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Abstract

In this paper, we prove convergence of the high codimension mean curvature flow in the sphere
to either a round point or a totally geodesic sphere assuming a pinching condition between the
norm squared of the second fundamental form and the norm squared of the mean curvature
and the background curvature of the sphere. We show that this pinching is sharp for dimension
n > 4 but is not sharp for dimension n = 2, 3. For dimension n = 2 and codimension 2,
we consider an alternative pinching condition which includes the normal curvature of the
normal bundle. Finally, we sharpen the Chern—do Carmo—Kobayashi curvature condition for
surfaces in the four sphere - this curvature condition is sharp for minimal surfaces and we
conjecture it to be sharp for curvature flows in the sphere.

1 Introduction

We concern ourselves with submanifolds of the sphere evolving with velocity equal to mean
curvature and seek to understand the widest class of initial submanifolds that converge to
totally geodesic submanifolds or shrink to points in finite time. The equivalent problem for
hypersurfaces of the sphere has been investigated by Huisken [7]. Mean curvature flow of
hypersurfaces has been intensively studied since Huisken’s seminal result on the flow of
convex surfaces, but in contrast, progress in high codimension has been slow, impeded by the
presence of normal curvature. Recently, the authors made a breakthrough for mean curvature
flow of two surfaces of codimension two in a Euclidean background [3], and showed that
by explicitly including normal curvature in the pinching cone, the equivalent hypersurface
result could almost be obtained. The presence of normal curvature in high codimension
creates additional unfavourable reaction terms driving singularity formation. As our recent
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paper demonstrates, at least in codimension two, the additional unfavourable reaction terms
can potentially be controlled by careful incorporation of normal curvature into the initial
pinching condition. The main results presented in this paper are enabled by an improved
understanding of how to control normal curvature along the mean curvature flow. Herein,
we present three new results, the first two concerning mean curvature flow of submanifolds
of the sphere subject to different initial pinching conditions (the second involving normal
curvature), and the third a classification of submanifolds of the sphere with pointwise pinched
intrinsic and normal curvatures:

Theorem 1.1 Let 3 = Fo(X") be a closed submanifold smoothly immersed in S IF S,
satisfies

AP < £|H? + 2K, n=23
AP < L |H?+2K, n =>4,

then either

1) MCF has a unique, smooth solution on a finite, maximal time interval 0 <t < T < o0
and the submanifold ¥, contracts to a pointast — T; or

2) MCF has a unique, smooth solution for all time 0 < t < 00 and the submanifold ¥,
converges to a totally geodesic submanifold .

Theorem 1.2 Suppose So = Fy(Z?) is a closed surface smoothly immersed in S*. If o
satisfies |A1> + 2y |KL| < k|H|> + 4(k — $)K, where y = 1 — 43k and k < 29/40, then
the mean curvature flow of Lo has a unique smooth solution ¥, on a maximal time interval
t € [0,T). If T is finite then there exists a sequence of rescaled mean curvature flows
Fj: 2 x 1 i = R* containing a subsequence of mean curvature flows (also indexed by
J) that converges to a limit mean curvature flow Fy, : Zgo x (—00, 0] — R* on compact
sets of R* x Roas j — oo0. Moreover, the limit mean curvature flow is a shrinking sphere. If
T = oo then the flow converges to a totally geodesic sphere.

Lp
Theorem 1.3 Suppose a two surface ©* minimally immersed in S* satisfies ‘\KAP‘ < K.Then

either

1) |A)? = 0 and the surface is a geodesic sphere; or
2) |A|? £ 0, in which case either

(a) |K+| =0 and the surface is the Clifford torus, or
(b) K+ = 0 and it is the Veronese surface.

The first theorem appeared in the first author’s doctoral thesis, which has not yet been
published in peer-reviewed form, with the less optimal constant 2(n — 1)/3 preceding the
background curvature. The proof presented here differs the first author’s doctoral thesis
by improving upon the pinching constant and by replacing the complicated Stampacchia
iteration by a more elegant blow-up argument using a new pointwise gradient estimate; more
on this is said below shortly. We briefly mention that the improvement of the constant from
2(n —1)/3K to n/2K can also be achieved by making use of the discovery made by [8] that
the nonlinearity in the Simons identity need only be positive to the highest order of mean
curvature in order for the Stampacchia iteration argument to work.

The main theorem of [1] is optimal for submanifolds of dimension four and greater (inde-
pendent of the codimension), where the tori given by a product of n — 1 sphere of radius & and
acircle of radius 1, S"~!(g) x S(1) € §* x S2 ¢ R"*! x R3 are obstructions to improving
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the pinching constant beyond 1/(n — 1). The theorem is suboptimal in dimensions two and
three, with pinching constant k = 4/(3n), because of unfavourable reaction terms. In a recent
breakthrough, for codimension two surfaces in a Euclidean background, the authors were
able to improve this constant from 4/(3n) to 29/40 by including the normal curvature in
the pinching condition. Theorem 1.2 extends the result of [3] to submanifolds in a spherical
background. With the inclusion of normal curvature, the new pinching condition turns out
to be optimal for the reaction terms, but the gradient terms still obstruct the attainment of
optimal pinching, analogous to the flow of two dimensional hypersurfaces in a spherical
background [7]. In the hypersurface case, Huisken achieves a constant of 3/4 whereas for
codimension two surfaces we achieve 3/4 — 1/40. In both cases the constants are determined
the gradient terms; in the codimension two case, the term 1/40 appears in order to accommo-
date the gradient of normal curvature. We do not know whether the pinching constant 29/40
can be extended to 3/4. We conjectured in [3] that (for two surfaces of codimension two in a
Euclidean background) the true obstruction to the theorem is the Clifford torus immersed in
R*, corresponding to the pinching condition |A|> < |H |%. In the present case, we conjecture
that the true obstruction to Theorem 1.2 is the Veronese surface, a minimal submanifold of
the four sphere.

The third result we present, Theorem 1.3, is a new classification of minimal submanifolds
of the sphere, made possible by our exact computation of the nonlinear term in the Simons
identity. The Simons identity plays a key role in a series of classification results initiated
in a famous paper by Chern, do Carmo and Kobayashi [4], later extended to encompass
submanifolds of the sphere with parallel mean curvature by Santos [12]. With our refined
understanding of the Simons identity nonlinearity we are able to provide a new classification
result depending not on the length of the second fundamental form, but rather on a pointwise
pinching of the intrinsic and normal curvatures. Combined with a careful analysis of the
curvature terms, the proof is achieved by an application of the strong maximum principle,
mimicking modern proofs of Simons’ famous result [13].

