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Abstract
We study the restriction to Sylow subgroups of irreducible characters of symmetric groups.
In particular, we give a precise description of the degrees of the irreducible constituents in
terms of the shape of the partition that labels a given irreducible character. Our main result
is a wide generalization of [Giannelli and Navarro (Proc Am Math Soc 146(5):1963–1976,
2018), Theorem 3.1].

1 Introduction

The purpose of this article is to investigate the structure of the restriction to Sylow subgroups
of irreducible characters of the symmetric groupSn . Let p be a prime number and let Pn be
a fixed Sylow p-subgroup of Sn . The main question studied in this paper is the following.
Given k ∈ N, which and howmany irreducible characters ofSn admit a constituent of degree
pk in their restriction to Pn? More formally, we let Irrk(Pn) denote the set consisting of all
the irreducible characters of Pn of degree pk , and we focus our attention on the subset �k

n
of Irr(Sn) defined as follows:

�k
n = {χ ∈ Irr(Sn) | [χPn , φ] �= 0, for some φ ∈ Irrk(Pn)}.

In [6, Theorem 3.1] it is proved that the restriction to Pn of any irreducible character of
Sn admits a linear constituent. In other words, �0

n = Irr(Sn). This result was improved
(for odd primes) in [5] where, for every linear character φ of Pn , the authors classify those
irreducible characters χ of Sn such that φ appears as an irreducible constituent of χPn .

In this article we largely extend in a new direction the result obtained in [6] mentioned
above. More precisely, for any odd prime number p, we are able to describe the set �k

n ,
for any k ∈ N. Surprisingly enough, these sets possess quite a regular structure. In order to
describe it we recall that irreducible characters of Sn are naturally in bijection with P(n),
the set of partitions of n. With this in mind, we find it useful to think of �k

n as a subset of
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P(n) instead of Irr(Sn). For any t ∈ N, we let Bn(t) be the subset of P(n) consisting of
partitions whose Young diagram fits into a t × t grid (i.e. having first row and first column
of size at most t).

The first main result of the article isTheorem 5.1, where we show that for any k ∈ N there
exists a certain T k

n ∈ {1, . . . , n} such that�k
n = Bn(T k

n ). In other words, Theorem 5.1 shows
that the set of partitions of n whose corresponding irreducible characters admit a constituent
of degree pk on restriction to a Sylow p-subgroup of Sn coincide with the set of partitions
of n which fit inside a square, whose size depend on both n and t . As mentioned above, this
statement highlights the nice and well-behaved combinatorial structure of the sets �k

n .
The description given by Theorem 5.1 is sharpened in Theorem 5.3, where we explicitly

compute the value of T k
n for all n, k ∈ N. We avoid the precise description of these values

here, as it requires the introduction of some technical definitions. Nevertheless, we refer the
reader to Tables 1 and 2 for several specific and concrete instances of our second main result.

An intriguing consequence of Theorem 5.3 is that� j
n ⊆ �k

n , for all k ≤ j . This means that
whenever χPn admits an irreducible constituent of degree p j , then it also admits constituents
of degree pk , for all 0 ≤ k ≤ j .

We conclude our article by studying the second part of the question we proposed above.
Namely, we give an estimate for how many characters ofSn are contained in �k

n . In Corol-
lary 5.5 we show that the restriction to Pn of almost all irreducible characters ofSn admits
an irreducible constituent of degree pk , for all admissible k ∈ N. More precisely, we prove
that

lim
n→∞

|�n |
|P(n)| = 1,

where �n is the intersection of all of the sets �k
n , where k runs among all those natural

numbers such that pk is the degree of an irreducible character of Pn .

Remark 1.1 As mentioned above, this article treats the case of odd primes. When p = 2,
linear constituents of the restriction to Sylow 2-subgroups of odd degree characters of Sn

were studied in [8], mainly in connection with the McKay Conjecture [11]. Despite this,
the object of our study seems to be particularly difficult when p = 2. For instance, we
immediately notice in this case that the set �1

4 = {(3, 1), (2, 1, 1)} and therefore is not of
the form B4(T ), for any T ∈ {1, 2, 3, 4}. This shows that the main theorems of the present
article do not hold for the prime 2. Even if this irregularity might disappear for larger natural
numbers, more serious obstacles arise in this setting. For example, Lemma 3.3 below asserts
that the restriction to Pn of every non-linear irreducible character ofSn cannot admit a unique
irreducible constituent of a certain degree. This is a crucial ingredient in the proofs of our
main results. Unfortunately, this is plainly false when the prime is 2. For instance, in [3] it is
shown that if λ = (2n − x, 1x ) then (χλ)P2n admits a unique constituent of degree 1. Things
can go even worse: if λ = (2n − 1, 1) then it is not difficult to see that (χλ)P2n admits a
unique constituent of degree 2k , for all k ∈ {0, 1, . . . , n − 1}.

2 Notation and background

Throughout this article, p denotes an odd prime. Given integers n ≤ m, we denote by [n,m]
the set {n, n + 1, . . . ,m}. If n < m then [m, n] is regarded as the empty set. We let C(n) be
the set of compositions of n, i.e. the set consisting of all the finite sequences (a1, a2, . . . , az)
such that ai is a non-negative integer for all i ∈ [1, z] and such that a1 + · · · + az = n.
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Given λ = (λ1, . . . , λz) ∈ C(n), we sometimes denote by l(λ) the number of non-zero
parts of λ. As already mentioned in the introduction, Pn denotes a Sylow p-subgroup of
the symmetric group Sn . As usual, given a finite group G, we denote by Irr(G) the set of
irreducible complex characters of G, and by Lin(G) the subset of linear characters of G.
Finally, cd(G) = {χ(1) | χ ∈ Irr(G)} is the set of irreducible character degrees.

2.1 Wreath products

Here we fix the notation for characters of wreath products. For more details see [9, Chapter
4]. Let G be a finite group and let H be a subgroup of Sn . We denote by G×n the direct
product of n copies of G. The natural action of Sn on the direct factors of G×n induces
an action of Sn (and therefore of H ≤ Sn) via automorphisms of G×n , giving the wreath
product G � H := G×n

� H . We refer to G×n as the base group of the wreath product G � H .
We denote the elements of G � H by (g1, . . . , gn; h) for gi ∈ G and h ∈ H . Let V be a
CG-module and suppose it affords the character φ. We let V⊗n := V ⊗ · · · ⊗ V (n copies)
be the corresponding CG×n-module. The left action of G � H on V⊗n defined by linearly
extending

(g1, . . . , gn; h) : v1 ⊗ · · · ⊗ vn 
→ g1vh−1(1) ⊗ · · · ⊗ gnvh−1(n),

turns V⊗n into a C(G � H)-module, which we denote by Ṽ⊗n . We denote by φ̃ the character
afforded by the C(G � H)-module Ṽ⊗n . For any character ψ of H , we let ψ also denote its
inflation to G � H and let X (φ;ψ) := φ̃ ·ψ be the character of G � H obtained as the product
of φ̃ and ψ . Let φ ∈ Irr(G) and let φ×n := φ × · · · × φ be the corresponding irreducible
character of G×n . Observe that φ̃ ∈ Irr(G � H) is an extension of φ×n . Given K ≤ G, we
denote by Irr(G|ψ) the set of characters χ ∈ Irr(G) such that ψ is an irreducible constituent
of the restriction χK . Hence, by Gallagher’s Theorem [7, Corollary 6.17] we have

Irr(G � H |φ×n) = {X (φ;ψ)|ψ ∈ Irr(H)} .

If H = Cp is a cyclic group of prime order p, every ψ ∈ Irr(G �Cp) is either of the form

(i) ψ = φ1 × · · · × φp ↑G�Cp

G×p , where φ1, . . . φp ∈ Irr(G) are not all equal; or
(ii) ψ = X (φ; θ) for some φ ∈ Irr(G) and θ ∈ Irr(Cp).

We remark that in case (i) we have that Irr(G � Cp|φ1 × · · · × φp) = {ψ}.

