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Abstract
In this paper,we prove convergence of the high codimensionmean curvature flow in the sphere
to either a round point or a totally geodesic sphere assuming a pinching condition between the
norm squared of the second fundamental form and the norm squared of the mean curvature
and the background curvature of the sphere.We show that this pinching is sharp for dimension
n ≥ 4 but is not sharp for dimension n = 2, 3. For dimension n = 2 and codimension 2,
we consider an alternative pinching condition which includes the normal curvature of the
normal bundle. Finally, we sharpen the Chern–do Carmo–Kobayashi curvature condition for
surfaces in the four sphere - this curvature condition is sharp for minimal surfaces and we
conjecture it to be sharp for curvature flows in the sphere.

1 Introduction

We concern ourselves with submanifolds of the sphere evolving with velocity equal to mean
curvature and seek to understand the widest class of initial submanifolds that converge to
totally geodesic submanifolds or shrink to points in finite time. The equivalent problem for
hypersurfaces of the sphere has been investigated by Huisken [7]. Mean curvature flow of
hypersurfaces has been intensively studied since Huisken’s seminal result on the flow of
convex surfaces, but in contrast, progress in high codimension has been slow, impeded by the
presence of normal curvature. Recently, the authors made a breakthrough for mean curvature
flow of two surfaces of codimension two in a Euclidean background [3], and showed that
by explicitly including normal curvature in the pinching cone, the equivalent hypersurface
result could almost be obtained. The presence of normal curvature in high codimension
creates additional unfavourable reaction terms driving singularity formation. As our recent
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paper demonstrates, at least in codimension two, the additional unfavourable reaction terms
can potentially be controlled by careful incorporation of normal curvature into the initial
pinching condition. The main results presented in this paper are enabled by an improved
understanding of how to control normal curvature along the mean curvature flow. Herein,
we present three new results, the first two concerning mean curvature flow of submanifolds
of the sphere subject to different initial pinching conditions (the second involving normal
curvature), and the third a classification of submanifolds of the sphere with pointwise pinched
intrinsic and normal curvatures:

Theorem 1.1 Let �n
0 = F0(�n) be a closed submanifold smoothly immersed in Sn+k . If �0

satisfies {
|A|2 ≤ 4

3n |H |2 + n
2 K̄ , n = 2, 3

|A|2 ≤ 1
n−1 |H |2 + 2K̄ , n ≥ 4,

then either

1) MCF has a unique, smooth solution on a finite, maximal time interval 0 ≤ t < T < ∞
and the submanifold �t contracts to a point as t → T ; or

2) MCF has a unique, smooth solution for all time 0 ≤ t < ∞ and the submanifold �t

converges to a totally geodesic submanifold �∞.

Theorem 1.2 Suppose �0 = F0(�2) is a closed surface smoothly immersed in S
4. If �0

satisfies |A|2 + 2γ |K⊥| ≤ k|H |2 + 4(k − 1
2 )K̄ , where γ = 1 − 4/3k and k ≤ 29/40, then

the mean curvature flow of �0 has a unique smooth solution �t on a maximal time interval
t ∈ [0, T ). If T is finite then there exists a sequence of rescaled mean curvature flows
Fj : �2 × I j → R

4 containing a subsequence of mean curvature flows (also indexed by
j) that converges to a limit mean curvature flow F∞ : �2∞ × (−∞, 0] → R

4 on compact
sets of R4 ×R as j → ∞. Moreover, the limit mean curvature flow is a shrinking sphere. If
T = ∞ then the flow converges to a totally geodesic sphere.

Theorem 1.3 Suppose a two surface�2 minimally immersed in S4 satisfies |K⊥|2
|A|2 ≤ K. Then

either

1) |A|2 ≡ 0 and the surface is a geodesic sphere; or
2) |A|2 	≡ 0, in which case either

(a) |K⊥| = 0 and the surface is the Clifford torus, or
(b) K⊥ 	= 0 and it is the Veronese surface.

The first theorem appeared in the first author’s doctoral thesis, which has not yet been
published in peer-reviewed form, with the less optimal constant 2(n − 1)/3 preceding the
background curvature. The proof presented here differs the first author’s doctoral thesis
by improving upon the pinching constant and by replacing the complicated Stampacchia
iteration by a more elegant blow-up argument using a new pointwise gradient estimate; more
on this is said below shortly. We briefly mention that the improvement of the constant from
2(n − 1)/3K̄ to n/2K̄ can also be achieved by making use of the discovery made by [8] that
the nonlinearity in the Simons identity need only be positive to the highest order of mean
curvature in order for the Stampacchia iteration argument to work.

The main theorem of [1] is optimal for submanifolds of dimension four and greater (inde-
pendent of the codimension), where the tori given by a product of n−1 sphere of radius ε and
a circle of radius 1, Sn−1(ε) × S(1) ⊂ S

n × S
2 ⊂ R

n+1 ×R
3 are obstructions to improving
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the pinching constant beyond 1/(n − 1). The theorem is suboptimal in dimensions two and
three, with pinching constant k = 4/(3n), because of unfavourable reaction terms. In a recent
breakthrough, for codimension two surfaces in a Euclidean background, the authors were
able to improve this constant from 4/(3n) to 29/40 by including the normal curvature in
the pinching condition. Theorem 1.2 extends the result of [3] to submanifolds in a spherical
background. With the inclusion of normal curvature, the new pinching condition turns out
to be optimal for the reaction terms, but the gradient terms still obstruct the attainment of
optimal pinching, analogous to the flow of two dimensional hypersurfaces in a spherical
background [7]. In the hypersurface case, Huisken achieves a constant of 3/4 whereas for
codimension two surfaces we achieve 3/4−1/40. In both cases the constants are determined
the gradient terms; in the codimension two case, the term 1/40 appears in order to accommo-
date the gradient of normal curvature. We do not know whether the pinching constant 29/40
can be extended to 3/4. We conjectured in [3] that (for two surfaces of codimension two in a
Euclidean background) the true obstruction to the theorem is the Clifford torus immersed in
R
4, corresponding to the pinching condition |A|2 < |H |2. In the present case, we conjecture

that the true obstruction to Theorem 1.2 is the Veronese surface, a minimal submanifold of
the four sphere.

The third result we present, Theorem 1.3, is a new classification of minimal submanifolds
of the sphere, made possible by our exact computation of the nonlinear term in the Simons
identity. The Simons identity plays a key role in a series of classification results initiated
in a famous paper by Chern, do Carmo and Kobayashi [4], later extended to encompass
submanifolds of the sphere with parallel mean curvature by Santos [12]. With our refined
understanding of the Simons identity nonlinearity we are able to provide a new classification
result depending not on the length of the second fundamental form, but rather on a pointwise
pinching of the intrinsic and normal curvatures. Combined with a careful analysis of the
curvature terms, the proof is achieved by an application of the strong maximum principle,
mimicking modern proofs of Simons’ famous result [13].

The outline of this paper is as follows. The broad arc of the proof is the same as [6], however
the proof develops by a more efficient series of estimates, completely avoiding the Poincaré-
type inequality constructed by painful estimation of the Simons identity nonlinearity and
the Stampacchia iteration. After proving that curvature pinching is preserved along the flow
in Sect. 3, in place of the Stampacchia iteration, in Sect. 4 we prove a pointwise gradient
estimate and blow-up argument to characterise the shape of the evolving submanifold at a
finite time singularity. The case of infinite lifespan is also treated, giving rise to the second
case in theorem 1.1. We then move on to consider the case of evolving two surfaces in
the four-sphere, and extend the normal curvature-pinched condition introduced in [3] to a
spherical background and prove its preservation along the flow in Sect. 5. The remainder of
the proof is similar to that presented in Sect. 4 (or by the Stampacchia iteration argument in
[3])with straightforward adjustments and is not duplicated. In the final section,we present our
refinement of the famous theorem of Chern, do Carmo and Kobayashi. The exact estimation
of the Simons identity nonlinearity was used (in a Euclidean background) to derive the
Poincaré-type inequality used in the Stampacchia iteration argument in [3].

