mδ and by (3.2), δ > d/d). We assume that m is so large that

(1 − 2−(ψ ′(m)−m) − 2−(ψ(m)−m))d−1 > (1 − 2−(ψ ′(m)−m)+1)d−1 > η∗. (3.22)

We denote by cQ the center of Q and by Q̃ the (unique) dyadic cube of generation ψ ′(m)

that contains cQ . Then, since we deal with dyadic cubes, cQ is the smallest vertex of Q̃, that
is cQ = vmin,Q̃ . We put

μψ ′(m)(Q̃) = (1 − η∗)μm(Q). (3.23)

By using (3.6), (3.7), (3.13), (3.21) and (3.22), we obtain

μψ ′(m)(Q̃) ≥ (1 − η∗)2−md ≥ (1 − η∗)2−ψ ′(m)d ≥ c−2
d 2−ψ ′(m)d (3.24)

and

μψ ′(m)(Q̃) < 2dcd2
−md < 2d+1cd2

−ψ ′(m)d ≤ c2d2
−ψ ′(m)d .

We deduce that Q̃ and ψ ′(m) satisfy Eq. (3.20), i.e.

c−2
d 2−ψ ′(m)d ≤ μψ ′(m)(Q̃) ≤ c2d2

−ψ ′(m)d . (3.25)

Hence one can apply subdivision scheme A to it, iteratively, for all integers n such that
ψ ′(m) < n ≤ ψ(m). At the end of the process, by Lemma 3.2, we get a collection of cubes
Q′ ∈ Dψ(m) and a measure μψ(m) such that they all satisfy either μψ(m)(Q′) = 0, or

c−2
d 2−ψ(m)d ≤ μψ(m)(Q

′) ≤ c2d2
−ψ(m)d . (3.26)

Definition 3.5 If Q′ ∈ Dψ(m) is such that Q′ ⊂ Q̃ ⊂ Q (where Q̃ is the cube of Dψ ′(m)

containing cQ), then Q′ is called a B-central cube at scale ψ(m) associated to Q ∈ Dm .

By construction,

μ

⎛

⎜⎜
⎝

⋃

Q′⊂Q: Q′ is a B-central
cube at scale ψ(m)

Q′

⎞

⎟⎟
⎠ = (1 − η∗)μ(Q). (3.27)

Lemma 3.6 If, for some large integer m, Q′ ∈ Dψ(m) is B-central, then for any x ∈ Q′, there
exists rx such that Pμψ(m)

(x, rx , δ, η) holds and

2−m−1 ≤ rx < 2−m−1 · 1.125.
Remark 3.7 At inequalities (3.28) and (3.29) in the next proof, wewill use thatμ(B(x, 2−m))

= μ(Q), which means essentially that μψ(m) (and μ) charges only the cube Q and not its
neighbors at generation m. This will be a consequence of our construction in Sect. 3.4.

Remark 3.8 Lemma 3.6 is stated for the measure μψ(m), but it also holds for the measure μ

obtained at the end of the construction. This simply follows from (3.5).

Proof For simplicity, we write μ for μψ(m). As explained above, this abuse of notation is
justified by (3.5).

Let Q′ be a B-central cube, and x ∈ Q′. We shall prove that, for some rx > 0,
μ(A(x, rx , δ)) ≥ η · μ(B(x, rx )).
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Write x = (x1, . . . , xd) and Q = ∏d
i=1[ki · 2−m, (ki + 1) · 2−m). See Fig. 1 where x is

marked with a dot in the B-central shaded blue cube, an arrow with dashed line is pointing at
x , the label x is written at the bottom end of this arrow, the distance rx is marked by a solid
left-right arrow, and the boundary of A(x, rx , δ) is shown with dotted lines.

Set rx := x1 −k1 ·2−m . Since ‖x −cQ‖∞ ≤ 2−ψ ′(m) and cQ = ((k1 + 1
2 )2

−m, . . . , (kd +
1
2 )2

−m), we see that

2−m−1 ≤ rx ≤ 2−m−1 + 2−ψ ′(m).

By construction, B(x, rx ) contains the largest part of ∂ψ(m),1Q. Indeed, if Q′ is a cube
of ∂ψ(m),1Q containing one y ∈ ∂ψ(m),1Q with ‖x − y‖∞ > rx , then ‖cQ − y‖∞ ≥
‖x− y‖∞−‖cQ −x‖∞ ≥ rx −‖cQ −x‖∞ ≥ 2−m−1−2−ψ ′(m). Denote by c̃Q the projection
of cQ onto the smallest face of Q, see Fig. 1. Since the supremum norm is used, the cubes of
∂ψ(m),1Q that may not intersect B(x, rx ) are thus located outside of B (̃cQ, 2−m−1−2−ψ ′(m)).
Observe that the intersection of B (̃cQ, 2−m−1 − 2−ψ ′(m)) with the smallest face of Q is a
(d − 1)-dimensional cube of side length 2−m − 21−ψ ′(m), and that its projection onto the
smallest face of Q is of (d − 1)-dimensional volume (2−m − 21−ψ ′(m))d−1.

Observe also that r δ
x ≥ 2−δ(m+1) > 2−ψ(m) so all the above cubes Q′ belonging simulta-

neously to B(x, rx ) and ∂ψ(m),1Q also are included in A(x, rx , δ). These cubes are forming
a single layer, and their projection onto the smallest face of Q is of (d − 1)-dimensional
volume 2−(d−1)ψ(m).

Recalling that dψ(m),1(Q) = 2(d−1)(ψ(m)−m), we obtain that A(x, rx , δ) contains more
than

(2−m − 21−ψ ′(m))d−1

2−(d−1)ψ(m)
≥ dψ(m),1(Q)(1 − 2−(ψ ′(m)−m)+1)d−1

≥ η∗dψ(m),1(Q)

many cubes from ∂ψ(m),1Q, where (3.22) is also used. Hence, recalling (3.16),

μ(A(x, rx , δ)) > η∗dψ(m),1(Q) · η∗ 1

dψ(m),1(Q)
μm(Q)

= (η∗)2μm(Q) = ημ(Q). (3.28)

Finally, by Remark 3.7, our construction ensures that μ(B(x, rx )) ≤ μ(Q). Thus

μ(A(x, rx , δ)) ≥ ημ(B(x, rx )), (3.29)

i.e. Pμ(x, rx , δ, η) holds.
Finally, the fact that 2−m−1 ≤ rx < 2−m−1 · 1.125 follows from 2−m−1 ≤ rx ≤ 2−m−1 +

2−ψ ′(m) and 2−ψ ′(m)+m tends to zero when m → +∞. ��

3.3.3 Giving a zero-mass to the other cubes, and defining the measure�Ã(m) on Q

For the remaining cubes at generation ψ(m), i.e. those Q′ ⊂ Q, Q′ ∈ Dψ(m), Q′ /∈
∂ψ(m),1(Q) and Q′ �⊂ Q̃, we put μψ(m)(Q′) = 0.

The measure μψ(m)(Q′) is now defined for all Q′ ⊂ Q̃, Q′ ∈ Dψ(m).
Observe that by (3.16), the properties of the subdivision scheme A and (3.23), we have

∑

Q′⊂Q, Q′∈Dψ(m)

μψ(m)(Q
′) = μm(Q),
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i.e. we indeed distributed the mass of Q onto the cubes Q′ ⊂ Q, Q′ ∈ Dψ(m).