2.2 Sylow subgroups ofSn

We record some facts about Sylow subgroups of symmetric group and we refer to [9, Chapter
4] or to [12] for more details.

We let Pn denote a Sylow p-subgroup ofSn . Clearly P1 is the trivial groupwhile Pp ∼= Cp

is cyclic of order p. If i ≥ 2, then Ppi = (
Ppi−1

)×p
� Pp = Ppi−1 � Pp ∼= Pp � · · · � Pp

(i-fold wreath product). Let n = ∑t
i=1 ai p

ni be the p-adic expansion of n. Then Pn ∼=
P×a1
pn1 × P×a2

pn2 × · · · × P×at
pnt .

For n ∈ N, the normalizer of a Sylow p-subgroup of Spn is NSpn (Ppn ) = Ppn � H ,

where H ∼= (Cp−1)
×n . More generally, if n = ∑t

i=1 ai p
ni , nt > · · · > n1 ≥ 0, then

NSn (Pn) = N1 � Sa1 × · · · × Nt � Sat , where Ni := NSpni
(Ppni ) for every i ∈ [1, t]. We

refer the reader to [4, Sect. 2] for more details about the structure of the normaliser of a Sylow
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p-subgroup. The following fact is certainly well known. We state it here as we will need it
in the following section of the article.

Lemma 2.1 Let p be an oddprime, let n ∈ Nand let H be a complement of Ppn in NSpn (Ppn ).
There are no non trivial elements of Ppn that are centralized by H.

Proof This follows directly from the discussion in [4, Sect. 2.2]. ��

We remark that Lemma 2.1 is equivalent to say thatCSpn (Ppn ) = Z(Ppn ), for any n ∈ N.

2.3 The Littlewood–Richardson coefficients

For each n ∈ N, Irr(Sn) is naturally in bijection with P(n), the set of all partitions of n.
For λ ∈ P(n), the corresponding irreducible character is denoted by χλ. Let m, n ∈ N with
m < n. Given χμ × χν ∈ Irr(Sm ×Sn−m), the decomposition into irreducible constituents
of the induction

(
χμ × χν

)Sn =
∑

λ∈P(n)

LR(λ;μ, ν)χλ

is described by the Littlewood-Richardson rule (see [2, Chapter 5] or [10, Chapter 16]).
Here the natural numbers LR(λ;μ, ν) are called Littlewood-Richardson coefficients. Given
(n1, . . . , nk) ∈ C(n), λ ∈ P(n) andμ j ∈ P(n j ) for all j ∈ [1, k], we letLR(λ;μ1, . . . , μk)

be the multiplicity of χλ as an irreducible constituent of (χμ1 × · · · × χμk )
Sn
Y . Here Y

denotes the Young subgroupSn1 ×Sn2 × · · · ×Snk ofSn . The following lemma describes
the behavior of the first parts of the partitions involved in a non-zero Littlewood-Richardson
coefficient. This will be used several times in the following sections.

Lemma 2.2 Let LR(λ;μ1, . . . , μk) �= 0 then λ1 ≤∑k
j=1(μ j )1.

Proof When k = 2, the statement is a straightforward consequence of the combinato-
rial description of the Littlewood–Richardson coefficient LR(λ;μ1, μ2), as given in [2,
Sect. 5.2]. The lemma is then proved by iteration. ��

As in [5], we define Bn(t) as the set of those partitions of n whose Young diagram fits
inside a t × t square grid, i.e. for n, t ∈ N, we set

Bn(t) := {λ ∈ P(n)|λ1 ≤ t, l(λ) ≤ t} .

Moreover, for (n1, . . . , nk) ∈ C(n) and A j ⊆ P(n j ) for all j ∈ [1, k], we let
A1	A2	 · · · 	Ak := {λ ∈ P(n)|LR(λ;μ1, . . . , μk) > 0, for some μ1 ∈ A1, . . . , μk ∈ Ak} .

It is easy to check that 	 is both commutative and associative. The following lemma was first
proved in [5, Proposition 3.3].

Lemma 2.3 Let n, n′, t, t ′ ∈ N be such that n
2 < t ≤ n and n′

2 < t ′ ≤ n′. Then

Bn(t)	Bn′(t ′) = Bn+n′(t + t ′).
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3 Preliminary results

In this section we start collecting some results on restriction of characters to Sylow p-
subgroups. These will be used to prove our main theorems in the second part of the paper.

Unless otherwise stated, from now on p will always denote a fixed odd prime number.
Let n ∈ N and let n = ∑t

i=1 p
ni be its p-adic expansion, where n1 ≥ n2 ≥ · · · ≥ nt ≥ 0.

We define the integer αn as follows. For powers of p we set α1 = αp = 0 and αpk =
(pk−1 − 1)/(p − 1), for k ≥ 2. For general n = ∑t

i=1 p
ni , we set αn = ∑t

i=1 αpni . As
shown in Lemma 3.2 below, pαn is the greatest degree of an irreducible character of Pn . It
is interesting to note that αn = ν(� n

p �!), where ν(n) denotes the highest power of p dividing
n. We omit the proof of this statement and we refer the reader to [13] for the complete
calculations.

As mentioned in the Introduction, we let Irrk(Pn) = {θ ∈ Irr(Pn) | θ(1) = pk}. This
notation will be kept throughout the article. In the following lemma we give a lower bound
for the size of the set Irrk(Pn). This is certainly far from being attained (in general), but it
will be sufficient for our purposes.

Lemma 3.1 Let k, t ∈ N be such that pk ∈ cd(Ppt ). Then |Irrk(Ppt )| ≥ p.

Proof We proceed by induction on t . If t = 1 then we know that the statement holds as
Irr(Pp) = Irr0(Pp) has size p. The elements of Irr(Pp) are denoted by φ0, φ1, . . . , φp−1,
where we conventionally set φ0 to be the trivial character. Let t ≥ 2, and let ψ ∈ Irrk(Ppt ).
If ψ = X (θ;φi ) for some θ ∈ Irrk(Ppt−1) and i ∈ [0, p − 1], then X (θ;φ j ) ∈ Irrk(Ppt )

for all j ∈ [0, p − 1]. Hence |Irrk(Ppt )| ≥ p. Otherwise ψ = (θ1 × · · · × θp)
Ppt where

θ1, . . . , θp ∈ Irr(Ppt−1) are not all equal. If there exists x ∈ [1, p] such that θ1(1) �= θx (1)
then we define η1, . . . , ηp ∈ Irrk(Ppt ) as follows. For any j ∈ [1, p] we let

η j = (τ j × θ2 × · · · × θp)
Ppt ,

where τ1, τ2, . . . , τp are p distinct irreducible characters of Ppt−1 of degree θ1(1). These
exist by inductive hypothesis. On the other hand, if θ1(1) = θx (1) for all x ∈ [1, p] then we
let

η1 = (τ2 × · · · × τ2 × τ1)
Ppt , and η j = (τ1 × · · · × τ1 × τ j )

Ppt , for all j ∈ [2, p].
As before, here we chose τ1, τ2, . . . , τp to be p distinct irreducible characters of Ppt−1 of
degree θ1(1). These exist by inductive hypothesis. In both cases η1, . . . , ηp are p distinct
elements of Irrk(Ppt ). Hence |Irrk(Ppt )| ≥ p. ��

The next lemma shows that Pn has irreducible characters of each degree 1, p, p2, . . . , pαn .