2 The evolution equations in a sphere

The geometric evolution equations for high codimension mean curvature flow in an arbitrary
Riemannian background were derived in [1]. In the following we will denote the second
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fundamental form by A = {hik}, the mean curvature as H = tr A = {gi j hi j | and the

traceless second fundamental form by
◦
A = A− 1

n Hg. We recall the evolution of the second
fundamental form is given by

∇∂t hi j = �hi j + hi j · h pqh pq + hiq · hqph pj + h jq · hqph pi − 2hip · h jqh pq

+ 2R̄ipjqh pq − R̄k jkph pi − R̄kikph pj + hi jα R̄kαkβνβ

− 2h jpα R̄ipαβνβ − 2hipα R̄ jpαβνβ + ∇̄k R̄ki jβνβ − ∇̄ i R̄ jkkβνβ.

We make use of shorthand notation for the reaction terms

R1 =
∑
α,β

( ∑
i, j

hi jαhi jβ

)2

+ |Rm⊥|2, R2 =
∑
i, j

( ∑
α

Hαhi jα

)2

,

where R⊥
i jαβ = hipαh jpβ − h jpαhipβ .

The evolution equations can be simplified in background spaces of constant curvature
such as the sphere. Suppose ∂a , 1 ≤ a ≤ n + k is an orthogonal local frame for background
sphere of constant curvature K̄ . In such a frame the curvature tensor of the sphere is

R̄abcd = K̄ (δacδbd − δadδbc). (1)

Using this as well as the fact that the derivates of the constant background curvature are zero,
we see the evolution for the second fundamental form is

∇∂t hi jα = 
hi jα + Ri jα + 2K̄ Hαgi j − nK̄ hi jα

where

Ri jα = hi jβ · h pqβh pqα + hiqβ · hqpβh pjα + h jqβ · hqpβh piα − 2hipβ · h jqβh pqα.

Tracing this expression with respect to i, j we get

∇∂t Hα = 
Hα + Rα + nK̄ Hα where Rα = Hβ · hi jβhi jα.

With a further line of computation, we see the evolution equation for |A|2 is given by
∂

∂t
|A|2 = �|A|2 − 2|∇A|2 + 2R1 + 4K̄ |H |2 − 2nK̄ |A|2, (2)

and |H |2 by
∂

∂t
|H |2 = �|H |2 − 2|∇H |2 + 2R2 + 2nK̄ |H |2. (3)

The evolution of normal curvature is computed to be

∂

∂t
R⊥
i jαβ = �R⊥

i jαβ − 2
∑
p,r

(∇qhipα∇qh jpβ − ∇qh jpα∇qhipβ
)

+Ripαh jpβ + hipαR jpβ − R jpαhipβ − h jpαRipβ − 2nK̄ R⊥
i jαβ. (4)

The contracted form of Simons’ identity takes the form

1

2
�| ◦

A|2 = ◦
Ai j · ∇i∇ j H + |∇ ◦

A|2 + Z + nK̄ | ◦
A|2, (5)
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where again

Z = −
∑
α,β

( ∑
i, j

hi jαhi jβ

)2

− |Rm⊥|2 +
∑
i, j,p
α,β

Hαhipαhi jβh pjβ .

And finally, the basic gradient estimate

|∇A|2 ≥ 3

n + 2
|∇H |2 (6)

carries over unchanged.

3 Preservation of curvature pinching

We now prove that a certain pointwise curvature pinching condition holding on the initial
submanifold is preserved along the flow.

Lemma 3.1 If a solution F : � × [0, T ) → S
n+k of the mean curvature flow satisfies{

|A|2 ≤ 4
3n |H |2 + n

2 K̄ , n = 2, 3

|A|2 ≤ 1
n−1 |H |2 + 2K̄ , n ≥ 4

(7)

at t = 0, then this remains true as long as the solution exists.

Proof Let us consider the quadratic pinching condition Q = |A|2 −αH2 −β K̄ , where α and
β are constants. Since we allow the initial submanifold to have H = 0, along the flow it may
happen that there are points where H = 0. Hence we will consider two cases: 1) H = 0 and
2) H 	= 0. In the second case we are able to compute in a local frame for the normal bundle
where ν1 = H/|H |.

1) For the case H = 0, the evolution equations for |A|2 and |H |2 give us
∂

∂t
Q = �Q − 2|∇ ◦

A|2 + 2R1 − 2nK̄ | ◦
A|2. (8)

Using the estimate of [10] on the normal directions of R1 we have

R1 =
∑
α,β

( ∑
i, j

◦
Ai jα

◦
Ai jβ

)2

+
∑
α,β

N (
◦
Aα

◦
Aβ − ◦

Aβ

◦
Aα) ≤ 3

2
| ◦
A|4.

The reaction terms of (8) are estimated by

2R1 − 2nK̄ | ◦
A|2 ≤ 3| ◦

A|4 − 2nK̄ | ◦
A|2.

If Q is not (strictly) negative, then Q = 0 or | ◦
A|2 = β K̄ and

3| ◦
A|4 − 2nK̄ | ◦

A|2 < −β(2n − 3β)K̄ 2

which is (strictly) negative as long as β < (2/3)n.Wemay then apply themaximumprinciple
and the lemma follows in this case.

Now let us consider the case H 	= 0. We use the special local frames of [1], and the
evolution equation becomes
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∂

∂t
Q = �Q − 2(|∇A|2 − α|∇H |2) + 2R1 − 2αR2 − 2nK̄ | ◦

A|2 − 2n(α − 1/n)K̄ |H |2. (9)

Arguing as in Euclidean case, if Q does not remain (strictly) negative, we may replace |H |2
with (| ◦

A|2 − β K̄ )/(α − 1/n), and estimating as in [1],

2R1 − 2αR2 − 2nK̄ | ◦
A|2 − 2n(α − 1/n)K̄ |H |2

≤ 2| ◦
A1|2 − 2(α − 1/n)| ◦

A1|2|H |2 + 2

n
| ◦
A1|2|H |2 − 2

n
(α − 1/n)|H |4 + 8| ◦

A1|2|
◦
A−|2

+ 3| ◦
A−|4

− 2nK̄ (| ◦
A1|2 + | ◦

A−|2) − 2n(α − 1/n)K̄ |H |2

≤
(
6 − 2

n(α − 1/n)

)
| ◦
A1|2|

◦
A−|2 +

(
3 − 2

n(α − 1/n)

)
| ◦
A−|4

+
(
2β − 4n + 2β

n(α − 1/n)

)
| ◦
A1|2 K̄ + 4

(
β

n(α − 1/n)
− n

)
| ◦
A−|2 K̄

− 2β

(
β

n(α − 1/n)
− n

)
K̄

2

=
(
6 − 2

n(α − 1/n)

)
(| ◦
A1|2|

◦
A−|2 + | ◦

A−|4) +
(
2β − 4n + 2β

n(α − 1/n)

)
| ◦
A1|2 K̄

− 3| ◦
A−|4 + 4

(
β

n(α − 1/n)
− n

)
| ◦
A−|2 K̄ − 2β

(
β

n(α − 1/n)
− n

)
K̄

2
.

In the last line we choose the coefficient of the | ◦
A1|2|

◦
A−|2 term as large as we can (that is

4/(3n)) and we have the good term −3| ◦
A−|2. Since the last line above is a quadratic form,

by requiring that the discriminant is negative, we have a strictly negative term. We compute
the discriminant as

� = 8

(
β

n(α − 1/n)
− n

) {
2

(
β

n(α − 1/n)

)
− (2n + 3)β

}

≤ 8

(
β

n(α − 1/n)
− n

) {
2

(
β

n(α − 1/n)

)
− 3β

}

which is negative with the chosen α and β in dimensions two to four. For dimensions n ≥ 4
the optimal value of α is 1/(n − 1). Therefore with this restriction, the coefficient of | ◦

A−|4
increases to −2(n − 4) − 3. The discriminant becomes

� = 8

(
β

n(α − 1/n)
− n

) {
2

(
β

n(α − 1/n)

)
− (2(n − 4) + 3)β

}
,

and which is strictly negative for β = 2 for all n ≥ 4. The most restrictive condition on the
size of β comes from the coefficient of the | ◦

A1|2 K̄ term, which gives the values of β in the
statement of the lemma. With the chosen values of α and β the right hand side of equation is
strictly negative, which is contradiction, and so Q must stay strictly negative. ��

We first obtain an estimate for the trace-free second fundamental form which improves at
large times, using the maximum principle.
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Proposition 3.1 Let F : � ×[0, T ) → S
n+l
K̄

be a solution to mean curvature flow with initial
condition in satisfying (7). Then there is a constant C = C(n, α) such that

|A|2 − 1
n |H |2

|H |2 + K̄
≤ Ce−2K̄ t . (10)

Proof Set

| ◦
A|2 ≡ |A|2 − 1

n |H |2

and

g ≡ (
bK̄ + a|H |2 − |A|2),

where

a = 1

n − 1
and b = 2.

