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Abstract
We compute the Balmer spectra of compact objects of tensor triangulated categories whose
objects are filtered or graded objects of (or sheaves valued in) another tensor triangulated
category. Notable examples include the filtered derived category of a scheme as well as
the homotopy category of filtered spectra. We use an ∞-categorical method to properly
formulate and deal with the problem. Our computations are based on a point-free approach,
so that distributive lattices and semilattices are used as key tools. In the Appendix, we prove
that the ∞-topos of hypercomplete sheaves on an ∞-site is recovered from a basis, which
may be of independent interest.
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1 Introduction

In the subject called tensor triangular geometry, a basic object to study is a tt-category, which
is a triangulated category equipped with a compatible symmetric monoidal structure. Balmer
introduced a way to associate to each tt-category T ⊗ a topological space Spc(T ), which
we call the Balmer spectrum. We refer the reader to [3] for a survey on tensor triangular
geometry.

In this paper, we compute the Balmer spectra of mainly two families of tt-categories,
whose objects are diagrams in another tt-category. Although those two computations are
logically independent, many techniques used in them are similar.

To state the main results, we introduce some terminology. See Remark 3.2 for the com-
parison with the common setting of tensor triangular geometry.

Definition 1.1 A big tt-∞-category is a compactly generated stable ∞-category equipped
with an E2-monoidal structure whose tensor product preserves (small) colimits separately in
each variable and restrict to compact objects.

We here state only a main consequence of the first computation because it requires some
notions to state it in full generality.

Theorem I Suppose that C⊗ is a big tt-∞-category.

(1) For a nonzero Archimedean group A (for example,Z,Q, or R, equipped with their usual
orderings), there is a canonical homeomorphism

Spc(Fun(A, C)ω) � S × Spc(Cω),

where S denotes the Sierpiński space (that is, the Zariski spectrum of a discrete valuation
ring); see Fig. 1.

(2) For an abelian group A, considered as a discrete symmetric monoidal poset, there is a
canonical homeomorphism

Spc(Fun(A, C)ω) � Spc(Cω).

In each statement,we consider the Day convolution E2-monoidal structure on the∞-category
Fun(A, C).

Specializing to the case A = Z, this theorem has several consequences:

Example 1.2 Let X be a quasicompact quasiseparated scheme. The ∞-category QCoh(X),

whose homotopy category is the derived category of discrete quasicoherent sheaves, can be
equipped with a symmetric monoidal structure by considering the (derived) tensor product.

In some situations, it is useful to consider also the ∞-category Fun(Z,QCoh(X)), whose
compact objects are perfect filtered complexes on X , which was first introduced and stud-
ied by Illusie in [7, Section V.3]. We know that QCoh(X)⊗ is a tt-∞-category and that
Spc(QCoh(X)ω) is the underlying topological space of X according to the reconstruction
theorem (see [3, Theorem54]).We can apply (1) of Theorem I to see that the Balmer spectrum
of perfect filtered complexes on X is the product of the Sierpiński space and the underlying
topological space of X . In the affine case, this result is obtained by Gallauer in [5] using a
different method.

If we regardZ as a discrete abelian group, Fun(Z,QCoh(X)) is the∞-category of graded
quasicoherent sheaves. Then (1) of Theorem I says that theBalmer spectrumof perfect graded
complexes on X is the underlying topological space of X .
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Fig. 1 As a set, Spc(Fun(Z,C)ω)

consists of two copies of
Spc(Cω). Its closed subsets
correspond to inclusions between
two closed subsets of Spc(Cω)

Example 1.3 The space Spc(Spω) is already calculated; its points are indexed by the Morava
K -theories (see [3, Theorem 51]). Applying Theorem I to C⊗ = Sp⊗, we get the Balmer
spectrum of compact filtered (or graded) spectra.

Example 1.4 One advantage of the generality of the statement of Theorem I is that it can
be applied iteratively. For example, it can be used when objects are Z-filtered in several
directions. Actually, what we prove in Sect. 5 is so general that we can determine the Balmer
spectrum of Zκ -filtered objects for any cardinal κ.

We note that this theorem has a geometric interpretation:

Example 1.5 For anE∞-ring R,Moulinos proved in [15] that there exist the following equiv-
alences of symmetric monoidal ∞-categories:

Fun(Z,ModR)⊗ � QCoh(A1
R/Gm,R)⊗, Fun(Zdisc,ModR)⊗ � QCoh(BGm,R)⊗,

where we write Zdisc for the abelian group of integers without a poset structure. Applying
our result to the case when A = Z, Zdisc and C⊗ = Mod⊗

R , we get the Balmer spectra of
perfect complexes on these geometric stacks (but note that the determination of Spc(Modω

R)

for a general E∞-ring R is a difficult problem). At least when R is a field, our computations
reflect a naive intuition on how these stacks look like.

The second result is the following:

Theorem II Suppose that C⊗ is a big tt-∞-category and X is a coherent topological space
(that is, a space which arises as the underlying topological space of a quasicompact quasisep-
arated scheme). Let ShvC(X) denote the ∞-category of C-valued sheaves on X . Considering
the pointwise E2-monoidal structure on it, we have a canonical homeomorphism

Spc(ShvC(X)ω) � Xcons × Spc(Cω),

where Xcons denotes the set X endowed with the constructible topology of X .

One big problem in tensor triangular geometry is to compute the Balmer spectrum of
compact objects of the stablemotivic homotopy theory SH(X)⊗ associated to a quasicompact
quasiseparated scheme X .Thefirst stepwould be the determinationof that of spectrum-valued
sheaves on the smooth-Nisnevich site of X . Theorem II can be considered as an easy variant
of that calculation. Nevertheless, it is an interesting fact in its own right.

In this paper, we use distributive lattices to deal with the Balmer spectra. More precisely,
we introduce the notion of the Zariski lattice of a tt-(∞-)category, which turns out to be just
the opposite of the distributive lattice of quasicompact open sets of the Balmer spectrum.
Thus it contains the same information as the Balmer spectrum, but it has a more algebraic
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nature, which makes our computations possible. We can find a similar approach in [9], where
Kock and Pitsch used the “Zariski frame” of a tt-category as a central notion, which in
our terminology is the ideal frame of the Zariski lattice. We note that we also use (upper)
semilattices to consider a “tensorless” variant of tensor triangular geometry.

Outline

In Sect. 2, we study ∞-categorical machinery related to functor categories. In Sect. 3, we
review basic notions in tensor triangular geometry using the language of distributive lattices.
Its “tensorless” variant is also introduced there. Sections 4 and 5 are devoted to the proofs
of Theorem II and a general version of Theorem I, respectively. These two sections are
logically independent, but we arrange them in this way because the former is much simpler.
In Appendix A, we develop some technical material on ∞-toposes which we need in Sect. 4.

Conventions

Concerning ∞-categories, we will follow terminology and notation used in [11–13] with
minor exceptions, which we will explicitly mention. For example, S and Cat∞ denote the
large ∞-categories of spaces and ∞-categories, respectively.

2 Functor categories

In this section, we study general properties of the ∞-category Fun(K , C) for a small ∞-
category K and a presentable ∞-category C.

2.1 Tensor products of presentable∞-categories

Let Pr denote the large ∞-category of presentable ∞-categories whose morphisms are those
functors that preserve colimits. This is what is denoted by PrL in [11]. Similarly, for an
infinite regular cardinal κ, we let Prκ denote the large ∞-category of κ-compactly generated
∞-categories whose morphisms are those functors that preserve colimits and κ-compact
objects; see [11, Section 5.5.7].

Here we list basic properties of the symmetric monoidal structure on Pr as one theorem;
see [12, Section 4.8.1] for the proofs.

Theorem 2.1 There exists a symmetric monoidal structure on Pr which satisfies the following
properties:
(1) For C,D ∈ Pr, the tensor product C⊗D is canonically equivalent to the full subcategory

of Fun(Cop,D) spanned by those functors preserving limits.
(2) For C1, . . . , Cn,D ∈ Pr, the full subcategory of Fun(C1 ⊗ · · · ⊗ Cn,D) spanned by those

functors preserving colimits is equivalent to that of Fun(C1 × · · · × Cn,D) spanned by
those functors preserving colimits in each variable.

(3) The functor PShv : Cat∞ → Pr has a symmetric monoidal refinement, where we consider
the cartesian symmetric monoidal structure (see [12, Remark 2.4.2.6]) on Cat∞.

(4) The tensor product operations preserve small colimits in each variable.
(5) For an infinite regular cardinal κ and C1, . . . , Cn,D ∈ Prκ , we have C1⊗· · ·⊗Cn ∈ Prκ .

Moreover, the full subcategory of Fun(C1 ⊗ · · · ⊗ Cn,D) spanned by those functors
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preserving colimits and κ-compact objects is canonically equivalent to that of Fun(C1 ×
· · ·×Cn,D) spanned by those functors that preserve colimits in each variable and restrict
to determine functors from (C1)κ × · · · × (Cn)κ to Dκ .

The useful consequence for us is the following:

Corollary 2.2 For a presentable ∞-category C and a small ∞-category K , we have a canon-
ical equivalence Fun(K , S) ⊗ C � Fun(K , C).

Proof According to (1) of Theorem 2.1, the left hand side can be regarded as the full sub-
category of Fun(Fun(K , S)op, C) spanned by those functors preserving limits. Hence the
equivalence follows from [11, Theorem 5.1.5.6]. ��

We have the following result from this description, although it can be proven more con-
cretely:

Corollary 2.3 Let κ be an infinite regular cardinal. If C is a κ-compactly generated ∞-
category, so is Fun(K , C) for any small ∞-category K .

2.2 Compact objects in a functor category

In this subsection, we fix an infinite regular cardinal κ.