The outline of this paper is as follows. The broad arc of the proof is the same as [6], however
the proof develops by a more efficient series of estimates, completely avoiding the Poincaré-
type inequality constructed by painful estimation of the Simons identity nonlinearity and
the Stampacchia iteration. After proving that curvature pinching is preserved along the flow
in Sect. 3, in place of the Stampacchia iteration, in Sect. 4 we prove a pointwise gradient
estimate and blow-up argument to characterise the shape of the evolving submanifold at a
finite time singularity. The case of infinite lifespan is also treated, giving rise to the second
case in theorem 1.1. We then move on to consider the case of evolving two surfaces in
the four-sphere, and extend the normal curvature-pinched condition introduced in [3] to a
spherical background and prove its preservation along the flow in Sect. 5. The remainder of
the proof is similar to that presented in Sect. 4 (or by the Stampacchia iteration argument in
[3]) with straightforward adjustments and is not duplicated. In the final section, we present our
refinement of the famous theorem of Chern, do Carmo and Kobayashi. The exact estimation
of the Simons identity nonlinearity was used (in a Euclidean background) to derive the
Poincaré-type inequality used in the Stampacchia iteration argument in [3].

2 The evolution equations in a sphere

The geometric evolution equations for high codimension mean curvature flow in an arbitrary
Riemannian background were derived in [1]. In the following we will denote the second
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fundamental form by A = {h;;}, the mean curvature as H = trA = {g'/ hij| and the

traceless second fundamental form by A=A— %H g. We recall the evolution of the second
fundamental form is given by

Vo hij = Ahij +hij - hpghpg + hig - hgphpj +hjq - hgphpi —2hip - hjghpg
+ 2Iéiquhpq - Iékjkphpi - Iékikphpj + hijaRkakﬂVﬂ
— 2N jpa Ripapvp — 2hipa R jpapvp + ViRiijpvp — ViR jkipvp.
We make use of shorthand notation for the reaction terms
2 2
R X (Stn) + 1Rt o= 3 (X b )
af i) i,J o
where RiJ]_‘aﬁ = hipahjpﬂ — hjpah,'pﬁ.
The evolution equations can be simplified in background spaces of constant curvature

such as the sphere. Suppose d,, 1 < a < n + k is an orthogonal local frame for background
sphere of constant curvature K. In such a frame the curvature tensor of the sphere is

Rabcd = k(sacébd - 5ad8bc)- (1)

Using this as well as the fact that the derivates of the constant background curvature are zero,
we see the evolution for the second fundamental form is

Vo hija = Dhijo + Rija + 2K Hygij — nKhijg
where
Rija = hijp - hpgphpga + higp - happhpje + hjgp - happhpia = 2hipp - 1 jgphpga-
Tracing this expression with respect to i, j we get
Vo Hy = AHy + Ry +nKH, where Ry = Hp - hijphija-

With a further line of computation, we see the evolution equation for |A|? is given by

9 _ i}
a|A|2 = A|A]> = 2|VAP? + 2R, + 4K |H|* — 2nK|AJ%, )
and|H|2by
0 2 2 2 o 2
o [HI? = AIHP? —2|VHI? + 2R, + 20K |H. 3)

The evolution of normal curvature is computed to be

9 1 1
ERijaﬁ = ARijaﬂ -2 Z (thipavthpﬁ - thjpavqhipﬁ)

p.r
+Ripahjpp + hipa Rjpp — Rjpahipp = hjpaRipp — 20K Rijpp.  (4)
The contracted form of Simons’ identity takes the form
LAIAR = A ViV H + VAR + Z + nRIA] 5)
) = Ajj iVvVj s
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where again

2
1,2
Z = —Z <Zhijahijﬁ> — |Rm~|" + Z Hah,’pahijﬁhpjﬁ.
af i i«jbp
o,

And finally, the basic gradient estimate
3
VAP =z —|VHP? ©)
n+2

carries over unchanged.

3 Preservation of curvature pinching

We now prove that a certain pointwise curvature pinching condition holding on the initial
submanifold is preserved along the flow.

Lemma 3.1 Ifa solution F : % x [0, T) — S"* of the mean curvature flow satisfies

AP < sIHP+ 5K, n=2,3

<
- _ 7
AP < L |H?+2K, n=>4 @

at t = 0, then this remains true as long as the solution exists.

Proof Let us consider the quadratic pinching condition Q = |A|> —aH? — BK, where « and
B are constants. Since we allow the initial submanifold to have H = 0, along the flow it may
happen that there are points where H = 0. Hence we will consider two cases: 1) H = 0 and
2) H # 0. In the second case we are able to compute in a local frame for the normal bundle
where vi = H/|H|.

1) For the case H = 0, the evolution equations for |A|? and |H |? give us

0 o _
5Q:AQ—2|VA|2+2R1 —2nK|A%. 8)
Using the estimate of [10] on the normal directions of R; we have

2

o o o o o o 3 o

R1=§:(§:Agwaﬁ) + D N(AaAp — ApAa) < SIAT.
af i, a,p

The reaction terms of (8) are estimated by
2R; — 2nK|A|? < 3|A|* — 2nK | A2
If Q is not (strictly) negative, then Q = 0 or |fi|2 = BK and
3JA1* = 2nK|A]2 < —B(2n — 3B)K>

which is (strictly) negative as long as 8 < (2/3)n. We may then apply the maximum principle
and the lemma follows in this case.

Now let us consider the case H # 0. We use the special local frames of [1], and the
evolution equation becomes
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a - o -
5 9=200- 2(IVA> — «|VH|?) 4+ 2R — 2aRy — 2nK|A> — 2n(a — 1/n)K|H|?. (9)

Arguing as in Euclidean case, if Q does not remain (strictly) negative, we may replace | H |?
with (|A|? — BK)/(a — 1/n), and estimating as in [1],
2Ry — 2aRy — 2nK|A|? = 2n(a — 1/n)K|H|?
o o 2 o 2 o o
< 20417 = 20 = UmIAPIH? + S AP HP = =@ = 1/m) [ HI* +8lA AP
+31A_)*
— 2K (A 112+ 1A_1D) — 2n(e — 1/n)K|H|?

