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Abstract
We introduce the framework for finding out conditions that imply that y ∈ R is a typical
value of a smooth function f defined on an open subset of R

n . We adopt this framework to
obtain some currently known conditions for estimating the set of bifurcation values. Addi-
tionally, we give two new such conditions. Moreover, we show that the trivialization of f in a
neighbourhood U of f −1(y) can always be obtained by integrating its gradient with respect
to some metric on U .
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Introduction

Let f : R
n → R be a smooth function, i.e., a function of class C∞. The smallest set B ⊂ R,

relative to the inclusion relation, such that the function

f |Rn\ f −1(B) : R
n\ f −1(B) → R\B

is a locally trivial smooth fibration is called the bifurcation set of f and is denoted by B( f ).
In 1969 R. Thom (see [19]) proved that B( f ) is finite for polynomial functions f . In general,
it is well known that B( f ) = K0( f ) ∪ B∞( f ), where K0( f ) is the set of critical values of
f and B∞( f ) is the set of bifurcation values of f at infinity, i.e. the set of points at which
f is not locally trivial smooth fibration outside a compact set. In case n = 2, M. Coste and
M.J. de la Puente in [2] gave an effective algorithm to determine the set B( f ) (for complex
case see [7, 18]). In general, the computation of B( f ) is an open problem.

In order to estimate the set B∞( f ) some conditions on the function f in neighborhoods
of fibers f −1(y) are introduced, which implies that the points y are typical values of f (i.e.
y ∈ R\B( f )). One of the most frequently used is the Malgrange’s condition. We say that f
satisfies Malgrange’s condition at a point y ∈ R if there exists a neighborhood U ⊂ R of the
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point y and constants R, δ > 0 such that

|∇ f (x)||x | ≥ δ for x ∈ f −1(U ), |x | > R,

where |x | is an Euclidean norm of x ∈ R
n . By K∞( f ) we denote the set of asymptotic

critical values of f , i.e. the set of points where f does not satisfy Malgrange’s condition:

K∞( f ) = {y ∈ R : ∃(xk )∞k=1⊂Rn lim
k→∞ |xk | = +∞, lim

k→∞ f (xk) = y,

lim
k→∞ |xk ||∇ f (xk)| = 0}.

It is well known (see i.e. [15, 17]) that B∞( f ) ⊂ K∞( f ) and that the set K∞( f ) is finite,
provided f is a polynomial (see i.e. [10–12]).

In this paper we prove a theorem which gives a sufficient and necessary conditions for a
point y to be a typical value of a function f defined on an open set D f ⊂ R

n . To achive
this we introduce sets O y( f ) and Oy( f ) (see the beginning of Sect. 2). They consist of
parameters (v, h, f ∗) that can be chosen accordingly to f and y to produce conditions for
estimating the set B( f ). Roughly speeking:

• v is a vector field that is transversal to the fibers of f ,
• h is a function such that h(x) give us the information how far from infinity or the border

of D f the point x is,
• f ∗ is a function such that f ∗(x) measures how far from the fiber f −1(y) the point x is.

Given the above, the boundedness of ∂vh/∂v f ∗ on the solutions of system x ′ = v(x) gives
the sufficient condition to construct trivialization of f near the fiber f −1(y) by integrating
v. More precisely, as show in Theorem 2.1, O y( f ) �= ∅ is sufficient to conclude that y is
a typical value of f . The inverse to the above statement is also true (see Theorem 2.5). As
a corollary we get that every trivialization of f near the typical value can be realized by
integrating a vector field ∇g f with respect to some metric tensor g (see Corollary 2.6).

We end the Sect. 2 showing how one can use the above theorems to get well known
conditions for trivializing a function (see Corollary 2.7) and introduce two new conditions
which can be regarded as an improvement to the corresponding classical conditions (see
Proposition 2.8).

The last section is devoted to simple examples of calculations the set B( f ) when the
Malgrange’s condition does not give the optimal upper bound or when the domain of f is a
proper subset of R. These examples illustrate how to use the main theorems of the paper.

1 Preliminary

In this section we will present some definitions and notations that we will use later.
Let M, N be smooth manifolds and k ∈ N ∪ {0,∞}. By Ck(M, N ) we denote the set of

all mappings f : M → N that are Ck class. When N = R we omit the second parameter
and write Ck(M). If M is equipted with a metric tensor g we denote by ∇g f the gradient of
f with respect to g. In the case when M is an open subset of R

n and g is a standard inner
product we write ∇ f .