Applying (3) and (2) yields (cf. Lemma 3.1), wherever |H | 	= 0,

(∂t − �)| ◦
A|2 ≤ 2

(
3| ◦
A1|2 + 3

2 |
◦
A−|2 − 1

n |H |2)| ◦
A−|2 − 4nK̄

(| ◦
A1|2 + | ◦

A−|2)
+ 2| ◦

A|2(| ◦
A1|2 + 1

n |H |2 + nK̄
) − (|∇A|2 − 1

n |∇⊥H |2).
Not

| ◦
A1|2 + | ◦

A−|2 = | ◦
A|2

so that

3| ◦
A1|2 + 3

2 |
◦
A−|2 − 1

n |H |2 =
(
3 − 1

an−1

)
| ◦
A1|2 +

(
3
2 − 1

an−1

)
| ◦
A−|2 − 1

n |H |2 + 1
an−1 |

◦
A|2.

The first three terms are non-positive. The remaining term is also non-positive by the Kato
inequality. Thus,

(∂t − �)| ◦
A|2 ≤ − 4nK̄ | ◦

A|2 + 2| ◦
A|2

(
| ◦
A1|2 + 1

an−1 |
◦
A−|2 + 1

n |H |2 + nK̄
)

=2| ◦
A|2

(
| ◦
A1|2 + 1

an−1 |
◦
A−|2 + 1

n |H |2 − nK̄
)

. (11)

Since

−(∂t − �)g ≤ −2g
(| ◦
A1|2 + 1

an−1 |
◦
A−|2 + 1

n |H |2 − (n − b)K̄
) − 4γ |∇A|2,

where

2γ = 1 − n+2
3 a > 0,

we obtain

(∂t − �)
| ◦
A|2
g

| ◦
A|2
g

= (∂t − �)| ◦
A|2

| ◦
A|2

− (∂t − �)g

g
+ 2

〈
∇ log

| ◦
A|2
g

,∇ log(g)

〉

≤ − 2bK − 2γ
|∇A|2
g

+ 2

〈
∇ log

| ◦
A|2
g

,∇ log(g)

〉

wherever |H | 	= 0.
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On the other hand, wherever |H | = 0,

−(∂t − �)W ≤ − 3| ◦
A|2W

and

(∂t − �)| ◦
A|2 ≤(

3| ◦
A|2 − 2K̄

)| ◦
A|2, (12)

and hence, at such points,

(∂t − �)
| ◦
A|2
g

| ◦
A|2
g

≤ − 2K̄ + 2

〈
∇ log

| ◦
A|2
g

,∇ log(g)

〉
.

Since b ≥ 1 we conclude that

(∂t − �)
| ◦
A|2
g

| ◦
A|2
g

≤ − 2K̄ + 2

〈
∇ log

| ◦
A|2
g

,∇ log(g)

〉

everywhere. The maximum principle now implies the claim. ��

4 A gradient estimate for the second fundamental form

Here we establish a gradient estimate for the second fundamental form.

Theorem 4.1 Let�t , t ∈ [0, Tmax)bea closedn-dimensional quadratically bounded solution
to the mean curvature flow in the round sphere of curvature K̄ , Sn+k

K̄
with n ≥ 2, that is

|A|2 − c|H |2 − (2 − ε)K̄ < 0

with c = 1
n−1 − η ≤ 4

3n where 1
n η < 1

n−1 is determined by the initial data. Then there exists

a constant γ1 = γ1(n, �0), γ2 = γ2(n, �0) and δ0 = δ0(n, K̄ ) such that the flow satisfies
the uniform estimate

|∇A|2 ≤ (γ1|A|4 + γ2)e
−δ0t for all t ∈ [0, Tmax).

Proof We choose here κn =
(

3
n+2 − c

)
> 0. As 1

n ≤ c ≤ 4
3n , n ≥ 2, κn is strictly positive.

We will consider here the evolution equation for |∇A|2
g2

where g = 1
n−1 |H |2 − |A|2 + 2K

where the initial pinching condition ensures g is strictly positive. This follows since |A|2 −(
1

n−1 − η
)

|H |2 − (2 − ε)K ≤ 0, |H | > 0 and �0 is compact, we have

2K̄ + 1

n − 1
|H |2 − |A|2 > η|H |2 + εK̄ or g = 2K̄ + 1

n − 1
|H |2 − |A|2 > η|H |2

+ εK̄ > 0. (13)

From the evolution equations, (9), we get

∂t g = �g − 2

(
1

n − 1
|∇H |2 − |∇A|2

)
+ 2 (cR2 − R1)

≥ �g − 2

(
n + 2

3

1

n − 1
− 1

)
|∇A|2
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≥ �g + 2κn
n + 2

3
|∇A|2.

The evolution equation for |∇A|2 is given by
∂

∂t
|∇A|2 − �|∇A|2 ≤ −2|∇2A|2 + cn |A|2|∇A|2 + dn |∇A|2.

Let w, z satisfy the evolution equations

∂

∂t
w = �w + W ,

∂

∂t
z = �z + Z

then we find that

∂t

(
w

z

)
= �

(
w

z

)
+ 2

z

〈
∇

(
w

z

)
,∇z

〉
+ W

z
− w

z2
Z

= �

(
w

z

)
+ 2

〈∇w,∇z〉
z2

− 2
w|∇z|2

z3
+ W

z
− w

z2
Z .

Furthermore for any function g, we have by Kato’s inequality

〈∇g,∇|∇A|2〉 ≤ 2|∇g||∇2A||∇A| ≤ 1

g
|∇g|2|∇A|2 + g|∇2A|2.

We get

− 2

g
|∇2A|2 + 2

g

〈
∇g,∇

( |∇A|2
g

)〉
≤ − 2

g
|∇2A|2 − 2

g3
|∇g|2|∇A|2

+ 2

g2
〈∇g,∇|∇A|2〉 ≤ 0.

Then if we let w = |∇A|2 and z = g with W ≤ −2|∇2A|2 + cn |A|2|∇A|2 + dn |∇A|2 and
Z ≥ 2κn n+2

3 |∇A|2 we get
∂

∂t

( |∇A|2
g

)
− �

( |∇A|2
g

)
≤ 2

g

〈
∇g,∇

( |∇A|2
g

)〉
+ 1

g
(−2|∇2A|2

+ cn |A|2|∇A|2 + dn |∇A|2)

− 2κn
n + 2

3

|∇A|4
g2

≤ cn |A|2 |∇A|2
g

+ dn
|∇A|2
g

− 2κn
n + 2

3

|∇A|4
g2

.

We repeat the above computation withw = |∇A|2
g , z = g, and we have for the nonlinearities,

Z ≥ 0 and

W ≤ cn |A|2 |∇A|2
g

− 2κn
n + 2

3

|∇A|4
g2

.

∂

∂t

( |∇A|2
g2

)
− �

( |∇A|2
g2

)
≤ 2

g

〈
∇g,∇

( |∇A|2
g2

)〉

+ 1

g

(
cn |A|2 |∇A|2

g
+ dn

|∇A|2
g

− 2κn
n + 2

3

|∇A|4
g2

)
. (14)
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The nonlinearity then is

|∇A|2
g2

(
cn |A|2 + dn − 2κn(n + 2)

3

|∇A|2
g

)
.