2 o 5 o o B 2 oy
E(6_z1<<>z—1/n>>'A" A +<3 n(a—l/n))'A"

2B T B P 2R
(28 2 PR 4 (B ) AP

B _o
—2 <n(a—1/n> _”>K
e 2 o s 5 e g - 28 0 o
_(6 7,1(@_1/”))(“‘1' AP 414 )+<2/3 4”7"(0,_1/,1))'/‘” K

At aa(— P VAR —(— P\ R
=t +4 (e =) PR =28 (B =) £

In the last line we choose the coefficient of the |A;|2|A_|* term as large as we can (that is

4/(3n)) and we have the good term —3|A_|?. Since the last line above is a quadratic form,
by requiring that the discriminant is negative, we have a strictly negative term. We compute
the discriminant as

B 8 8
A= (n(a i ”) {2 (n(a = 1/n>> - +3)’3}

B B
= 8(n(ot —1/n) —n) {2 <n(a — l/n)> _3'8}

which is negative with the chosen « and $ in dimensions two to four. For dimensions n > 4

the optimal value of « is 1/(n — 1). Therefore with this restriction, the coefficient of |fL |4
increases to —2(n — 4) — 3. The discriminant becomes

o B BN
A_8<n(a—1/n) ”){2<n(a_1/n)> Q2(n 4)+3)ﬁ},

and which is strictly negative for 8 = 2 for all n > 4. The most restrictive condition on the
size of B comes from the coefficient of the |/§1 |2K term, which gives the values of § in the
statement of the lemma. With the chosen values of « and § the right hand side of equation is
strictly negative, which is contradiction, and so Q must stay strictly negative. O

We first obtain an estimate for the trace-free second fundamental form which improves at
large times, using the maximum principle.
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Proposition3.1 Let F : ¥ x[0,T) — S™ be a solution to mean curvature flow with initial
condition in satisfying (7). Then there is a constant C = C (n, a) such that

M < Ce K1, (10)
|H> + K
Proof Set
AP = AP - LiH?
and
g = (bK +alH? - |A]),
where

1
a= 1 and b = 2.

Applying (3) and (2) yields (cf. Lemma 3.1), wherever |H| # 0,
@ — MIAP <2142 + 3142 = HHP) A - 4nK (A1)? +1A_?)
F2AAP(AP + LHP? +0K) — (VAP = LIVEHP).
Not
A2+ A2 = |A]?
so that
AR+ 3142 = HP = (3- ) 1A+ (3 - 7 ) 1412 -

The first three terms are non-positive. The remaining term is also non-positive by the Kato
inequality. Thus,

A%

1
an—1

(0 — M)A < — 4nK A2 +2|AP (|2§1|2 + AP+ LHP +n1€)

an—1
=20AP (141 + g AP+ LIHP = nR). (1)
Since
—@ — Mg < —28(1A112 + S IA_P + LH? — (1 - h)K) — 4y |VA]%,
where
2y =1-"a>0,
we obtain
(3r—A>“§7'2 @ — MIAP (3 — N)g |A]2
e = |1&|2 - 2 +2<Vlogg,V10g(g)>

[VA|? A2
<—-2bK 4 Vlog —, Vlog(g)
8 8
wherever |H| # 0.
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On the other hand, wherever |H| = 0,

—( — MW < —3|APW

and
@ — M)IA]? <(3IA”* - 2K) AP, (12)
and hence, at such points,
AP .
@ -0 e AP
— % < _2K+2(Vleg—, Vlog(g) ).
A1 8
8

Since b > 1 we conclude that

_ ayldP
CENE

s
[AI2
8

_ A]?
< —2K +2(Vlog —, Vlog(g)
8

everywhere. The maximum principle now implies the claim. O

4 A gradient estimate for the second fundamental form

Here we establish a gradient estimate for the second fundamental form.

Theorem 4.1 Let 3, t € [0, Tiax) bea closedn—dimensionalquadrazically bounded solution
to the mean curvature flow in the round sphere of curvature K, S’I?'k with n > 2, that is

JA> —clH> = 2—-8)K <0
with ¢ = ﬁ —n < % where %n < ﬁ is determined by the initial data. Then there exists

a constant y1 = y1(n, Xo), Y2 = y2(n, Xo) and 8y = 8o (n, K) such that the flow satisfies
the uniform estimate

IVAI> < (nIAI* + y2)e ™" forall t € [0, Tmax)-

Proof We choose here k, = 3 _¢)>0Asi <c< 4
n+2 n 3

3> 2, ky, s strictly positive.

2
We will consider here the evolution equation for % where g = ﬁIH 1> — |A]? + 2K

where the initial pinching condition ensures g is strictly positive. This follows since |A|? —
(ﬁ - 77) |HI? - (2—¢)K <0, |H| > 0and X is compact, we have
- 1 _ — 1
2K + 71|H|2 —|A? > n|H> +¢K or g=2K + 71|H|2 —|A> > n|H?
n— n—
+¢K > 0. (13)
From the evolution equations, (9), we get

1
dg=Ag—2 (mwmz - |VA|2> +2(cRy — Ry)

2 1
zAg—Z(n+ ——1>|VA|2

3 n—1
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2
> Ag+ 2, 2|V AR,

The evolution equation for |V A|? is given by

d

o IVAPZ = AIVAP? < =2IV2AP + e AP VAP + dy [ VAP
Let w, z satisfy the evolution equations

0 0
—w=Aw+W, —z=Az+2Z
at at

then we find that

(2)-2(2) e (2) o 22

Vw, V Vz|? W
:A(E>+2< w. Va) _,wlvel +— -2z
Z

72 23 7z

Furthermore for any function g, we have by Kato’s inequality
1
(Vg, VIVAP®) < 2|Vg|IV?A||VA| < §|Vg|2|VA|2 +gIV2APR.

We get

VA? 2 2
|V2A| + = < (' ')>5—§|V2A|Z—?|Vg|2|m|2

2
+ = 2 5(Ve, VIVAP) <

Then if we let w = |[VA|? and z = g with W < —2|V2A|2 4 ¢, |A|?|IVA|? + d,|VA|? and
Z > 2, "F2 |V A|? we get

d [|VA? |VA|2 [VA|? 1 5
— Vg \% + —(=2|V°A|
ot g g g g g

+ cal APIVAPR 4+ dy| VAP

n+2|VAP*
2y e
VA VA2 2 IVA)*
SCn|A|2| |+an |_2Knn+ [VA|
g 30 g
We repeat the above computation with w = y, z = g, and we have for the nonlinearities,
Z > 0 and
VA 2 VA4
W< AP VAL o n 2 VAT
3 g
3 (VA VA2 [VA|?
— —A vg v
ar \ g2 g? g g?
1 VAP VA n+2|VAP*
+ 2 (a0 4 4, T80 g mE2 20N (14)
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The nonlinearity then is

IVA? )
? cnlAl" +dy —

2, (n +2) |[VA|?
3 g '

The quadratic curvature condition then bounds |A|? below away from zero, this can be seen
from

1 _ _ 1 _
|A]? < (nj - n) [HI? + Q2= e)K = eK < ——H" = |A + 2K — y|H|’

so that g > n|H|*> + ¢ K, that there exists a constant N so that
Ng = culA* + dy.