Let D f , Dv ⊂ R
n be open sets. We say that a vector field v ∈ C∞(Dv, R

n) is transversal
to the level sets of f ∈ C∞(D f ) on D ⊂ D f ∩ Dv if

∂v(x) f (x) �= 0 for x ∈ D. (1)
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We denote by � ( f , D) the set of all vector fields transversal to the level sets of f ∈
C∞(D f , R) on D ⊂ D f . Obviously, if ∇ f (x) �= 0 for x ∈ D then ∇ f ∈� ( f , D) and
� ( f , D) �= ∅. Conversely, if� ( f , D) �= ∅ then∇ f (x) �= 0 for x ∈ D and∇ f ∈� ( f , D).
Denote

�+ ( f , D) := {v ∈� ( f , D) : ∂v(x) f (x) > 0 for x ∈ D}.
Obviously �+ ( f , D) ⊂� ( f , D). The set �+ ( f , D) can be geometrically described as the
set of all gradients of f with respect to some metric tensor g on D. More precisely let v be a
continuous tangent vector field on a manifold M . We say that a continuously differentiable
function E : M → R is a strict Lyapunov function for x ′ = −v(x) if

d E(x)(v(x)) > 0 for x ∈ M, v(x) �= 0. (2)

In [1, Theorem 1] authors prove the following:

Theorem 1.1 Let M be a manifold, v a continuous tangent vector field on M and let E :
M → R be a continuously differentiable, strict Lyapunov function for x ′ = −v(x). Then
there exists a Riemannian metric g on the open set M̃ := {x ∈ M : v(x) �= 0} such that

∇g E(x) = v(x) for x ∈ M̃ .

From the above we get

Corollary 1.2 Let v ∈�+ ( f , D). Then there exists a Riemannian metric g on D such that

∇g f (x) = v(x) for x ∈ D.

Let D ⊂ R
n be an open set, v ∈ C∞(D, R

n) and A ⊂ R
n . Define

� (v, D, A) := { f ∈ C0(D f ) : D ⊂ D f , f |D\A ∈ C∞(D\A),

∂v(x) f (x) �= 0 for x ∈ D\A},
� (v, D) :=� (v, D,∅).

(3)

Let D ⊂ R
n be an open set f ∈ C∞(D), v ∈� ( f , D), y ∈ R. For x ∈ D denote

ϕx : Ix → D the integral solution of x ′ = v(x) satisfying ϕx (0) = x and define

Jx := {t ∈ Ix : min{ f (x), y} ≤ f (ϕx (t)) ≤ max{ f (x), y}}.
By [ f , y]D

v we denote the set of all functions f ∗ ∈� (v, D, f −1(y)) such that for x ∈ D the
function

Jx � t → f ∗(ϕx (t)) ∈ R

is bounded. Note that f ∈ [ f , y]D
v .

We say that h ∈ C1(Dh) is proper if for every compact set K ⊂ R the set h−1(K ) is
compact in Dh .

2 Main results

Let f ∈ C∞(D f ) where D f is an open subset of R
n .

Denote by � the set of all triples (v, h, f ∗) where v ∈ C∞(Dv, R
n), h ∈ C1(Dh),

f ∗ ∈ C0(D f ∗) and Dv, Dh, D f ∗ are open in R
n .

Define O y( f ) as the set of all triples (v, h, f ∗) ∈ � for which there exists a neighborhood
U of y and a compact set K ⊂ D f such that the following conditions are satisfied :
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(O y( f )-i ) v ∈� ( f , f −1(U )),
(O y( f )-ii) f −1(U )\K ⊂ Dh and for every compact sets K1 ⊂ U , K2 ⊂ R such that

y ∈ K1 the set f −1(K1) ∩ h−1(K2) is compact

(O y( f )-iii) f ∗ ∈ [ f , y] f −1(U )\K
v and for any solution ϕ : I → f −1(U )\K of the system

x ′ = v(x), x ∈ f −1(U )\K (4)

the function H : f −1(U )\(K ∪ f −1(y)) → R defined by

H(x) := ∂v(x)h(x)

∂v(x) f ∗(x)
(5)

is bounded on ϕ(I )\ f −1(y).

Theorem 2.1 If O y( f ) �= ∅ then y is a typical value of f . More precisely, then there is
a neighborhood U of y, a vector field v ∈� ( f , f −1(U )) such that the trivialization of
f | f −1(U ) can be realized by integrating the vector field v.