3.3.4 Defining inside Q the measure�n form < n < Ã(m)

Forgetting for a while the details of the construction, and just focusing on the result, starting
from Q ∈ Dm with a given μm-weight satisfying (3.10), we end up with a measure μψ(m)

well defined on all cubes Q′ ⊂ Q, Q′ ∈ Dψ(m).
Since we jumped from level m to ψ(m), we can easily define μn for m < n < ψ(m),

but only inside Q. Indeed, for such an integer n, the measure μn is simply defined by using
μψ(m) as “reference” measure: for Q′ ∈ Dn , Q′ ⊂ Q, we set

μn(Q
′) =

∑

Q′′⊂Q′, Q′′∈Dψ(m)

μψ(m)(Q
′′). (3.30)

It is easily checked that this definition is consistent with the definition of μψ(m) that we gave
in (3.23) for instance.

Next lemma shows that all the “intermediary” measures μn so defined share the same
scaling properties as μm and μψ(m).

Lemma 3.9 Assume that μm satisfies (3.13) for some Q ∈ Dm, and apply the subdivision
scheme B to define μm+1, . . . , μψ(m) on the subcubes of Q of generation m + 1, . . . , ψ(m).

Then:

(i) for every n ∈ {m, . . . , ψ(m)}, for every Q′ ∈ Dn such that Q′ ⊂ Q and μn(Q′) �= 0,
(3.8) holds for Q′ with the measure μn.

(ii) for every cube Q′ ∈ Dψ(m) such that Q′ ⊂ Q and μψ(m)(Q′) �= 0, there exists n ∈
{m, . . . , ψ(m)} and a (unique) cube Qn ∈ Dn such that Q′ ⊂ Qn ⊂ Q and (3.20) holds
for μn and Qn.

Proof (i) The cases where n = m and n = ψ(m) follow from (3.13), (3.17), (3.19), and
(3.26).

Suppose m < n < ψ(m). Two cases are separated depending on whether we deal with
the border or the B-central cubes.

Consider first Q′′ ∈ ∂n,1Q, i.e. a cube located on the border of Q. Choose an arbitrary
Q′ ∈ ∂ψ(m),1Q, Q′ ⊂ Q. By (3.20) and d − 1 < d , one obtains

μn(Q
′′) = 2(ψ(m)−n)(d−1)μn(Q

′) ≤ 2(ψ(m)−n)(d−1)c2d2
−ψ(m)d

< c2d2
(ψ(m)−n)d · 2−ψ(m)d < c2d2

−nd .

For the estimate from below (3.6), (3.13), (3.15), (3.16) and (3.30) yield

μn(Q
′′) = 2(ψ(m)−n)(d−1)η∗2(m−ψ(m))(d−1)μm(Q) ≥ η∗2(m−n)(d−1) · 2−md

> η∗2(m−n)d · 2−md = η∗2−nd > c−2
d 2−nd ,

hence (3.8) holds for Q′′.
For the B-central cubes, suppose that m < n < ψ ′(m) and Q′′ ∈ Dn , Q′′ ⊃ Q̃, where Q̃

was defined after (3.22). Then

μn(Q
′′) = μψ(m)(Q̃) = μψ ′(m)(Q̃) = (1 − η∗)μm(Q)

and by (3.25)

μn(Q
′′) = μψ ′(m)(Q̃) ≤ c2d2

−ψ ′(m)d < c2d2
−nd . (3.31)
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On the other hand by (3.7) and (3.13)

μn(Q
′′) = (1 − η∗)μm(Q) > (1 − η∗)2−md > (1 − η∗)2−nd > c−2

d 2−nd , (3.32)

hence (3.8) holds for Q′′.
Finally, when ψ ′(m) ≤ n < ψ(m) and Q′′ ∈ Dn and Q′′ ⊂ Q̃, the fact that (3.8) holds

for Q′′ follows from the application of subdivision scheme A to the cube Q̃ which satisfies
(3.8).

Part (ii) follows from (3.20) and (3.25). ��
Observe that the construction ensures that, as claimed at the beginning of this section,

∑

Q′∈∂ψ(m),1Q

μψ(m)(Q
′) = η∗ · μm(Q).

3.4 Construction of themeasure of Theorem 1.4

Recall that μ0 is the Lebesgue measure on the cube [0, 1]d . By definition μ0 satisfies (3.8).
Step 1
We apply Subdivision Scheme A, m′

1 times to the cube [0, 1]d , where m′
1 ≥ φ([0, 1]d) is

such that Lemma 3.3 and (3.22) simultaneously hold for m = m′
1. We obtain a measure μm′

1
defined on cubes of Dm′

1
, such that for every Q ∈ Dm′

1
, either μm′

1
(Q) = 0 or the first half

of (3.10) holds true with μm′
1
.

Now, for each cube Q′ ∈ Dm′
1
, we select the cube Q of generation m1 = m′

1 + 1 located
at its smallest vertex and we set μm1(Q) = μm′

1
(Q′), so that μm1 satisfies (3.13).

This last step ensures that the cubes at generation m1 supporting μm1 are isolated, and
Lemma 3.6 (together with Remark 3.7) applies.

Now we are able to iterate the construction:
Step 2k
We apply Subdivision scheme B to all cubes Q ∈ Dm2k−1 . Call m2k = ψ(m2k−1).
We obtain a measure μm2k defined on Dm2k such that the properties of Lemma 3.3 hold

for all dyadic cubes Q ∈ Dn , m2k−1 ≤ n ≤ m2k .
Step 2k + 1
We apply Subdivision scheme A to all cubes of generation m2k . By Lemma 3.3, for each

cube Q ∈ Dm2k , there exists an integer φ(Q) such that for n ≥ φ(Q), for every cube Q′ ∈ Dn

(3.10) holds for Q′ and μn .
Setting m′

2k+1 = max{φ(Q) : Q ∈ Dm2k }, we are left with a measure μm′
2k+1

such that

for all cubes Q′ ∈ Dm′
2k+1

(3.10) holds for Q′ and μm′
2k+1

.

Setting m2k+1 = m′
2k+1 + 1, for each cube Q′ ∈ Dm′

2k+1
, we select the cube Q of

generation m2k+1 located at its smallest vertex and we set μm2k+1(Q) = μm′
2k+1

(Q′), so that
μm2k+1 satisfies (3.13) and the cubes at generation m2k+1 supporting μ2k+1 are isolated.

We are now ready to construct the set and the measure satisfying the conditions of Theo-
rem 1.4.

Call Qn(x) the unique dyadic cube Q ∈ Dn that contains x .

Proposition 3.10 The sequence (μn)n≥1 converges to a measure μ which is supported by a
Cantor-like set C defined by

C =
⋂

n≥1

⋃

Q∈Dn :μn(Q)�=0

Q.
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For every x ∈ C, for every n,

c−2
d 2−nd ≤ μn(Qn(x)) ≤ c2d2

−nd , (3.33)

and there exist two strictly increasing sequences of integers ( j n(x))n≥1 and ( j
n
(x))n≥1

satisfying

2− jn(x)d ≤ μ jn(x)
(Q) < cd2

− jn(x)d (3.34)

and

c−2
d 2− j

n
(x)d ≤ μ j

n
(x)(Q) < c2d2

− j
n
(x)d (3.35)

Proof Inequalities (3.33), (3.34) and (3.35) follow immediately from (3.9) of Lemma 3.2,
Lemma 3.3 and Lemma 3.9. ��

Recall the that the upper and lower local dimensions of the measure μ are defined by

dμ(x) = lim sup
r↘0

log(μ(B(x, r)))

log r
and dμ(x) = lim inf

r↘0

log(μ(B(x, r)))

log r
.