Lemma 3.2 Let n ∈ N. Then cd(Pn) = {pk | k ∈ [0, αn]}.
Proof Let us first suppose that n = pt is a power of p and proceed by induction on t . The
case t = 1 is trivial, since Pp is cyclic and αp = 0. If t ≥ 2, notice that αpt = 1 + pαpt−1 .
Let k ∈ [0, αpt − 1], and let q ≤ αpt−1 and r ∈ [0, p − 1] be such that k = qp + r . If
r = 0, by inductive hypothesis there exists φ ∈ Irr(Ppt−1) such that φ(1) = pq . Hence for
any ψ ∈ Irr(Pp), X (φ;ψ) ∈ Irr(Ppt ) has degree pk . If r > 0, then q < αpt−1 . By inductive
hypothesis, there exist φ1, . . . , φp ∈ Irr(Ppt−1) such that φi (1) = pq+1 for every i ∈ [1, r ],
andφ j (1) = pq for every j ∈ [r+1, p]. Hence (φ1×· · ·×φr×φr+1×· · ·×φp)

Ppt ∈ Irr(Ppt )

has degree pk . Finally, let k = αpt . By inductive hypothesis and by Lemma 3.1, there exist
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41 Page 6 of 19 E. Giannelli, G. Volpato

φ1, . . . , φp ∈ Irr(Ppt−1) not all equal and such that φi (1) = pαpt−1 for all i ∈ [1, p]. Hence
(φ1 × · · · × φp)

Ppt ∈ Irr(Ppt ) has degree pk . This concludes the proof in the case n = pt ,
for t ∈ N.

The case where n is not a power of p follows easily. Indeed, if n =∑t
i=1 p

ni is the p-adic
expansion of n then Pn ∼= Ppn1 × Ppn2 × · · · × Ppnt . ��

Let n, k ∈ N. As we mentioned in the introduction, it is convenient to think of the set �k
n

as a subset of P(n). More precisely, for λ ∈ P(n), we will sometimes write λ ∈ �k
n instead

of χλ ∈ �k
n .

The following is an important ingredient when proving statements by induction. For an
odd prime p let χ be a non-linear character of Sn and suppose that χPn has an irreducible
constituent of degree pk . Then it has at least two distinct irreducible constituents.

Lemma 3.3 Let n ∈ N be such that n ≥ p and let λ ∈ �k
n � {(n), (1n)} for some k ∈ [0, αn].

Then there are at least two distinct irreducible constituents of (χλ)Pn of degree pk .

Proof Let us first suppose that n = pt , and let us set P = Ppt and N = NSpt
(Ppt ). We

observe that the only N -invariant irreducible character of P is the trivial one. To show this, we
let IrrK (P) denote the set of K -invariant irreducible characters of P , for any K ≤ N . Let H be
a p′-complement of P in N . Clearly IrrN (P) = IrrH (P). On the other hand the setCP (H) =
{x ∈ P | xh = x, for all h ∈ H} consists of the only identity element, by Lemma 2.1. Using
the Glauberman correspondence [7, Theorem 13.1], we get that |IrrH (P)| = |Irr(CP (H))| =
1. It follows that IrrN (P) = {1P }, as claimed.

Since λ /∈ {(n), (1n)}, by [5, Lemma 4.3] we know that (χλ)P necessarily admits a non-
trivial linear constituent (direct computations show that this holds also in the case (p, n, λ) =
(3, 9, (3, 3, 3)), which is not covered by the lemma). It follows that for any k ∈ N such that
λ ∈ �k

n , we can find a non-trivial θ ∈ Irrk(P) such that θ is a constituent of (χλ)P . Since χλ

is N -invariant we deduce that every N -conjugate of θ is a constituent of χλ. The statement
follows. Recalling the structure of Pn described in Sect. 2.2, we observe that the case where
n is not a prime power is an easy consequence of the prime power case. ��
Definition 3.4 Let G be a finite group and let H be a p-subgroup of G. Given a character θ

of G, we let cd(θH ) be the set of degrees of the irreducible constituents of θH . Moreover, we
let ∂H (θ) be the non-negative integer defined as follows:

∂H (θ) = max{k ∈ N | pk ∈ cd(θH )}.
Proposition 3.5 Let n ∈ N and let Y = (Spn−1)×p ≤ Spn be such that B ≤ Y , where
B = (Ppn−1)×p is the base group of Ppn . Let λ ∈ Bpn (pn − 1). Then

∂Ppn (χ
λ) = 1 + max{∂B(χν1 × · · · × χνp ) | χν1 × · · · × χνp ∈ Irr(Y ) and

LR(λ; ν1, . . . , νp) �= 0}.
Proof LetM = 1+max{∂B(χν1×· · ·×χνp ) |χν1×· · ·×χνp ∈ Irr(Y ) andLR(λ; ν1, . . . , νp)

�= 0}. Let μ1, . . . , μp ∈ P(pn−1) be such that LR(λ;μ1, . . . , μp) �= 0 and M =
1+ ∂B(χμ1 × · · · × χμp ). Since λ /∈ {(n), (1n)}, we can assume that μ1, . . . , μp are not all

in {(pn−1), (1p
n−1

)}. Moreover, let φ be an irreducible constituent of (χμ1 × · · · × χμp )B
such that φ(1) = pM−1. By Lemma 3.3, we can take φ = φ1 × · · · × φp with φ1, . . . , φp ∈
Irr(Ppn−1) not all equal. Hence φPpn ∈ Irr(Ppn ), it has degree pM and

[
(χλ)Ppn , φ

Ppn
]

�= 0.

Thus pM ∈ cd((χλ)Ppn ).
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Now suppose for a contradiction that there exists an integer N > M such that pN ∈
cd((χλ)Ppn ). Then there exists ϕ ∈ Irr(Ppn ) such that

[
(χλ)Ppn , ϕ

]
�= 0 and ϕ(1) = pN .

Letφ1×· · ·×φp be an irreducible constituent ofϕB .Hence there existμ1, . . . , μp ∈ P(pn−1)

such that LR(λ;μ1, . . . , μp) �= 0 and
[
φ1 × · · · × φp, (χ

μ1 × · · · × χμp )B
] �= 0. We have

that

M > ∂B(χμ1 × · · · × χμp ) ≥ N − 1,

since the degree of φ1 × · · · × φp is either pN or pN−1. Hence M < N < M + 1, which is
a contradiction. ��
Proposition 3.6 Let n be a natural number and let n = ∑t

i=1 p
ni be the p-adic expansion

of n, where n1 ≥ n2 ≥ · · · ≥ nt ≥ 0. Let Y = Spn1 × Spn2 × · · · × Spnt be such that
Pn ≤ Y ≤ Sn, and let λ be a partition of n. Then

∂Pn (χ
λ) = max{∂Pn (χμ1 × · · · × χμt ) | χμ1 × · · · × χμt ∈ Irr(Y ) and

LR(λ;μ1, . . . , μt ) �= 0}.
Proof Since Pn = Ppn1 × Ppn2 × · · · × Ppnt ≤ Y , the statement follows. ��
Lemma 3.7 Let n ∈ N≥2, let k ∈ [2, αpn ] and let (a1, . . . , ap) ∈ C(k − 1) be such that
ai ∈ [0, αpn−1 ], for all i ∈ [1, p]. Then

�
a1
pn−1	�

a2
pn−1	 · · · 	�ap

pn−1 ⊆ �k
pn .

Proof To ease the notation we let q = pn−1. If λ ∈ �
a1
q 	�

a2
q 	 · · · 	�ap

q , by definition there
exists an irreducible constituent χμ1 × · · · × χμp of (χλ)(Sq )×p such that μi ∈ �

ai
q for all

i ∈ [1, p]. Hence for every i ∈ [1, p] there exists an irreducible constituent φi of (χμi )Pq
such that φi (1) = pai . Since k ≥ 2, there exists j ∈ [1, p] such that a j ≥ 1. Hence
μ j /∈ {(q), (1q)}. Thus, by Lemma 3.3 we can assume that φ1, . . . , φp are not all equal. It
follows that (φ1 × · · · × φp)

Ppn is an irreducible constituent of (χλ)Ppn of degree equal to

pk . Hence λ ∈ �k
pn . ��

Lemma 3.8 Let n ∈ N≥2 and let n = ∑t
i=1 p

ni be its p-adic expansion, where n1 ≥ n2 ≥
· · · ≥ nt ≥ 0. Let k ∈ [1, αn] and let (a1, . . . , at ) ∈ C(k) be such that ai ∈ [0, αpni ], for all
i ∈ [1, t]. Then

�
a1
pn1 	�

a2
pn2 	 · · · 	�at

pnt ⊆ �k
pn .