The quadratic curvature condition then bounds |A|2 below away from zero, this can be seen
from

|A|2 ≤
(

1

n − 1
− η

)
|H |2 + (2 − ε)K̄ �⇒ εK̄ ≤ 1

n − 1
|H |2 − |A|2 + 2K̄ − η|H |2

so that g ≥ η|H |2 + εK̄ , that there exists a constant N so that

Ng ≥ cn |A|2 + dn .

Hencewehaveby themaximumprinciple, there exists a constant (withη, ε chosen sufficiently
small so that N is sufficiently large that this estimate holds at the initial time) such that

|∇A|2
g2

≤ 3N

2κn(n + 2)
. (15)

Therefore we see that there exists a constant C = 3N
2κn(n+2) = C(n, �0, ε) such that

|∇A|2
g2

≤
C .

In order to get the long time exponential decay, we consider u := |∇A|2 + (N1 +
N2|H |2)| ◦

A|2. From the evolution equations for |A|2 and |H |2 we derive
∂

∂t

(
(N1 + N2|H |2)| ◦

A|2)
= �

(
(N1 + N2|H |2)| ◦

A|2) − 2N2
〈∇i |H |2,∇i |

◦
A|2〉 − 2N2|

◦
A|2|∇H |2 + 2N2R2|

◦
A|2

+ 2nK̄ |H |2| ◦
A|2

− 2(N1 + N2|H |2)
(

|∇A|2 − 1

n
|∇H |2

)
+ 2(N1 + N2|H |2)

(
R1 − 1

n
R2

)

− 2nK̄ (N1 + N2|H |2)| ◦
A|2

= �
(
(N1 + N2|H |2)| ◦

A|2) − 2N2
〈∇i |H |2,∇i |

◦
A|2〉 − 2N2|

◦
A|2|∇H |2 + 2N2R2|

◦
A|2

− 2(N1 + N2|H |2)
(

|∇A|2 − 1

n
|∇H |2

)
+ 2(N1 + N2|H |2)

(
R1 − 1

n
R2

)
− 2nK̄ N1|

◦
A|2.

We estimate the second term on the right as follows:

−2N2
〈∇i |H |2,∇i |

◦
A|2〉 ≤ 8N2|H || ◦

A||∇H ||∇A|
≤ 8N2|H |√n|∇A|2C0(|H |2 + K̄ )1/2e−Kt

≤ 4(n − 1)

3n
|H |2|∇A|2 + c1(N2)|∇A|2

if we choose t ≥ T where T = T (n) is sufficiently large depending only on n. Using
Young’s inequality, R2 ≤ |A|2|H |2, and R1 − 1

n R2 ≤ 2| ◦
A|2|A|2 and the pinching inequality

we estimate

2N2R2|
◦
A|2 + 2(N1 + N2|H |2)

(
R1 − 1

n
R2

)
≤ c2(N1, N2)|

◦
A|2(|H |4 + 1).
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The constants depend onmore that just N1 and N2, howeverwe only highlight the dependence
on N as this is relevant in the following proof. We discard the terms

−2nK̄ N1|
◦
A|2 − 2N2|

◦
A|2|∇H |2 ≤ 0

and we get

∂

∂t

(
(N1 + N2|H |2)| ◦

A|2) ≤ �
(
(N1 + N2|H |2)| ◦

A|2) − 4(n − 1)

3n
(N2 − 1)|H |2|∇A|2

− 4(n − 1)

3n
(N1 − c1(N2))|∇A|2 + c2(N1, N2)|

◦
A|2(|H |4 + 1).

(16)

Therefore u satisfies

∂

∂t
u ≤ �u + cn |A|2|∇A|2 + dn |∇A|2 + −4(n − 1)

3n
(N2 − 1)|H |2|∇A|2

− 4(n − 1)

3n
(N1 − c1(N2))|∇A|2 + c2(N1, N2)|

◦
A|2(|H |4 + 1).

We choose N1 and N2 large enough to consume the positive terms arising from the evolution
equation for |∇A|2. This leaves

∂

∂t
u ≤ �u − 4(n − 1)

3n
(N2 − 1 − c′

n)|H |2|∇A|2 − 4(n − 1)

3n
(N1 − c3(N2))|∇A|2

+ c4(N1, N2)|
◦
A|2(|H |4 + 1).

Now consider v := e(δ0/2)t u − η|H |4. From the evolution equations derived above we see
the evolution equation for |H |4 is easily derived from that of |H |2:

∂

∂t
|H |4 = �|H |4 − 2|∇|H |2|2 − 4|H |2|∇H |2 + 4R2|H |2 + 4nK̄ |H |4.

We discard the last term and use |∇|H ||2 ≤ |∇H |2 and R2 ≥ 1/n|H |4 to get

∂

∂t
|H |4 ≥ �|H |4 − 12|H |2|∇H |2 + 4

n
|H |6 (17)

Putting together the above evolution equations we have

∂

∂t
(e(δ0/2)t u − η|H |4)

≤ δ0

2
e(δ0/2)t

(|∇A|2 + (N1 + N2|H |2)| ◦
A|2)

+ e(δ0/2)t
(

�u − 4(n − 1)

3n
(N2 − 1 − c′

n)|H |2|∇A|2 − 4(n − 1)

3n
(N1 − c3(N2))|∇A|2

+ c4(N1, N2)|
◦
A|2(|H |4 + 1)

)

− η
(
�|H |4 − 12|H |2|∇H |2 + 4

n
|H |6).

The terms on the first line can be absorbed into those on the second line by suitable estimation.
By choosing N2 sufficiently large the gradient term on the last line can be absorbed, and then
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50 Page 12 of 24 C. Baker, H. T. Nguyen

we choose N1 larger again to make the |∇A|2 term negative. We finally discard the negative
gradient terms to get

∂

∂t
v ≤ �v + c5e

(δ0/2)t | ◦
A|2(|H |4 + 1) − 4η

n
|H |6.

Using Theorem 3.1, Young’s inequality and choosing η sufficiently large we obtain

∂

∂t
v ≤ �v + c6e

(δ0/2)t−2K̄ t .

If we finally choose δ0 = 2K̄ from which we conclude v ≤ c7. The gradient estimate now
follows from the definition of v. Combining this with the previous estimate (15), proves the
desired bounds. ��

We will also want to control the time derivative of curvature with constants with explicit
dependence. In order to do so, we now derive quantitative estimates for the second derivative
of curvature. The following estimate is a consequence of the evolution equations for the sec-
ond fundamental form and its derivatives and an application of standard parabolic estimates.

Theorem 4.2 Let � be a solution of the mean curvature flow then there exists constants
γ3, γ4, δ0 depending only on the dimension and pinching constant so that

|∇2A|2 ≤ (γ3|A|6 + γ4)e
−(δ0/2)t .

As a special case of our estimates by the quadratic bounds on the curvature and the
evolution equation for the mean curvature we get the following statement

Corollary 4.3 Let �t be a mean curvature flow. Then there exists c#, H#, δ0 > 0 such that
for all p ∈ M and t > 0 which satisfy

|H(p, t)| ≥ H# �⇒ |∇H(p, t)| ≤ c#e−(δ0/2)t |H(p, t)|2, |∂t H(p, t)|
≤ c#e−(δ0/2)t |H(p, t)|3.

Proof The first estimate follows by (6)

|∇A|2 ≥ 3

n + 2
|∇H |2.

and Theorem 4.1 and the hypothesis |H(p, t)| ≥ H#. The second estimate follows by the
evolution equation of H , (3), Theorem 4.2 and the quadratic bound (7). ��

Note that the following Lemma is purely a statement concerning submanifolds subject to
gradient estimate for the mean curvature and is not concerned with mean curvature flow.