From the previous proposition, we easily deduce the following property.

Corollary 3.11 For every x ∈ C, dμ(x) = d and dμ(x) = d. In particular, the measure μ

satisfies

d = dim(μ) < dim(μ) = d.

Proposition 3.12 Forμ-almost every x, there exist infinitelymany integers n such that Q2n(x)
is a B-central cube at Step m2n.

The construction ensures thatμ-almost all points are regularly located in a B-central cube,
in the sense of Definition 3.5.

Proof For n ≥ 1, call

An =
{
x ∈ C : Qm2n (x) is a B-central cube at generation m2n

associated with a cube Q ∈ Dm2n−1

}
.

By construction, and recalling (3.27), we get μ(An) = 1 − η∗.
Also, it is clear from the uniformity of the construction that the sequence (An)n≥1 is

independent when seen as events with respect to the probability measure μ: for every finite
set of integers (n1, n2, . . . , n p),

μ(An1 ∩ An2 ∩ · · · ∩ An p ) = (1 − η∗)p.

Applying the (second) Borel–Cantelli lemma (see for example [6, Section 7.3]), we obtain
that μ-almost every point belongs to an infinite number of sets An . Hence the result. ��
Remark 3.13 Observe that the same proof gives that μ-almost every point belongs to an
infinite number of sets Ac

n .

Corollary 3.14 The measure μ satisfies μ(Eμ(δ, η)) = 1.

This follows from Proposition 3.12 and Lemma 3.6.
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4 Proof of Theorem 1.6

We deal with the case where dimμ ≤ d − 1. In this situation, as stated in Theorem 1.6, there
is no more restriction on δ. However we can argue almost like in the proof of Theorem 1.4.

Fix an arbitrary δ > 1.
As before, we are going to use various subdivision schemes to build a measure fulfilling

our properties.
The Subdivision scheme of type A in Sect. 3.2 is left unchanged.
The Subdivision scheme of type B in Sect. 3.3 requires some adjustments (in particular,

one cannot use (3.1) any more). The problem comes from the fact that when dimμ is less
than d−1, when trying to spread the mass of a given cube Q ∈ Dm such thatμm(Q) ∼ 2−md

to the smaller cubes Q′ located on its smallest face ∂ψ(m),1Q, it is not possible to impose that
μm(Q′) ∼ 2−md for all Q′ ∈ ∂ψ(m),1Q, since

dψ(m),1(Q)2−ψ(m)d ∼ 2−(d−1)(ψ(m)−m)2−ψ(m)d � 2−md .

In other words, the mass of the initial cube Q is not large enough to give the sufficient weight
to each Q′. So we introduce a Subdivision scheme of type C to solve this issue.

We discuss the modifications needed to adapt Sect. 3.3 to this situation d < d − 1, and
give the main ideas to proceed—some proofs are omitted, since they are exactly similar to
those of Sect. 3.

4.1 Subdivision scheme of typeC

As explained above, a new subdivision scheme is introduced, by essentially modifying a little
bit Subdivision scheme of type B.

Assume that Q ∈ Dm satisfies (3.13). The integer ψ(m) is defined by (3.14), as in the
previous section. We know that (3.15) holds. As argued above, one can see that using (3.13)

1

dψ(m),1(Q)
μm(Q) < cd2

d2−md · 2−(d−1)(ψ(m)−m)

≤ cd2
d2−md · 2−d(ψ(m)−m) = cd2

d2−ψ(m)d . (4.1)

First, theway themass is distributed on the border of Q (Sect. 3.3.2) ismodified as follows.

4.1.1 Distributing (part of) the mass on the smallest face:

Two cases are separated.

• Case d < d − 1 ≤ d:We set

dψ(m),1,+(Q) = dψ(m),1(Q) = 2(d−1)(ψ(m)−m)

and for any Q′ ∈ ∂ψ(m),1,+Q := ∂ψ(m),1Q, put

μψ(m)(Q
′) = η∗ 1

dψ(m),1,+(Q)
μm(Q). (4.2)

In this case we also define ∂ψ(m),1,0Q = ∅, and dψ(m),1,0(Q) = 0.
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For all m < n ≤ ψ(m) and Q′ ∈ ∂n,1,+Q := ∂n,1Q, using d ≤ d − 1 ≤ d and (3.13),
one gets

μn(Q
′) = η∗ 1

dψ(m),1,+(Q)
· μm(Q) · 2(d−1)(ψ(m)−n)

< η∗2−(d−1)(ψ(m)−m) · cd2d2−md · 2(d−1)(ψ(m)−n)

= η∗cd2d2m(d−1) · 2−md · 2−(d−1)n ≤ η∗cd2d · 2−nd

< c2d2
−nd . (4.3)

Similarly,

μn(Q
′) > η∗2−(d−1)(ψ(m)−m) · 2−md · 2(d−1)(ψ(m)−n)

= η∗2−(d−1)(n−m)2−md ≥ η∗2−d(n−m)2−md ≥ η∗2−nd

> c−2
d 2−nd . (4.4)

This means that (3.8) will remain true for these cubes.
To resume, the scheme is in this case the same as before.

• Case d ≤ d < d − 1: An extra care is needed.

Recall Definition 3.1. Consider first the cubes Q′ ∈ ∂m+1,1Q.

(i) If η∗2−(d−1)μm(Q) ≥ 2−(m+1)d , then for any Q′ ∈ ∂m+1,1Q, define μm+1(Q′) =
η∗2−(d−1)μm(Q′). For Q′ ⊂ Q, Q′ ∈ Dm+1, but Q′ /∈ ∂m+1,1Q, set μm+1(Q′) = 0.

(ii) If η∗2−(d−1) · μm(Q) < 2−(m+1)d , consider the only cube Q̂ with “maximal” smallest
vertex vmin,Q̂ among those cubes satisfying Q̃ ∈ Q, Q̃ ∈ ∂m+1,1Q. “Maximal” means
with largest possible coordinates—this makes sense since the borders of the cube are
parallel to the axes. If it is easier to understand this way, for such a vertex, the sum of its
coordinates s(vmin,Q̂) (defined in (3.3)) is maximal. Then put μm+1(Q̂) = η∗μm(Q).
For the other cubes Q′ ⊂ Q, Q′ ∈ Dm+1, set μm+1(Q′) = 0.

Next we iterate the process. Suppose that m + 1 < n ≤ ψ(m), and that μn−1(Q′) is
defined for all Q′ ∈ ∂n−1,1Q.

(C1) If μn−1(Q′) = 0 then for all subcubes Q′′ ∈ Dn of Q′, put μn(Q′′) = 0.
(C2) If 2−(d−1)μn−1(Q′) ≥ 2−nd then for any Q′′ ⊂ Q′ with Q′′ ∈ ∂n,1Q, we set

μn(Q′′) = 2−(d−1)μn−1(Q′). For Q′′ ⊂ Q′, Q′′ ∈ Dn but Q′′ /∈ ∂n,1Q, we set
μn(Q′′) = 0.

(C3) If 2−(d−1) · μn−1(Q′) < 2−nd , then, as above, we select the cube

Q̂ ∈ Q′, Q̂ ∈ ∂n−1Q (4.5)

with maximal s(vmin,Q̂) among those cubes satisfying (4.5). Next, we set μn(Q̂) =
μn−1(Q′).
For the other cubes Q′′ ⊂ Q′, Q′′ ∈ Dn , we impose μn(Q′′) = 0.