Proof Recall that Pn ∼= Ppn1 × Ppn2 × · · · × Ppnt and let λ ∈ �
a1
pn1 	�

a2
pn2 	 · · · 	�at

pnt .
By definition, for every i ∈ [1, t] there exists φi ∈ Irr(Ppni ) with φi (1) = pai , such that
φ1 × · · · × φt is an irreducible constituent of (χλ)Pn of degree pk . Hence λ ∈ �k

pn . ��

4 The prime power case

The aim of this section is to completely describe the sets�k
pn for all odd primes p, all natural

numbers n and all k ∈ [0, αpn ]. We remind the reader that from [6, Theorem 3.1], we know
that �0

pn = Bpn (pn), for all n ∈ N. Equivalently, every irreducible character of Spn admits
a linear constituent on restriction to a Sylow p-subgroup. This result will be used frequently,
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41 Page 8 of 19 E. Giannelli, G. Volpato

with no further reference. We start by analysing the cases where k ∈ {1, 2}. In the next
lemma we show that for j = 1, 2, every non-linear character of Spn affords an irreducible
constituent of degree p j on restriction to a Sylow p-subgroup Ppn , as long as Ppn has an
irreducible character of degree p j .

Lemma 4.1 Let p be an odd prime, n ∈ N and k ∈ [1, αpn ]∩{1, 2}. Then�k
pn = Bpn (pn−1).

Proof Let k = 1. Then necessarily n ≥ 2. We first observe that clearly �1
pn ⊆ Bpn (pn −

1). On the other hand, if λ ∈ Bpn (pn − 1), then there exist μ1 ∈ Bpn−1(pn−1 − 1) and
μ2, . . . , μp ∈ P(pn−1) such that LR(λ;μ1, . . . , μp) �= 0. Using Lemma 3.3 we deduce
that (χμ1)Ppn−1 admits two distinct linear constituents. Therefore, there exists φ1, . . . , φp ∈
Lin(Ppn−1) not all equal and such that φi is a constituent of (χμi )Ppn−1 , for all i ∈ [1, p].
It follows that (φ1 × · · · × φp)

Ppn is an irreducible constituent of (χλ)Ppn of degree p. We

conclude that λ ∈ �1
pn and hence that �1

pn = Bpn (pn − 1).

Let k = 2. Then necessarily n ≥ 3. It is clear that�2
pn ⊆ Bpn (pn −1). On the other hand,

if λ ∈ Bpn (pn −1), then there exist μ1 ∈ Bpn−1(pn−1 −1) and μ2, . . . , μp ∈ P(pn−1) such
that LR(λ;μ1, . . . , μp) �= 0. We can now argue exactly as above to deduce that (χλ)Ppn

admits an irreducible constituent θ of the form θ = (ψ × φ1 × · · · × φp−1)
Ppn , where

ψ ∈ Irr1(Ppn−1) and φ1, . . . , φp−1 ∈ Lin(Ppn−1). Hence θ(1) = p2, λ ∈ �2
pn and therefore

we have that �2
pn = Bpn (pn − 1). ��

Lemma 4.1 is a special case of the following more general result.

Theorem 4.2 Let n ∈ N and let k ∈ [0, αpn ]. Then there exists tkn ∈ [ pn+1
2 , pn] such that

�k
pn = Bpn (tkn ). Moreover, if k ∈ [0, αpn − 1], then tk+1

n ∈ {tkn − 1, tkn }.

Proof We proceed by induction on n. If n = 1, then αp = 0 and �0
p = P(p). If n ≥ 2, we

assume that the statement holds for n−1. If k = 0 then by [6, Theorem 3.1],�0
pn = Bpn (pn),

and t0n = pn . Moreover, by Lemma 4.1 we know that t1n = pn −1 = t0n −1, as required. The
case k = 1 is completely treated by Lemma 4.1. In fact, we know that �1

pn = Bpn (pn − 1)

and that t2n = pn − 1 = t1n , as required. We can now suppose that k ≥ 2. We define

L(k − 1) = {( j1, . . . , jp) ∈ C(k − 1)
∣∣ ji ∈ [0, αpn−1 ] for all i ∈ [1, p]} .

Moreover, we set

M = max
{
t j1n−1 + · · · + t

jp
n−1

∣∣( j1, . . . , jp) ∈ L(k − 1)
}

.

Notice that for any j ∈ [0, αpn−1 ], the value t jn−1 is well-defined by induction as the integer

such that �
j
pn−1 = Bpn−1(t

j
n−1). We claim that M = tkn . In other words, we want to prove

that �k
pn = Bpn (M). Let ( j1, . . . , jp) ∈ L(k − 1) be such that M = t j1n−1 + · · · + t

jp
n−1. By

inductive hypothesis and by Lemmas 2.3 and 3.7, we have that

Bpn (M) = Bpn−1(t
j1
n−1)	 · · · 	Bpn−1(t

jp
n−1) = �

j1
pn−1	 · · · 	� jp

pn−1 ⊆ �k
pn .

For the opposite inclusion, suppose for a contradiction that λ ∈ �k
pn � Bpn (M). Since p

is odd, we have that �k
pn is closed under conjugation of partitions. Hence, we can assume
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that λ1 ≥ M + 1. Since λ ∈ �k
pn , there exists an irreducible constituent θ of (χλ)Ppn with

θ(1) = pk .
• If θ = (φ1 × · · · × φp)

Ppn with φ1, . . . , φp ∈ Irr(Ppn−1) not all equal, then there
exists ( j1, . . . , jp) ∈ L(k − 1) such that φi (1) = p ji for all i ∈ [1, p]. Then, for
every i ∈ [1, p] there exists an irreducible constituent χμi of (φi )

Spn−1 such that[
χμ1 × · · · × χμp , (χλ)(Spn−1 )×p

]
�= 0. Hence using the inductive hypothesis, we have

that μi ∈ �
ji
pn−1 = Bpn−1(t

ji
n−1), for all i ∈ [1, p]. Hence

M ≥ t j1n−1 + · · · + t
jp
n−1 ≥ λ1 ≥ M + 1,

where the first inequality holds by definition of M and the second one by Lemma 2.2. This
is a contradiction.
• On the other hand, if θ = X (φ;ψ) for some φ ∈ Irr(Ppn−1) and ψ ∈ Irr(Pp), then,

φ(1) = p
k
p and there exist μ1, . . . , μp ∈ �

k
p

pn−1 such that LR(λ;μ1, . . . , μp) �= 0. Hence,
using the inductive hypothesis we have that

λ ∈
(

�
k
p

pn−1

)	p

=
(
Bpn−1(t

k
p
n−1)

)	p

.

Here we denoted by A	p the p-fold 	-product A	 · · · 	A. By inductive hypothesis we also

know that t
k
p
n−1 ∈

{
t
k
p −1

n−1 − 1, t
k
p −1

n−1

}
. Using Lemma 2.2 we obtain that

M + 1 ≤ λ1 ≤ pt
k
p
n−1 ≤ (p − 1)t

k
p
n−1 + t

k
p −1

n−1 ≤ M .

This is a contradiction. Notice that the last inequality above follows from the definition of
M , as ( kp , . . . , k

p , k
p − 1) ∈ L(k − 1).

For k ∈ [2, αpn − 1], what we have proved so far is summarised here.

�k
pn = Bpn (T ), with T = max

{
t j1n−1 + · · · + t

jp
n−1|( j1, . . . , jp) ∈ L(k − 1)

}

�k+1
pn = Bpn (V ), with V = max

{
th1n−1 + · · · + t

h p
n−1|(h1, . . . , h p) ∈ L(k)

}
.