Lemma 4.4 Let F : Mn → S
n+k be an immersed submanifold. Suppose there exists

c#, H#, δ0 > 0 such that

|∇H(p)|2 ≤ c#e−(δ0/2)t |H(p)|2

for any p ∈ M such that |H |(p) ≥ H#. Let p0 ∈ M satisfy |H(p0)| ≥ γ H# for some γ > 1.
Then

|H(q)| ≥ |H(p0)|
1 + c#e−(δ0/2)t d(p0, q)|H(p0)| ≥ |H(p0)|

γ
,

∀q | d(p0, q) ≤ γ − 1

c#e−(δ0/2)t

1

|H |(p0) .
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Proof The proof involves integrating the gradient estimates along geodesics is essentially
that of [8] or [11]. ��

Finally we have the following

Theorem 4.5 Let F : � × [0, T ) → S
n+k ⊂ R

n+k+1 be a smooth solution to the mean
curvature flow such that F0(p) = F(0, p) is compact and quadratically bounded. Then for
all ε > 0 there is a H0 > 0 such that if |H(p, t)| ≥ H0 then

|A|2
|H |2 ≤

(
1

n
+ ε

)
.

and a T0 > 0 such that if t > T0

|A|2 ≤ ε.

Proof The proof essentially follows that of [11]. Here we sketch the argument and point out
the differences in the case of the sphere. Let us first consider the following case

lim
t→Tmax

sup
�t

|A(p, t)|2 = +∞.

Furthermore, since 1
n |H |2 < |A|2 < 1

n−1 |H |2 + 2K , the second fundamental form A and
the mean curvature H have the same blow up rate, so we must have

lim
t→Tmax

sup
�t

|H(p, t)|2 = +∞.

Suppose the estimate is not true. Then there exists an ε > 0 where we have

lim sup
t→Tmax

sup
p∈�t

|A(p, t)|2
|H(p, t)|2 = 1

n
+ ε >

1

n
.

Furthermore there exists a sequence of points pk and times tk such that as k → ∞, tk → Tmax

and

lim
k→∞

|A(pk, tk)|2
|H(pk, tk)|2 = 1

n
+ ε.

We perform a parabolic rescaling of �̄
k
t in such a way that the norm of the mean curvature

at (pk, tk) becomes n − 1. That is, if Fk is the parameterisation of the original flow �k
t , we

let r̂ k = n−1
|H(pk ,tk )| , and we denote the rescaled flow by �k

t and we define it as

F̄k(p, τ ) = 1

r̂ k
(Fk(p, r̂

2
kτ + tk) − Fk(pk, tk))

For simplicity, we choose for every flow a local co-ordinate system centred at pk . In these
co-ordinateswe canwrite 0 instead of pk . The parabolic neighbourhoodsPk(pk, tk, r̂ k L, r̂2kθ)

in the original flow becomes P̄(0, 0, θ, L). By construction, each rescaled flow satisfies

F̄k(0, 0) = 0, |H̄ k(0, 0)| = n − 1.

The gradient estimates give us uniform bounds on |A| and its derivatives up to any order
on a neighbourhood of the form P̄(0, 0, d, d) for a suitable d > 0. This gives us uniform
estimates in C∞ on F̄k . Hence we can apply Arzela-Ascoli and conclude that there exists
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a subsequence that converges in C∞ to some limit flow which we denote by �̃
∞
τ . We now

analyse the limit flow �̃
∞
τ ⊂ R

n+k . Note that we have

Āk(p, τ ) = r̂ k Ak(p, r̂
2
kτ + tk).

so that

| Āk(p, τ )|2
|Hk(p, τ )|2 = |Ak(p, r̂

2
kτ + tk)|2

|Hk(p, r̂
2
kτ + tk)|2

but since r̂ k → 0, tk → Tmax as k → ∞ this implies

| Ā(p, τ )|2
|H̄(p, τ )|2 = lim

k→∞
| Āk(p, τ )|2
|H̄ k(p, τ )|2 ≤ 1

n
+ ε and

| Ā(0, 0)|2
|H̄(0, 0)|2 = 1

n
+ ε.

Hence the flow �̄∞
t has a space-time maximum for | Ā(p,τ )|2

|H̄(p,τ )|2 at (0, 0). Since the evolution

equation for |A|2
|H |2 is given by

∂t

( |A|2
|H |2

)
− 


( |A|2
|H |2

)
= 2

|H |2
〈
∇|H |2,∇

( |A|2
|H |2

)〉
− 2

|H |2
(

|∇A|2 − |A|2
|H |2 |∇H |2

)

+ 2

|H |2
(
R1 − |A|2

|H |2 R2

)

Now

|∇H |2 ≤ 3

n + 2
|∇A|2, |A|2

|H |2 ≤ cn �⇒ − 2

|H |2
(

|∇A|2 − |A|2
|H |2 |∇H |2

)
≤ 0.

Furthermore if |A|2
|H |2 = c < cn then

R1 − |A|2
|H |2 R2 = R1 − cR2

≤ 2

n

1

c − 1/n
|A−|2Q +

(
6 − 2

n(c − 1/n)

)
| ◦
A1|2|

◦
A−|2

+
(
3 − 2

n(c − 1/n)

)
| ◦
A−|4

≤ 0.

Hence the strong maximum principle applies to the evolution equation of |A|2
|H |2 and shows

that |A|2
|H |2 is constant. The evolution equation then shows that |∇A|2 = 0, that is the second

fundamental form is parallel and that |A−|2 = | ◦
A−|2 = 0, that is the submanifold is codi-

mension one. Finally this shows that locally � = S
n−k × R

k , [9]. As |A|2
|H |2 < cn ≤ 1

n−1 we

can only have Sn which gives |A|2
|H |2 = 1

n which is a contradiction.
Next we consider the case where Tmax = +∞. Firstly we rule out the possibility that

limt→∞ |Hmax| = +∞. Therefore let us assume limt→∞ |Hmax| = +∞.
Since by assumption |H |max → ∞ as t → ∞, there exists a τ(η) such that eδ0t/2 < η for

all τ ≤ t < ∞. Thus |∇H | ≤ η|H |2max for all t ≥ τ . Fix some δ ∈ (0, 1) and set η = δ(1−δ)ε
π

.
Let t ∈ [τ(η),∞), and x be a point with |H |(x) = |H |max. Along any geodesic of length
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π
εδHmax

from x , we have |H | ≥ |H |max − π
εδ|H |max

η|H |2max = δ|H |max, and consequently

the sectional curvatures satisfy K ≥ ε2δ2|H |2max. From Bonnet’s Theorem it follows that
diam� ≤ π

εδHmax
, from which we conclude that |H |min ≥ δ|H |max on the whole of �t for

t ∈ [τ(η), T ).
The previous line shows that by choosing τ sufficiently large, |H |min can be made

arbitrarily large. It follows from the above argument that after some sufficiently large
time the submanifold is as pinched as we like (and in particular can be made to satisfy
|A|2 < 1/(n − 1)|H |2 in dimensions n ≥ 4 and |A|2 < 4/(3n)|H |2 in dimensions
2 ≤ n ≤ 4). We now show that once the submanifolds are pinched as such, the maxi-
mal time of existence must be finite. Define Q = |H |2−a|A|2−b(t), where a = 3n

4 and b is
some time-dependent function. Because |H |min > 0 and the submanifolds are as pinched as
we like, for some sufficiently large time τ we can choose a b(τ ) = bτ > 0 such that Q ≥ 0
for t = τ . The evolution equation for Q is

∂

∂t
Q = �Q − 2(|∇H |2 − a|∇A|2) + 2R2 − 2aR1 + 2(n − a)K̄ | ◦

A|2 + 2anK̄ |H |2 − b′(t)

≥ �Q − 2(|∇H |2 − a|∇A|2) + 2R2 − 2aR1 − b′(t).

Estimating the reaction terms as before we obtain

2R2 − 2aR1 − b′(t)

=
∑
i, j

(∑
α

Hαhi jα

)2

− 2a
∑
α,β

( ∑
i, j

hi jαhi jβ

)2

− 2a|Rm⊥|2 − b′(t)

≥ 2| ◦
A1|2(a| ◦

A1|2 + a| ◦
A−|2 + b) + 2

n(1 − a/n)
(a| ◦

A−|2 + b)(a| ◦
A1|2 + a| ◦

A−|2 + b)

− 2a| ◦
A1|4 − 8a| ◦

A1|2|
◦
A−|2 − 3a| ◦

A−|4 − b′(t).

Equating coefficients, we find Q ≥ 0 is preserved if db
dt ≤ 8b2

n . We can therefore take

b(t) = nb0
n − 8b0(t − τ)

.