For a κ-compactly generated ∞-category C, according to Corollary 2.3, the ∞-category
Fun(K , C) is also κ-compactly generated for any small ∞-category K . The aim of this
subsection is to determine κ-compact objects of Fun(K , C) under some assumptions on K .

Definition 2.4 Let K be a small ∞-category. We say that K is κ-small if there exist a
simplicial set K ′ with < κ nondegenerate simplices and a Joyal equivalence K ′ → K .

We say that K is locally κ-compact if the mapping space functor Map : K op × K → S
factors through the full subcategory Sκ spanned by κ-compact spaces.

Remark 2.5 When κ is uncountable, the notion of κ-smallness introduced here coincides
with that of essential κ-smallness given in [11, Definition 5.4.1.3]. Furthermore, according
to [11, Proposition 5.4.1.2], every κ-small category is locally κ-compact. However in the
case κ = ω, the analogous result does not hold: For example, the 1-sphere S1, regarded as
an ∞-category, is ω-finite but not locally ω-compact; see also Remark 2.9.

Lemma 2.6 Let C be a κ-compactly generated ∞-category and K a κ-small ∞-category.
Then every functor K → C that factors through Cκ is a κ-compact object of Fun(K , C).

Proof This is a corollary of [11, Proposition 5.3.4.13]. ��
Lemma 2.7 Let C be a κ-compactly generated ∞-category and K a locally κ-compact ∞-
category. Then every κ-compact object K → C of Fun(K , C) factors through Cκ .

Proof Let k be an object of K . The inclusion i : ∗ ↪→ K corresponding to k induces a
functor i∗ : Fun(K , C) → C by composition. Since F(k) � i∗F holds for every functor
F : K → C, it suffices to show that the functor i∗ preserves κ-compact objects. By [11,
Proposition 5.5.7.2], this is equivalent to the assertion that its right adjoint i∗ preserves
κ-filtered colimits. The functor i∗ can be concretely described as the assignment C �→(
l �→ CMapK (l,k)

)
using the cotensor structure on C. Since C is κ-compactly generated and

MapK (l, k) is κ-compact for every object l ∈ K , we can see that i∗ preserves κ-filtered
colimits. ��
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Combining these two lemmas, we get the following result:

Proposition 2.8 Let C be a κ-compactly generated ∞-category and K a κ-small locally κ-
compact ∞-category. Then an object F ∈ Fun(K , C) is κ-compact if and only if it takes
values in κ-compact objects.

Remark 2.9 Proposition 2.8 does not hold without the local condition: Take K = S1 and
consider the object X of Fun(S1, S) corresponding to the universal covering ∗ → S1 by the
Grothendieck construction. By [11, Lemma 5.1.6.7] the object X is compact, but X(∗) � Z
is not compact.

Remark 2.10 In the case κ = ω, the assumption on K in the statement of Proposition 2.8 is
relatively restrictive. For example, if K is also assumed to be equivalent to a space, K must
be equivalent to a finite set: When K is simply connected, this can be deduced by considering
the homological Serre spectral sequence associated to the fiber sequence �K → ∗ → K .

The general case follows by taking the universal cover of each connected component of K
and using the fact that the classifying space of a nontrivial finite group is not finite.

Later in this paper, we consider a slightly more general situation than that of Proposi-
tion 2.8. The following result is useful in that case:

Corollary 2.11 Let K be a locally κ-compact ∞-category and C a κ-compactly generated
∞-category. Suppose that there is a κ-directed family (K j ) j∈J of full subcategories of K
such that K j is κ-small for j ∈ J and

⋃
j K j = K . We let (i j )! denote the left Kan extension

functor along the inclusion i j : K j ↪→ K . Then we have an equality

Fun(K , C)κ =
⋃

j∈J

(i j )!(Fun(K j , C)κ )

of full subcategories of Fun(K , C).

Proof Since the right adjoint of the left Kan extension functor preserves colimits, we obtain
one inclusion by applying [11, Proposition 5.5.7.2].

Conversely, let F ∈ Fun(K , C) be a κ-compact object. By assumption, F is the colimit of
the κ-filtered diagram j �→ (i j )!(F |K j ). Hence we can take j ∈ J such that F is a retract of
(i j )!(F |K j ). Since the essential image of (i j )! is closed under retracts, F is in fact equivalent
to (i j )!(F |K j ). From Lemma 2.7 and Proposition 2.8, we observe that F |K j is κ-compact,
which completes the proof of the other inclusion. ��

2.3 Recollement

We refer the reader to [12, Section A.8] for the theory of recollements for ∞-categories.

Definition 2.12 Suppose that C is an ∞-category and i : C0 → C and j : C1 → C are fully
faithful functors. We say that C is a recollement of i and j if C is a recollement of the essential
images of i and j in the sense of [12, Definition A.8.1].

There are many ways to write a functor category as a recollement due to the following
observation:
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Proposition 2.13 Let C be a presentable ∞-category and K1 ⊂ K a full inclusion of ∞-
categories. Suppose that K1 is a cosieve on K ; that is, k ∈ K1 implies l ∈ K1 if there exists
a morphism k → l in K . Let K0 denote the full subcategory of K spanned by objects not
in K1. Let i∗ : Fun(K0, C) ↪→ Fun(K , C) and j∗ : Fun(K1, C) ↪→ Fun(K , C) denote the
functors defined by right Kan extensions. Then Fun(K , C) is a recollement of i∗ and j∗.

Proof The only nontrivial point is to verify that j∗i∗ sends every object to the final object,
where we write j∗ for the functor given by restriction along the inclusion K1 ⊂ K . For
k ∈ K1, the cosieve condition implies (K0)k/ = ∅. Hence for any F ∈ Fun(K0, C) and
any k ∈ K1, we have ( j∗i∗F)(k) = (i∗F)(k) � lim←−l∈(K0)k/

F(l) � ∗, which completes the

proof. ��
We state a lemma on recollements in the stable setting.

Lemma 2.14 Let C be a stable ∞-category, which is a recollement of i∗ and j∗. We write i∗,
j∗ for the left adjoints of i∗, j∗, respectively, and j! for that of j∗. Then for an object C ∈ C,

the cofiber sequence j! j∗C → C → i∗i∗C splits if and only if the map i∗C → i∗ j∗ j∗C is
zero.

Proof We write i ! for the right adjoint of i∗. The “only if” direction follows from the fact
that i∗( j! j∗C) and i∗ j∗ j∗(i∗i∗C) are both zero. We wish to prove the converse. By applying
i∗ to the cofiber sequence i∗i !C → C → j∗ j∗C and shifting, we obtain a cofiber sequence
�−1i∗ j∗ j∗C → i !C → i∗C, which splits by assumption. Then the map i∗i∗C → C
corresponding to the section i∗C → i !C by adjunction induces the desired splitting. ��

2.4 The twomonoidal structures on a functor category

In this subsection, we fix an ∞-operad E
⊗
k , where k is a positive integer or the symbol ∞.

Recall that an Ek-monoidal ∞-category can be regarded as an Ek-algebra object of the
symmetric monoidal category Cat×∞. In the following discussion, we often use this identifi-
cation implicitly.

The following is a special case of [12, Proposition 3.2.4.4]:

Lemma 2.15 There exists a symmetric monoidal structure onAlgEk
(Pr) such that the forgetful

functor AlgEk
(Pr) → Pr has a symmetric monoidal refinement. Also, the same holds for Pr⊗κ ,

where κ is an infinite regular cardinal.

First we use this to construct the pointwise Ek-monoidal structure.

Definition 2.16 Let K be a small∞-category and C⊗ a presentableEk-monoidal∞-category
whose tensor product preserve colimits in each variable. Then combining with the cartesian
Ek-monoidal structure on Fun(K , S), we obtain an Ek-monoidal structure on Fun(K , C) �
Fun(K , S) ⊗ C by using Lemma 2.15. We call this the pointwise Ek- monoidal structure.

The pointwise tensor product operations can be computed pointwise, as the name suggests.
We consider a condition under which this construction is compatible with the compact

generation property. See also Corollary 2.22 for another result in this direction.

Proposition 2.17 Let κ be an infinite regular cardinal. In the situation of Definition 2.16,
suppose furthermore that K is κ-small and locally κ-compact, C is κ-compactly generated,

and the tensor product on C restricts to Cκ . Then the pointwise tensor product on Fun(K , C)

also restricts to Fun(K , C)κ .
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Proof Without loss of generality we may assume that C = S. Since finite products of κ-
compact spaces are again κ-compact, the desired result follows from Proposition 2.8. ��

We then consider the Day convolution Ek-monoidal structure. We first note that for an
Ek-monoidal∞-category K ⊗,we can equip a canonicalEk-monoidal structure on the oppo-
site K op; see [12,Remark 2.4.2.7]. Therefore, for such K ⊗,wehave anEk-monoidal structure
on Fun(K , S) � PShv(K op) by (3) of Theorem 2.1.

Definition 2.18 Let K ⊗ be a small Ek-monoidal ∞-category and C⊗ a presentable Ek-
monoidal ∞-category whose tensor product preserves colimits in each variable. Then
considering the Ek-monoidal structure on Fun(K , S) explained above, we obtain an Ek-
monoidal structure on Fun(K , C) � Fun(K , S) ⊗ C by using Lemma 2.15. We call this the
Day convolution Ek-monoidal structure.

Concretely, the Day convolution tensor product can be computed as follows:

Lemma 2.19 In the situation of Definition 2.18, the Day convolution tensor product of
F1, . . . , Fn ∈ Fun(K , C) is equivalent to the left Kan extension of the composite

K × · · · × K
F1×···×Fn−−−−−−→ C × · · · × C ⊗−→ C

along the tensor product K × · · · × K → K . Hence for k ∈ K we have

(F1 ⊗ · · · ⊗ Fn)(k) � lim−→
k1⊗···⊗kn→k

F1(k1) ⊗ · · · ⊗ Fn(kn).