Hence we have by the maximum principle, there exists a constant (with 1, & chosen sufficiently
small so that N is sufficiently large that this estimate holds at the initial time) such that

2
VAL . N (1)
2 " 2 +2)
Theref h i =N wap
erefore we see that there exists a constant C = Tt = C(n, X, €) such that pe <
C.
In order to get the long time exponential decay, we consider u := |[VA[> + (N +

No|H |2)|fi|2. From the evolution equations for |A|? and |H | we derive
9 .
o (Vi + N2 |HH)|AP?)
= A((Ny + N2 HP)AP) = 2N2(Vi | H |2, Vi |A*) = 2N2[AP|VH? + 2N2 Ry | A
+2nK|H* AR
2 2 1 2 2 1
—2(N1 + N2 |HIP) | IVA]” — ;|VH| +2(N1 + N2|HIP) [ R — ;Rz
— 20K (N1 + N2 |HP)|A]?
= A((N1 + N2 | HP)AP) = 2No(Vi | H 2, Vi |A]Y) = 2N |APIVH > + 2N Ro | A
1 1 I
—2(N; + Na2|HD) <|VA|2 - ;|VH|2) +2(N; + N2 |H %) (Rl - ;Rz) —2nK N1 A%
We estimate the second term on the right as follows:

2NV |HP?, V;|AP) < N2 | H|AIIVH|[V A
< 8N2|H|/n|VAPCo(|HI* + K)'2e K1
4n—1)
< T|H|2|VA|2 +c1(N2)|VAP?

if we choose t > T where T = T (n) is sufficiently large depending only on n. Using
Young’s inequality, R, < |A|*|H |2, and R; — %Rz < 2|A||A|?* and the pinching inequality
we estimate

o 1 o
2Ny Ry|A|> 4 2(Ny + N2 |H|?) <R1 - ;R2> < ca(N1, N)IAPP(HI* + 1).
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The constants depend on more that just N1 and N, however we only highlight the dependence
on N as this is relevant in the following proof. We discard the terms

—2nK Ny |A]2 = 2N>|APIVH? <0

and we get
0 o ° 4n—1)
o (Vi + N2 IHP)AP) < A((Ny + N2l HP)IAPP) — — (V- DIH[*IVA]?
4n—1) 2 ° 5 4
— = (Vi = L) VAP + e (N1, N) AP (HI* 4 1.

(16)

Therefore u satisfies
3 4(n—1
oS But cnlAPIVAP +d, VAP + —%(Nz — DIH)P|IVAP?

4(n—1)

3n

We choose N1 and N; large enough to consume the positive terms arising from the evolution
equation for |V A|?. This leaves

(N1 — ct(N)) VAP 4 c2(Ny, N)IAP(HI* + 1).

—u < Au— (N2 — 1 —c))|HP*|VA]* - (N1 — c3(N2)|VAJ?

ot 3
+ ca(N1, Np)|AP(H|* + 1).

3 4(n—1) 4(n—1)
n n

3

Now consider v := ¢©®/2y — »n|H|*. From the evolution equations derived above we see
the evolution equation for |H |* is easily derived from that of |H |*:

9 _
o [HI" = AJHI* = 2VIHP 2 = 4 HP|VH]? + 4Ro| HI? + 4nK | H|*,
We discard the last term and use |V|H||*> < |[VH|? and R, > 1/n|H|4 to get
9 4 4 2 2, 4 6
EIHI > AlH|" = 12|HI"|VH| +;|H| a7
Putting together the above evolution equations we have

9
Z e/, g4
at(e u—nlH[")
6 o
< SeOD(VAP + (N1 + NaolHP)IAP)
4 oo/ ( Au— =D

3 (N1 — c3(N2)|VAJ?
n

4n -1
(N2 — 1= PV ap - 2D
3n
+c4<N1,N2>|K|2(|H|4+1)>
4 2 2 4 6
— n(AHI* = 12IHPIVHE + 2 H[°).

The terms on the first line can be absorbed into those on the second line by suitable estimation.
By choosing N; sufficiently large the gradient term on the last line can be absorbed, and then
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we choose Ny larger again to make the |V A|? term negative. We finally discard the negative
gradient terms to get

0 o 4
v = Av+ese ™D AR(H 4+ 1) - ;”|H|6.

Using Theorem 3.1, Young’s inequality and choosing 7 sufficiently large we obtain

%v < Av+ Cﬁe(BO/Z)t_ZKZ.

If we finally choose 89 = 2K from which we conclude v < ¢7. The gradient estimate now
follows from the definition of v. Combining this with the previous estimate (15), proves the
desired bounds. O

We will also want to control the time derivative of curvature with constants with explicit
dependence. In order to do so, we now derive quantitative estimates for the second derivative
of curvature. The following estimate is a consequence of the evolution equations for the sec-
ond fundamental form and its derivatives and an application of standard parabolic estimates.

Theorem 4.2 Let X be a solution of the mean curvature flow then there exists constants
V3, V4, 80 depending only on the dimension and pinching constant so that

IVZAIZ < (131A1° + ya)e /D1,

As a special case of our estimates by the quadratic bounds on the curvature and the
evolution equation for the mean curvature we get the following statement

Corollary 4.3 Let 3; be a mean curvature flow. Then there exists & H* 89 > 0 such that
Sforall p € M andt > 0 which satisfy

|H(p.0)| = H* = |[VH(p,0)| < c*e™ ™D H(p, 0)]*, [:H(p, 1)
< e PN Hp, DI
Proof The first estimate follows by (6)
3
IVA? > ——|VH.
n+2
and Theorem 4.1 and the hypothesis |[H (p, t)| > H*. The second estimate follows by the
evolution equation of H, (3), Theorem 4.2 and the quadratic bound (7). ]

Note that the following Lemma is purely a statement concerning submanifolds subject to
gradient estimate for the mean curvature and is not concerned with mean curvature flow.