The motivation for the choice of Q̂ is that Q̂ is located (if we look at our two-dimensional
Fig. 1) in the upper left “Northwest” direction from cQ . We select Q̂ in the “upper” corner
of Q′ on the boundary of Q in order to get as many as possible of the charged cubes into
A(x, rx , δ) in Lemma 3.6. Recall that on Fig. 1 the central cube Q̃ with smallest vertex cQ
is also located “above” (in the direction “Northeast”) from this vertex and x is located in Q̃.
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We repeat the above steps for n = m + 1, . . . , ψ(m) and denote by ∂n,1,+Q those cubes
in ∂n,1Q for which μn(Q′) > 0. The adjustment at step n = m+1 implies that we distribute
a mass of η∗ · μm(Q) on the ∂ψ(m),1,+Q cubes and in this case (4.2) holds as well.

By (3.13) initially verified by Q and the first step of our induction, for n = m and
n = m + 1, one has

η∗ · 2−nd < μn(Q) < cd2
d · 2−nd . (4.6)

Suppose that Q′ ∈ ∂n,1,+Q satisfies (4.6). Consider Q′′ ∈ ∂n+1,1,+Q such that Q′′ ⊂ Q′.
If Step (C2) was used to define μn+1(Q′′), then on the one hand, μn(Q′) ≥

2(d−1)2−(n+1)d , and hence

μn+1(Q
′′) ≥ 2−(n+1)d . (4.7)

On the other hand, since d ≤ d − 1, one sees that

μn+1(Q
′′) = 2−(d−1)μn(Q

′) < cd2
d · 2−(d−1)2−nd ≤ cd2

d2−(n+1)d . (4.8)

If (C3) was used, then for the only Q̂ ∈ ∂n+1,1,+Q satisfying Q̂ ⊂ Q′, one has

μn+1(Q̂) = μn(Q
′) < 2(d−1) · 2−(n+1)d < cd2

d · 2−(n+1)d . (4.9)

On the other hand, from (4.6) it also follows that

η∗2−(n+1)d < η∗2−nd < μn(Q
′) = μn+1(Q̂). (4.10)

Thus, by induction, (4.6) holds true. Hence (3.8) holds for any Q′ ∈ ∂n,1,+Q for any n =
m + 1, . . . , ψ(m).

4.1.2 Distributing part of the mass close to the center of Q:

Step 3.3.2 of Scheme B is also modified for Scheme C.
If d = d , then put ψ ′(m) = m + 10 and assume that (3.6) holds.
If d > d , then we can define ψ ′(m) as in (3.21).
It is not necessarily true any more thatm ≤ ψ ′(m) ≤ ψ(m). Indeed, recall that intuitively,

ψ ′(m) ∼ md/d and ψ(m) ∼ mδ, but now δ > 1 can be such that 1 < δ < d/d .
Hence let us introduce �(m) = max{ψ ′(m), ψ(m)}.
As before, call Q̃ the cube of Dψ ′(m) containing the center cQ of Q.

Definition 4.1 If Q′ ∈ D�(m) is such that Q′ ⊂ Q̃ ⊂ Q (where Q̃ is the cube of Dψ ′(m)

containing cQ), Q′ is called a C-central cube at scale �(m) associated to Q ∈ Dm .

If �(m) = ψ(m) ≥ ψ ′(m), then we proceed analogously to Sect. 3.3.2, i.e. we put as in
(3.23) μψ ′(m)(Q̃) = (1−η∗)μm(Q), and apply subdivision schemeA to Q̃ and its subcubes
until generation ψ(m).

If �(m) = ψ ′(m) and ψ ′(m) > ψ(m) then we also set as in (3.23) μψ ′(m)(Q̃) =
(1 − η∗)μm(Q), i.e. we concentrate all the mass that was not spread on ∂m,1Q onto Q̃. But
in this situation in Sect. 4.1.1 the measures μn are completely defined inside Q only for
m ≤ n ≤ ψ(m). Hence, we apply Subdivision scheme A to the cubes Q′ ∈ ∂ψ(m),1,+Q to
distribute μψ(m)(Q′) onto some subcubes of Q′ and to define μn on Q′ for ψ(m) < n ≤
�(m) = ψ ′(m).

By an immediate application of Lemma 3.2, since μψ(m)(Q′) satisfied (3.8), the same
inequality (3.8) (with m replaced by n) remains true for all n ∈ (ψ(m),�(m)] for any
Q′′ ⊂ Q′, Q′′ ∈ D+

n .
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In particular, the following analog of Lemma 3.6 holds.

Lemma 4.2 If, for some large integer m, Q′ ∈ D�(m) is C-central, then for any x ∈ Q′,
there exists rx such that Pμ�(m)

(x, rx , δ, η) holds and

2−m−1 ≤ rx < 2−m−1 · 1.125.
Proof We discuss only the changes in the argument of the original proof of Lemma 3.6 when
ψ(m) < �(m) = ψ ′(m).

In this new situation, A(x, rx , δ) contains more than

(1 − 2−(ψ ′(m)−m)+1)d−1d�(m),1(Q) > η∗d�(m),1(Q)

many cubes from ∂�(m),1Q. Now even if we had to use Step (C3), our choice of the cube
with maximum s(vmin,Q̂) after (4.5) implies that

(1 − 2−(ψ ′(m)−m)+1)d−1d�(m),1,+(Q) > η∗d�(m),1,+(Q)

holds in this case as well. This finally yields

μ(A(x, rx , δ)) > η∗ · η∗μm(Q) > η · μm(Q).

��

4.1.3 Giving a zero-mass to the other cubes, and defining the measure�9(m) on Q

The measure μ�(m) is extended inside Q as μ�(m) in Sect. 3.3.3.

4.1.4 Defining inside Q the measure�n form < n < 9(m)

The measures μn are also defined as in Sect. 3.3.4.

Lemma 4.3 Assume that μm satisfies (3.13) for some Q ∈ Dm, and apply the subdivision
scheme C to define μm+1, . . . , μ�(m) on the subcubes of Q of generation m + 1, . . . , �(m).

Then:

(i) for every n ∈ {m, . . . , �(m)}, for every Q′ ∈ Dn such that Q′ ⊂ Q and μn(Q′) �= 0,
(3.8) holds for Q′ with the measure μn.

(ii) for every cube Q′ ∈ D�(m) such that Q′ ⊂ Q and μ�(m)(Q′) �= 0, there exists n ∈
{m, . . . , �(m)} and a (unique) cube Qn ∈ Dn such that Q′ ⊂ Qn ⊂ Q and (3.20) holds
for μn and Qn.

Proof The proof is similar to that of Lemma 3.9, up to some minor modifications that are
left to the reader. ��

4.2 Construction of themeasure of Theorem 1.4.

The measure μ is built exactly as in Sect. 3.4.
Proposition 3.12 can be proved in this case as well.

Proposition 4.4 Forμ-almost every x, there exist infinitely many integers n such that Q2n(x)
is a C-central cube at Step m2n.

123



Measures, annuli and dimensions Page 23 of 34 79

Fig. 2 Positions of intersecting annuli

The conclusions and the arguments are similar to those developed in Sect. 3.4, we only
sketch the proof to get Theorem 1.4

As a consequence of Proposition 4.4,μ-a.e. x belongs to aC-central cube infinitely often,
and (3.25) holds infinitely often. For such an x , there exists an increasing sequence of integers
( j

n
(x))n≥1 such that the following version of (3.35) holds

c−2
d 2− j

n
(x)d ≤ μ j

n
(x)(Q) < c2d2

− j
n
(x)d

. (4.11)

By Lemma 3.2 and the construction, there exists another increasing sequence of integers
( jn(x))n≥1 satisfying (3.34).