Proof Choose (v, h, f ∗) ∈ � and U ⊂ R, K ⊂ R
n such that conditions (O y( f )-i),(O y( f )-

ii), (O y( f )-iii) are satisfied. Then ∂v(x) f (x) �= 0 for x ∈ f −1(U ).
Consider the system of differential equations with a parameter μ ∈ U

x ′ = (y − μ)

∂v(x) f (x)
v(x) (6)

with right-hand side defined on R × f −1(U ).

Denote by �μ : Vμ → f −1(U ) the general solution of (6), where

Vμ := {(τ, η, t) ∈ R × f −1(U ) × R : t ∈ Iμ(τ, η)},
and Iμ(τ, η) is the domain of the integral solution t → �μ(τ, η, t) and the equation
�μ(τ, η, τ ) = η is satisfied.

We will show that 1 ∈ I f (x)(0, x) for x ∈ f −1(U ). Suppose the contrary that 1 /∈
I f (x)(0, x) for some x ∈ f −1(U ). Then the right end point β of I f (x)(0, x) satisfies 0 <

β ≤ 1. Let ϕx be the integral solution of (6) with μ = f (x) satisfying ϕx (0) = x . We easily
check that

f ◦ ϕx (t) = (y − f (x))t + f (x), t ∈ I f (x)(0, x) (7)

and f ◦ ϕx (t) ∈ P for t ∈ [0, β), where P is a closed interval with endpoints y and f (x).

Consider the set

K ′ := {(t, x ′) ∈ R × f −1(U ) : t ∈ [0, 1], f (x ′) ∈ P, x ′ ∈ K }.
Since P ⊂ U , we see that K ′ is compact. Therefore, there exists τ ∈ (0, β) such that

(t, ϕx (t)) /∈ K ′ for t ∈ [τ, β). Given that f ◦ ϕx (t) ∈ P for t ∈ [τ, β) we have ϕx (t) /∈ K
for t ∈ [τ, β).

Set x := ϕx (τ ). Given the above, 1 /∈ I f (x)(0, x) and (7), we have x ∈ f −1(U )\(K ∪
f −1(y)). Denote by ϕx : Ix → f −1(U )\K the integral solution of the system (4)1 satisfying
ϕx (0) = x . Let Jx := {t ∈ Ix : min{ f (x), y} ≤ f (ϕx (t)) ≤ max{ f (x), y}}. Obviously Jx

is an interval and the set f ◦ϕx (Jx ) is included in closed interval with endpoints f (x) and y.

1 note that ϕx and ϕx are the solutions of different systems.
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From (O y-iii) there exist Lx , Mx ∈ R such that

| f ∗(ϕx (t))| ≤ Mx for t ∈ Jx , (8)

|H(ϕx (t))| ≤ Lx for t ∈ Jx\{t ∈ Jx : f (ϕx (t)) = y}. (9)

We will show that the function Jx � t → |h(ϕx (t))| ∈ R is bounded. Indeed, from (9) for
t ∈ Jx\{t ∈ Jx : f (ϕx (t)) = y} we have

|h(ϕx (t))| ≤ |h(ϕx (t)) − h(ϕx (0))| + |h(ϕx (0))|
=

∣
∣
∣
∣

∫ t

0

d

ds
h(ϕx (s))ds

∣
∣
∣
∣
+ |h(ϕx (0))|

=
∣
∣
∣
∣

∫ t

0
(∂v(ϕx (s))h)(ϕx (s))ds

∣
∣
∣
∣
+ |h(ϕx (0))|

≤ Lx

∫ t

0
|(∂v(ϕx (s)) f ∗)(ϕx (s))|ds + |h(ϕx (0))|

= Lx

∣
∣
∣
∣

∫ t

0
(∂v(ϕx (s)) f ∗)(ϕx (s))ds

∣
∣
∣
∣
+ |h(ϕx (0))|

= Lx | f ∗(ϕx (t)) − f ∗(x)| + |h(ϕx (0))|.
(10)

Therefore, from the continuity of the function f ∗ ◦ ϕx and (8) we get that

|h(ϕx (t))| ≤ Lx (Mx + | f ∗(x)|) + |h(ϕx (0))| for t ∈ Jx .

From (O y-ii) we get that ϕx (Jx ) is contained in a compact subset of f −1(U ). Since
ϕx ([0, β)) ⊂ ϕx (Jx ), ϕx ([0, β)) is contained in a compact subset of f −1(U ) which con-
tradicts the assumption that ϕx : I f (x)(0, x) → f −1(U ) is the integral solution of (6). In
conclusion, we showed that 1 ∈ I f (x)(0, x).