Lemmad.4 Let F : M" — S"* be an immersed submanifold. Suppose there exists
& H*, 8y > 0 such that

IVH(p)* < c*e= /D! g (p)?

forany p € M such that |H|(p) > H¥. Let py € M satisfy |H (po)| = y H* for some y > 1.
Then

[H(po)| [H (po)l
|H(q)| = # o (50/2 = ’
1+ c#*e=Co/2d(py, )| H (po)| 14
y —1 1
Vg | d(po,q) <

cte=@o/20 | H|(po)
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Proof The proof involves integrating the gradient estimates along geodesics is essentially
that of [8] or [11]. ]

Finally we have the following

Theorem4.5 Let F : ¥ x [0,T) — S"tK < R+ pe q smooth solution to the mean
curvature flow such that Fo(p) = F (0, p) is compact and quadratically bounded. Then for
all ¢ > 0 there is a Hy > 0 such that if |H(p, t)| > Ho then

AR _ (1
— — E).
HP = \n

|A]> <e.

and a Ty > 0 such that if t > Ty

Proof The proof essentially follows that of [11]. Here we sketch the argument and point out
the differences in the case of the sphere. Let us first consider the following case

lim sup|A(p, t)|2 = 4o0.

t— Tinax oA

Furthermore, since %lH 12 < |A]? < nlle |2 4+ 2K, the second fundamental form A and

the mean curvature H have the same blow up rate, so we must have

lim sup|H(p,1)|* = +oo.

1—> I'max o
Suppose the estimate is not true. Then there exists an € > 0 where we have

, A(p, 01> 1 1
limsup sup ———— = —+¢> —.
t—>Tmax PEZ: |H(pvt)| n n
Furthermore there exists a sequence of points pi and times # such thatas k — 00, ty — Tax
and
A(pe )l 1

m —— == — +¢&.
k—oo |H (pi, tr)|? n

. . <k .
We perform a parabolic rescaling of X, in such a way that the norm of the mean curvature
at (px, tx) becomes n — 1. That is, if Fy is the parameterisation of the original flow >k we
let 7y = ‘H&ﬁ, and we denote the rescaled flow by Ef and we define it as

_ 1 .
Fr(p, 1) = a(Fk(p, P2t + 1) — Fi(peo )

For simplicity, we choose for every flow a local co-ordinate system centred at p. In these
co-ordinates we can write 0 instead of py. The parabolic neighbourhoods Pk (p, t, Pk L, f%@)
in the original flow becomes P(0, 0, 6, L). By construction, each rescaled flow satisfies

Fr(0,0) =0, |Hi(0,0)]=n—1.

The gradient estimates give us uniform bounds on |A| and its derivatives up to any order
on a neighbourhood gf the form P(0, 0, d, d) for a suitable d > 0. This gives us uniform
estimates in C° on F. Hence we can apply Arzela-Ascoli and conclude that there exists
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a subsequence that converges in C* to some limit flow which we denote by f]fo We now
analyse the limit flow flfo C R"*k_ Note that we have

X A A2

Ar(p, T) =1 Ar(p, FiT + 1).
so that

|A(p. O |Ak(p. FiT + 1)
|Hi(p, O |Hi(p., 727 + 1) |2

but since 7y — 0, fr —> Tmax as k — oo this implies

|A(p, T)I? i l[A(p, D> 1 A0, 0)> 1
o, = lim = < d — 5 =
|H(p,0)|? k=0 |Hi(p, D> ~ n |H(©0,0)2 n

2
Hence the flow 2°° has a space-time maximum for i H((" r))‘|2 at (0, 0). Since the evolution
AP

|H]
o (AP a (A2 2 Joimp v (MEV 2 2 (gap_ AP opp
\IHp HP) " EP T\ EP )| P |HP?

+ 2 R |A|2R
HE A\ HRT?

equation for | 1= is given by

Now
|VH|2<L|VA|2 AP <c¢ = _ 2 VA — AP IVH|?
“n+42 CoHRE ST |H? |H|?
Furthermore if |‘2|\2 = ¢ < ¢, then
|AJ?
Ry — |H|2 ——Ry=R; —cR;
2 2 o e
<= AP0+ ——— ) 1AiP1A-)?
nc 1/n n(c— 1/n)
2 °
+(3-—)14_1
I’Z(C— 1/n)
<0.

Hence the strong maximum principle applies to the evolution equation of H|2 and shows

that 1AL is constant. The evolution equation then shows that [IVA|? = 0, that is the second

IH \2
fundamental form is parallel and that |A_ |2 = |A |2 = 0, that is the submanifold is codi-
mension one. Finally this shows that locally > = S"* x R*, [9]. As \lg‘p <cp < nll we
142

can only have S"” which gives HE =
Next we consider the case where Tmax = 4-o00. Firstly we rule out the possibility that
lim;— o | Hmax| = +00. Therefore let us assume lim;_ o | Hpmax| = +00.
Since by assumption | H |max — 00 ast — 00, there exists a 7(n) such that e
allt <t <o00.Thus |[VH| < 77|H|max forallt > 7. Fixsomeé§ € (0, 1) andsetn = ‘s(]nﬂ
Lett € [t(n), 00), and x be a point with |H|(x) = |H |max. Along any geodesic of length

= Wthh is a contradiction.

S0t/2 < p for
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sag from x, we have |H| > |H|max — sélHlmame'max = 8|H |max, and consequently

the sectlonal curvatures satisfy K > ¢282|H|2,,. From Bonnet’s Theorem it follows that
diam ¥ < 57— H , from which we conclude that | H |nin > 6| H |max on the whole of X, for
telt(m, D).

The previous line shows that by choosing t sufficiently large, |H|min can be made
arbitrarily large. It follows from the above argument that after some sufficiently large
time the submanifold is as pinched as we like (and in particular can be made to satisfy
A2 < 1/(n — 1)|H|? in dimensions n > 4 and |A|> < 4/(3n)|H|* in dimensions
2 < n < 4). We now show that once the submanifolds are pinched as such, the maxi-
mal time of existence must be finite. Define Q = |H|* —a|A|* — b(t), where a = 37” and b is
some time-dependent function. Because | H |min > 0 and the submanifolds are as pinched as
we like, for some sufficiently large time T we can choose a b(t) = b; > O such that Q > 0
for t = 7. The evolution equation for Q is

0 I -
S 0=20- 2(\VH|> —alVA>) + 2Ry —2aR| +2(n — a)K|A|* + 2anK |H|* — b ()

> AQ —2(|[VH|)? — a|lVA|?) + 2R, — 2aR; — b (1).
Estimating the reaction terms as before we obtain

2Ry — 2aR;| — b/(l)
2 2
:Z<2Hahija> —ZaZ(Zhijahijﬂ> _2a|RmJ-|2_b/(t)
ij \« ap Nij
o 5 o 5 o 5 2 o 5 o 5 o 5
> 2[A17(alA1]” + alA-| +b)+n7(a|A—| + b)(alAi|” +alA_|" + b)

(I —a/n)
—2a|A|* = 8alA; FA_12 = 3alA_|* — b ().