Then part (i) of Lemma 4.3 yields the dimension estimate (3.33), which concludes the
proof.

5 Lemma 5.1 and the proof of Theorem 1.7

5.1 Intersection of thin Euclidean annuli

The idea of the proof of Theorem 1.7 is based on the observation that if balls (in the 2-
dimensional case, disks) of comparable radii ∼ 2−n are centered not too close (in the next
lemma, the distance between their centres is at least 2−5n), then the annuli corresponding to
these balls are intersecting each other in a set of small diameter, see Fig. 2. This follows from
the strictly convex shape of the corresponding balls. It is illustrated by Lemma 5.1 below,
which prevents that measures with different upper and lower dimensions charge thin annuli.

Lemma 5.1 There exists an integer Ncorr such that if n ≥ Ncorr then for every 2−n−1 ≤
r1, r2 ≤ 2−n and

2−5n ≤ ||z1 − z2||2 ≤ 2−n/30, (5.1)

A(z1, r1, 30)∩A(z2, r2, 30) consists of atmost two connected sets, each of them is of diameter,
D∗
corr ,n less than 24 · 2−13.5n.

This type of estimations appear at several places. For example from Lemma 3.1 ofWolff’s
survey [21] one gets an estimate of D∗

corr ,n of the form CW2−12.5n with a constant CW not
depending on n. The order of this estimate is slightly smaller than ours.
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We point out that the order 2−13.5n is optimal. Indeed, taking

R = A((0, 2−n), 2−n, 30) ∩ A((0, 2−n − 2−5n), 2−n − 2−5n, 30),

then one can verify that the diameter of R can be estimated from below by C · 2−13.5n with
a constant not depending on n. For this, considering a triangle with sides a = 2−n − 2−5n ,
b = 2−5n and c = 2−n − 2−30n , it is easily seen that half of the diameter ofR is larger than
the altitude mb of the triangle perpendicular to the side b. Using Heron’s formula the area
of the triangle is A = √

s(s − a)(s − b)(s − c) with s = (a + b + c)/2 and mb = 2A/b.
Plugging in the above constants, one obtains the announced estimate.

Since the notation of Lemma 3.1 of [21] is different from ours, we detail a bit the way
one can obtain an estimate for D∗

corr ,n by using that lemma. Let dW = |z1 − z2| + |r1 − r2|
and �W = ||z1 − z2| − |r1 − r2||. We can suppose that r1 ≥ r2, and the assumptions of
Lemma 5.1 imply that r2 ≥ r1/2. The argument of Lemma 3.1 of [21] gives an estimate

D∗
corr ,n ≤ C ′

W
r−30n
1√

(r−30n
1 + �W )(r−30n

1 + dW )

with C ′
W independent of n.

The assumptions of Lemma 5.1 imply that 0 ≤ �W and 2−5n ≤ dW , and these inequalities
cannot be improved. Hence the above estimate implies

D∗
corr ,n ≤ C∗

Wr−30n
1 r15n1 r2.5n1 = CWr−12.5n

1 ≤ CW2−12.5n .

A similar order estimate can be obtained fromMarstrand’s paper [13]. In [1] a similar type
of question is studied but it is less straightforward which order one can obtain for D∗

corr ,n .
We now turn to the main result and prove Theorem 1.7. Finally, Lemma 5.1 is proved in

Sect. 5.3.

5.2 Proof of Theorem 1.7

Without limiting generality we can suppose that the Borel probability measureμ is supported
on [0, 1]2.

Proceeding towards a contradiction, suppose that μ(Eμ(30, η)) > 0.
For ease of notation, let E = Eμ(30, η). Since E is fixed in the rest of the proof, μ(E)

will be regarded as a positive constant.
Since dimμ = d ∈ [0.89, 2] and dimμ = d ∈ [0.89, d], for μ-a.e. x ∈ E there exist

ρx > 0 such that

for any 0 < r ≤ ρx , rd+0.01 ≤ μ(B(x, r)) ≤ rd−0.01 ≤ r0.88. (5.2)

For those xs for which ρx , as defined above, does not exist, we set ρx = 0.
We can also suppose that for each x we select ρx as half of the supremum of those ρs for

which (5.2) holds with ρ instead of ρx . This way it is not too difficult to see that the mapping
ρ : x ∈ [0, 1]2 �→ ρx ∈ R

+ is Borel μ-measurable.
The first step consists of finding a ball containing points of E with a very precisely

controlled behavior, see Lemma 5.3 below. To prove it, let us start with a simple technical
lemma.

Lemma 5.2 Suppose Ẽ ⊂ R
2 is a μ-measurable set, and let ρ : R2 → R, x �→ ρx be a

μ-measurable function such that μ({x ∈ Ẽ : ρx > 0}) = μ(Ẽ).
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Then for any 0 < γ < 1, for μ-a.e. x ∈ Ẽ , there exists Rx > 0 such that for any
0 < r < Rx ,

μ
({x ′ ∈ B(x, r) ∩ Ẽ : ρx ′ ≥ Rx }

)
> γ · μ(B(x, r)). (5.3)

Proof Consider Ẽn = {x ∈ Ẽ : ρx > 1
n }, for n ≥ 1. Then μ(Ẽ \ ∪n∈N Ẽn) = 0 by

assumption.
Fix now n ∈ N. By Corollary 2.1

μ(Ẽn ∩ B(x, r))

μ(B(x, r))
→ 1 for μ-a.e. x ∈ Ẽn .

For those x ∈ Ẽn for which the above limit holds true, it is thus enough to choose 0 < Rx < 1
n

such that

μ(Ẽn ∩ B(x, r))

μ(B(x, r))
> γ holds for any 0 < r < Rx .

��

Using Lemma 5.2 with γ = 1 − η
2 applied to E , for μ-a.e. x ∈ E there exists an Rx > 0

such that for any 0 < r < Rx ,

μ({x ′ ∈ B(x, r) ∩ E : ρx ′ ≥ Rx }) >
(
1 − η

2

)
μ(B(x, r)). (5.4)

Consider a large natural number N0 > 10, whose precise value will be chosen later.
By using the definition of E = Eμ(30, η), for μ-a.e. x ∈ E one can select 0 < rx ≤

min{2−N0 , Rx/10, ρx/10} such that

μ(A(x, rx , 30)) ≥ η · μ(B(x, rx )). (5.5)

Recalling that all rx s are less than 2−N0 , and that μ-a.e. rx is strictly positive, there exists
at least one integer n0 ≥ N0 such that

μ({x ∈ E : 2−n0−1 ≤ rx < 2−n0}) ≥ 1

10n20
μ(E). (5.6)

Consider now the covering of {x ∈ E : 2−n0−1 ≤ rx < 2−n0} by the balls {B(x, rx ) :
x ∈ E, 2−n0−1 ≤ rx < 2−n0}. By the measure theoretical version of Besicovitch’s covering
theorem (see [3], Theorem 20.1 for instance), there exists a constant C2 > 0, depending
only on the dimension 2, such that one can extract a finite family of disjoint balls of radius
4 · 2−n0 , denoted by B = {Bi : i = 1, .., M}, such that, calling Ẽ = E ∩ ∪Bi∈BBi , one has
μ(Bi ) > 0 for every i , and