Consider the mapping


1 : f −1(U ) � x �→ � f (x)(0, x, 1) ∈ f −1(y).

The mapping 
1 is defined correctly. Indeed, 1 ∈ I f (x)(0, x) and from (7) we get
f (� f (x)(0, x, 1)) = f (ϕx (1)) = y. Similarly as above we show that the mapping

� : f −1(y) × U � (ξ, μ) �→ �μ(1, ξ, 0) ∈ f −1(U )

is also well defined. It is easy to check that


 : f −1(U ) � x �→ (
1(x), f (x)) ∈ f −1(y) × U

is a C∞ diffeomorphism and 
−1 = �. Therefore, f | f −1(U ) is a C∞ trivial fibration. ��

Define Oy( f ) as the set of all triples (v, h, f ∗) ∈ � for which there exists a neighborhood
U of y and a compact set K ⊂ D f such that (O y( f )-i), (O y( f )-ii) and the following
conditions are satisfied:

(Oy( f )-iii) f ∗ ∈ [ f , y] f −1(U )\K
v and the function H : f −1(U )\(K ∪ f −1(y)) → R defined

as in (5) is bounded.

Obviously Oy( f ) ⊂ O y( f ), therefore directly from Theorem 2.1 we get the following
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Theorem 2.2 If Oy( f ) �= ∅ then y is a typical value of f . More precisely, then there is
a neighborhood U of y, a vector field v ∈� ( f , f −1(U )) such that the trivialization of
f | f −1(U ) can be realized by integrating the vector field v.

The inverse to the above theorem is true. Indeed, we have the following

Theorem 2.3 Let y be a typical value of f ∈ C∞(D f ). Let hy ∈ C∞( f −1(y)) be a proper
function. Then there is a neighborhood U of y, a vector field v ∈�+ ( f , f −1(U )) and a
function h ∈ C∞( f −1(U )) satisfying the condition (O y( f )-ii) such that

H(x) = ∂v(x)h(x)

∂v(x) f (x)
= 0 (11)

for x ∈ f −1(U ). In particular, Oy( f ) �= ∅.
Proof LetU ⊂ R be a neighborhood of y and
1 : f −1(U ) → f −1(y) a mapping such that


 = (
1, f ) : f −1(U ) � x �→ (
1(x), f (x)) ∈ f −1(y) × U

is a C∞ diffeomorphism. Shrinking U we can assume that U = (−ε + y, ε + y). For
(x, t) ∈ f −1(y) × U we have

(
1(

−1(x, t)), f (
−1(x, t))) = 
(
−1(x, t)) = (x, t).

Since for (x, t) ∈ f −1(y) × U we get

f (
−1(x, t)) = t, (12)
∂

∂t
f (
−1(x, t)) = 1. (13)

Define a vector field v ∈ C∞( f −1(U ), R
n) as

v(x) := ∂

∂t

−1(x, t)|(x,t)=(
1(x), f (x)) for x ∈ f −1(U ).

We will show that v ∈�+ ( f , f −1(U )). Set x ∈ f −1(U ) and put

ϕ(t) := 
−1(
1(x), t + f (x)) for t ∈ (−ε + y − f (x), ε + y − f (x)). (14)

From f (x) ∈ U = (−ε + y, ε + y) we get 0 ∈ (−ε + y − f (x), ε + y − f (x)). Moreover

ϕ(0) = 
−1(
1(x), f (x)) = 
−1(
(x)) = x, (15)

ϕ′(0) = d

dt
(
−1(
1(x), t + f (x))|t=0 = ∂

∂t

−1(x, t)|(x,t)=(
1(x), f (x)) = v(x).

Therefore from (13) we have

∂v(x) f (x) = ∂ϕ′(0) f (ϕ(0)) = d

dt
f (ϕ(t))|t=0 =

d

dt
f (
−1(
1(x), t + f (x))|t=0 = 1.

In conclusion v ∈�+ ( f , f −1(U )).
Define h : f −1(U ) → R as

h(x) := hy(
1(x)) for x ∈ f −1(U ).
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Note that for compact sets K1 ⊂ U , K2 ⊂ R such that y ∈ K1, h−1(K2) �= ∅ the set
f −1(K1) ∩ h−1(K2) is diffeomorphic to 
( f −1(K1) ∩ h−1(K2)) = h−1

y (K2) × K1 and

therefore the condition (O y( f )-ii) is satisfied. Now we will show that

∂v(x)h(x) = 0 for x ∈ f −1(U ).