We note that in the case C = S, this is claimed in [12, Remark 4.8.1.13].

Proof By universality, we have a canonical map from the functor constructed in the statement
to the tensor product. Since both constructions are compatible with colimits in each variable,
we can assume that C = S and that F1, . . . , Fn are in the image of the Yoneda embedding
K op ↪→ PShv(K op). In this case, the desired claim is trivial. ��

The author learned the following fact from Jacob Lurie, which says that the Day convo-
lution counterpart of Proposition 2.17 does not need any assumption on K ⊗:

Lemma 2.20 Let κ be an infinite regular cardinal. In the situation of Definition 2.18, suppose
furthermore that C is κ-compactly generated and the tensor product on C restricts to Cκ . Then
the Day convolution tensor product on Fun(K , C) also restricts to Fun(K , C)κ .

Proof Without loss of generality we may assume that C = S. According to [11, Proposi-
tion 5.3.4.17], we observe that PShv(K op)κ is the smallest full subcategory of PShv(K op)

that contains the image of the Yoneda embedding and is closed under κ-small colimits and
retracts. Since the Yoneda embedding has an Ek-monoidal refinement, the desired result
follows. ��

Now we give a comparison result of these two Ek-monoidal structures.

Proposition 2.21 In the situation of Definition 2.18, suppose furthermore that the Ek-
monoidal structure on K is cocartesian. Then on Fun(K , C) the pointwise and Day
convolution Ek-monoidal structures are equivalent.
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Proof Without loss of generality we may assume that C = S and k = ∞. Since both tensor
product preserves colimits in each variable and restrict the image of the Yoneda embedding,
it suffices to show that they are equivalent on the image. Hence the result follows from the
uniqueness of cartesian symmetric monoidal structures on K op. ��

Combining this with Lemma 2.20, we have the following:

Corollary 2.22 Let κ be an infinite regular cardinal. In the situation of Definition 2.16, sup-
pose furthermore that K has finite coproducts and C is κ-compactly generated. Then the
conclusion of Proposition 2.17 holds.

Remark 2.23 We cannot completely remove the assumptions on K : When K = Z, the final
object of Fun(Z, S) is not compact. See also Example A.13.

3 Latticial approach to tensor triangular geometry

In this section, first we review the notion of the Balmer spectrum using distributive lattices.
In Sect. 3.4 we introduce a tensorless variant of tensor triangular geometry.

3.1 Our setting

Let Prstω denote the full subcategory of Prω spanned by compactly generated stable ∞-
categories, to which the symmetric monoidal structure on Prω explained in Theorem 2.1
restricts. A big tt-∞-category, which is defined in Definition 1.1, can be seen as an E2-
algebra object of (Prstω)⊗.

We let Catperf∞ denote the large ∞-category of idempotent complete stable ∞-categories
whose morphisms are exact functors. The equivalence Ind : Catperf∞ → Prstω induces a sym-
metric monoidal structure on it.

Definition 3.1 A tt-∞-category is an E2-algebra object of (Catperf∞ )⊗; in concrete terms, a
tt-∞-category is an idempotent complete stable ∞-category equipped with an E2-monoidal
structure whose tensor product is exact in each variable.

By definition, the large ∞-category AlgE2
(Catperf∞ ) of tt-∞-categories and the large ∞-

category AlgE2
(Prstω) of big tt-∞-categories are equivalent.

Remark 3.2 There are several differences between our setting and that of the usual theory of
tensor triangular geometry, as found in [3, Hypothesis 21]:

(1) We use an ∞-categorical enhancement. We note that by [12, Lemma 1.2.4.6] the idem-
potent completeness assumptions in both settings are equivalent.

(2) We consider an E2-monoidal structure, so that the induced monoidal structure on the
underlying triangulated category is not necessarily symmetric, but braided. Actually, the
arguments of this paper work with slight modifications even if we call an (E1-)algebra
object of (Catperf∞ )⊗ a tt-∞-category, mainly since many notions including the Balmer
spectrum only depend on the underlying (E1-)monoidal structure. However, the author
does not know if such a generalization is useful.

(3) We do not impose any rigidity condition. This is because we do not need it for our
computations.
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3.2 Stone duality

We review Stone duality for distributive lattices. For the basic theory, we refer the reader to
[8, Section II.3].

We write DLat, Loc, Loccoh, Top and Topcoh for the category of distributive lattices,
locales, coherent locales, topological spaces, and coherent topological spaces (also called
spectral spaces), respectively. Note that both inclusions Loccoh ⊂ Loc and Topcoh ⊂ Top
are not full since only quasicompact maps are considered as morphisms in them. The Stone
duality theorem for distributive lattices states that the ideal frame functor Idl : DLat →
(Loccoh)op and the spectrum functor Spec : DLatop → Topcoh are equivalences, and these
two are compatible with the functor pt : Loc → Top that sends a locale to its space of points.

We have the following consequences:

Lemma 3.3 The (nonfull) inclusion Loccoh ↪→ Loc preserves (small) limits.

Proof This follows from [8, Corollary II.2.11] and Stone duality. ��
Proposition 3.4 The spectrum functor DLatop → Top preserves (small) limits.

Proof Since the functor pt : Loc → Top has a left adjoint, which sends a topological space to
its frame of open sets, it preserves limits. From Lemma 3.3 and the fact that coherent locales
are spatial, we obtain the result. ��

3.3 The Zariski lattice and the Balmer spectrum

In this subsection, we introduce the notion of the Zariski lattice of a tt-∞-category.

Definition 3.5 Let T ⊗ be a tt-∞-category. A radical ideal of T ⊗ is a stable full replete
subcategory I ⊂ T that satisfies the following conditions:

(1) If C ⊕ D ∈ I for some C, D ∈ T , we have C, D ∈ I .
(2) For any C ∈ T and D ∈ I , we have C ⊗ D ∈ I .
(3) If C ∈ T satisfies C⊗k ∈ I for some k ≥ 0, we have C ∈ I .

We denote the smallest radical ideal containing an object C ∈ T by
√

C .

We note that the notion of radical ideal of a tt-∞-category T ⊗ only depends on the
underlying tensor triangulated category (hT )⊗.

Definition 3.6 Let T ⊗ be a tt-∞-category. A support for T ⊗ is a pair (L, s) of a distributive
lattice L and a function s : T → L satisfying the following:

(0) The function s takes the same values on equivalent objects. Hence we can evaluate s(C)

even if C is only determined up to equivalence.
(1) For C1, . . . , Cn ∈ T , we have s(C1 ⊕ · · · ⊕ Cn) = s(C1) ∨ · · · ∨ s(Cn). In particular,

we have s(0) = 0.
(2) For any cofiber sequence C ′ → C → C ′′ in T ,we have s(C ′)∨s(C) = s(C)∨s(C ′′) =

s(C ′′) ∨ s(C ′).
(3) For C1, . . . , Cn ∈ T , we have s(C1 ⊗ · · · ⊗ Cn) = s(C1) ∧ · · · ∧ s(Cn). In particular,

we have s(1) = 1, where 1 denotes the unit.

Note in particular that for C ∈ T , by s(0) = 0 and the cofiber sequence C → 0 → �C , we
have s(�C) = s(C). They form a category, with morphisms (L, s) → (L ′, s′) defined to be
morphisms of distributive lattices f : L → L ′ satisfying f ◦ s = s′.
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Remark 3.7 The notion of support introduced here is different from what is called “support
on T ” in [9, Definition 3.2.1], which values in a frame.

Definition 3.8 The Zariski lattice Zar(T ) of a tt-∞-category T ⊗ is the partially ordered set{√
C

∣
∣ C ∈ T

}
ordered by inclusion.

Proposition 3.9 For a tt-∞-category T ⊗, the following assertions hold:
(1) The Zariski lattice Zar(T ) is a distributive lattice.
(2) The pair

(
Zar(T ), C �→ √

C
)

is a support for T ⊗.

(3) It is an initial support; that is, an initial object of the category described in Definition 3.6.

Although this can be proven directly, here we give a proof using several results obtained
in [9, Section 3].

Proof According to [9, Theorem 3.1.9], all radical ideals of T ⊗ form a coherent frame by
inclusion and its compact objects are precisely the elements of Zar(T ), so (1) holds. Also,
(2) follows from this observation, together with [9, Lemma 3.2.2]. Assertion (3) follows from
essentially the same argument as that given in the proof of [9, Theorem 3.2.3]. ��
Remark 3.10 This construction determines a functor Zar : AlgE2

(Catperf∞ ) → DLat.

Now we can give a definition of the Balmer spectrum in this paper; this is equivalent to
the original definition by [9, Theorem 3.1.9 and Corollary 3.4.2].

Definition 3.11 For a tt-∞-category T ⊗, we let Spc(T ) denote the coherent topological
space Spec(Zar(T )op) and call it the Balmer spectrum of T ⊗.

We conclude this subsection by proving a property of the functor Zar .

Lemma 3.12 The functor Zar : AlgE2
(Catperf∞ ) → DLat preserves filtered colimits.

The classical version of this result is [5, Proposition 8.2], which Gallauer proved as a
corollary of a more general result there. This lemma might be seen as a consequence of its
variants, but we here give a different proof using supports.