Let ( j1, . . . , jp) ∈ L(k − 1) be such that T = t j1n−1 + · · · + t
jp
n−1. Without loss of generality,

we can assume that j1 < αpn−1 . Then ( j1 + 1, j2, . . . , jp) ∈ L(k). By inductive hypothesis

we know that t j1+1
n−1 ∈

{
t j1n−1 − 1, t j1n−1

}
. Hence

V ≥ t j1+1
n−1 + t j2n−1 + · · · + t

jp
n−1 ∈ {T − 1, T } . (1)

On the other hand, let (h1, . . . , h p) ∈ L(k) be such that V = th1n−1 +· · ·+ t
h p
n−1. Since k ≥ 2,

without loss of generality we can assume that h1 > 0. Then (h1−1, h2, . . . , h p) ∈ L(k−1).
Thus, as above:

V = th1n−1 + · · · + t
h p
n−1 ≤ T , (2)

since th1n−1 ∈
{
th1−1
n−1 − 1, th1−1

n−1

}
. Inequalities (1) and (2) imply that V ∈ {T − 1, T }. ��

We refer the reader to the second part of Example 4.8 for a description of the key steps of
the proof of Theorem 4.2 in a small concrete instance. The following definitions may seem
artificial but are crucial for determining the exact value of tkn for all n, k ∈ N.
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Definition 4.3 Let n ∈ N≥2 and let x ∈ [1, pn−2]. We define the integers mx and �(n, x) as
follows:

mx = min{m | x ≤ pm−2}, and �(n, x) = n − mx + 1.

Notice that
∑pn−2

x=1 �(n, x) = αpn (this is proved in Lemma 4.4 below). For x ∈ [1, pn−2]
we let

Ax =
⎡

⎣
x−1∑

j=1

�(n, j) + 1,
x∑

j=1

�(n, j)

⎤

⎦ .

We observe that {A1, A2, . . . , Apn−2} is a partition of [1, αpn ] and that |Ax | = �(n, x) for
all x ∈ [1, pn−2]. We refer the reader to Example 4.8 for a description of these objects in a
specific setting.

For the convenience of the reader we give a more informal explanation of Definition 4.3
above. For fixed n ≥ 2, we define an increasing sequence 0 = a0 < a1 < a2 < · · · <

apn−2 = αpn as follows. First a1 = n − 1. Then ai − ai−1 = n − 2, for i = 2, . . . , p. Next
ai − ai−1 = n − 3, for i = p + 1, p + 2, . . . , p2. Continue in this manner, we find that
ai − ai−1 = 1, for i = pn−3 + 1, . . . , pn−2. Now set Ai := (ai−1, ai ], for i = 1, . . . , pn−2.
Then {A1, A2, . . . , Apn−2} is clearly a partition of [1, pn−2].

Lemma 4.4 With the notation introduced in Definition 4.3, we have that
∑pn−2

x=1 �(n, x) =
αpn .

Proof If n = 2, then �(2, 1) = 1 = αp2 . Let n ≥ 3 and i ∈ [0, n − 3], then for every
x ∈ [pi + 1, pi+1], mx = i + 3 and �(n, x) = n − i − 2. Hence

pn−2
∑

x=1

�(n, x) = �(n, 1) +
n−3∑

i=0

pi+1
∑

x=pi+1

�(n, x) = (n − 1) +
n−3∑

i=0

pi (p − 1)(n − i − 2)

= (n − 1) − (n − 2) +
(
n−3∑

i=1

pi [(n − i − 1) − (n − i − 2)]
)

+ pn−2[n − (n − 3) − 2]

= 1 +
(
n−3∑

i=1

pi
)

+ pn−2 = αpn .

��

The following technical lemma will be useful to prove Theorem 4.6.

Lemma 4.5 Let n ∈ N ≥ 2 and p be an odd prime. If x = pa + r , for some r ∈ [0, p − 1]
and a ∈ N, then

p ·
a∑

j=1

�(n − 1, j) + r · �(n − 1, a + 1) =
x∑

j=1

�(n, j) − 1.
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Proof Notice that �(n, 1) = n − 1 and if y ∈ [2, p], �(n, y) = n − 2. Thus

p∑

y=1

�(n, y) = p�(n − 1, 1) + 1.

Moreover, for j ∈ N we have that

j p+p∑

y= j p+1

�(n, y) = p�(n − 1, j + 1).

This follows by observing that �(n, y) = �(n − 1, j + 1), for all y ∈ [ j p + 1, j p + p].
Using these facts, we deduce that

x∑

j=1

�(n, j) =
p∑

j=1

�(n, j) +
a−1∑

j=1

j p+p∑

y= j p+1

�(n, y) +
r∑

i=1

�(n, ap + i)

= 1 + p�(n − 1, 1) + p
a−1∑

j=1

�(n − 1, j + 1) + r�(n − 1, a + 1).

��
The main result of this section shows that if pk is a character degree of Ppn , then the

partitions of pn whose corresponding irreducible character admit a constituent of degree pk

on restriction to Ppn are precisely those which fit inside a square of length pn − x , where
k ∈ Ax determines x .

Theorem 4.6 Let n ≥ 2, k ∈ [1, αpn ] and let x ∈ [1, pn−2] be such that k ∈ Ax . Then
�k

pn = Bpn (pn − x).

Proof We proceed by induction on n: if n = 2 then αp2 = 1 and necessarily k = 1 as
A1 = {1}. By Lemma 4.1, we have that �1

p2
= Bp2(p

2 − 1), as required. If n ≥ 3, we

proceed by induction on the parameter x ∈ [1, pn−2]. For x = 1, we want to show that for
every k ∈ A1 = [1, �(n, 1)] we have that �k

pn = Bpn (pn − 1). Using Theorem 4.2 and
Lemma 4.1, we know that

�
�(n,1)
pn ⊆ �k

pn ⊆ �1
pn = Bpn (p

n − 1).

Hence, it is enough to show that �
�(n,1)
pn = Bpn (pn − 1). Since �(n, 1) = �(n − 1, 1) + 1,

we use Lemma 3.7, the inductive hypothesis on n and [6, Theorem 3.1], to deduce that

�
�(n,1)
pn ⊇ �

�(n−1,1)
pn 	

(
�0

pn
)	p−1 = Bpn (p

n − 1)	
(Bpn (p

n)
)	p−1

.

Using Lemma 2.3 we conclude that Bpn (pn −1) ⊆ �
�(n,1)
pn and therefore that Bpn (pn −1) =

�
�(n,1)
pn .

Let us now suppose that x ≥ 2 and that k ∈ Ax . To ease the notation, for any y ∈ [1, pn−2]
we let fn(y) =∑y

j=1 �(n, j). With this notation we have that Ax = [ fn(x − 1) + 1, fn(x)].
Using Theorem 4.2 and arguing exactly as above, we observe that in order to show that
�k

pn = Bpn (pn − x), it is enough to prove that

(1) �
fn(x−1)+1
pn = Bpn (p

n − x) and that (2) �
fn(x)
pn = Bpn (p

n − x).
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Toprove (1), we start by observing that by inductive hypothesiswe know that the statement
holds for any j ∈ Ax−1. In particular we have that �

fn(x−1)
pn = Bpn (pn − (x − 1)). By

Theorem 4.2 it follows that � fn(x−1)+1
pn = Bpn (T ), for some T ∈ {pn − x, pn − (x − 1)}. It

is therefore enough to show that λ = (pn − (x −1), x −1) /∈ �
fn(x−1)+1
pn . Let μ1, . . . , μp ∈

P(pn−1) be such that LR(λ;μ1, . . . , μp) �= 0. By Lemma 2.2 for every i ∈ [1, p], there
exists ai ∈ N such that (μi )1 = pn−1 − ai and such that

∑p
j=1 a j ≤ x − 1. In particular, for

every i ∈ [1, p] we have that
μi ∈ Bpn−1(pn−1 − ai ) � Bpn−1(pn−1 − (ai + 1)) = �

fn−1(ai )
pn−1 � �

fn−1(ai )+1
pn−1 ,

where the equality is guaranteed by the inductive hypothesis on n.
Let B = (Ppn−1

)×p be the base group of Ppn and let Y = (Spn−1)×p ≤ Spn be such that
B ≤ Y . Let η = χμ1 × · · · × χμp ∈ Irr(Y ) and let x − 1 = ap + r , for some a ∈ N and
r ∈ [0, p − 1]. We observe that

∂B(η) =
p∑

j=1

fn−1(a j ) =
p∑

j=1

a j∑

i=1

�(n − 1, i)

≤ p · (
a∑

j=1

�(n − 1, j)
)+ r · �(n − 1, a + 1)

=
x−1∑

j=1

�(n, j) − 1 = fn(x − 1) − 1.