Indeed, for every (x, t) ∈ f −1(y) × U we have 
1(

−1(x, t)) = x . Hence

∂v(x)h(x) = ∂

∂t
hy(
1(


−1(
1(x), t + f (x))))|t=0 = 0 for x ∈ f −1(U )

which proves (11) and ends the proof. ��
Remark 2.4 Note that in the case when the boundary of the set D f is described as the zero
set of a function g ∈ C∞(Rn), for all y ∈ R one can choose hy ∈ C∞( f −1(y)) defined as

hy(x) := |x |2 + 1

(g(x))2
for x ∈ f −1(y).

In particular, if D f = R
n then for all y ∈ R we can put hy(x) := |x |2, for x ∈ f −1(y).

Using theorem 2.2 and theorem 2.3 we get

Theorem 2.5 Let f ∈ C∞(D f ), y ∈ R. Then y is a typical value of f if and only if
Oy( f ) �= ∅.

Proof “ ⇒′′ Assume that y is a typical value of f . If D f = R
n put hy(x) := |x |2, for

x ∈ f −1(y). If D f � R
n then from Whitney extension theorem there exists a function

g ∈ C∞(Rn) such that D f = {x ∈ R
n : g(x) �= 0}. In this case define hy ∈ C∞( f −1(y))

as in Remark 2.4. In both cases hy is a proper function. Therefore, from Theorem 2.3 we get
that Oy( f ) �= ∅.

“ ⇐′′ Immediately follows from Theorem 2.2. ��
Given the above, Corollary 1.2 and the proof of Theorem 2.1 we get

Corollary 2.6 Let f ∈ C∞(D f ), y ∈ R. If y is a typical value of f then there exists a
Riemannian metric g on the neighbourhood of f −1(y) such that the trivialization of f in the
neighbourhood of f −1(y) can be realized by integrating a vector field ∇g f .

Now we prove some known theorems with conditions implying the trivialization of the
functions in a neighborhood of a fiber (see i.e. 3,12,15,17).

Corollary 2.7 Let f ∈ C∞(Rn), y ∈ U ⊂ R and suppose that ∇ f (x) �= 0 for x ∈ f −1(U ).
Then the following conditions are sufficient for y to be a typical value of f

(E) (Ehresmann’s lemma) f is a proper function,
(F) (Fedoryuk’s condition) there exist R, δ > 0 such that

|∇ f (x)| ≥ δ for x ∈ f −1(U ), |x | > R,

(M) (Malgrange’s condition) there exist R, δ > 0 such that

|∇ f (x)||x | ≥ δ for x ∈ f −1(U ), |x | > R,

(K-Ł) (Kurdyka-Łojasiewicz exponent) there exist R, C > 0 and θ < 1 such that

|x | · |∇ f (x)| ≥ C | f (x) − y|θ for x ∈ f −1(U ), |x | > R,
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(R) there exists R > 0 and a continuous, non-negative function λ : (R,+∞) → R

satisfying
∫ +∞

R
λ(s)ds = +∞,

|∇ f (x)| ≥ λ(|x |) for x ∈ f −1(U ), |x | > R.

Proof From theorem 2.5 we need to show that each from the above conditions implies
Oy( f ) �= ∅.

(E) From (E) we get (∇ f , f , f ) ∈ Oy( f ).
(F) From (F) we get (∇ f , h1, f ) ∈ Oy( f ), where

h1(x) := |x | for x �= 0.

(M) From (M) we get (∇ f , h2, f ) ∈ Oy( f ), where

h2(x) := ln(|x |2) for x �= 0.

(K-Ł) From (K-Ł) we get (∇ f , h2, fθ ) ∈ Oy( f ), where h2 as above and

fθ (x) := | f (x) − y|1−θ for x ∈ R
n .

(R) From (R) we get (∇ f , h3, f ) ∈ Oy( f ), where

h3(x) :=
∫ |x |

R
λ(s)ds for |x | > R.

��
Note that for proofs in (M) and (K-Ł) we actually need weaker assumptions. More pre-

cisely, let a ∈ R
n and put h(x) = ln(|x − a|2) for x �= a. Considering triples (∇ f , h, f )

and (∇ f , h, fθ ) as in Corollary 2.7 we get

Proposition 2.8 Let f ∈ C∞(Rn), y ∈ U ⊂ R, a ∈ R
n and suppose that ∇ f (x) �= 0 for

x ∈ f −1(U ). Then the following conditions are sufficient for y to be a typical value of f

(Ma) there exist R, C > 0 such that

|〈∇ f (x), x − a〉| ≤ C |x − a|2|∇ f (x)|2 for x ∈ f −1(U ), |x | > R,

(K-Ła) there exist R, C > 0 and θ < 1 such that

| f (x) − y|θ |〈∇ f (x), x − a〉| ≤ C |x − a|2|∇ f (x)|2 for x ∈ f −1(U ), |x | > R.