Proof Suppose that I is a directed poset and that T ⊗ is the colimit of a diagram I →
AlgE2

(Catperf∞ ), which maps i to T ⊗
i . We wish to show that the morphism lim−→i

Zar(Ti ) →
Zar(T ) is an equivalence. By [12, Corollary 3.2.2.5] and the fact that the (nonfull) inclu-
sion Catperf∞ → Cat∞ preserves filtered colimits, T is the colimit of the composite
I → AlgE2

(Catperf∞ ) → Cat∞. Hence it suffices to prove that a function from T to a
distributive lattice L is a support if the composite Ti → T → L is a support for each i . This
follows from the definition of a support. ��

3.4 Tensorless tensor triangular geometry

In this subsection, we develop the “tensorless” counterpart of the theory described in the
previous section. This is used in Sect. 5.

First recall that an upper semilattice is a poset that has finite joins. A morphism between
upper semilattices is defined to be a function that preserves finite joins. We let SLat denote
the category of upper semilattices.

123



62 Page 12 of 27 K. Aoki

Definition 3.13 Suppose that T is an idempotent complete stable ∞-category.

(1) A semisupport for T is a pair (U , s) of an upper semilattice U and a function s : T → U
satisfying conditions (0), (1), (2) of Definition 3.6, which make sense in this situation.

(2) A thick subcategory of T is an idempotent complete stable full replete subcategory of T .

It is called principal if it is generated, as a thick subcategory, by one object.

The following is the counterpart of Proposition 3.9 for semisupports:

Proposition 3.14 For an idempotent complete stable ∞-category T , the set of principal thick
subcategories of T ordered by inclusion is a semilattice, which is (the target of) the initial
semisupport.

Lemma 3.15 For any semisupport (U , s) and any object C ∈ T , the full subcategory I ⊂ C
spanned by objects D satisfying s(D) ≤ s(C) is a thick subcategory of T .

Proof In this proof, we refer to the conditions given in Definition 3.6. From (0) we see that
I is a full replete subcategory. Condition (1) implies 0 ∈ I and (2) implies that I is closed
under shifts and (co)fibers. Hence I is a stable subcategory. Also, from (1) we see that I is
idempotent complete, which completes the proof. ��
Proof of Proposition 3.14 ForC1, . . . , Cn ∈ T , it is easy to see that the join of 〈C1〉, . . . , 〈Cn〉
can be computed as 〈C1⊕· · ·⊕Cn〉,where 〈C〉 denotes the thick subcategory of T generated
by an object C ∈ T . Hence it suffices to show that if objects C, D ∈ T satisfy s(C) =
s(D) for some semisupport s, they generate the same thick subcategory. This follows from
Lemma 3.15. ��
Remark 3.16 We can also prove the tensorless counterpart of Lemma 3.12 by the same argu-
ment.

We state a well-known concrete description of the free functor Free : SLat → DLat,which
is defined as the left adjoint of the forgetful functor.

Lemma 3.17 For an upper semilattice U , we let P(U ) denote the power set of U ordered
by inclusion. Then the morphism U → P(U ) that maps u to {v ∈ U | u � v} induces a
monomorphism of distributive lattices Free(U ) ↪→ P(U ).

4 Tensor triangular geometry of sheaves

The main aim of this section is to prove Theorem II, which is stated in Sect. 1. It is a
computation of the Balmer spectrum of ShvC(X)ω for a big tt-∞-category C and a coherent
topological space X . Our main technique is a limiting argument: It is well known that a
coherent topological space can be regarded as a Pro-object of the category of finite posets. The
case of finite posets is treated in Sect. 4.1 with additional generality. The limiting argument is
done in Sect. 4.2. Note that there is a subtlety in identifying the case of finite posets and finite
coherent topological spaces, and we need a technical input which we prove in Appendix A.

4.1 Tensor triangular geometry of the pointwise monoidal structure

First we define a class of categories. Beware that there are other usages of the word “acyclic
category” in the literature.
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Definition 4.1 An (ordinary) category is called acyclic if only identity morphisms are iso-
morphisms or endomorphisms in it.

Example 4.2 Any poset, considered as a category, is an acyclic category.

Note that every finite acyclic category isω-finite and locallyω-compact as an∞-category,
so that we can apply Propositions 2.8 and 2.17.

Theorem 4.3 Let C⊗ be a big tt-∞-category and K a finite acyclic category. Then we have
a canonical isomorphism

Zar(Fun(K , C)ω) � Zar(Cω)K0 ,

where the right hand side denotes the power of Zar(Cω) indexed by the set of objects of K ,

computed in the category DLat.

Remark 4.4 In the language of usual tensor triangular geometry, the conclusion of Theo-
rem 4.3 just says that the Balmer spectrum of Fun(K , C)ω is homeomorphic to that of Cω to
the power of the cardinality of objects of K .

Example 4.5 In the case C⊗ = Mod⊗
k for some field k, this result is the special case of [10,

Theorem 2.1.5.1] when the quiver is not equipped with relations.

To give the proof of Theorem 4.3, we introduce some notation.

Definition 4.6 (Used only in this subsection) In the situation of Theorem 4.3, suppose that
k is an object of K . We let K ′ denote the cosieve generated by k. Let X(k) ∈ Fun(K , C)

denote the left Kan extension of the object of Fun(K ′, C) which is obtained as the right Kan
extension of the unit 1 ∈ C � Fun({k}, C).This object satisfies X(k)(k) � 1 and X(k)(l) � 0
for l �= k.

Lemma 4.7 In the situation of Theorem4.3, suppose that (L, s) is a support for (Fun(K , C)ω)⊗.

Then we have
∨

k∈K s(X(k)) = 1. In other words, the object
⊕

k∈K X(k) generates
Fun(K , C)ω as a radical ideal.

Proof First, we name objects of K as k1, . . . , kn so that we have HomK (k j , ki ) = ∅ for any
i < j . This is possible since K is acyclic. For 0 ≤ i ≤ n, let Ki denote the full subcategory
of K whose set of objects is {k j | j ≤ i}. We write Fi ∈ Fun(K , C)ω for the right Kan
extension of 1|Ki , where 1 denotes the unit of Fun(K , C)⊗.

We wish to prove s(Fi ) = s(Fi−1) ∨ s(X(ki )) for 1 ≤ i ≤ n, which completes the proof
since s(Fn) = s(1) = 1 and s(F0) = s(0) = 0 holds. Now since K\Ki−1 is a cosieve, we
get a cofiber sequence X(ki ) → Fi → Fi−1 by applying Proposition 2.13. Combining this
with an equivalence X(ki ) � Fi ⊗ X(ki ), we obtain the desired equality. ��
Proof of Theorem 4.3 Let P(K0) denote the power set of the set of objects of K ordered by
inclusion. Then there exists a canonical isomorphism Zar(Cω) ⊗ P(K0) � Zar(Cω)K0 of
distributive lattices.

First, we claim that there exists a (unique) morphism of distributive lattice P(K0) →
Zar(Fun(K , C)ω) that maps {k} to √

X(k) for k ∈ K . This follows from the following two
observations:

(1) For k �= l, we have X(k) ⊗ X(l) � 0; this can be checked pointwise.
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(2) The object
⊕

k∈K X(k) generates Fun(K , C)ω as a radical ideal; this is the content of
Lemma 4.7.

Combining this morphismwith the one Zar(Cω) → Zar(Fun(K , C)ω) induced by the functor
K → ∗, we obtain a morphism f : Zar(Cω) ⊗ P(K0) → Zar(Fun(K , C)ω).

For each k ∈ K , the inclusion {k} ↪→ K induces a morphism Zar(Fun(K , C)ω) →
Zar(Fun({k}, C)ω) � Zar(Cω). From them, we get a morphism g : Zar(Fun(K , C)ω) →
Zar(Cω)K0 � Zar(Cω) ⊗ P(K0), where we use the identification described above.

To complete the proof, wewish to prove that g◦ f and f ◦g are identities. By construction,
it is easy to see that g ◦ f is the identity, so it remains to prove the other claim. We take an
object F ∈ Fun(K , C)ω and for k ∈ K let Fk denote the object of Fun(K , C)ω obtained by
precomposing the functor K → {k} ↪→ K with F . Unwinding the definitions, the assertion
(g ◦ f )

(√
F

) = √
F is equivalent to the assertion that F and

⊕
k∈K Fk ⊗ X(k) generate the

same radical ideal. Since we have an equivalence F ⊗ X(k) � Fk ⊗ X(k) for each k ∈ K ,

this follows from Lemma 4.7. ��

4.2 Main result

In order for Theorem II to make sense, we need to clarify what the pointwise E2-monoidal
structure on ShvC(X) is.

Proposition 4.8 For a coherent topological space X , the ∞-topos Shv(X) is compactly
generated. Moreover, finite products of compact objects are again compact.

Proof The first assertion is the content of [11, Proposition 6.5.4.4]. Let L denote the
distributive lattice of quasicompact open subsets of X . We have Shv(L) � Shv(X),

where L is equipped with the induced Grothendieck topology (see Definition A.2). We let
L ′ : PShv(L) → Shv(L) denote the sheafification functor. It follows from the proof of [11,
Proposition 6.5.4.4] that Shv(L)ω is the smallest full subcategory that contains the image of
PShv(L)ω under L ′ and is closed under finite colimits and retracts. Since finite products pre-
serve (finite) colimits in each variable in Shv(L) and the functor L ′ preserves finite products,
it suffices to show that finite products of compact objects are again compact in PShv(L). This
follows from Corollary 2.22 since L has finite products. ��

Using the equivalence ShvC(X) � Shv(X) ⊗ C and Lemma 2.15, we can equip an E2-
monoidal structure on ShvC(X).

Corollary 4.9 For a big tt-∞-category C and a coherent topological space X , the E2-
monoidal ∞-category ShvC(X)⊗, defined as above, is a big tt-∞-category.