Equating coefficients, we find Q > 0 is preserved if % < Snﬁ. ‘We can therefore take
b
b(t) = nio.
n —8bo(t — 1)

This is unbounded as t — © + Sb ,sowemusthave T <t + 3 b
Finally we need to consider the case where Tax = 00. Smce |Almax 1s bounded, by
Theorem 4.1 we have the estimate

|VA|? < Ce™ @0/t (18)

By considerings translations in time (x, ¢) +— (x,t — T) we can therefore extract a con-
vergent subsequence which will independent of the 7’s approaching infinity. Furthermore
this is a static solution to the mean curvature flow and hence a minimal submanifold, that is
lim;_,~ |H| = 0 and (18) tells us that this has parallel second fundamental form. But since
the limit submanifold is static, this means that the nonlinearity in (8) must be zero but this
can only happen if lim, o, |A|> = 0 as required. O

We now have all the necessary estimates in place to repeat the convergence arguments of
[1] to obtain smooth convergence of the submanifolds to a totally geodesic submanifold.
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5 Mean curvature flow of codimension two surfaces in S*

In the case of surfaces in S* we consider instead the pinching quantity |A]2 +2y|K+| <
k|H|?+ eK where y and ¢ will be determined. This is the first step of the proof of Theorem
1.2

5.1 Evolution of normal curvature

In this section we compute the evolution equation for the normal curvature. The normal
curvature tensor in local orthonormal frames for the tangent {¢; : i = 1,2} and normal
{vy : @ = 1,2} bundles is given by

Rijap = hipahjpp = hjpahipp. (19)

We often compute in a local orthonormal normal frame {v, : « = 1, 2} where v = H/|H|.
As the normal bundle is two dimensional v; is then determined by vy up to sign. With this
choice of frame the second fundamental form becomes

{Aolel—lHld & {[I‘A1:|H| 20)

n
Ay = Ay tr Ay =0.

It is also always possible to choose the tangent frame {e; : i = 1, 2} to diagonalise A;. We
often refer to the orthonormal frame {e1, e, €3, ea} = {e1, €2, v1, v2}, where {e; } diagonalises
Ajandvy = H/|H|,as the ‘special orthonormal frame’. Codimension two surfaces have four
independent components of the second fundamental form, which still makes it tractable to
work with individual components, similar to the role of principal curvatures in hypersurface
theory. Working in the special orthonormal frame, we often find it convenient to represent
the second fundamental form by

|H]|
S +a 0 b ¢
hij:|: 20 |2H|_a:|v1+[c_b:|vz, 21

so that hy;1 = |H|/2 + a, hoy1 = |H|/2 — a, h112 = b, h12o = ¢ and so on. Note that
|A]2 = 2a% + 2b2 + 2¢2.

Just as a surface has only one sectional curvature K, a codimension two surface also has
only one normal curvature, which we denote by K. In the special orthonormal frame the
normal curvature is

K* = Riyy = Z (hipthaps — hapihip)
P
= hi11h212 — ha1ihia + hiothox — hoihin
= 2ac. (22)

Note also that |[Rm~|?> = 16a%c%. The evolution equation of the normal curvature is given
by

9 1 1
5Rijaﬂ = ARijaﬁ - 22 (thiﬂavthnﬂ - thjnavqhipﬂ)
p,r

3 3 3 3
+ Z <5hipahjpﬁ +hipa 5 hjpp = - jpahipp = hjpaghipﬁ)
P
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- anRuaﬂ
or
0 1 1
a1 Rtjuzﬁ = ARijaﬁ - ZZ (thipavthpﬂ - thjpuvqhipﬂ)
[l r

+ Z(hlpy rqylrqa + higy - hgryhrpa + Rpqy - hgryhrie = 2hiry - hpgyhrga) jpp
+ Zhwa(hmy hrqyhrap +hjgy ~haryhrpp + hpgy - haryhrjp = 2hjry - hpgyhrgp)
- Z(hjpy raylrqe + Mgy - hgryhrpa + hpgy - hgryhrja =21 jry - hpgy hrqa)hipg

- Zh/pa(htpy hqu/ rqp +hlqy hgryhrpp + hpqy 'hqryhriﬁ — 2hiry “hpgyhrgp)

—2nK R},

1
= ARl/otﬁ -2 Z (thipa Vahjps = Vahjpa thipﬂ)
p.r
+ Ripah jpp + hipa Ripp — Rjpahipp — hjpaRipp — 20K Risep.
(23)
Computing in the special orthonormal frame and denoting the reaction terms by %K L, the
nonlinearity for codimension two surfaces simplifies to

iKl:4ac @—a 2— @—l—a @—a +2b% + 3¢ + @—l—az
dt 2 2 2 2
— Kkt (|A|2 121A2 - 2b2) _4KK*
For notational convenience we set
Vool K = Z (thipavthpﬁ - thjpavqhipﬁ) and
P4
Ry = Kt <|A|2 F2lA - 2b2) .

Substituting the simplifed nonlinearity into (23) we obtain the evolution equation for the

normal curvature
9 . i
K= AKY 2%kt 4K (|A|2 F2AP2 - 2b2) —4RK*,

and a little more computation shows the length of the normal curvature evolves by

d K+ . _
e K= AU = 2 VK 1K (147 + 2147 — 2%) — 4R K.
We remark that the complicated structure of the gradient terms prevents an application of the
maximum principle to conclude flat normal bundle is preserved.

Proposition 5.1 We have the following gradient estimates:

3
VAP z -~ IVHI? (24a)
1 2
wap = Lvap = 22D igap (240)
n 3n
IVA]> > 2% KL ifn =2. (24c)
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Proof The first two inequalities are proven in [6], motivated by similar estimates in the Ricci
flow [5]. They are established by decomposing the tensor VA into orthogonal components
Vihjk = Ejjx + Fiji, where

1
Eijx = m(giijH +gixViH +gjxViH),

from which it follows that |[VA|? > |E|* = "iz |V H|2. The second estimate follows from

the first. In order to prove the third inequality, we evaluate directly

Z (Vghip1Vahaps — Vahapi Vahip) = VihinVihaio — Viha11Vikii + Vihi2i Vihoo
p.q
—V1h221Vihin + Vahi11 Vaho12 — Vaho11 Vahiio + Vahi21 Vahoo — Vahao1 Vahin.