μ(Ẽn0) ≥ C2

n20
μ(E), where Ẽn0 = {x ∈ Ẽ : 2−n0−1 ≤ rx < 2−n0}. (5.7)

Lemma 5.3 There exists a constant C > 0 depending only on the dimension and a ball
B∗ = B(x∗, 2−n0/100) such that

μ
(
B

(
x∗, 2−n0/100

) ∩ Ẽn0

)
≥ C

n20
2−2n0μ(E). (5.8)
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Proof Since Ẽ ⊂ [0, 1]2, the balls of B are disjoint and are of radius less than 2−10, their
cardinality M is less than 22n0 , and there exists one ball Bi such that

μ(Bi ∩ Ẽn0) ≥ 1

22n0+2 μ(Ẽn0) ≥ C2

22n0n20
μ(E). (5.9)

Write Bi = B(xi , rxi ). Since rxi /100 < 2−n0/100 < 2−n0−1 ≤ rxi , there exists a constant
C3 > 0 which depends only on the dimension such that for some x∗ ∈ Bi ∩ Ẽ , the ball with
center x∗ and radius 2−n0/100 supports a proportion C3 > 0 of theμ-mass of the initial ball,
i.e.

μ(B(x∗, 2−n0/100)) ≥ μ(B(x∗, 2−n0/100) ∩ Ẽn0) ≥ C3μ(Bi ∩ Ẽn0). (5.10)

The last statement simply follows from the fact that Bi can be covered by finitely many
balls of radius 2−n0/100, this finite number of balls being bounded above independently of
xi and rxi .

This and (5.9) imply the result. ��
Further, as a second step, we seek for a lower estimate of the number M∗

n0 of disjoint balls
B(y j , 2−5n0), j = 1, . . . , M∗

n0 such that y j ∈ B(x∗, 2−n0/100) ∩ Ẽn0 . The rest of the proof
consists of showing that annuli centered at y j , j = 1, . . . , M∗

n0 , will charge B(x∗, 4 · 2−n0)

with too much measure, yielding a contradiction. Lemma 5.1 will play a key role here.

Lemma 5.4 When N0 is sufficiently large, for every n0 ≥ N0, call M∗
n0 the maximal number

of disjoint balls B(y j , 2−5n0), j = 1, . . . , M∗
n0 such that y j ∈ B(x∗, 2−n0/100)∩ Ẽn0 . Then

M∗
n0 ≥ 22.1n0 .

Proof First, observe that, when y j ∈ B(x∗, 2−n0/100) ∩ Ẽn0 , by (5.2)

μ(B(y j , 2
−5n0)) ≤ 2−0.88·5n0 = 2−4.4n0 . (5.11)

Next, there exist two positive constants C3 and C4 depending only on the dimension such

that B(x∗, 2−n0/100)∩ Ẽn0 is covered byC3 familiesF1,…,FC3 containing pairwise disjoint
balls of the form B(y j , 2−5n0). At least one of these families, say F1, satisfies that

∑

B(y j ,2−5n0 )∈F1

μ(B(y j , 2
−5n0)) ≥ 1

C3
μ(B(x∗, 2−n0/100) ∩ Ẽn0).

By (5.8),
∑

B(y j ,2−5n0 )∈F1
μ(B(y j , 2−5n0)) ≥ C

C3n20
2−2n0μ(E). Then, from (5.11) one

deduces that

M∗
n0 ≥ C

C3n20
2−2n0μ(E)

1

2−4.4n0
≥ 22.1n0 , (5.12)

when N0 is chosen sufficiently large. ��
Next, as a third step, we study the annuli A(yi , ryi , 30) associated with the points yi ,

i = 1, . . . , M∗
n0 . Observe that these points yi satisfy the assumptions of Lemma 5.1 and in

particular Eq. (5.1) with n = n0, as soon as N0 ≥ Ncorr .

Lemma 5.5 For every x ∈ B(x∗, 2−n0/100) ∩ Ẽn0 , set

Ã(x, rx , 30) =
{
x ′ ∈ A(x, rx , 30) ∩ E : ρx ′ > 10rx

}
. (5.13)
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Then, for some constant C > 0 that depends only on the dimension one has

μ
(
Ã(x, rx , 30)

) ≥ η

2 − η
· C

n20
μ(E) · 2−2n0 . (5.14)

Proof Since rx ≤ Rx/10, from (5.4) and (5.5) we infer that for μ-a.e. x ∈ E , one has

μ
(
Ã(x, rx , 30)

) = μ({x ′ ∈ A(x, rx , 30) ∩ E : ρx ′ > 10rx }) ≥ η

2
μ(B(x, rx )).

The last inequality holds for every rx such that (5.4) holds true.
Recalling that for x ∈ Ẽn0 , 2

−n0−1 ≤ rx < 2−n0 , one deduces that for any x ∈
B(x∗, 2−n0/100) ∩ Ẽn0 , B(x∗, 2−n0/100) ⊂ B(x, rx/4).

Hence, by (5.8),

μ(B(x, rx/4)) ≥ μ(B(x∗, 2−n0/100) ∩ Ẽn0) ≥ C

n20
μ(E) · 2−2n0 . (5.15)

It is also clear that B(x, rx/4) ∩ Ã(x, rx , 30) = ∅ for such xs. So, the fact that

μ( Ã(x, rx , 30)) ≥ η

2
μ(B(x, rx )) ≥ η

2

(
μ( Ã(x, rx , 30)) + μ(B(x, rx/4))

)

implies by using (5.15) that

μ( Ã(x, rx , 30)) ≥ η

2 − η
μ(B(x, rx/4)) ≥ η

2 − η
· C

n20
μ(E) · 2−2n0 ,

and the result follows. ��
We are now ready to combine the previous arguments to prove Theorem 1.7.
As in Lemma 5.4, select points (y j ), j = 1, . . . , M∗

n0 , such that the balls B(y j , 2−5n0) ⊂
B(x∗, 4 · 2−n0) are pairwise disjoint and y j ∈ B(x∗, 2−n0/100) ∩ Ẽn0 .

By construction, the annuli A(yi , ryi , 30) and the sets Ã(yi , ryi , 30) satisfy the assump-
tions of Lemmas 5.1 and 5.5. Also, for any x ′ ∈ Ã(yi , ryi , 30) ∩ Ã(y j , ry j , 30), one has
ρx ′ > 10 · 2−n0−1. Hence, for any r < 10 · 2−n0−1, by (5.2) one necessarily also has
μ(B(x ′, r)) ≤ r0.88.