To state the main theorem, we recall basic facts on Boolean algebras. See [8, Section II.4]
for details. First recall that Boolean algebras form a reflective subcategory ofDLat,which we
denote by BAlg. The left adjoint of the inclusion BAlg ↪→ DLat is called the Booleanization
functor, which we denote by B . For a coherent topological space X , the spectrum of its
Booleanization of the distributive lattice of quasicompact open subsets of X is the Stone
space whose topology is the constructible topology (also referred to as the patch topology)
of X . Hence using Proposition 3.4, Theorem II can be rephrased as follows:

Theorem 4.10 Let C⊗ be a big tt-∞-category and L a distributive lattice. Then we have a
canonical isomorphism

Zar(ShvC(Spec(L))ω) � Zar(Cω) ⊗ B(L).
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The proof uses the following notion:

Definition 4.11 For a poset P, the Alexandroff topology is a topology on the underlying set
of P whose open sets are cosieves (or equivalently, upward closed subsets). Let Alex(P)

denote the set P equipped with this topology.

Lemma 4.12 For a big tt-∞-category C⊗ and a finite poset P, there exists a canonical
equivalence between big tt-∞-categories

Fun(P, C)⊗ � ShvC(Alex(P))⊗.

The proof relies on a result obtained in Appendix A.

Proof We have the desired equivalence by taking the tensor product of (the cartesian
E2-monoidal refinement of) the equivalencePShv(Pop) → Shv(Alex(P))obtained inExam-
ple A.12 with C⊗. ��

Lemma 4.13 For a big tt-∞-category C⊗, the functor from DLat to AlgE2
(Prstω) that maps L

to (ShvC(Spec(L)))⊗ preserves filtered colimits.

Proof We first note that the composite of forgetful functors AlgE2
(Prstω) → Prstω → Prω

preserves sifted colimits and is conservative. Since limits in the large ∞-categories Prop and
Propω are both computed in the very large ∞-category of large ∞-categories, the forgetful
functor Prω → Pr preserves colimits and is obviously conservative. Hence we are reduced
to showing that the following composite preserves filtered colimits:

DLat
Idl−→ Locop

Shvop−−−→ Topop∞
forgetful−−−−→ Pr

−⊗C−−−→ Pr,

where Top∞ denotes the large ∞-category of ∞-toposes whose morphisms are geometric
morphisms. Now we can check that each functor preserves filtered colimits as follows:

(1) The first functor preserves colimits by Lemma 3.3.
(2) The second functor preserves colimits since 0-localic ∞-toposes form a reflective sub-

category of Top∞.

(3) The third functor preserves filtered colimits since cofiltered limits in Topop∞ can be com-
puted in the very large ∞-category of large ∞-categories.

(4) The fourth functor preserves colimits by (5) of Theorem 2.1.

Hence the composite also preserves filtered colimits. ��

Proof of Theorem 4.10 Since every finitely generated distributive lattice has a finite number
of objects, we can write L as a filtered colimit of finite distributive lattices. Hence by Lem-
mas 4.13 and 3.12, it suffices to consider the case when L is finite. Let P be a poset of points
of Spec(L) with the specialization order; that is, the partial order in which p ≤ q if and only
if the point p is contained in the closure of the singleton {q}. Since Spec(L) is finite, there is a
canonical homeomorphism Spec(L) � Alex(P). Booleanizing their associated distributive
lattices, we observe that B(L) is canonically isomorphic to the power set of P ordered by
inclusion. Then applying Lemma 4.12, we obtain the desired equivalence as a corollary of
Theorem 4.3. ��
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5 Tensor triangular geometry of the Day convolution

Themain result of this section is Theorem 5.17, which is a generalization of Theorem I. It is a
computationof theBalmer spectrumofFun(A, C)ω for a partially ordered abeliangroup A and
a big tt-∞-category C⊗. We first recall basic notions about partially ordered abelian groups
in Sect. 5.1 and then in Sect. 5.2 we introduce the Archimedean semilattice Arch(A), which
appears in the statement. We construct a map between the Balmer spectrum of Fun(A, C)ω

and a certain space obtained from Arch(A) and the Balmer spectrum of Cω in Sect. 5.3. We
show that it is an equivalence under a suitable assumption in Sect. 5.4. Section 5.5 is devoted
for technical and intricate proofs of some statements we use in Sects. 5.3 and 5.4.

5.1 Partially ordered abelian groups

We begin with reviewing some notions used in the theory of partially ordered abelian groups.

Definition 5.1 A partially ordered abelian group is an abelian group object of the category
of posets; that is, an abelian group A equipped with a partial order in which the map a + −
is order preserving for any a ∈ A.

We can regard a partially ordered abelian group as a symmetric monoidal poset.

Definition 5.2 Let A be a partially ordered abelian group.

(1) The submonoid A≥0 = {a ∈ A | a ≥ 0} is called the positive cone of A.

(2) The subgroup A◦ = {a − b | a, b ∈ A≥0} is called the identity component of A. As the
name suggests, this is the connected component containing 0 when A is regarded as a
category by its partial order.

(3) If A◦ = A holds and A≥0 has finite joins, A is called lattice ordered. This is equivalent
to the condition that A has binary joins (but beware that A does not have the nullary join
unless A is trivial). Note that in this case A also has binary meets, which are computed
as a ∧ b = a + b − (a ∨ b) for a, b ∈ A.

Example 5.3 For a cardinal κ, the (categorical) product ordering on Zκ defines a lattice
ordered abelian group.

The assignment f : (x1, x2) �→ (x1, x2, x1 + x2) gives a morphism Z2 → Z3 of partially
ordered abelian groups, but does not define a morphism of unbounded lattices: Indeed, we
have f ((1, 0)) ∨ f ((0, 1)) = (1, 1, 1) �= (1, 1, 2) = f ((1, 0) ∨ (0, 1)).

Example 5.4 There are many partially ordered abelian groups that are connected and not
lattice ordered. We here give two relatively simple examples. The first is Z with the ordering
that makes its positive cone the submonoid generated by 2 and 3. The second is Z × Z/2
with the ordering that makes its positive cone the submonoid generated by (1, 0) and (1, 1).

5.2 The Archimedes semilattice

In this subsection,we introduce the notion of theArchimedes semilattice of a partially ordered
abelian group.

Definition 5.5 For a partially ordered abelian group A, a submonoid J ⊂ A≥0 is called an
ideal of A≥0 if it is downward closed; that is, if a, b ∈ A≥0 satisfies a ≤ b and b ∈ J , we
have a ∈ J . An ideal J is called principal if it is generated as an ideal by an element of A≥0.
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Proposition 5.6 For a partially ordered abelian group A, the set of principal ideals of A≥0

ordered by inclusion is an upper semilattice.

Proof It is easy to see that 〈a1 + · · · + an〉 is a join of 〈a1〉, . . . , 〈an〉 for a1, . . . , an ∈ A≥0,

where 〈a〉 denotes the ideal of A≥0 generated by an element a ∈ A≥0. ��
Definition 5.7 For a partially ordered abelian group A, the upper semilattice of principal
ideals of A≥0 is denoted by Arch(A). We call this the Archimedes semilattice of A.Note that
this only depends on its positive cone A≥0, regarded as a partially ordered abelian monoid.

Remark 5.8 There is a characterization of the Archimedes semilattice similar to that of the
Zariski lattice given in Proposition 3.9:Namely, theArchimedes semilatticeArch(A) is initial
among pairs (U , s)whereU is an upper semilattice and s : A≥0 → U is a function satisfying
the following conditions:

(1) For a1, . . . , an ∈ A≥0, we have s(a1 + · · · + an) = s(a1) ∨ · · · ∨ s(an).

(2) If a, b ∈ A≥0 satisfies a ≤ b, we have s(a) ≤ s(b).

Example 5.9 If A is a totally ordered abelian group, its Archimedes semilattice Arch(A)

consists of all Archimedean classes of A and the singleton {0}. This observation justifies the
name. In particular, if A is nonzero Archimedean, we have Arch(A) � {0 < 1}.
Example 5.10 Any Riesz space R can be regarded as a lattice ordered abelian group in a
trivial way. There is a bijective (and order preserving) correspondence between (principal)
ideals of R≥0 and those of R in the usual sense.

5.3 Tensorless tensor triangular geometry with actions

In this subsection, we construct the comparison map, which we prove to be an isomorphism
under some mild assumptions.

Proposition 5.11 Let C⊗ be a big tt-∞-category and A a partially ordered abelian group.
Then we have a canonical morphism of distributive lattices

f : Zar(Cω) ⊗ Free(Arch(A)) → Zar(Fun(A, C)ω),

where Free : SLat → DLat denotes the left adjoint to the forgetful functor.

It is convenient to regard the ∞-category Fun(A, C) as equipped with the action of A,

which is described in the following definition:

Definition 5.12 Suppose that C is a compactly generated stable ∞-category and A is a par-
tially ordered abelian group.

Then precomposition with the map (a, b) �→ b − a induces a functor Fun(A, C) →
Fun(Aop × A, C), which can be seen as a functor from Fun(A, C) × Aop to Fun(A, C). We
write F{a} for the value of this functor at (F, a) and F{a/b} for the cofiber of the map
F{b} → F{a}, which is only defined when a ≤ b; concretely, F{a} is an object satisfying
F{a}(b) � F(b − a) for b ∈ A.

We call a semisupport s for Fun(A, C)ω an A-semisupport if for a ∈ A and F ∈
Fun(A, C)ω, we have s(F{a}) = s(F). Similarly, we call a thick subcategory of Fun(A, C)ω

a thick A-subcategory if it is stable under the operation F �→ F{a} for any a ∈ A.
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From now on, we abuse notation by identifying the object C ∈ Cω with its left Kan
extension along the inclusion 0 ↪→ A of partially ordered abelian groups. Especially, we do
not distinguish the units of C⊗ and Fun(A, C)⊗, which we denote by 1.