Here, the inequality follows immediately by observing that �(n − 1, s) ≥ �(n − 1, s + 1) for
all s ∈ N. On the other hand, the third equality holds by Lemma 4.5. Using Proposition 3.5,
we deduce that ∂Ppn (χ

λ) ≤ fn(x − 1). It follows that λ /∈ �
fn(x−1)+1
pn , as desired.

To prove (2), we recall that by (1) above we have that� fn(x−1)+1
pn = Bpn (pn − x). Hence,

Theorem 4.2 implies that � fn(x)
pn ⊆ Bpn (pn − x). On the other hand, writing x = ap + r for

some a ∈ N and r ∈ [0, p − 1], and using Lemma 4.5, we have that:

�
fn(x)
pn = �

1+p·
(∑a

j=1 �(n−1, j)
)
+r ·�(n−1,a+1)

pn

⊇ (
�

fn−1(a+1)
pn−1

)	r
	
(
�

fn−1(a)

pn−1

)	p−r

= (Bpn−1(pn−1 − (a + 1))
)	r

	
(Bpn−1(pn−1 − a)

)	p−r

= Bpn (p
n − x).

Here the first inclusion follows from Lemma 3.7. The second equality holds by inductive
hypothesis. Finally, the last equality is given by Lemma 2.3. The proof is complete. ��

In the following corollarywe collect a number of facts useful to have a better understanding
of the structure of the sets �k

pn for all n ∈ N and all k ∈ [0, αpn ].
Corollary 4.7 Let n ∈ N and let 1 ≤ k < t ≤ αpn . The following hold.

(i) Bpn (pn − pn−2) = �
αpn

pn ⊆ �t
pn ⊆ �k

pn .

(ii) �k
pn = �t

pn if, and only if, there exists x ∈ [1, pn−2] such that k, t ∈ Ax .

(iii) Given x ∈ [1, pn−2] we have that |{k ∈ [1, αpn ] | �k
pn = B(pn − x)}| = �(n, x).
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Proof Recalling that |Ax | = �(n, x) for every x ∈ [1, pn−2], (i), (ii) and (iii) follow imme-
diately by Theorem 4.6. ��

Wefind particularly surprising that a partition of pn whose character admits an irreducible
constituent of degree pk on restriction to Ppn also admits a constituent of degree p j , for any
j ∈ {0, 1, . . . , k−1}.Moreover, the partitionswhose character admit a constituent ofmaximal
possible degree pαpn are precisely those which fit inside a square of side pn − pn−2.

Example 4.8 Let p = 3 and fix n = 4. Following the notation introduced in Definition 4.3,
we have 34−2 = 9 and �(4, 1) = 3, �(4, 2) = �(4, 3) = 2, �(4, 4) = · · · = �(4, 9) = 1.
Hence

A1 = {1, 2, 3} , A2 = {4, 5} , A3 = {6, 7} , A4 = {8} , A5 = {9} , . . . , A9 = {13} .

Observe that {A1, . . . , A9} is a partition of [1, α34 ] = [1, 13], as required.UsingTheorem4.6,
we have a complete description of �k

34
, for all k ∈ [1, 13]. In particular, we have

�1
34 = �2

34 = �3
34 = B34(3

4 − 1), �4
34 = �5

34 = B34(3
4 − 2), �6

34 = �7
34 = B34(3

4 − 3),

�8
34 = B34(3

4 − 4), �9
34 = B34(3

4 − 5), . . . , �13
34 = B34(3

4 − 9).

These sets are recorded in the fourth column of Table 1.
We use the second part of this example to illustrate a key step of the proof of Theorem 4.2.

Let n = k = 4. We wish to compute t44 . Following the notation introduced in the proof of
Theorem 4.2 we have that

L(3) = {( j1, j2, j3) ∈ C(3) | ji ∈ [0, α33 ] = [0, 4], for all i ∈ [1, 3]}
= {(3, 0, 0), (2, 1, 0), (1, 1, 1)}.

Working by induction we can assume that we know the values t j3 for every j ∈ [0, 4]. This
can be comfortably read off the third column of Table 1. We set

M = max
{
t33 + t03 + t03 , t23 + t13 + t03 , t13 + t13 + t13

} = max
{
34 − 2, 34 − 2, 34 − 3

} = 34 − 2.

We conclude that t44 = M = 34 − 2.

5 Arbitrary natural numbers

The aim of this section is to complete our investigation by extending Theorem 4.6 to any
arbitrary natural number. In order to do this, we first extend Theorem 4.2. We recall that p is
a fixed odd prime.

Theorem 5.1 Let n ∈ N and let k ∈ [0, αn]. There exists T k
n ∈ [1, n] such that�k

n = Bn(T k
n ).

Moreover, T k+1
n ∈ {T k

n − 1, T k
n }, for all k ∈ [0, αn − 1].

Proof We proceed by induction on n ∈ N. If n = 1, then necessarily k = 0 and �0
1 = B1(1).

If n ≥ 2, let n = ∑t
i=1 p

ni be the p-adic expansion of n, with n1 ≥ · · · ≥ nt ≥ 0. By

Theorem 4.2, for every i ∈ [1, t] and every di ∈ [0, αpni ], there exists tdini ∈ [ pni2 + 1, pni ]
such that �

di
pni = Bpni

(
tdini

)
. Similarly to the procedure used to prove Theorem 4.2, we

define

J (k) = {( j1, . . . , jt ) ∈ C(k) | ji ∈ [0, αpni ] for all i ∈ [1, t]}.
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Table 1 Let p = 3. According to
Theorem 4.6, the structure of
�k

pn is recorded in the entry
corresponding to row k and
column n

�k
pn n = 1 n = 2 n = 3 n = 4

k = 0 B3(3) B32 (3
2) B33 (3

3) B34 (3
4)

k = 1 ∅ B32 (3
2 − 1) B33 (3

3 − 1) B34 (3
4 − 1)

k = 2 ∅ ∅ B33 (3
3 − 1) B34 (3

4 − 1)

k = 3 ∅ ∅ B33 (3
3 − 2) B34 (3

4 − 1)

k = 4 ∅ ∅ B33 (3
3 − 3) B34 (3

4 − 2)

k = 5 ∅ ∅ ∅ B34 (3
4 − 2)

k = 6 ∅ ∅ ∅ B34 (3
4 − 3)

k = 7 ∅ ∅ ∅ B34 (3
4 − 3)

k = 8 ∅ ∅ ∅ B34 (3
4 − 4)

k = 9 ∅ ∅ ∅ B34 (3
4 − 5)

k = 10 ∅ ∅ ∅ B34 (3
4 − 6)

k = 11 ∅ ∅ ∅ B34 (3
4 − 7)

k = 12 ∅ ∅ ∅ B34 (3
4 − 8)

k = 13 ∅ ∅ ∅ B34 (3
4 − 9)

k = 14 ∅ ∅ ∅ ∅

Moreover, we set

M = max

{
t∑

i=1

tdini

∣∣∣∣(d1, . . . , dt ) ∈ J (k)

}

.

We claim that �k
n = Bn(M).

Let (d1, . . . , dt ) ∈ J (k) be such thatM =∑t
i=1 t

di
ni . Then using Lemma 2.3, Theorem 4.2

and Lemma 3.7 we have that

Bn(M) = Bpn1

(
td1n1

)
	 · · · 	Bpnt

(
tdtnt

)
= �

d1
pn1 	 · · · 	�dt

pnt ⊆ �k
n .