Then, as stated by Lemma 5.1, the diameter of each of the (at most) two connected parts
of A(yi , ryi , 30) ∩ A(y j , ry j , 30) is smaller than 2−13n0 < 24 · 2−13.5n0 . These connected
parts are included in an annulus A(yi , ryi , 30), so it is a very thin region (the width of the
annulus is less than 2−30n0 ). Hence, the intersection of E with the union of the two connected
parts can be covered by at most M∗∗ balls of the form B(z�, 2−30n0), where

z� ∈ Ã(yi , ryi , 30) ∩ Ã(y j , ry j , 30), (5.16)

M∗∗ ≤ C∗∗ 2−13n0

2−30n0
= C∗∗217n0 , (5.17)

and C∗∗ is a positive constant depending only on the dimension.
Also, by (5.13) and (5.16), one sees that �z� > 2−n0−1 · 10 > 2−30n0 for all z�s. Hence,

(5.2) yields

μ(B(z�, 2
−30n0)) ≤ 2−30n0·0.88 = 2−26.4n0 . (5.18)

This together with (5.17) imply that

μ
(
Ã(yi , ryi , 30) ∩ Ã(y j , ry j , 30)

) ≤ M∗∗ · 2−26.4n0 < C∗∗217n0 · 2−26.4n0
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= C∗∗2−9.4n0 . (5.19)

In addition, (5.14) gives

μ
(
Ã(yi , ryi , 30)

) · μ
(
Ã(y j , ry j , 30)

) ≥
( η

2 − η

)2 · C
2

n40
μ2(E) · 2−4n0 . (5.20)

Hence by (5.19) for large n0,

μ( Ã(yi , ryi , 30) ∩ Ã(y j , ry j , 30)) < 2−5.3n0μ( Ã(yi , ryi , 30)) · μ( Ã(y j , ry j , 30)). (5.21)

Finally, all sets Ã(yi , ryi , 30) are included in B(x∗, 4 · 2−n0), and their cardinality by
Lemma 5.4 is greater than 22.1n0 . So, one has

μ(B(x∗, 4 · 2−n0)) ≥
22.1n0∑

i=1

μ( Ã(yi , ryi , 30))

−
22.1n0∑

i, j=1: i �= j

μ( Ã(yi , ryi , 30) ∩ Ã(yi , ryi , 30))

≥
22.1n0∑

i=1

μ( Ã(yi , ryi , 30))

⎛

⎝1 −
22.1n0∑

j=1

2−5.3n0μ( Ã(y j , ry j , 30))

⎞

⎠

≥
22.1n0∑

i=1

μ( Ã(yi , ryi , 30))(1 − 22.1n0 · 2−5.3n0),

where at the last step we simply used that μ( Ã(x j , rx j , 30)) ≤ 1. Then, (5.14) yields that
when n0 ≥ N0 is sufficiently large,

μ(B(x∗, 4 · 2−n0)) ≥
22.1n0∑

i=1

μ( Ã(yi , ryi , 30))(1 − 22.1n0 · 2−5.3n0)

≥ 1

2

22.1n0∑

i=1

μ( Ã(yi , ryi , 30))

≥ 22.1n0
η

2 − η
· C

n20
μ(E)2−2n0 ,

which is greater than 1 as soon as N0 (hence n0) is chosen sufficiently large. This contradicts
the fact that μ(R2) = 1, and completes the proof.

Remark 5.6 It would be natural to check if a version of Theorem 1.7 holds in which the
constant 0.89 can be pushed down to a value closer to zero, maybe at the price that δ = 30
is replaced by a larger number. We point out that the estimates (5.17) and (5.19) show that
in our arguments the order of estimate of D∗

corr ,n in Lemma 5.1 is crucial. In (5.19) in the
end of the inequality, we need a (sufficiently large) negative power of 2. If 0.89 is replaced
by 0.56 = 17/30, using (5.17) and (5.18) one can see that in the crucial estimate (5.19),
the power of 2 will become non-negative. Since the order of the estimate in Lemma 5.1 is
best possible, then one cannot improve significantly (5.17) and hence the other estimates
depending on it (by tighter estimates the exponent 30 − 13 = 17 in (5.17) can be replaced
by 30 − 13.5 + ε = 16.5 + ε).
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5.3 Proof of Lemma 5.1

Without limiting generality we can suppose r1 ≥ r2 and can choose a coordinate system in
which z1 = (0, y1), z2 = (0, y2) and y1 = r1. See Fig. 2 for an illustration (the figures are
of course distorted, since 2−30n is much smaller than 2−n , so on a correct figure one of them
cannot be shown, due to pixel size limitations).

In the proof, when constants are said to depend on the dimension 2 only, they do not
depend on other parameters—similar constants exist in higher dimensions as well.

With this notation, (5.1) means that

2−5n ≤ |y1 − y2| ≤ 2−n/30. (5.22)

Of course the last inequality holds for sufficiently large ns.

If A(z1, r1, 30) ∩ A(z2, r2, 30) is included

in the strip [−8 · 2−13.5n, 8 · 2−13.5n] × R, (5.23)

then its diameter is less than 24 · 2−13.5n .
Assume now that A(z1, r1, 30)∩ A(z2, r2, 30) is not included in the strip [−8 ·2−13.5n, 8 ·

2−13.5n] × R.
We consider one of the two connected parts of A(z1, r1, 30) ∩ A(z2, r2, 30), the one

located in the right half-plane. We denote its closure by CR . See Figs. 2 and 3. The other part
is symmetric and a similar estimate is valid for it.

Assume that r1 is fixed and r ∈ [r2 − r302 , r2]. Denote by M1(r) = (x1(r), y1(r)) the
intersection of the circles of radii r1 − r301 and r , centered respectively at z1 and z2. We
put A = M1(r2) = (xA, yA), and B = M1(r2 − r302 ) = (xB , yB). Observe that the points
M1(r), r ∈ [r2 − r302 , r2] are located on the arc with endpoints A and B. On Fig. 2 the
point A is the point of the closed region CR with the largest abscissa. Then xA = x1(r2) >

8 · 2−13.5n . However, as the left half of Fig. 3 illustrates, for r1 ≈ r2 it may happen that not
A = M1(r2) = (xA, yA) is the point of CR with the largest abscissa. On the left half of Fig. 3
this point is C . In the sequel we suppose that xA = x1(r2) > 8 · 2−13.5n . The other cases can
be treated analogously, the main point is that, on the boundary of CR , there is at least one
point with abscissa larger than 8 · 2−13.5n .

The abscissa x1(r) satisfies the implicit equation

F1(r , x
1(r)) := y2 − y1 +

√
r2 − (x1(r))2 −

√
(r1 − r301 )2 − (x1(r))2 = 0.

Observe that by our assumption, the intersection point lies in the first quadrant x1(r) > 0.
By implicit differentiation and after simplification,

(x1)′(r) = −∂1F1(r , x1(r))

∂2F1(r , x1(r))
=

r
√

(r1 − r301 )2 − (x1(r))2

x1(r)(y1 − y2)
.

From the last equation, one deduces by (5.22), r ∈ [r2 − r302 , r2], 2−n−1 ≤ r1, r2 ≤ 2−n

that

|(x1)′(r)x1(r)| ≤
r
√

(r1 − r301 )2 − (x1(r))2

(y1 − y2)
≤ 2−2n

2−5n
≤ 23n .
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Fig. 3 Special position of annuli and calculating the diameter of their intersection

By integration, |(x1(r))2−(x1(r2))2| ≤ 2 ·23n |r −r2| ≤ 23n+12−30n ≤ 2−27n+1, and hence

|x1(r) − x1(r2)| ≤ 2−27n+1

|x1(r) + x1(r2)| .

Finally using that x1(r2) = xA ≥ 8 · 2−13.5n the previous equation gives that for any
r ∈ [r2 − r302 , r2]

|x1(r) − x1(r2)| ≤ 2−27n+1213.5n−3 = 2−13.5n−2, so |xA − xB | < 2−13.5n−2 (5.24)

and xB > 8 · 2−13.5n − 2−13.5n−2 = 7.75 · 2−13.5n−1.
Assume now that r2 is fixed and r ∈ [r1 − r301 , r1]. Denote by M2(r) = (x2(r), y2(r))

the intersection of the circles of radii r and r2 − r302 , centered respectively at z1 and z2. We
put D = M2(r1) = (xD, yD). Observe that the points M2(r), r ∈ [r1 − r301 , r1] are located
on the arc with endpoints B and D.