Example 5.13 Suppose that C⊗ is a big tt-∞-category. For any object F ∈ Fun(A, C)ω and
any element a ∈ A we have F{a} � F ⊗1{a} and that 1{a} is invertible with inverse 1{−a}.
Thus any support for (Fun(A, C)ω)⊗ can be regarded as an A-semisupport. More generally,
for any object G ∈ Fun(A, C)ω and any support s, the assignment F �→ s(G ⊗ F) defines
an A-semisupport for Fun(A, C)ω.

Lemma 5.14 In the situation of Definition 5.12, suppose that s is an A-semisupport for
Fun(A, C)ω and F is an object of Fun(A, C)ω. Then the following assertions hold:
(1) For a1, . . . , an ∈ A≥0,we have s(F{0/(a1+· · ·+an)}) = s(F{0/a1})∨· · ·∨s(F{0/an}).
(2) For a, b ∈ A≥0 satisfying a ≤ b, we have s(F{0/a}) ≤ s(F{0/b}).
Proof We first prove (2). Consider the following diagram, in which all the rows and columns
are cofiber sequences:

F{a + b} F{a} F{a/(a + b)}

F{b} F{0} F{0/b}

F{b/(a + b)} f
F{0/a} C .

Since there exists an equivalence F{a/(a + b)} � F{0/b}{a}, we have s(F{a/(a + b)}) =
s(F{0/b}). Similarly we have s(F{b/(a + b)}) = s(F{0/a}). Using the right cofiber
sequence, we have s(C) ≤ s(F{0/b}). We complete the proof by showing s(C) =
s(F{0/a}). To prove this, it suffices to show that the morphism f in the diagram is zero. This
follows from the fact that the left top square can be decomposed as follows:

F{a + b} F{a} F{a}

F{b} F{a} F{0}.
We then prove (1). The case n = 0 is trivial. Hence it suffices to consider the case n = 2.
Consider the following diagram:

F{a1 + a2} F{a1 + a2} 0

F{a2} F{0} F{0/a2}

F{a2/(a1 + a2)} F{0/(a1 + a2)} F{0/a2}.
Since all the other rows and columns are cofiber sequences, so is the bottom row. Hence we
have s(F{0/(a1 + a2)}) ≤ s(F{a2/(a1 + a2)}) ∨ s(F{0/a2}) = s(F{0/a1}) ∨ s(F{0/a2}).
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On the other hand, applying (2), we have s(F{0/a1}) ∨ s(F{0/a2}) ≤ s(F{0/(a1 + a2)}).
Therefore, the desired equality follows. ��
Proof of Proposition 5.11 The left Kan extension along the inclusion 0 ↪→ A defines a mor-
phism Zar(Cω) → Zar(Fun(A, C)ω). By Lemma 5.14, the assignment a �→ √

1{0/a}
satisfies the conditions given in Remark 5.8, so we have a morphism Free(Arch(A)) →
Zar(Fun(A, C)ω). Combining these two, we obtain the desired morphism. ��

Now we study A-semisupports in more detail. First, by mimicking the proof of Proposi-
tion 3.14, we can deduce the following:

Proposition 5.15 In the situation of Definition 5.12, principal thick A-subcategories form an
upper semilattice by inclusion and the assignment that takes an object of Fun(A, C)ω to the
thick A-subcategory generated by it defines an A-semisupport. Furthermore, it is an initial
A-semisupport.

If A is lattice ordered, the initial A-semisupport has simple generators.

Proposition 5.16 In the situation of Definition 5.12, we furthermore assume that A is lattice
ordered. Then the target of the initial A-semisupport described in Proposition 5.15 is gen-
erated as an upper semilattice by thick A-subcategories generated by an object of the form
C{0/a1} · · · {0/an} with C ∈ Cω and a1, . . . , an ∈ A≥0 satisfying ai ∧ a j = 0 if i �= j .

We prove this in Sect. 5.5. Note that the conclusion also holds if we only require the
positive cone to have binary joins; see the proof of Proposition 5.20.

5.4 Main theorem

We now state the main result of this section.

Theorem 5.17 In the situation of Proposition 5.11, suppose furthermore that A≥0 has finite
joins. Then the morphism f is an isomorphism.

Question 5.18 In Theorem 5.17,what happens if A does not satisfy the hypothesis?By Propo-
sition 5.20,we may assume that A is connected. To consider the case A is one of the examples
given in Example 5.4 would be a starting point.

Example 5.19 Claim (2) of Theorem I is a direct consequence of Theorem 5.17.
Since Free({0 < 1}) is the linearly ordered set consisting of three elements,

Spec(Free({0 < 1})) is homeomorphic to the Sierpiński space. Hence by using Proposi-
tion 3.4 and Example 5.9, we can deduce (1) of Theorem I.

Since the inclusion A◦ ↪→ A induces an isomorphism Arch(A◦) � Arch(A), Theo-
rem 5.17 is a consequence of the following two results:

Proposition 5.20 Let C⊗ be a big tt-∞-category and A a partially ordered abelian group.
Then the morphism i : Zar(Fun(A◦, C)ω) → Zar(Fun(A, C)ω) induced by the inclusion
A◦ ↪→ A is an equivalence.

Proposition 5.21 In the situation of Proposition 5.11, suppose furthermore that A is lattice
ordered. Then the morphism f is an isomorphism.
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We conclude this subsection by showing Proposition 5.20; we prove Proposition 5.21 in
the next subsection.

Proof of Proposition 5.20 In this proof, we regard Fun(A◦, C)ω as a full subcategory of
Fun(A, C)ω by left Kan extension.

Let J denote the quotient A/A◦. For each j ∈ J we choose an element a j ∈ j . Then
as a category, we can identify A with

∐
j∈J (A◦ + a j ). Hence combining the translations

A+a j → A for all j ∈ J ,we have a functor A → A◦. This defines a functor Fun(A, C)ω →
Fun(A◦, C)ω by left Kan extension; concretely, it is given by the formula

⊕
j∈J Fj {a j } �→⊕

j∈J Fj for any family (Fj ) j∈J of objects of Fun(A◦, C)ω such that Fj is zero except for
a finite number of indices j ∈ J .

Let s denote the composite Fun(A, C)ω → Fun(A◦, C)ω → Zar(Fun(A◦, C)ω), where
the second map is the initial support. We wish to show that s is a support for (Fun(A, C)ω)⊗
by checking that the conditions given in Definition 3.6 are satisfied. The only nontrivial
point is to prove that s satisfies condition (3). Since the case n = 0 follows from the fact
that 1{−a[0]} is invertible, it is sufficient to consider the case n = 2. We take two objects
F, G ∈ Fun(A, C)ω and decompose them as F � ⊕

j∈J Fj {a j } and G � ⊕
j∈J G j {a j }

using two families of objects (Fj ) j∈J , (G j ) j∈J of Fun(A◦, C)ω such that both Fj and G j

are zero except for a finite number of indices j ∈ J . To prove s(F ⊗ G) = s(F) ∧ s(G),

unwinding the definitions, we need to show that the equality

∨

j, j ′∈J

√
(Fj ⊗ G j ′){a j + a j ′ − a j+ j ′ } =

∨

j∈J

√
Fj ∧

∨

j∈J

√
G j

holds in Zar(Fun(A◦, C)ω). This follows from the observation made in Example 5.13.
Hence we obtain a morphism r : Zar(Fun(A, C)ω) → Zar(Fun(A◦, C)ω) from s. The

composite r ◦ i is the identity since we have (r ◦ i)
(√

F
) = √

F{−a[0]} = √
F for F ∈

Fun(A◦, C)ω. To prove that i ◦ r is the identity, unwinding the definitions, it suffices to show

that
√⊕

j∈J Fj {a j } equals to
√⊕

j∈J Fj for any family (Fj ) j∈J of objects of Fun(A◦, C)ω

such that Fj is zero except for a finite number of indices j ∈ J . This also follows from the
observation made in Example 5.13. ��

5.5 Postponed proofs

In this subsection, we give the proofs of Propositions 5.16 and 5.21. First we introduce some
terminology.

Definition 5.22 (Used only in this subsection) Suppose that A is a lattice ordered abelian
group.

(1) We call a subset B ⊂ A saturated if it is finite and closed under binary joins. Note that
for every finite set B ⊂ A we can find the smallest saturated subset of A containing B.

(2) Let C be a compactly generated stable ∞-category. By applying Proposition 2.13 to
the cosieve of A generated by a single element a ∈ A, we obtain a presentation of
Fun(A, C) as a recollement. Hence for F ∈ Fun(A, C) we have a cofiber sequence
j! j∗F → F → i∗i∗F, where we use the notation of Lemma 2.14. We write F≥a

and F�a for j! j∗F and i∗i∗F, respectively.

The proof of Proposition 5.16 relies on the following lemma:
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Lemma 5.23 Suppose that A is a lattice ordered abelian group, C is a compactly generated
stable ∞-category, and s is an A-semisupport for Fun(A, C)ω. Then for a ∈ A and F ∈
Fun(A, C)ω, we have s(F) = s(F≥a) ∨ s(F�a).

We first prove the following special case:

Lemma 5.24 In the situation of Lemma 5.23, suppose that a′ ≤ a are elements of A and
B ⊂ A is a saturated subset satisfying b∧a ∈ {a′, a} for b ∈ B. If an object F ∈ Fun(A, C)ω

is obtained as the left Kan extension of F |B , we have s(F) = s(F≥a) ∨ s(F�a).

Proof We may assume that a′ = 0 and B contains 0, which automatically becomes the least
element of B.

We again consider the recollement description of Fun(A, C) given in (2) of 5.22 and
continue to use the notation of Lemma 2.14.