Writing down all the terms in |V A|? and only using the symmetries of the second fundamental
form

IVAP? = (Vihi)? + (Vahi11)* + (Vihi)? + (Vika)? + (Vihio)?
+ (Viha12) + (Vahi12)?
+ (Vihon)? + (Vahi22)? + (Vaho12)? + (Vahoa1)? + (Vahan)?
+ (Viho)? + (Vahi21)? + (Viho11)? + (Viki12)?,

and the estimate follows by applying the Cauchy-Schwarz inequality and comparing terms.
O

We consider here the pinching quantity
Q:=|AP +2y|K*| —k|H> —¢K <0

The evolution equation becomes

0 2 Kl 1 2
5,9 =80 =2(|VAP +2y = Veut K — kIVH]|

|K+|
+ 2R, +2yRs — 2kRy — 4K |A|> + 2K |H*> — 4kK|H|* — 8y K|K |
We deal with the gradient terms first. Using the gradient estimates (24a) and (24c) we have

2 K+ L 2 4 2
2 (IVAP + 2y (o Vet K~ VP ) = (=24 2y + 23K ) VAP,

which is less than zero provided y < (1 — 4/3k).
Next we deal with the reaction terms

2
d g 1,2
dtQ=22ﬂ:<Zhijahijﬁ> +2ARm 2 =2k} | Y Hohija | +27 Ry
o, 1]

i,j o4

o 2 o 2 1
=2|A* -2 <k —~ —) |AHP? - = (k - —) |H|*
n n n

2 2
+ 4<Zhij]hij2) + Z(Zhijzhij2> +2|Rm*|?

i,j i.j
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oy KL (|A|2 +21A)% - 2b2) —4R|AP — 4R (k — 2)|H? — 8y K|K*).
(25)

Written in the special orthonormal frame, the bracketed terms on the second last line above
are

2 2
4<Zh,~j1hiﬂ> = 164’ 2<Zh,~j2h,-j2) =202b* +2c%)>.
ij ij

Now suppose, for a contradiction, that there exists a first point in time where Q = 0. Comput-
ing at this point, as Q = 0 we have (k — %) |H|> = (JA|> 4+ 2y|K 1| — €K), and substituting
this into (26) to eliminate the | H|? terms we obtain after some computation

d 1 ! .
Lo (- 2) 4a®p? + (- 2) KA
dt ( 12" ) “ +< 12t )” 141l
3 1,82 1 ° 4

- 6)yIKLA - 2) 14
+(k_1/2+>y| [ 2|+(k_1/2+)|2|

(1+2y?) i
+(‘m+6)"( |

2

k—1/2 k—1/2'7? k—1/2  k—1/2
—4K|A — 4K (A2 + 2y KL — eK) — 8y K|K™L]|

_ ° 26K 3sKy|K+ 2K
+£K<2+ >|A1|2+ 1Ay 2 vIK~]

(26)

The quartic terms are

1 2,2 1 I
— 2 4a“b — 2 K—||A
(<= +2) a0 + (== +2) vk
3 18 2 1 ° 4 (1 +2y?) 12
— 6 K—||A — 211A —— 46K
+<k_1/2+)y| I 2|+(k_1/2+>|2|+ 1 6Kt

and in the special orthonormal frame these are

5 1 ) 3 1 +2y? )
4¢ {(—k_1/2+2>c +m (—k_1/2+6>y|ac|+nz (—7](_]/2 +6>a }
1 2 (1+2y?)
+4|ac|{<—m+2> ya® + (1 —n) (_m+6> lac|

3
+(1—n1)<—k_1/2+6> yc2}.

We now substitute y = 1 — 4/3k — § in order to keep the gradient term negative, and use
the parameters 71, 12 to shift as much bad normal curvature into the first curly bracket to
consume all of the good ¢* term. As it does not seem possible to reach k = 3/4, we have
numerically explored the parameter values, with the result that the above term is strictly
negative for k = 29/40.
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The lower order terms are

_ 1 o 2¢K o 3eKy|K+ ezkz
ek (2+ AP+ A2 4 2KVIKTL
k=12 k=12 k=12 k=12

—4K|A? — 4K (JA* + 2y KL — eK) — 8y K|K*]

Rearranging we have

1 _ o 2e _ o _ 3¢
24— )e—8) K|A;]? —8)K|A2> +vK —16) K+
(( +k—1/2>8 ) "'*(k—l/z ) Aty (k—l/z )' |
+ (4 ¢ K
— £
k—1/2

The last term is zero if (4 — kaﬁ) = 0. Therefore we require ¢ = 4(k — %) and y > 0.
We also require (2 + kflﬁ) —-8<0, (k 72 8) < 0and (k 72 16) < 0 but this

occurs if ¢ < 2 which is implied if £k < m (in factif k < 1).

6 Minimal submanifolds of the sphere

Minimal surfaces are geometric obstructions to enlarging preserved curvature conditions.
One minimal surface of particular relevance to the mean curvature flow in a sphere is the
Clifford torus, which is a minimal in S® and satisfies |A|?> = |H|? when immersed in R*.
For two surfaces immersed in the three-sphere, the Clifford torus is a geometric obstruction
to pushing the pinching condition beyond 1/(n — 1). However, the mean curvature flow
is currently unable to reach the Clifford torus due to technical problems with the gradient
terms (see [2] where this problem is overcome by a fully nonlinear flow). We speculate
the geometric obstruction to two surfaces in S* evolving by the mean curvature flow is the
Veronese surface, which is minimal in S* and satisfies |A|2 = 5/6|H |2 when immersed in
R>. In this final section, we refine a famous theorem by Chern, do Carmo and Kobayashi by
characterising minimal surfaces of the four-sphere in terms of a pointwise pinching of intrinsic
and extrinsic curvatures, instead of the length of the second fundamental form as was done in
the original paper [4]. This is achieved by exact calculation of the nonlinearity in the Simons
identity. The equivalent result for a Euclidean background appeared in [3], where it was used
to greatly simplify the proof the Poincaré-type inequality obtained from the positivity of the
Simons identity nonlinearity. We first compute the Simons’ identity nonlinearity exactly and
then achieve the desired result by an application of the strong maximum principle.