If a = 0 ∈ R
n the conditions (Ma) and (K-Ła) can be seen as improvements of conditions

(M) and (K-Ł) respectively in the sense that if the condition (M) is satisfied then (Ma) is
satisfied (the sames goes for (K-Ł) and (K-Ła)). Therefore, they could give a better estimation
of the set B( f ).

3 Examples

We give an example of a function with typical value at 0 that does not satisfied Malgrange’s
condition at 0 (and even weaker condition (Ma) with a = (0, 0) from Proposition 2.8). We
show that changing one element of the triple (∇ f , h, f ) can result in a better estimation of
the set B( f ). In the example we use the following:
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Lemma 3.1 Let v ∈ C∞(D, R
n), f ∈� (v, D), y ∈ R. If f ∗ ∈� (v, D, f −1(y)) and there

exists y∗ ∈ R such that

∀x∈D\ f −1(y) ∂v(x) f (x)∂v(x) f ∗(x)( f (x) − y)( f ∗(x) − y∗) ≥ 0, (16)

then f ∗ ∈ [ f , y]D
v .

Proof Set x ∈ D and denote by ϕx : Ix → D the solution of x ′ = v(x) satisfying ϕx (0) = x .
Define

Jx := {t ∈ Ix : min{ f (x), y} ≤ f (ϕx (t)) ≤ max{ f (x), y}}.
If x ∈ f −1(y) then Jx is a point and the function f ∗ ◦ ϕ is bounded on Jx . Assume that
x ∈ D\ f −1(y). Consider cases with regard to signs of ∂v(x) f (x) and f (x) − y.

Case ∂v(x) f (x) > 0, f (x) − y < 0.
Given the above we have Jx = {t ∈ Ix : f (x) ≤ f (ϕx (t)) ≤ y}. Therefore min( f ◦

ϕx |Jx ) = f (x) = f (ϕ(0)) and

f (ϕx (t))) ≤ y for t ∈ Jx . (17)

Since f ∈� (v, D), ∂v(x) f (x) > 0 and Jx is connected, f ◦ ϕx |Jx is increasing and Jx ⊂
[0,+∞). Consider subcases:

Subcase ∂v(x) f ∗(x) > 0.
Then ∂v(ϕx (t)) f ∗(ϕx (t)) > 0 for t ∈ IntJx , where IntJx is an interior of Jx . Therefore

f ∗ ◦ϕx |Jx is increasing. Since 0 ∈ Jx ⊂ [0,+∞) we have min( f ∗ ◦ϕx |Jx ) = f ∗(ϕx (0)) =
f ∗(x). Moreover, from (16) i (17) we get f ∗(ϕx (t)) ≤ y∗ for t ∈ Jx . This proves f ∗ ∈
[ f , y]D

v .
Subcase ∂v(x) f ∗(x) < 0.
Then ∂v(ϕx (t)) f ∗(ϕx (t)) < 0 for t ∈ IntJx , where IntJx is an interior of Jx . Therefore

f ∗ ◦ϕx |Jx is decreasing. Since 0 ∈ Jx ⊂ [0,+∞)we have max( f ∗ ◦ϕx |Jx ) = f ∗(ϕx (0)) =
f ∗(x). Moreover, from (16) i (17) we get f ∗(ϕx (t)) ≥ y∗ for t ∈ Jx . This proves f ∗ ∈
[ f , y]D

v .
The remaining cases can be proved analogously. ��

Example 1 Let f ∈ C∞(R2) be defined as

f (x, y) := y

1 + x2
for (x, y) ∈ R

2.

Using i.e. the Malgrange’s condition it can be shown that B( f ) ⊂ {0}. The function f does
not satisfy the Malgrange’s condition at 0. Moreover, we show that (∇ f , h, f ) /∈ O0( f )

where

h(x, y) := ln(x2 + y2) for (x, y) ∈ R
2\{(0, 0)}.