We first show that j∗((i!i∗F){0/a}) is zero, where i! denotes the left adjoint of i∗. This is
equivalent to the assertion that for any c ∈ A≥0 the morphism (i!i∗F)(c) → (i!i∗F)(c+a) is
an equivalence. We may assume that b ∧a = 0 holds for any b ∈ B to prove this. Unwinding
the definitions, it is enough to show that {b ∈ B | b ≤ c} and {b ∈ B | b ≤ c + a} have
the same greatest element. Let b be the greatest element of the latter set. Then we have
b = b ∧ (c + a) = c + ((b − c) ∧ a) ≤ c + (b ∧ a) = c, which means that b belongs to the
former set.

Then we consider the following diagram:

i∗((i!i∗F){0/a}) � i∗(F{0/a})

i∗ j∗ j∗((i!i∗F){0/a}) i∗ j∗ j∗(F{0/a}).
By what we have shown above, the bottom left object is zero, so that the right vertical
morphism is zero. By applying Lemma 2.14, we see that F�a � (F{0/a})�a is a direct
summand of F{0/a}. Hence we have s(F) ≥ s(F{0/a}) ≥ s(F�a), which completes the
proof. ��
Proof of Lemma 5.23 We take a saturated subset B ⊂ A such that F is equivalent to the left
Kan extension of F |B . We may assume that B contains 0 as the least element. By replacing
a with a ∨ 0, we may assume that a ≥ 0 and also a ∈ B. Now we take a maximal chain
0 = b0 < · · · < bn = a in B. Then we can apply Lemma 5.24 iteratively to obtain an
inequality

s(F) = s(F≥0) = s(F≥b0) ≥ · · · ≥ s(F≥bn ) = s(F≥a),

which completes the proof. ��
Proof of Proposition 5.16 First we take a finite subset B ⊂ A such that B is closed under
binary joins and meets and F is equivalent to the left Kan extension of F |B . For b ∈ B, we
can take distinct elements a1, . . . , an ∈ A≥0 (possibly n = 0) such that {b + a1, . . . , b + an}
is the set of minimal elements of {c ∈ B | b < c}. By the assumption on B, we see that
ai ∧ a j = 0 for i �= j . Let Fb denote the object (· · · (F≥b)�b+a1 · · · )�b+an . Then applying
Lemma 5.23 iteratively, we have s(F) = ∨

b∈B s(Fb). Thus we wish to show that Fb{−b}
is equivalent to F(b){0/a1} · · · {0/an} for b ∈ B to complete the proof.

We may assume that b = 0 and F = F≥0. We define a subset of A by B ′ = {∑
i∈I ai

∣∣
I ⊂ {1, . . . , n}}; note that here∑

i∈I ai equals to the join
∨

i∈I ai taken in A≥0.By induction
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we can see that F(0){0/a1} · · · {0/an} is equivalent to the left Kan extension of the object
of Fun(B ′, C)which is the right Kan extension of F(0) ∈ Fun({0}, C).Using the equivalence

F0 � (· · · (F(0){0/a1} · · · {0/an})�a1 · · · )�an ,

we are reduced to showing that (F(0){0/a1} · · · {0/an})(c) � 0 if c ∈ A satisfies c ≥ ai for
some i . This follows from the above description. ��

Finally, we give the proof of Proposition 5.21.

Proof of Proposition 5.21 For a saturated subset B ⊂ A and a ∈ B, we make the following
definition:

�(B, a) = {J ∈ Arch(A) | (a + J ) ∩ B = {a}} ∈ P(Arch(A)).

We claim that this set is in the image of the monomorphism Free(Arch(A)) ↪→ P(Arch(A))

described in Lemma 3.17. We note that �({a, b, a ∨ b}, a) is in the image for any b ∈ A
because an ideal J belongs to this set if and only if J does not contain the ideal generated by
(a ∨b)−a. Hence �(B, a) is also in the image since it can be written as

⋂
b∈B �({a, b, a ∨

b}, a).

For an object F ∈ Fun(A, C)ω, we can take a saturated subset B such that F is equivalent
to the left Kan extension of F |B . Then we define s(F), which is a priori dependent on B, as
follows:

s(F) =
∨

a∈B

√
F(a) ∧ �(B, a) ∈ Zar(Cω) ⊗ Free(Arch(A)).

Here we abuse the notation by identifying Free(Arch(A))with its image under the monomor-
phism Free(Arch(A)) ↪→ P(Arch(A)).

First we wish to prove that s(F) is independent of the choice of B. Let B ′ be another
saturated subset such that F is equivalent to the left Kan extension of F |B′ .We need to prove
the following equality:

∨

a∈B

√
F(a) ∧ �(B, a) =

∨

a∈B′

√
F(a) ∧ �(B ′, a).

By considering a saturated set containing B ∪ B ′, we may assume that B ⊂ B ′. For any
minimal element b′ of B ′\B, the subset B ′\{b′} is also saturated. Hence by induction we
may also assume that B ′\B = {b′} for some b′ ∈ B ′. If b′ is a minimal element of B ′, then
we get the equality since in this case F(b′) is a zero object and �(B, a) = �(B ′, a) for any
a ∈ B. Let us consider the case when b′ is not minimal. Since B is saturated, we can take
the greatest element b of the set {a ∈ B | a ≤ b′}. Consider an element a ∈ B. It is clear
that �(B, a) ⊃ �(B ′, a) holds and this inclusion becomes an equality if a � b′. In fact,
it also becomes an equality if a ≤ b and a �= b: Suppose that J ∈ �(B, a) fails to belong
to �(B ′, a). Then we have (a + J ) ∩ B ′ = {a, b′}. But in this case, from the inequality
0 ≤ b − a ≤ b′ − a we get b ∈ (a + J )∩ B, which contradicts our assumption. Therefore, it
is enough to show that �(B, b) = �(B ′, b) ∪ �(B ′, b′) holds since we have F(b) � F(b′).
First we prove �(B, b) ⊂ �(B ′, b) ∪ �(B ′, b′). For J ∈ �(B, b)\�(B ′, b), we have
(b′ + J ) ∩ B ′ ⊂ (b + J ) ∩ B ′ = {b, b′} and so J ∈ �(B ′, b′). To prove the other inclusion,
it remains to show that �(B, b) ⊃ �(B ′, b′) holds. For J ∈ �(B ′, b′) and a ∈ (b + J )∩ B,

by 0 ≤ (a ∨ b′) − b′ = a − (a ∧ b′) ≤ a − b ∈ J , we have a ∨ b′ ∈ (b′ + J ) ∩ B ′ = {b′}.
This means a = b, which completes the proof of the well-definedness of s(F).
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Hencewe have a function s : Fun(A, C)ω → Zar(Cω)⊗Free(Arch(A)).Wewish to prove
that s is a support. Since it is an A-semisupport and s(1) = 1 by definition, we are reduced to
showing that s(F ⊗G) = s(F)∧s(G) for F, G ∈ Fun(A, C)ω.We note that the assignments
(F, G) �→ s(F ⊗ G) and (F, G) �→ s(F)∧ s(G) are both A-semisupports in each variable.
Hence by Proposition 5.16, it suffices to show that s((C ⊗ D){0/a1} · · · {0/am+n}) equals
to s(C{0/a1} · · · {0/am}) ∧ s(D{0/am+1} · · · {0/am+n}) for C, D ∈ Cω and a1, . . . , am+n ∈
A≥0. This claim follows if we have s(F{0/b}) = s(F) ∧ s(1{0/b}) for F ∈ Fun(A, C)ω

and b ∈ A≥0. To prove this, by using Proposition 5.16 again, we may assume that F can be
written as C{0/a1} · · · {0/an} with C ∈ Cω and a1, . . . , an ∈ A≥0 satisfying ai ∧ a j = 0 if
i �= j . Wemay furthermore suppose that ai > 0 for each i and b > 0; otherwise the claim is
trivial. For I ⊂ {1, . . . , n} let aI denote the sum

∑
i∈I ai , which is equal to the join

∨
i∈I ai

taken in A≥0 by assumption. We now take the following two subsets of A, both of which are
saturated by assumption:

B = {aI | I ⊂ {1, . . . , n}},
B ′ = B ∪ {aI + (aI ′ ∨ b) | I , I ′ ⊂ {1, . . . , n} satisfying I ∩ I ′ = ∅}.

Then F and F{0/b} are left Kan extensions of F |B and F{0/b}|B′ , respectively. We first
prove that s(F{0/b}) ≤ s(F)∧ s(1{0/b}). Since we have s(F{0/b}) ≤ s(F) by the fact that
s is an A-semisupport, we need to show s(F{0/b}) ≤ s(1{0/b}). Unwinding the definitions,
we are reduced to proving that F{0/b}(c) � 0 or �(B ′, c) ⊂ �({0, b}, 0) holds for each
c ∈ B ′. If F{0/b}(c) is not zero, F(c) or F{b}(c) � F(c − b) is not zero. These two cases
are treated separately as follows:

(1) If F(c) is not zero, then we have either c = 0 or c = b. In the former case, we have indeed
�(B ′, 0) ⊂ �({0, b}, 0) since b ∈ B ′. In the latter case, the morphism F(b) → F(0) is
equivalent to the identity of C . Hence F{0/b}(b) is zero, which is a contradiction.

(2) If F{b}(c) is not zero, then c ∈ B or c = aI ∨ b for some I ⊂ {1, . . . , n}. In the
former case, we have �(B ′, c) ⊂ �({0, b}, 0) since c + b ∈ B ′. In the latter case,
we have c = aI ∨ b < aI + b ≤ c + b; if the first inequality is an equality we have
F{b}(c) = F{b}(aI + b) � F(aI ) � 0, which is a contradiction. Combining this with
aI + b ∈ B ′, we have �(B ′, c) ⊂ �({0, b}, 0).