Using the implicit equation

F2(r , x
2(r)) := y2 − y1 +

√
(r2 − r302 )2 − (x2(r))2 −

√
r2 − (x2(r))2 = 0,

the same considerations show that for any r ∈ [r1 − r301 , r1] when n ≥ Ncorr is sufficiently
large

|x2(r) − x2(r2)| ≤ 2−27n+1213.5n/7.75 = 2−13.5n+1/7.75,

so |xB − xD| ≤ 2−13.5n+1/7.75, (5.25)

and xD > 7.75 · 2−13.5n − 2−13.5n+1/7.75 > 7 · 2−13.5n .
One can also consider the curve M3(r) = (x3(r), y3(r)) connecting the points D and C

on the boundary of CR and the curve M4(r) = (x4(r), y4(r)) connecting the points C and
A on the boundary of CR . Estimates analogous to Eqs. (5.24) and (5.25) are valid for these
curves as well with constants 7.75 and 7.5 decreased to 7 and 6. Since CR is compact, we
can choose points P = (xP , yP ) and Q = (xQ, yQ) on the boundary of CR such that the
distance between P and Q equals the diameter of CR . Since these points can be connected
by no more than three of the above mentioned arc segments we deduce that

|xP − xQ | ≤ 2−13.5n . (5.26)
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The analogous estimate

|yP − yQ | ≤ 2−13.5n (5.27)

is also true. In fact in this case the calculations are even simpler, and most of the details are
left to the reader. We mention here only that, for example, for the function y1(r) one has a
much simpler implicit equation

F3(r , y
1(r)) := r21 − r2 − (y1(r) − y1)

2 + (y1(r) − y2)
2 = 0 (5.28)

and by implicit differentiation

(y1)′(r) = r

y1 − y2
. (5.29)

From this and (5.23) one concludes that the diameter of CR is less than 24 · 2−13.5n .
This concludes the proof, since the symmetric part (i.e. when xA < 0) is treated similarly.

6 Methods related to Falconer’s distance set problem

The study of thin annuli and spherical averages is an important issue in many dimension-
related problems, including Kakeya-type problems and Falconer’s distance set conjecture.
Recall that the distance set D(E) of the set E ⊂ R

d is defined by

D(E) := {||x − y||2 : x, y ∈ E}.
Falconer’s distance set problem is about finding bounds of Hausdorff measure and dimension
of D(E) in terms of those of E . Examples of Falconer show that if s ≤ d/2 then there are
sets E ⊂ R

d such that dimH E = s and D(E) is of zero (one-dimensional) Lebesgue
measure. It is conjectured that E has positive Lebesgue measure as soon as dimH E > d/2.
In one of the most recent results in the plane (d = 2) [7], it is proved that if E is compact
and dimH E > 5/4 then D(E) has positive Lebesgue measure. For further details about
Falconer’s distance set problem we also refer to [4] and Chapters 4, 15 and 16 of [15].

Using standard arguments from [4, 15], which is a different approach from the one devel-
oped earlier in this paper, we can prove Proposition 1.9.

Proof Let t > 1/2, 0 < η < 1 and let μ be a finite t-regular measure on R
2 with compact

support satisfying (1.6). Since we work in R
2 the local dimension of μ cannot exceed 2, so

2 ≥ t > 1/2.
Since μ is t-regular, for every s < t , the s-energy of μ defined by

Is(μ) =
∫∫

(R2)2
||x − y||−s

2 dμ(x)dμ(y)

is finite. Recall also that

Is(μ) =
∫

R2
|ξ |s−2|μ̂(ξ)|2dξ, (6.1)

and for every compactly supported function χ on Rd , one has
∫∫

(R2)2
χ(x − y)dμ(x)dμ(y) =

∫

R2
|χ̂(ξ)| · |μ̂(ξ)|2dξ, (6.2)

where μ̂ and χ̂ are the Fourier transform of μ and χ .
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Let

s := 1

2

(
t + 1

2

)
and δ := 4 = 2(t − 1/2)/(s − 1/2) > (t − 1/2)/(s − 1/2). (6.3)

Our estimations on t imply 1/2 < s ≤ 5/4.
Set χ(x) = 1[r−rδ ,r ](|x |). By Lemma 2.1 of [4],

|χ̂(ξ)| ≤ Cr1/2|ξ |−1/2 min(r δ, |ξ |−1). (6.4)

Following Falconer’s argument (Theorem 2.2 of [4]) (see also [15, Lemma 12.13]), one
gets by (6.1), (6.2) and (6.4) that, keeping in mind that 1/2 < s ≤ 5/4 < 3/2

∫∫

(R2)2
μ(A(x, r , δ))dμ(x) =

∫

R2
|χ̂(ξ)||μ̂(ξ)|2dξ

≤ Cr1/2
(
r δ

∫

|ξ |≤r−δ

|ξ |−1/2|μ̂(ξ)|2dξ

+
∫

|ξ |>r−δ

|ξ |−3/2|μ̂(ξ)|2dξ

)

≤ Cr1/2
(
r δ

∫

|ξ |≤r−δ

|ξ |−1/2+(s−3/2)|ξ |3/2−s |μ̂(ξ)|2dξ

+
∫

|ξ |>r−δ

|ξ |−3/2+s−1/2|ξ |1/2−s |μ̂(ξ)|2dξ

)

≤ Cr1/2+δ(s−1/2) Is(μ),

for some constantC > 0 that depends onμ andmight change from line to line. Consequently,
by Chebyshev’s inequality, and the lower bound in (1.6), we have

μ({x : μ(A(x, r , δ)) ≥ η · μ(B(x, r))}) ≤ μ({x : μ(A(x, r , δ) ≥ η · cr t })
≤ C ′

μr
1/2+δ(s−1/2) Is(μ)/(ηr t ) (6.5)

= C ′
μη−1 Is(μ)r t−1/2, (6.6)

where at the last equality we used (6.3) and C ′
μ is a suitable constant not depending on r .

Hence the right-hand side tends to zero as r ↘ 0. This shows (1.7) with an additional decay
rate faster than r t−1/2, and thus completes the proof. ��

However the above convergence in measure of Proposition 1.9 is not fast enough to hope
to recover Theorems 1.3 to 1.7, at least for the moment.

Let us justify this claim. Consider a measureμ supported on [0, 1]2 (to ease the argument)
such that the assumptions of Proposition 1.9 hold. We would like to apply (1.7) to deduce
some estimate for the measure of Eμ(δ, η).

For this, consider equi-distributed points (rk,m)m=0,...,23k in the interval [rk,0 =
2−k−1, rk,23k = 2−k]. The distance between two consecutive rk,m and rk,m+1 is 2−4k−1. If
x is such that Pμ(x, r , 4, η) holds true for r ∈ [2−k−1, 2−k], then Pμ(x, rk,m, 4, η/2) holds
for some m. So, the set of points {x : Pμ(x, r , 4, η) holds true for some r ∈ [2−k−1, 2−k]}
has μ-measure less than
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23k∑

k=0

μ({x : Pμ(x, rk,m, 4, η/2) holds true} ≤
23k∑

k=0

Cη−12−k(t−1/2)

≤ C2k(7/2−t)

by (6.6). Unfortunately, keeping in mind that t ≤ 2 we have
∑

k 2
k(7/2−t) = +∞ and the

Borel–Cantelli lemma cannot be applied (by far!) to prove Theorem 1.3 or Theorem 1.7.
Trying to optimize the choice of s or δ (instead of 4) does not help either, using similar

arguments.
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