Proposition 6.1 Let £2 C S*. Then the contracted Simons’ identity has the form
%A|A|2 = Ajj-ViVjH + VA + (H? — |A]? +2K)|A]> — 2| K -?
= Aij - ViV;H + VAP + K|A]> = 2|K*]?
Proof The contracted Simons’ identity takes the form (27)

1 _ .
§A|A|2=Aij-ViVjH+|VA|2+Z+2K|A|2, (27)
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where we used H = 0, A = A and where

2
1.2
Z = —Z <Zh,’jah,'jﬂ> — |[Rm~|* + Z Hah[pah,'jﬂhpjﬂ.
ap i l',j}sP
«a,

Splitting the first term on the right into diagonal and off-diagonal summations, and using
hij1 =0fori # j, we get

> Hohipahijphpip =Y hiia Y hiiahii)* + Y hiia Y hiia(hiiz)?
ij i ij

ij.p.a.p i : :
+ Y hita Y hiia(hii)* + > hiia Y hipahijphpip.
i i#] i i#p

The final term on the right is zero, as computing in the special orthonormal frames we see

> hiia ) hipahijghpig = H Y hipthijghpis = 0.

i i#p i#p

since hjp1 = 0 fori # p. We similarly split the second term on the right of Z into diagonal
and off-diagonal sums, and putting all terms together we have

Z= Z Riia Zhiia(hiil)z + Z Riia Z hiia(hii2)* + Zhiia Z hiia(hij2)2
i i,] i tJ

(Ee) () T(pen)

o Vi)

-2y <Zhijahijﬂ > hijahijﬁ> — [Rm™ 7.
af Ni=j i#)
We estimate these terms in pairs, gathering the first, second and third terms of lines one and
two, respectively. Dealing with the first pair of terms, we follow [14] but keep track of the
normal curvature terms to find

2
> hiia Y hiiahiin)* =Y (Zhiilhiia)
i i a N
= <(|H|2 —AP) + Z(hw)z) (h111 — haar)?

= (IH> — |A]%) (4a?) + 4a>c?.

We estimate the second pair of terms in the same way, obtaining
2
2
> hiia Y hiia(hiin)* = (Z hiithitx)
i i,j « i

= <(|H|2 —AP) + Z(hmf) (h112 — han)?

= (1H* — |A]%) (4b%) + 4b*c.

For the third pair of terms, as there are no diagonal terms to easily factor into the intrinsic
curvature, we proceed by computing in the special orthonormal frames from the outset:
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2
Z hiia Z hiia(hij2)2 - Z (Z hiﬂhija)

i i#] a Vi)

H2
= 4¢? (% —62)

42 |H|? 2 2 2 2,2 2
=4c T—a —b°—c" )| +4c“(a” + b)

=22(|H|? — |AP) + 4c*(d® + b).

With the final term, as /;;; = 0 the only non-zero contribution comes from o, = 2 and we
see

2y (Zhwhl,ﬁ Zhwhl,f}) = 2(Zhl,2h,ﬂ Zh,ﬂh,,2>
ap i#] i#]
=2(2b%)(2¢%) = 8b%c2.
Collecting all the terms together, and recalling |[Rmt|? = 16a%c? = 4|K+|?, we achieve
Z = (IH* — |AP?) 2a® + 2b* + 2¢%) + 8a*c® + 8b*c? — 16a*c? — 8b*c?
= (IHP> = |AP) |AP - 21K
O

We now apply the above proposition in the case %2 is a minimal surface to conclude
Theorem 1.3.

Proof of theorem 1.3 Suppose X2 is minimally immersed in S*. Then the nonlinearity in the
Simons’ identity satisfies

KLZ
Z= A" =20K1P +21AP = |AP <—|A|2 - '|A|2| +2> :

21KL2 21K1)?
TIA [A]2

Kt =2ac <a®>+b*+* < %|A|2. Then computing the contracted Simons’ identity we
have

Therefore let us assume —|A|? — + 2 > 0 or equivalently, 2K > so that

1 2 2 2 2 21K
EAlAl = |VAI" + |A|” | —|Al]” — AP +2). (28)
Therefore if we have —|A|% — zlllf\‘zl +2 > 0 this implies 5 A|A|2 > 0 so by the maximum
rinciple |A|2 = C = const. By (28), either |A|? = 0 or |A]® + AR _ 2. In both cases
p p y |A\2

we have [VA|> = 0. Since we have |A|? = const. = K=+ = const.
1,2
Furthermore as —|A|? — 2‘|§|2‘ = 2implies |A|> = 1++/1 —2|KL|2. Since K+ = 2ac
we get

1
< —
~4
or 3 < |A]> < 2 because [A[>(2 — |A]*) = 2|K*|? so that |A|* > |A]*(2 — |A]?) = 0.
Furthermore this implies 0 < IKL)? < %. As2K =2 —|A? gives

L
2/ de,_z—/ K*du
b |A|2

0<I|K*+?<—|A
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which implies if K+ = 0 then K = 0 or that |A|> = 2 in which case we have a Clifford
torus. Therefore let us assume K+ # 0. We will apply Simons’ identity to K L
For the sphere, where szkl = K(g,kg]l 8il&jk) VR =0.

Ahija = ViVjHy + H - hiphpjo = hij - hpghpga + 2N jq - hiphpga = hig - hgphpja

= hjq - haphpia

+ HyRijpvp — hija Rijkphpia + Riikph pja — 2Ripjphpga — hija Ripapvp

+2hipa R jpapvp

+ @klékijﬂv,g - Viléjkkﬁvﬂ

=ViV;H + Zijo + 2hjja — 8ijHq (29)

where
Zijo = H - hiphpjo = hij - hpghpge +2hjq - hiphpge = hig - hgphpje = jq - hgphpia-
Therefore computing in the special orthonormal frames above, with H = 0 we get

AKL =2K+2 —b* —3a®> = 3c%) = 0.

because we can show that |[KL|2 = 4a%c? and |A1|? = 2a%. Hence ||§+||2 = 2¢2. Also
|A=|2 = 2b% + 2¢2 s0 that 2b% = |A~|2 — “’;“j.
_p KPP 3
AKLt =2KtQ4|A7 ) - — Z1AP) =0.
@+1A7F = Ty = 514P)

Since weassume K+ # 0,242b2—3b%>—3a2—3¢? = Oor2+|A~|>— “’gi"j -31AP =0
Therefore
K-> 3

3
2 _ 2 -2 _ 2
2b° = §|A| —2 or |[AT|]F— AT §|A| —
Therefore b*> = const. or |[A~|* — Kﬁg = const.. We compute the Laplacian of > = h%lz
and get
Ahypp = hip2 = 24> = 20* =2¢%) =0 AlAT)? lKlIZ—A’Z Ll 2—|A]?
112 =h112(2 = 2a” = 2b" = 2¢7) = 0. or A |_|A+|2_| | |A+|2(—||)~

Therefore b = 0, |A~|? — l’;lZ 0or |A]> = 2. If |A|> = 2, then we have the Clifford
torus. Therefore let us assume b = 0, [A~|* — lzilz = 0. Then from above |A|?> = and
K+ = % Then by a theorem of Chern—do Carmo—Kobayashi [4], this surface is the Veronese
surface. O
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