Suppose now for a contradiction that λ ∈ �k
n �Bn(M). Without loss of generality we can

assume that λ1 ≥ M + 1. Let φ = φ1 ×· · ·×φt be an irreducible constituent of (χλ)Pn with
φi (1) = pdi for every i ∈ [1, t] and∑t

i=1 di = k. Observe that (d1, . . . , dt ) ∈ J (k). For
every i ∈ [1, t], letμi ∈ P(pni )be such that [(χμi )Ppni

, φi ] �= 0 and such thatχμ1×· · ·×χμt

is an irreducible constituent of (χλ)Y . Here Y = Spn1 × · · · ×Spnt ≤ Sn is chosen so that

Pn ≤ Y . Thus by Theorem 4.6, μi ∈ �
di
pni = Bpni

(
tdini

)
for every i ∈ [1, t]. Hence,

λ ∈ Bpn1

(
td1n1

)
	 · · · 	Bpnt

(
tdtnt

)
= Bn

(
t∑

i=1

tdini

)

.

By Lemma 2.2 and our assumptions, we have that

M + 1 ≤ λ1 ≤
t∑

i=1

tdini ≤ M,

which is a contradiction.
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In summary, for k ∈ [0, αn − 1] the following holds:

�k
n = Bn(M), where M = max

{
t∑

i=1

tdini |(d1, . . . , dt ) ∈ J (k)

}

, and

�k+1
n = Bn(T ), where T = max

{
t∑

i=1

t fini |( f1, . . . , ft ) ∈ J (k + 1)

}

.

Let (d1, . . . , dt ) ∈ J (k) be such that M = ∑t
i=1 t

di
ni . Since k ≤ αn − 1, there exists

i ∈ [1, t] such that di ≤ αpni − 1. Hence (d1, . . . , di−1, di + 1, di+1, . . . , dt ) ∈ J (k + 1)

and tdi+1
ni ∈

{
tdini − 1, tdini

}
, by Theorem 4.2. Thus,

M − 1 = −1 +
t∑

i=1

tdini ≤ td1n1 + · · · + tdi−1
ni−1 + tdi+1

ni + tdi+1
ni+1 + · · · + tdtnt ≤ T .

On the other hand, let ( f1, . . . , ft ) ∈ J (k + 1) be such that T = ∑t
i=1 t

fi
ni . Without loss of

generality we can assume that f1 ≥ 1. Then ( f1−1, f2, . . . , ft ) ∈ J (k) and by Theorem 4.2,

t f1n1 ∈
{
t f1−1
n1 − 1, t f1−1

n1

}
. Hence

T =
t∑

i=1

t fini ≤ t f1−1
n1 + t f2n2 + · · · + t ftnt ≤ M .

It follows that T = M or T = M − 1. This concludes the proof. ��

Theorem 5.1 shows that for every n ∈ N and k ∈ [0, αn] there exists an integer, denoted
by T k

n , such that �k
n = Bn(T k

n ). In order to prove our main result, i.e. to precisely compute
the value T k

n for all n ∈ N and k ∈ [0, αn], we start by fixing some notation that will be
kept throughout this section. We remark that for n < p2 we have that Pn is abelian and that
�0

n = P(n). For this reason we focus on the case n ≥ p2.

Notation 5.2 Let n ≥ p2 be a natural number and let n =∑t
i=1 p

ni be the p-adic expansion
of n, where n1 ≥ n2 ≥ · · · ≥ nt ≥ 0. Let R := {(i, y) | i ∈ [1, t], and y ∈ [1, pni−2]}. We
define a total order � onR as follows. Given (i, y) and ( j, z) inR we say that (i, y) � ( j, z)
if and only if one of the following hold:

(i) �(ni , y) > �(n j , z), or
(ii) �(ni , y) = �(n j , z) and i < j , or
(iii) �(ni , y) = �(n j , z) and i = j and y < z.

Let N := � n
p2

� and notice that N = |R|. Let φ : R −→ [1, N ] be the bijection mapping
(i, y) 
→ x if and only if the pair (i, y) is the x-th greatest element in the totally ordered set
(R, �). We use this bijection to relabel the integers �(ni , y), for all (i, y) ∈ R. In particular,
we let �(x) := �(ni , y) if φ((i, y)) = x . Recalling Definition 4.3, we observe that the
definition of � implies that �(1) ≥ �(2) ≥ · · · ≥ �(N ).

Finally, for any α ∈ [1, N ] we let Fn(α) = ∑α
a=1 �(a) and Aα = [{Fn(α − 1) +

1, Fn(α)}]. We observe that {A1, A2, . . . , AN } is a partition of [1, αn] (this follows easily
from Lemma 4.4). We refer the reader to Example 5.6 for an explicit description of these
objects in a concrete case.
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Theorem 5.3 Let n ∈ N≥p2 and k ∈ [1, αn]. Let x ∈ [1, N ] be such that k ∈ Ax . Then

�k
n = Bn(n − x).

Proof As in Notation 5.2, let n = ∑t
i=1 p

ni be the p-adic expansion of n, where n1 ≥
n2 ≥ · · · ≥ nt ≥ 0. We proceed by induction on x . If x = 1 then k ∈ A1 = [1, �(1)] =
[1, �(n1, 1)], because φ((n1, 1)) = 1. By Theorem 4.6 we know that�k

pn1 = Bpn1 (pn1 −1).

Moreover,�0
pm = Bpm (pm) for allm ∈ N by [6, Theorem 3.1]. Thus, using first Lemma 3.8

and then Lemma 2.3, we deduce that

�k
n ⊇ �k

pn1 	�
0
pn2 	 · · · 	�0

pnt = Bpn1 (p
n1 − 1)	Bpn2 (p

n2)	 · · · 	Bpnt (p
nt ) = Bn(n − 1).

Since (n) /∈ �k
n , we conclude that �k

n = Bn(n − 1), as desired. Let us now set x ≥ 2
and assume that the statement holds for any s ∈ Ax−1 = [Fn(x − 1) + 1, Fn(x)]. From
Theorem 5.1 we know that

�Fn(x−1)+1
n ⊆ �k

n ⊆ �Fn(x)
n ,

hence it is enough to show that:

(1) �Fn(x−1)+1
n = Bn(n − x), and that (2) �Fn(x)

n = Bn(n − x).

Here Fn(y) =∑y
j=1 �( j), exactly as explained in Notation 5.2.

To prove (1), we first notice that �
Fn(x−1)
n = Bn(n − (x − 1)) by inductive hypothesis.

Hence, Theorem 5.1 implies that �Fn(x−1)+1
n = Bn(T ), for some T ∈ {n − x, n − (x − 1)}.

Therefore it suffices to prove that λ = (n − (x − 1), x − 1) /∈ �
Fn(x−1)+1
n . Let

{G1,G2, . . . ,Gt } be the partition of [1, x − 1] defined by
Gi = {y ∈ [1, x − 1] | φ−1(y) = (i, z), for some z ∈ [1, pni−2]}, for all i ∈ [1, t].

To ease the notation we let gi = |Gi | for all i ∈ [1, t], and we remark that g1+g2+· · ·+gt =
x − 1.

Let Y = Spn1 ×Spn2 ×· · ·×Spnt be a Young subgroup ofSn containing Pn . For every
i ∈ [1, t] let μi ∈ P(pni ) be such that LR(λ;μ1, . . . , μt ) �= 0. Then Lemma 2.2 implies
that there exist a1, a2, . . . , at ∈ Z such that

(μi )1 = pni − (gi + ai ) for all i ∈ [1, t], and such that
t∑

i=1

ai ≤ 0.

In particular, using Theorem 4.6 we have that for every i ∈ [1, t],

μi ∈ Bpni (p
ni − (gi + ai )) � Bpni (p

ni − (gi + ai + 1)) = �
fni (gi+ai )
pni � �

fni (gi+ai )+1
pni .

Recycling the notation used in the proof of Theorem 4.6, here fm(a) := ∑a
j=1 �(m, j). It

follows that

∂Ppni
(χμi

) =
gi+ai∑

j=1

�(ni , j) =

⎧
⎪⎨

⎪⎩

∑
y∈Gi

�(y) +∑gi+ai
j=gi+1 �(ni , j) if ai ≥ 0,

∑
y∈Gi

�(y) −∑gi
j=gi+ai

�(ni , j) if ai < 0.
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Hence, letting χ = χμ1 × χμ2 × · · · × χμt
, we have that

∂Pn (χ) =
t∑

i=1

∑

y∈Gi

�(y) + E − F, where E =
t∑

i=1
ai>0

gi+ai∑

j=gi+1

�(ni , j), and

F =
t∑

i=1
ai<0

gi∑

j=gi+ai

�(ni , j).