Indeed, consider the sequence (xn, yn) = (n, 1+n2
n ), n ∈ N. Obviously we have

lim
n→∞ |(xn, yn)| = +∞ and limn→∞ f (xn, yn) = 0. Furthermore

lim
n→∞ |H(xn, yn)| = lim

n→∞

∣
∣
∣
∣

∂∇ f (xn ,yn)h(xn, yn)

∂∇ f (xn ,yn) f (xn, yn)

∣
∣
∣
∣

= lim
n→∞

|1 − n2|(1 + n2)

n3

(

1 +
(

1
n2

+ 1
)2

)

5
= +∞,
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which gives (∇ f , h, f ) /∈ O0( f ) (compare to condition (Ma) with a = (0, 0) from Propo-
sition 2.8). In particular, f does not satisfy Malgrange’s condition at 0.

Now we show how one can change the triple (∇ f , h, f ) to prove that 0 is a typical value
of f using Theorem 2.2.

Denote U := (−1, 1) and K := {0} × [−1, 1].
a) Changing ∇ f in (∇ f , h, f ).

Define v1 ∈ C∞( f −1(U )\K ) as

v1(x, y) = (−2xy, 2x2) for (x, y) ∈ f −1(U )\K .

Then v1 ∈�+ ( f , f −1(U )\K ) and obviously ∇ f ∈�+ ( f , f −1(U )). Using partition of
unity we construct a vector field v ∈ C∞( f −1(U )) such that v1 ∈�+ ( f , f −1(U )) and

v(x, y) = v1(x, y) for (x, y) ∈ f −1(U ), |(x, y)| > R,

for some constant R > 0. Therefore

∂vh(x) = 2

|(x, y)|2
∣
∣ − 2x2y + 2x2y

∣
∣ = 0 for (x, y) ∈ f −1(U ), |(x, y)| > R.

That implies boundedness of H = ∂vh
∂v f on f −1(U ) and proofs (v, h, f ) ∈ O0( f ). From

Theorem 2.2 we get that 0 is a typical value of f .

b) Changing h in (∇ f , h, f ).
Let Dh2 := R

n\{(x, y) ∈ R
2 : x = 0}. Define h2 : Dh2 → R as

h2(x, y) := 1

2
x2 + y2 + 1

2
ln(x2) for (x, y) ∈ Dh2 .

The reader can check that the condition (O y( f )-ii) is satisfied. Moreover, for (x, y) ∈
f −1(U )\K we have

∂∇ f (x,y)h2(x, y) =
〈(

1 + x2

x
, 2y

)

,

( −2xy

(1 + x2)2
,

1

1 + x2

)〉

= 0.

Therefore H = ∂vh2
∂v f = 0 on f −1(U )\K and (v, h2, f ) ∈ O0( f ). From Theorem 2.2 we get

that 0 is a typical value of f .

c) Changing f in (∇ f , h, f ).
Let K2 := {(x, y) ∈ R

2 : x ∈ [−1, 1], (x, y) ∈ f −1(U )}. Define f ∗ ∈ C∞(R2) as

f ∗(x, y) = y for (x, y) ∈ R
2.

Then for (x, y) ∈ R
2 we have

∂∇ f (x,y) f ∗(x, y) = 1

1 + x2
> 0,

which gives f ∗ ∈� (∇ f , f −1(U ), f −1(0)). Obviously

f (x, y) f ∗(x, y) = y2

1 + x2
≥ 0 for (x, y) ∈ R

2.
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Therefore, the condition (16) is satisfied with y∗ = 0 and from Lemma 3.1 we have f ∗ ∈
[ f , y] f −1(U )

∇ f . Moreover, for (x, y) ∈ f −1(U )\K2, y �= 0 we have

|H(x, y)| =
∣
∣
∣
∣

∂∇ f (x,y)h(x, y)

∂∇ f (x,y) f ∗(x, y)

∣
∣
∣
∣

= |2y|
(x2 + y2)

|1 − x2|
|1 + x2| ≤ |2y|

|2xy| · 1 ≤ 1.

For (x, y) ∈ f −1(U )\K2, y = 0 we have H(x, y) = 0. Therefore, H is bounded on
f −1(U )\K2 and (∇ f , h, f ∗) ∈ O0( f ). From Theorem 2.2 we get that 0 is a typical value
of f .

Summing up, B( f ) = ∅.
Before we give some examples how to use Theorem 2.2 when D f �= R

n we present some
usefull lemmas.

Let D ⊂ R
n, (xk)

∞
k=1 ⊂ D. We say that the sequence (xk)

∞
k=1 is escaping D if the set

{xk : k ∈ N} has no accumulation points in D.
We leave the proofs of the next two lemmas as an exercise.