This is unbounded as t → τ + n
8b0

, so we must have T ≤ τ + n
8b0

.
Finally we need to consider the case where Tmax = ∞. Since |A|max is bounded, by

Theorem 4.1 we have the estimate

|∇A|2 ≤ Ce−(δ0/2)t . (18)

By considerings translations in time (x, t) �→ (x, t − T ) we can therefore extract a con-
vergent subsequence which will independent of the T ’s approaching infinity. Furthermore
this is a static solution to the mean curvature flow and hence a minimal submanifold, that is
limt→∞ |H | = 0 and (18) tells us that this has parallel second fundamental form. But since
the limit submanifold is static, this means that the nonlinearity in (8) must be zero but this
can only happen if limt→∞ |A|2 = 0 as required. ��

We now have all the necessary estimates in place to repeat the convergence arguments of
[1] to obtain smooth convergence of the submanifolds to a totally geodesic submanifold.
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5 Mean curvature flow of codimension two surfaces in S
4

In the case of surfaces in S
4 we consider instead the pinching quantity |A|2 + 2γ |K⊥| ≤

k|H |2 + εK̄ where γ and ε will be determined. This is the first step of the proof of Theorem
1.2.

5.1 Evolution of normal curvature

In this section we compute the evolution equation for the normal curvature. The normal
curvature tensor in local orthonormal frames for the tangent {ei : i = 1, 2} and normal
{να : α = 1, 2} bundles is given by

R⊥
i jαβ = hipαh jpβ − h jpαhipβ . (19)

We often compute in a local orthonormal normal frame {να : α = 1, 2} where ν1 = H/|H |.
As the normal bundle is two dimensional ν2 is then determined by ν1 up to sign. With this
choice of frame the second fundamental form becomes{ ◦

A1 = A1 − |H |
n I d

◦
A2 = A2

&

{
tr A1 = |H |
tr A2 = 0.

(20)

It is also always possible to choose the tangent frame {ei : i = 1, 2} to diagonalise A1. We
often refer to the orthonormal frame {e1, e2, e3, e4} = {e1, e2, ν1, ν2},where {ei }diagonalises
A1 and ν1 = H/|H |, as the ‘special orthonormal frame’. Codimension two surfaces have four
independent components of the second fundamental form, which still makes it tractable to
work with individual components, similar to the role of principal curvatures in hypersurface
theory. Working in the special orthonormal frame, we often find it convenient to represent
the second fundamental form by

hi j =
[ |H |

2 + a 0
0 |H |

2 − a

]
ν1 +

[
b c
c −b

]
ν2, (21)

so that h111 = |H |/2 + a, h221 = |H |/2 − a, h112 = b, h122 = c and so on. Note that
| ◦
A|2 = 2a2 + 2b2 + 2c2.
Just as a surface has only one sectional curvature K , a codimension two surface also has

only one normal curvature, which we denote by K⊥. In the special orthonormal frame the
normal curvature is

K⊥ = R⊥
1234 =

∑
p

(
h1p1h2p2 − h2p1h1p2

)
= h111h212 − h211h112 + h121h222 − h221h122

= 2ac. (22)

Note also that |Rm⊥|2 = 16a2c2. The evolution equation of the normal curvature is given
by

∂

∂t
R⊥
i jαβ = �R⊥

i jαβ − 2
∑
p,r

(∇qhipα∇qh jpβ − ∇qh jpα∇qhipβ
)

+
∑
p

(
∂

∂t
hipαh jpβ + hipα

∂

∂t
h jpβ − ∂

∂t
h jpαhipβ − h jpα

∂

∂t
hipβ

)
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− 2nK̄ R⊥
i jαβ

or
∂

∂t
R⊥
i jαβ = �R⊥

i jαβ − 2
∑
p,r

(∇qhipα∇qh jpβ − ∇qh jpα∇qhipβ
)

+
∑

(hipγ · hrqγ hrqα + hiqγ · hqrγ hrpα + h pqγ · hqrγ hriα − 2hirγ · h pqγ hrqα)h jpβ

+
∑

hipα(h jpγ · hrqγ hrqβ + h jqγ · hqrγ hrpβ + h pqγ · hqrγ hr jβ − 2h jrγ · h pqγ hrqβ)

−
∑

(h jpγ · hrqγ hrqα + h jqγ · hqrγ hrpα + h pqγ · hqrγ hr jα − 2h jrγ · h pqγ hrqα)hipβ

−
∑

h jpα(hipγ · hrqγ hrqβ + hiqγ · hqrγ hrpβ + h pqγ · hqrγ hriβ − 2hirγ · h pqγ hrqβ)

− 2nK̄ R⊥
i jαβ

= �R⊥
i jαβ − 2

∑
p,r

(∇qhipα∇qh jpβ − ∇qh jpα∇qhipβ
)

+ Ripαh jpβ + hipαR jpβ − R jpαhipβ − h jpαRipβ − 2nK̄ R⊥
i jαβ .

(23)

Computing in the special orthonormal frame and denoting the reaction terms by d
dt K

⊥, the
nonlinearity for codimension two surfaces simplifies to

d

dt
K⊥ = 4ac

(( |H |
2

− a

)2

−
( |H |

2
+ a

)( |H |
2

− a

)
+ 2b2 + 3c2 +

( |H |
2

+ a

)2
)

= K⊥ (
|A|2 + 2| ◦

A|2 − 2b2
)

− 4K̄ K⊥.

For notational convenience we set

∇evol K⊥ :=
∑
p,q

(∇qhipα∇qh jpβ − ∇qh jpα∇qhipβ
)

and

R3 := K⊥ (
|A|2 + 2| ◦

A|2 − 2b2
)

.

Substituting the simplifed nonlinearity into (23) we obtain the evolution equation for the
normal curvature

∂

∂t
K⊥ = �K⊥ − 2∇evol K⊥ + K⊥ (

|A|2 + 2| ◦
A|2 − 2b2

)
− 4K̄ K⊥,

and a little more computation shows the length of the normal curvature evolves by

∂

∂t
|K⊥| = �|K⊥| − 2

K⊥

|K⊥|∇evol K
⊥ + |K⊥|

(
|A|2 + 2| ◦

A|2 − 2b2
)

− 4K̄ |K⊥|.

We remark that the complicated structure of the gradient terms prevents an application of the
maximum principle to conclude flat normal bundle is preserved.

Proposition 5.1 We have the following gradient estimates:

|∇A|2 ≥ 3

n + 2
|∇H |2 (24a)

|∇A|2 − 1

n
|∇H |2 ≥ 2(n − 1)

3n
|∇A|2 (24b)

|∇A|2 ≥ 2∇evol K⊥ if n = 2. (24c)
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Proof The first two inequalities are proven in [6], motivated by similar estimates in the Ricci
flow [5]. They are established by decomposing the tensor ∇A into orthogonal components
∇i h jk = Ei jk + Fi jk , where

Ei jk = 1

n + 2
(gi j∇k H + gik∇ j H + g jk∇i H),

from which it follows that |∇A|2 ≥ |E |2 = 3
n+2 |∇H |2. The second estimate follows from

the first. In order to prove the third inequality, we evaluate directly

∑
p,q

(∇qh1p1∇qh2p2 − ∇qh2p1∇qh1p2
) = ∇1h111∇1h212 − ∇1h211∇1h112 + ∇1h121∇1h222

−∇1h221∇1h122 + ∇2h111∇2h212 − ∇2h211∇2h112 + ∇2h121∇2h222 − ∇2h221∇2h122.