We claim that E − F ≤ 0. To see this, we notice that the definition of the set Gi implies
that φ((i, y)) > x − 1 for all y ≥ gi + 1. On the other hand, for the same reasons, we have
that φ(( j, z)) ≤ x − 1 for all z ≤ g j . Therefore every summand �(ni , y) appearing in E is
smaller than or equal to any summand �(n j , z) appearing in F . Since

∑t
i=1 ai ≤ 0 we have

that E − F ≤ 0, as desired. Using Proposition 3.6 we conclude that

∂Pn (χ
λ) ≤

t∑

i=1

∑

y∈Gi

�(y) =
x−1∑

y=1

�(y) = Fn(x − 1) < Fn(x − 1) + 1.

Hence λ /∈ �
Fn(x−1)+1
n and therefore �

Fn(x−1)+1
n = Bn(n − x) as required.

To prove (2)we observe that the equality (1) shown above implies that�Fn(x)
n ⊆ Bn(n−x),

by Theorem 5.1. To show that the opposite inclusion holds we use an idea that is similar
to the one used to prove (1). In particular, we let {H1, H2, . . . , Ht } be the partition of [1, x]
defined by

Hi = {y ∈ [1, x] | φ−1(y) = (i, z), for some z ∈ [1, pni−2]}, for all i ∈ [1, t].
To ease the notationwe let hi = |Hi | for all i ∈ [1, t], andwe remark that h1+h2+· · ·+ht =
x . We also introduce the following notation. For each i ∈ [1, t], we let

�i :=
∑

y∈Hi

�(y) =
hi∑

j=1

�(ni , j) = fni (hi ).

We observe that (�1, �2, . . . , �t ) ∈ C(Fn(x)) and that �i ∈ [0, αpni ], for all i ∈ [1, t]. We
can now use Lemma 3.8, Theorem 4.6 and Lemma 2.3 (in this order) to deduce that

�Fn(x)
n ⊇ �

�1
pn1 	�

�2
pn2 	 · · · 	��t

pnt = Bpn1 (p
n1 − h1)	Bpn2 (p

n2 − h2)	 · · · 	Bpnt (p
nt − ht )

= Bn(n − x).

We obtain that �Fn(x)
n = Bn(n − x), and the proof is concluded. ��

As we have done for the prime power case in Corollary 4.7, we record some facts to
understand better the set�k

n for every n ∈ N and k ∈ [0, αn]. Keeping the notation introduced
in 5.2, we recall that N = � n

p2
�.

Corollary 5.4 Let n ∈ N and n = ∑t
i=1 p

ni its p-adic expansion, where n1 ≥ n2 ≥ · · · ≥
nt ≥ 0. Let 1 ≤ k < t ≤ αn. The following hold.

(i) Bn(n − N ) = �
αn
n ⊆ �t

n ⊆ �k
n.

(ii) �k
n = �t

n if, and only if, there exists x ∈ [1, N ] such that k, t ∈ Ax .
(iii) Given x ∈ [1, N ] we have that | {k ∈ [1, αn]|�k

n = Bn(n − x)
} | = �(x).

Proof Since |Ax | = �(x) for every x ∈ [1, N ], (i), (ii) and (iii) hold by Theorem 5.3. ��
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Table 2 Let p = 3. According to Theorem 5.3, the structure of �k
n is recorded in the entry corresponding to

row k and column n

�k
n n = 3 + 33 n = 2 · 3 + 33 n = 32 + 33 n = 33 + 33 n = 33 + 34

k = 0 Bn(n) Bn(n) Bn(n) Bn(n) Bn(n)

k = 1 Bn(n − 1) Bn(n − 1) Bn(n − 1) Bn(n − 1) Bn(n − 1)

k = 2 Bn(n − 1) Bn(n − 1) Bn(n − 1) Bn(n − 1) Bn(n − 1)

k = 3 Bn(n − 2) Bn(n − 2) Bn(n − 2) Bn(n − 2) Bn(n − 1)

k = 4 Bn(n − 3) Bn(n − 3) Bn(n − 3) Bn(n − 2) Bn(n − 2)

k = 5 ∅ ∅ Bn(n − 4) Bn(n − 3) Bn(n − 2)

k = 6 ∅ ∅ ∅ Bn(n − 4) Bn(n − 3)

k = 7 ∅ ∅ ∅ Bn(n − 5) Bn(n − 3)

k = 8 ∅ ∅ ∅ Bn(n − 6) Bn(n − 4)

k = 9 ∅ ∅ ∅ ∅ Bn(n − 4)

k = 10 ∅ ∅ ∅ ∅ Bn(n − 5)

k = 11 ∅ ∅ ∅ ∅ Bn(n − 6)

k = 12 ∅ ∅ ∅ ∅ Bn(n − 7)

k = 13 ∅ ∅ ∅ ∅ Bn(n − 8)

k = 14 ∅ ∅ ∅ ∅ Bn(n − 9)

k = 15 ∅ ∅ ∅ ∅ Bn(n − 10)

k = 16 ∅ ∅ ∅ ∅ Bn(n − 11)

k = 17 ∅ ∅ ∅ ∅ Bn(n − 12)

k = 18 ∅ ∅ ∅ ∅ ∅

A second consequence of Theorem 5.3 is the following asymptotic result. This basically
says that when n is arbitrarily large, almost all irreducible characters ofSn admit constituents
of every possible degree on restriction to a Sylow p-subgroup.

Corollary 5.5 Let �n =⋂k �k
n, where k runs over [0, αn]. Then

lim
n→∞

|�n |
|P(n)| = 1.

Proof A result of Erdős and Lehner [1, (1.4)] guarantees that given f (n) a function that
diverges as n tends to infinity, then for all but o(|P(n)|) partitions λ of n, the quantities λ1
and l(λ) lie between

√
n · ( log nd ± f (n)) where d is a constant. By Theorem 5.3, we observe

that �n = �
αn
n = B(n − N ), where N = � n

p2
�. Since n − N ≥ n/2, the statement follows.

��

Example 5.6 Let p = 3 and n = 33+32+3. FollowingNotation 5.2, we have n1 = 3, n2 = 2
and n3 = 1. Hence R = {(1, 1), (1, 2), (1, 3), (2, 1)}, since [1, 3n3−2] = ∅. Observe that
|R| = 4 = � n

32
�. Using Definition 4.3, we can see that �(3, 1) = 2, �(3, 2) = �(3, 3) = 1

and �(2, 1) = 1. Hence, the definition of the total order � on R implies that (1, 1) � (1, 2) �
(1, 3) � (2, 1). Thus �(1) = 2, �(2) = �(3) = �(4) = 1 and

A1 = {1, 2} , A2 = {3} , A3 = {4} , A4 = {5} .

Notice that {A1, . . . , A4} is a partition of [1, αn] = [1, 5], as required. Moreover by Theo-
rem5.3we have�1

n = �2
n = Bn(n−1), �3

n = Bn(n−2), �4
n = Bn(n−3), �5

n = Bn(n−4).
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Using the notationofTheorem5.1, the above computationgives thatT 2
n = n−1. Following

the proof of Theorem 5.1, we can compute T 2
n in a different way. We have

J (2) = {( j1, j2, j3) ∈ C(2)| j1 ∈ [0, 4], j2 ∈ [0, 1], j3 ∈ {0}} = {(2, 0, 0), (1, 1, 0)} .

Hence M = max
{
t23 + t02 + t01 , t13 + t12 + t01

} = max {n − 1, n − 2} = n − 1. Thus T 2
n =

M = n − 1, as expected. Notice that n3 = 1 does not contribute at all to the computations.
In fact in R there are no elements of the form (3, y), y ∈ N. Furthermore, by looking at the
third column of Table 2, we can see that T k

n = T k
n−3 − 3 for every k ∈ N. A second example

of this fact can be found by observing that the first two columns of Table 2 are equal.
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