Next we prove that s(F{0/b}) ≥ s(F) ∧ s(1{0/b}). Note that the right hand side equals to√
C ∧ {J ∈ �(B, 0) | b /∈ J } by definition. Hence the claim follows from the observation

that b /∈ J ∈ �(B, 0) implies J ∈ �(B ′, 0).
Therefore we obtain a morphism g : Zar(Fun(A, C)ω) → Zar(Cω) ⊗ Free(Arch(A)) of

distributive lattices.Weobserve that g◦ f is the identity by checking it for elements of Zar(Cω)

and Arch(A≥0). Also, by applying Proposition 5.16, the computations g
(√

C
) = √

C for
C ∈ Cω and g(1{0/a}) = 〈a〉 for a ∈ A≥0 show that f ◦ g is the identity. Hence we conclude
that f is an isomorphism. ��
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Appendix A: Bases in higher topos theory

In this Appendix, we develop the theory of bases for sites in the ∞-categorical setting. See
[14, Section B.6] for a discussion in the 1-categorical setting. Themain result is TheoremA.6,
which says that an∞-site and its basis define the same∞-topos after hypercompletion. Note
that its 1-categorical version, which follows from Corollary A.7, originally appeared in [1,
Exposé III, Théorème 4.1] under the name “lemme de comparaison”.

The only result in this Appendix that we need in the main body of this paper is Exam-
ple A.12, which is a corollary of Theorem A.6.

Remark A.1 In the previous version of the preprint [2], Asai and Shah claimed that the map i∗
we describe in Example A.11 is an equivalence, which implies Example A.12. However, the
claim is not true, as we see in Example A.13. As this paper is being written, its corrected
version, which still covers the case we use in the main body of this paper, has appeared. They
use a different argument to prove it. We also note that we prove a conjecture stated in their
preprint; see Example A.11.

To begin, recall that giving a Grothendieck topology on an ∞-category is the same thing
as giving that on its homotopy category (see [11, Remark 6.2.2.3]). Hence we can translate
notions used for sites into the ∞-categorical setting without making any essential change.
Note that we do not impose the existence of any pullbacks on ∞-categories.

Definition A.2 An ∞-site is a small ∞-category equipped with a Grothendieck topology.
A basis for an ∞-site C is a full subcategory B ⊂ C such that for every object C ∈ C there

exists a set of morphisms {Bi → C | i ∈ I } that satisfies Bi ∈ B for all i ∈ I and generates
a covering sieve on C . Note that in this case there exists a unique Grothendieck topology
on B such that a sieve B(0)

/B on B is covering if and only if its image under the inclusion
B/B ↪→ C/B generates a covering sieve. We always regard a basis as an ∞-site by using this
Grothendieck topology.

Example A.3 Considering the poset of open sets of a topological space equipped with the
canonical topology, the notion of basis specializes to that of basis used in point-set topology.

Remark A.4 In ordinary topos theory, a basis is often referred to as a dense subsite. But in
the ∞-categorical setting, the term “dense” can be misleading since a basis need not define
the same ∞-topos; see [13, Example 20.4.0.1] or Example A.13.

Proposition A.5 Let C be an ∞-site. Suppose that B is a basis for C and F is a presheaf on B.

Then F is a sheaf on B if and only if its right Kan extension is a sheaf on C. Especially,
by restricting the right Kan extension functor PShv(B) ↪→ PShv(C), we obtain a geometric
embedding Shv(B) ↪→ Shv(C).
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We omit the proof of this fact because this is proven in the sameway as in the 1-categorical
setting; see the second and third paragraphs of the proof of [14, PropositionB.6.6], but beware
that some arguments in the first paragraph cannot be translated to our setting.

The main result is the following:

Theorem A.6 Let B be a basis for an ∞-site C and G a presheaf on C. Then G is a hyper-
complete object of the ∞-topos Shv(C) if and only if the following conditions are satisfied:
(1) The restriction G|Bop is a hypercomplete object of the ∞-topos Shv(B).

(2) The functor G is a right Kan extension of G|Bop .

We note that Jacob Lurie let the author know that this result could be proven using
hypercoverings. Here we will give a different proof, which does not use (semi)simplicial
machinery.

Before giving the proof of this theorem, let us collect its formal consequences.

Corollary A.7 Let B be a basis for an ∞-site C. Then the geometric embedding Shv(B) ↪→
Shv(C) obtained in Proposition A.5 is cotopological. In particular, it induces equivalences
between their hypercompletions, their Postnikov completions, their bounded reflections, and
their n-localic reflections for any n.

Corollary A.8 Let B be a basis for an ∞-site C. Suppose that both B and C are n-category for
some n and have finite limits (but the inclusion need not preserve them). Then the geometric
embedding obtained in Proposition A.5 is an equivalence.

Remark A.9 In [6, Lemma C.3], Hoyois gave another sufficient condition under which the
geometric embedding Shv(B) ↪→ Shv(C) itself is an equivalence.

Our proof uses the following relative variant of [13, Lemma 20.4.5.4]:

Lemma A.10 Let f ∗ : Y → X be the left adjoint of a geometric morphism between ∞-
toposes and D ⊂ Y an essentially small full subcategory. Suppose that for every Y ∈ Y there
exists a family of objects (Vi )i∈I of D and a morphism

∐
i∈I Vi → Y whose image under f ∗

is an effective epimorphism. Then the object f ∗(lim−→V ∈D V
) ∈ X is ∞-connective.

Proof This follows from a slight modification of the proof of [13, Lemma 20.4.5.4] by using
the fact that f ∗ preserves finite limits and colimits and it determines a functor Y/Y → X/ f ∗Y

for any object Y ∈ Y, which is again the left adjoint of a geometric morphism. ��
Proof of Theorem A.6 Let i∗ : PShv(C) → PShv(B) denote the restriction functor. We write
i∗ for its right adjoint. We let L be the sheafification functor associated to the ∞-site C and
j : C → PShv(C) the Yoneda embedding.

Suppose that G is a hypercomplete object of Shv(C). We prove that the map G → i∗i∗G
is an equivalence. For C ∈ C, the map G(C) → (i∗i∗G)(C) can be identified with the
image of the morphism f : lim−→B∈B/C

j(B) → j(C) under the functor MapPShv(C)(−, G).

Since G is a hypercomplete object of Shv(C), it suffices to prove that the morphism L f
is ∞-connective. We can see this by applying Lemma A.10 to the geometric embedding
Shv(C)/L j(C) ↪→ PShv(C)/ j(C) � PShv

(
C/C

)
.

Let X denote the essential image of Shv(C)hyp under i∗. It follows from what we have
shown above that i∗ restricts to determine an equivalence Shv(C)hyp → X . It also follows
that the composition of left exact functors

PShv(B)
i∗−→ PShv(C)

X �→(L X)hyp−−−−−−−→ Shv(C)hyp
i∗−→ X
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is a left adjoint to the inclusionX ↪→ PShv(B): Indeed, for F ∈ PShv(B) andG ∈ Shv(C)hyp,

we have

Map(F, i∗G) � Map(i∗F, i∗i∗G) � Map(i∗F, G) � Map((Li∗F)hyp, G)

� Map((Li∗F)hyp, i∗i∗G) � Map(i∗((Li∗F)hyp), i∗G).

HenceX is a subtopos of PShv(B).Using PropositionA.5, we obtain inclusions Shv(B)hyp ⊂
X ⊂ Shv(B) of subtoposes. Since X � Shv(C)hyp is hypercomplete, the first inclusion is
an equality. Therefore, the restriction of the adjoint pair (i∗, i∗) determines an equivalence
Shv(B)hyp � Shv(C)hyp, which is a restatement of what we wanted to show. ��

We conclude this Appendix by specializing our results to the case directly related to the
main body of this paper.

Example A.11 Let P be a poset. Consider the canonical topology on the poset of open
sets of Alex(P) (see Definition 4.11 for the definition). Then the subposet of princi-
pal cosieves, which is equivalent to Pop, is a basis and the induced topology on it is
trivial. Hence by Corollary A.7, we have a cotopological inclusion i∗ : PShv(Pop) ↪→
Shv(Alex(P)). Since PShv(Pop) is already hypercomplete, i∗ can be identified with the
inclusion Shv(Alex(P))hyp ↪→ Shv(Alex(P)).

Wenote that this observation settles a conjecture posed byAsai andShah in [2,Remark 2.6]
affirmatively.

Example A.12 In the situation of Example A.11, the inclusion i∗ is an equivalence when
P is finite since the ∞-topos of sheaves on a Noetherian topological space of finite Krull
dimension is hypercomplete; see [11, Section 7.2.4]. The same holds when P has finite joins
since in this case PShv(Pop) is 0-localic.We note that the class of all posets whose associated
geometric embedding is an equivalence is closed under coproducts.

Example A.13 In the situation of Example A.11, the inclusion i∗ itself need not be an equiv-
alence in general.

Consider the set P = N × {0, 1} equipped with the ordering depicted as follows:

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) · · ·

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) · · · .
We can check that the locale of open sets of Alex(P) is coherent, so the final object of
Shv(Alex(P)) is compact by [11, Corollary 7.3.5.4]. We now show that the final object
of PShv(Pop), which is the constant functor taking the value ∗, is not compact. If so, by
Corollary 2.11, we can take n such that the final object is the left Kan extension of that
of Fun({0, . . . , n} × {0, 1}, S), but then the value at (n + 1, 0) becomes Sn, which is a
contradiction.

We note that this ∞-topos Shv(Alex(P)) essentially appears in [4, Example A9]. They
show the failure of hypercompleteness using a different argument there.
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