Writing down all the terms in |∇A|2 and only using the symmetries of the second fundamental
form

|∇A|2 = (∇1h111)
2 + (∇2h111)

2 + (∇1h121)
2 + (∇1h211)

2 + (∇1h122)
2

+ (∇1h212)
2 + (∇2h112)

2

+ (∇1h222)
2 + (∇2h122)

2 + (∇2h212)
2 + (∇2h221)

2 + (∇2h222)
2

+ (∇1h221)
2 + (∇2h121)

2 + (∇1h211)
2 + (∇1h112)

2,

and the estimate follows by applying the Cauchy-Schwarz inequality and comparing terms.
��

We consider here the pinching quantity

Q := |A|2 + 2γ |K⊥| − k|H |2 − εK̄ < 0

The evolution equation becomes

∂

∂t
Q = �Q − 2

(
|∇A|2 + 2γ

K⊥

|K⊥|∇evol K
⊥ − k|∇H |2

)

+ 2R1 + 2γ R3 − 2kR2 − 4K̄ | ◦
A|2 + 2K̄ |H |2 − 4k K̄ |H |2 − 8γ K̄ |K⊥|

We deal with the gradient terms first. Using the gradient estimates (24a) and (24c) we have

−2

(
|∇A|2 + 2γ

K⊥

|K⊥|∇evol K
⊥ − k|∇H |2

)
≤

(
−2 + 2γ + 2

4

3
k

)
|∇A|2,

which is less than zero provided γ < (1 − 4/3k).
Next we deal with the reaction terms

d

dt
Q = 2

∑
α,β

( ∑
i, j

hi jαhi jβ

)2

+ 2|Rm⊥|2 − 2k
∑
i, j

(∑
α

Hαhi jα

)2

+ 2γ R3

= 2| ◦
A1|4 − 2

(
k − 2

n

)
| ◦
A1|2|H |2 − 2

n

(
k − 1

n

)
|H |4

+ 4

( ∑
i, j

◦
hi j1

◦
hi j2

)2

+ 2

( ∑
i, j

◦
hi j2

◦
hi j2

)2

+ 2|Rm⊥|2
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+ 2γ |K⊥|
(
|A|2 + 2| ◦

A|2 − 2b2
)

− 4K̄ | ◦
A|2 − 4K̄ (k − 1/2)|H |2 − 8γ K̄ |K⊥|.

(25)

Written in the special orthonormal frame, the bracketed terms on the second last line above
are

4

( ∑
i, j

◦
hi j1

◦
hi j2

)2

= 16a2b2, 2

( ∑
i, j

◦
hi j2

◦
hi j2

)2

= 2(2b2 + 2c2)2.

Now suppose, for a contradiction, that there exists a first point in time whereQ = 0. Comput-
ing at this point, as Q = 0 we have

(
k − 1

n

) |H |2 = (| ◦
A|2 + 2γ |K⊥|− εK̄ ), and substituting

this into (26) to eliminate the |H |2 terms we obtain after some computation

d

dt
Q =

(
− 1

k − 1/2
+ 2

)
4a2b2 +

(
− 1

k − 1/2
+ 2

)
γ |K⊥|| ◦

A1|2

+
(

− 3

k − 1/2
+ 6

)
γ |K⊥|| ◦

A2|2 +
(

− 1

k − 1/2
+ 2

)
| ◦
A2|4

+
(

− (1 + 2γ 2)

k − 1/2
+ 6

)
|K⊥|2

+ εK̄

(
2 + 1

k − 1/2

)
| ◦
A1|2 + 2εK̄

k − 1/2
| ◦
A2|2 + 3εK̄γ |K⊥|

k − 1/2
− ε2 K̄

2

k − 1/2

− 4K̄ | ◦
A|2 − 4K̄ (| ◦

A|2 + 2γ |K⊥| − εK̄ ) − 8γ K̄ |K⊥|
(26)

The quartic terms are

(
− 1

k − 1/2
+ 2

)
4a2b2 +

(
− 1

k − 1/2
+ 2

)
γ |K⊥|| ◦

A1|2

+
(

− 3

k − 1/2
+ 6

)
γ |K⊥|| ◦

A2|2 +
(

− 1

k − 1/2
+ 2

)
| ◦
A2|4 +

(
− (1 + 2γ 2)

k − 1/2
+ 6

)
|K⊥|2

and in the special orthonormal frame these are

4c2
{(

− 1

k − 1/2
+ 2

)
c2 + η1

(
− 3

k − 1/2
+ 6

)
γ |ac| + η2

(
− (1 + 2γ 2)

k − 1/2
+ 6

)
a2

}

+ 4|ac|
{(

− 1

k − 1/2
+ 2

)
γ a2 + (1 − η2)

(
− (1 + 2γ 2)

k − 1/2
+ 6

)
|ac|

+ (1 − η1)

(
− 3

k − 1/2
+ 6

)
γ c2

}
.

We now substitute γ = 1 − 4/3k − δ in order to keep the gradient term negative, and use
the parameters η1, η2 to shift as much bad normal curvature into the first curly bracket to
consume all of the good c4 term. As it does not seem possible to reach k = 3/4, we have
numerically explored the parameter values, with the result that the above term is strictly
negative for k = 29/40.
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The lower order terms are

εK̄

(
2 + 1

k − 1/2

)
| ◦
A1|2 + 2εK̄

k − 1/2
| ◦
A2|2 + 3εK̄γ |K⊥|

k − 1/2
− ε2 K̄

2

k − 1/2

− 4K̄ | ◦
A|2 − 4K̄ (| ◦

A|2 + 2γ |K⊥| − εK̄ ) − 8γ K̄ |K⊥|
Rearranging we have((

2 + 1

k − 1/2

)
ε − 8

)
K̄ | ◦

A1|2 +
(

2ε

k − 1/2
− 8

)
K̄ | ◦

A2|2 + γ K̄

(
3ε

k − 1/2
− 16

)
|K⊥|

+
(
4 − ε

k − 1/2

)
εK̄

2

The last term is zero if
(
4 − ε

k−1/2

)
= 0. Therefore we require ε = 4(k − 1

2 ) and γ ≥ 0.

We also require
(
2 + 1

k−1/2

)
ε − 8 ≤ 0,

(
2ε

k−1/2 − 8
)

≤ 0 and
(

3ε
k−1/2 − 16

)
≤ 0 but this

occurs if ε ≤ 2 which is implied if k ≤ 29
40 (in fact if k ≤ 1).

6 Minimal submanifolds of the sphere

Minimal surfaces are geometric obstructions to enlarging preserved curvature conditions.
One minimal surface of particular relevance to the mean curvature flow in a sphere is the
Clifford torus, which is a minimal in S

3 and satisfies |A|2 = |H |2 when immersed in R
4.

For two surfaces immersed in the three-sphere, the Clifford torus is a geometric obstruction
to pushing the pinching condition beyond 1/(n − 1). However, the mean curvature flow
is currently unable to reach the Clifford torus due to technical problems with the gradient
terms (see [2] where this problem is overcome by a fully nonlinear flow). We speculate
the geometric obstruction to two surfaces in S

4 evolving by the mean curvature flow is the
Veronese surface, which is minimal in S

4 and satisfies |A|2 = 5/6|H |2 when immersed in
R
5. In this final section, we refine a famous theorem by Chern, do Carmo and Kobayashi by

characterisingminimal surfaces of the four-sphere in termsof a pointwise pinching of intrinsic
and extrinsic curvatures, instead of the length of the second fundamental form as was done in
the original paper [4]. This is achieved by exact calculation of the nonlinearity in the Simons
identity. The equivalent result for a Euclidean background appeared in [3], where it was used
to greatly simplify the proof the Poincaré-type inequality obtained from the positivity of the
Simons identity nonlinearity. We first compute the Simons’ identity nonlinearity exactly and
then achieve the desired result by an application of the strong maximum principle.

Proposition 6.1 Let �2 ⊂ S
4. Then the contracted Simons’ identity has the form

1

2

|A|2 = Ai j · ∇i∇ j H + |∇A|2 + (H2 − |A|2 + 2K̄ )| ◦

A|2 − 2|K⊥|2

= Ai j · ∇i∇ j H + |∇A|2 + K | ◦
A|2 − 2|K⊥|2

Proof The contracted Simons’ identity takes the form (27)

1

2
�|A|2 = Ai j · ∇i∇ j H + |∇A|2 + Z + 2K̄ | ◦

A|2, (27)
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where we used H = 0,
◦
A = A and where

Z = −
∑
α,β

( ∑
i, j

hi jαhi jβ

)2

− |Rm⊥|2 +
∑
i, j,p
α,β

Hαhipαhi jβh pjβ .