Lemma 3.2 Let D ⊂ R
n, f ∈ C∞(D), h ∈ C1(D), y ∈ U ⊂ R, K = ∅. The condition

(O y( f )-ii) is satisfied if and only if

∀K1−compact
K1⊂U ,y∈K1

∀(xk )∞k=1⊂ f −1(K1)

(

(xk)
∞
k=1is escaping D

⇒ lim
k→∞ |h(xk)| = +∞)

.
(18)

Lemma 3.3 Let D ⊂ R
n, f ∈ C∞(D), h ∈ C1(D). If the condition

∀y∈R∀(xk )
∞
k=1⊂D

(

lim
k→∞ f (xk) = y ∧ (xk)

∞
k=1 is escaping D

⇒ lim
k→∞ |h(xk)| = +∞

) (19)

is satisfied then the condition (O y( f )-ii) is satisfied for all y ∈ R with U = R and K = ∅.
In particular, if the condition

∀(xk )∞k=1⊂D

(

(xk)
∞
k=1 is escaping D ⇒ lim

k→∞ |h(xk)| = +∞
)

(20)

is satisfied then the condition (O y( f )-ii) is satisfied for all y ∈ R with U = R and K = ∅.
Remark 3.4 Note that in general the condition

∀(xk )∞k=1⊂D

(

lim
k→∞ f (xk) = y ∧ (xk)

∞
k=1 is escaping D

⇒ lim
k→∞ |h(xk)| = +∞

) (21)

does not imply the condition (O y( f )-ii) for some neighborhood U and compact set K .
Indeed, one can check that if we denote D := R

2 and

f (x, y) := y, h(x, y) := (x)2

1 + (xy)2
for (x, y) ∈ R

2,
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then the condition (21) is satisfied at 0 but (O0( f )-ii) is not (for arbitrary U and K ).

Below we give some easy examples how one can use theorem 2.2 when D f �= R
n .

Example 2 Let D := R
n\{(0, .., 0)} and put f ∈ C∞(D) as

f (x) := xn for x = (x1, x2, . . . , xn) ∈ D.

We will show that B( f ) = {0}. Denote
h(x) := |x |2 + 1

|x |2 for x ∈ D.

Obviously h ∈ C∞(D) and the condition (20) is satisfied. Set v = ∇ f and f ∗ = f . We
have

H(x) = ∂v(x)h(x)

∂v(x) f ∗(x)
= 2xn

(

1 − 1

|x |4
)

= 2 f (x)

(

1 − 1

|x |4
)

for x ∈ D.

Therefore, if y �= 0 the function H is bounded in f −1(U ) for some neighborhood U of
y. From Theorem 2.2 we get B( f ) ⊂ {0}. One can check that this upper bound is optimal
(B( f ) = {0}).
Example 3 Let D := R

n\{x = (x1, x2, . . . , xn) : x1 = 0} and put f ∈ C∞(D) as

f (x) := xn for x = (x1, x2, . . . , xn) ∈ D.

We will show that B( f ) = ∅. Denote

h(x) := |x |2 + 1

(x1)2
for x ∈ D.

Obviously h ∈ C∞(D) and the condition (20) is satisfied. Set v = ∇ f and f ∗ = f . We
have

H(x) = ∂v(x)h(x)

∂v(x) f ∗(x)
= 2xn = 2 f (x) for x ∈ D.

Therefore, for y ∈ R the function H is bounded in f −1(U ) for some neighborhood U of y.
From Theorem 2.2 we get B( f ) = ∅.
Example 4 Let D := R

n\{x = (x1, x2, . . . , xn) : xn = 0} and put f ∈ C∞(D) as

f (x) := xn for x = (x1, x2, . . . , xn) ∈ D.

We will show that B( f ) = {0}. Denote
h(x) := |x |2 + 1

(xn)2
for x ∈ D.

Obviously h ∈ C∞(D) and the condition (20) is satisfied. Set v = ∇ f and f ∗ = f . We
have

H(x) = ∂v(x)h(x)

∂v(x) f ∗(x)
= 2

(

xn − 1

(xn)3

)

= 2

(

f (x) − 1

( f (x))3

)

for x ∈ D.

Therefore, if y �= 0 then the function H is bounded in f −1(U ) for some neighborhood U of
y. From Theorem 2.2 we get B( f ) ⊂ {0}. Considering that for y �= 0 we have f −1(y) �= ∅
and f −1(0) = ∅ we conclude B( f ) = {0}.
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