Splitting the first term on the right into diagonal and off-diagonal summations, and using
hi j1 = 0 for i 	= j , we get∑

i, j,p,α,β

Hαhipαhi jβh pjβ =
∑
i

hiiα
∑
i, j

hiiα(hii1)
2 +

∑
i

hiiα
∑
i, j

hiiα(hii2)
2

+
∑
i

hiiα
∑
i 	= j

hiiα(hi j2)
2 +

∑
i

hiiα
∑
i 	=p

hipαhi jβh pjβ .

The final term on the right is zero, as computing in the special orthonormal frames we see∑
i

hiiα
∑
i 	=p

hipαhi jβh pjβ = H
∑
i 	=p

hip1hi jβh pjβ = 0,

since hip1 = 0 for i 	= p. We similarly split the second term on the right of Z into diagonal
and off-diagonal sums, and putting all terms together we have

Z =
∑
i

hiiα
∑
i, j

hiiα(hii1)
2 +

∑
i

hiiα
∑
i, j

hiiα(hii2)
2 +

∑
i

hiiα
∑
i 	= j

hiiα(hi j2)
2

−
∑
α

( ∑
i

hii1hiiα

)2

−
∑
α

( ∑
i

hii2hiiα

)2

−
∑
α

( ∑
i 	= j

hi j2hi jα

)2

− 2
∑
α,β

( ∑
i= j

hi jαhi jβ
∑
i 	= j

hi jαhi jβ

)
− |Rm⊥|2.

We estimate these terms in pairs, gathering the first, second and third terms of lines one and
two, respectively. Dealing with the first pair of terms, we follow [14] but keep track of the
normal curvature terms to find∑

i

hiiα
∑
i, j

hiiα(hii1)
2 −

∑
α

( ∑
i

hii1hiiα

)2

=
((|H |2 − |A|2) +

∑
α

(h12α)2

)
(h111 − h221)

2

= (|H |2 − |A|2) (4a2) + 4a2c2.

We estimate the second pair of terms in the same way, obtaining

∑
i

hiiα
∑
i, j

hiiα(hii2)
2 −

∑
α

( ∑
i

hii2hiiα

)2

=
((|H |2 − |A|2) +

∑
α

(h12α)2

)
(h112 − h222)

2

= (|H |2 − |A|2) (4b2) + 4b2c2.

For the third pair of terms, as there are no diagonal terms to easily factor into the intrinsic
curvature, we proceed by computing in the special orthonormal frames from the outset:
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∑
i

hiiα
∑
i 	= j

hiiα(hi j2)
2 −

∑
α

( ∑
i 	= j

hi j2hi jα

)2

= 4c2
( |H |2

4
− c2

)

= 4c2
( |H |2

4
− a2 − b2 − c2

)
+ 4c2(a2 + b2)

= 2c2(|H |2 − |A|2) + 4c2(a2 + b2).

With the final term, as hi j1 = 0 the only non-zero contribution comes from α, β = 2 and we
see

2
∑
α,β

( ∑
i= j

hi jαhi jβ
∑
i 	= j

hi jαhi jβ

)
= 2

( ∑
i= j

hi j2hi j2
∑
i 	= j

hi j2hi j2

)

= 2(2b2)(2c2) = 8b2c2.

Collecting all the terms together, and recalling |Rm⊥|2 = 16a2c2 = 4|K⊥|2, we achieve
Z = (|H |2 − |A|2) (2a2 + 2b2 + 2c2) + 8a2c2 + 8b2c2 − 16a2c2 − 8b2c2

= (|H |2 − |A|2) | ◦
A|2 − 2|K⊥|2.

��
We now apply the above proposition in the case �2 is a minimal surface to conclude

Theorem 1.3.

Proof of theorem 1.3 Suppose �2 is minimally immersed in S4. Then the nonlinearity in the
Simons’ identity satisfies

Z = −|A|4 − 2|K⊥|2 + 2|A|2 = |A|2
(

−|A|2 − |K⊥|2
|A|2 + 2

)
.

Therefore let us assume −|A|2 − 2|K⊥|2
|A|2 + 2 ≥ 0 or equivalently, 2K ≥ 2|K⊥|2

|A|2 so that

K⊥ = 2ac ≤ a2 + b2 + c2 ≤ 1
2 |A|2. Then computing the contracted Simons’ identity we

have

1

2

|A|2 = |∇A|2 + |A|2

(
−|A|2 − 2|K⊥|2

|A|2 + 2

)
. (28)

Therefore if we have −|A|2 − 2|K⊥|2
|A|2 + 2 ≥ 0 this implies 1

2
|A|2 ≥ 0 so by the maximum

principle |A|2 ≡ C = const . By (28), either |A|2 ≡ 0 or |A|2 + 2|K⊥|2
|A|2 = 2. In both cases

we have |∇A|2 = 0. Since we have |A|2 = const . �⇒ K⊥ = const .

Furthermore as −|A|2 − 2|K⊥|2
|A|2 = 2 implies |A|2 = 1± √

1 − 2|K⊥|2. Since K⊥ = 2ac
we get

0 ≤ |K⊥|2 ≤ 1

4
|A|4

or 4
3 ≤ |A|2 ≤ 2 because |A|2(2 − |A|2) = 2|K⊥|2 so that 1

4 |A|4 ≥ |A|2(2 − |A|2) ≥ 0.
Furthermore this implies 0 ≤ |K⊥|2 ≤ 4

3 . As 2K = 2 − |A|2 gives

2
∫

�

Kdμ = 2
K⊥

|A|2
∫

�

K⊥dμ
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which implies if K⊥ = 0 then K = 0 or that |A|2 = 2 in which case we have a Clifford
torus. Therefore let us assume K⊥ 	= 0. We will apply Simons’ identity to K⊥.

For the sphere, where R̄i jkl = K̄ (gikg jl − gil g jk),∇ R̄ = 0.

�hi jα = ∇i∇ j Hα + H · hiph pjα − hi j · h pqh pqα + 2h jq · hiph pqα − hiq · hqph pjα

− h jq · hqph piα

+ HαRiα jβνβ − hi jα R̄k jkph piα + R̄kikph pjα − 2R̄ipjph pqα − h̄i jα R̄ipαβνβ

+ 2hipα R̄ jpαβνβ

+ ∇̄k R̄ki jβνβ − ∇i R̄ jkkβνβ

= ∇i∇ j H + Zi jα + 2hi jα − gi j Hα (29)

where

Zi jα = H · hiph pjα − hi j · h pqh pqα + 2h jq · hiph pqα − hiq · hqph pjα − h jq · hqph piα.

Therefore computing in the special orthonormal frames above, with H = 0 we get


K⊥ = 2K⊥(2 − b2 − 3a2 − 3c2) = 0.

because we can show that |K⊥|2 = 4a2c2 and |A+|2 = 2a2. Hence |K⊥|2
|A+|2 = 2c2. Also

|A−|2 = 2b2 + 2c2 so that 2b2 = |A−|2 − |K⊥|2
|A+|2 .

�K⊥ = 2K⊥(2 + |A−|2 − |K⊥|2
|A+|2 − 3

2
|A|2) = 0.

Sincewe assume K⊥ 	= 0 , 2+2b2−3b2−3a2−3c2 = 0 or 2+|A−|2− |K⊥|2
|A+|2 − 3

2 |A|2 = 0.
Therefore

2b2 = 3

2
|A|2 − 2 or |A−|2 − |K⊥|2

|A+|2 = 3

2
|A|2 − 2

Therefore b2 = const . or |A−|2 − |K⊥|2
|A+|2 = const .. We compute the Laplacian of b2 = h2112

and get


h112 = h112(2 − 2a2 − 2b2 − 2c2) = 0. or �|A−|2 − |K⊥|2
|A+|2 = |A−|2 − |K⊥|2

|A+|2 (2 − |A|2).

Therefore b = 0, |A−|2 − |K⊥|2
|A+|2 = 0 or |A|2 = 2. If |A|2 = 2, then we have the Clifford

torus. Therefore let us assume b = 0, |A−|2 − |K⊥|2
|A+|2 = 0. Then from above |A|2 = 4

3 and

K⊥ = 2
3 . Then by a theorem of Chern–do Carmo–Kobayashi [4], this surface is the Veronese

surface. ��
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