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Abstract
Let X be a semistable curve and L a line bundle whose multidegree is uniform, i.e., in the
range between those of the structure sheaf and the dualizing sheaf of X .We establish an upper
bound for h0(X , L), which generalizes the classic Clifford inequality for smooth curves. The
bound depends on the total degree of L and connectivity properties of the dual graph of X .
It is sharp, in the sense that on any semistable curve there exist line bundles with uniform
multidegree that achieve the bound.

Mathematics Subject Classification 14H51 · 14H40 · 14H20

1 Introduction

For a smooth curve X of genus g, the classic Clifford inequality states that

h0(X , L) ≤ d

2
+ 1, (1)

for any line bundle L with degree d in the special range 0 ≤ d ≤ 2g − 2. It is the first part
of Clifford’s Theorem, and the second part states that this bound is achieved only by the
structure sheaf OX , the canonical sheaf ωX , and multiples of the g12 if X is hyperelliptic.

In this paper,we are interested in generalizations of theClifford inequality (1) to semistable
curves. Recall that X is semistable if it is reduced with nodal singularities, and the degree
of the dualizing sheaf ωX is nonnegative on each irreducible component of X . Semistable
curves, or rather the more restrictive class of stable curves, are the most commonly studied
singular curves, since they give a well-understood compactification of the moduli space of
smooth curves [16]. They provide important tools for understanding the geometry of the
moduli space, as well as studying smooth curves via degeneration techniques.
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Eisenbud, Koh and Stillman [18] showed in an appendix with Harris, that the Clifford
inequality (1) still holds if X is reduced and irreducible, but not necessarily smooth. On the
other hand, if X is reducible, an upper bound on h0(X , L) purely in terms of the total degree d
is impossible. Indeed, by setting the degree of L on one irreducible component very negative,
one obtains an arbitrarily large degree of L on another component, while maintaining the
total degree d . Arbitrarily large values of h0(X , L) can be realized in this way for any d .

Thus the issue lies with the distribution of the total degree d of L among the irreducible
components of X . We collect the degrees deg(L|Xv ) of L on irreducible components Xv in
a tuple of integers d = deg(L), the multidegree of L .

We restrict the multidegrees that we allow for to uniform ones. They generalize the numer-
ical condition 0 ≤ d ≤ 2g − 2 to multidegrees. That is, L has uniform multidegree if

0 ≤ deg(L) ≤ deg(ωX ),

where 0 has value 0 on each irreducible component and deg(ωX ) is the multidegree of the
dualizing sheaf ωX on X .

1.1 Results

To state our main result, we need one more combinatorial invariant. Recall that to any nodal
curve X we can associate its dual graphGX . The Clifford inequality for uniformmultidegrees
depends on certain connectivity properties of GX .

More precisely, we denote by G
Br
X the graph obtained from GX by contracting all edges

of GX that are not bridges. That is, the edges whose removal does not increase the number of
connected components of GX . Thus G

Br
X contains an edge for each separating node of X and

a vertex for each connected component of the partial normalization of X at those separating
nodes. If X is connected, G

Br
X is a tree since each of its edges is a bridge, and we call it

the tree of 2-edge-connected components. In this case, we denote by #l
(
G

Br
X

)
the number of

leaves of G
Br
X , that is, the number of vertices adjacent to a single edge. In case G

Br
X contains

a single vertex, we set #l
(
G

Br
X

) = 2. If X is not connected, we define #l
(
G

Br
X

)
by summing

the values defined as above for each connected component. See Sect. 4.2 for further details.

Theorem 1.1 (Clifford inequality for uniformmultidegrees) Let X be a semistable curve and
L a line bundle on X with uniform multidegree and of total degree d. Then

h0(X , L) ≤ d

2
+ #l

(
G

Br
X

)

2
. (2)

See Theorem 6.1. If X is connected and contains no separating nodes, then by definition
#l

(
G

Br
X

) = 2 and hence we immediately obtain the classic Clifford inequality in this case:

Corollary 1.2 Let X be a connected, semistable curve without separating nodes and L a
line bundle with uniform multidegree of total degree d. Then L satisfies the classic Clifford
inequality.

In Proposition 5.4 and Proposition 6.2, we show that the bound of Theorem 1.1 is sharp,
but not achieved generically:

Theorem 1.3 On any semistable curve X there exist line bundles L with uniform multidegree
such that

h0(X , L) = deg(L)

2
+ #l

(
G

Br
X

)

2
.
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A general line bundle L of fixed uniform multidegree satisfies the classic Clifford inequality.

Instead of uniform multidegrees, there are other choices for classes of multidegrees one
can consider. One of the most important ones is the class of semistable (or more restrictively,
stable) multidegrees, used in the construction of the universal compactified Jacobian [7]. In
general, there are uniform multidegrees that are not semistable and vice versa. Furthermore,
the class of semistable multidegrees have weaker properties with respect to an upper bound
on h0(X , L). That is, in general, they do not satisfy the inequality in Theorem 6.1. See
Example 6.4. We show however in Lemma 6.5, that every stable multidegree of total degree
g − 1 is uniform and obtain:

Corollary 1.4 Suppose X is a connected, stable curve without separating nodes. Then every
line bundle L of degree g− 1 with stable multidegree satisfies the classic Clifford inequality.

1.2 Previous results

The study of limits of line bundles and their sections has a long history in algebraic geometry.
The problem is known to be difficult, as shown by the various approaches that have been
developed to describe it. Prominent ones have been limit linear series, compactified Jacobians,
tropical and logarithmic divisors, and enriched structures. Each approach comes with its own
advantages and limitations, and in each case there is a large body of literature. See, for
example, [4, 7, 17, 23–25] and [2, 22].

More specific to our question of an upper bound on the rank in terms of the degree on
singular curves, we already mentioned the generalization of Clifford’s theorem to integral
curves [18]. The closely related question of the Clifford index for singular curves has been
studied in [5] and [20].Both papers use connectivity properties of the dual graph. Furthermore,
the edge-connectivity of the dual graph is known to determine positivity properties of the
dualizing sheaf [10] [12]. The invariant #l(GBr

X ) however seems to be new in this context.
Special cases of Theorem 6.1 are covered by results of Franciosi and Tenni [21] (see also

[20]). Namely, they show that the classic Clifford inequality holds for uniform multidegrees
if X has no separating nodes, and either not all global sections of the residual ωX ⊗ L−1 of L
vanish on any given irreducible component of X , or X is 4-connected [21, Theorems A and
3.9]. Without the last assumption, but still in the case with no separating nodes, they obtain
a weaker bound in [21, Theorem 3.8].

Caporaso’s study [9] of the situation for semistable multidegrees establishes that the
classic Clifford inequality holds for semistable multidegrees in the following cases: if X has
2 irreducible components; if the total degree is 0 or 2g− 2; and if X has no separating nodes
and the total degree is at most 4 [9, Theorem 3.3; Theorems 4.2 and 4.4; Theorem 4.11].

On the other hand, in [20, Theorem 3.14] it is claimed that every line bundle of uniform
multidegree satisfies the classic Clifford inequality, and a similar claim is made in [9, Propo-
sition 3.1]. Theorem 1.3 shows that this assertion is somewhat too optimistic, at least if X
contains separating nodes. See Remark 5.2 for more details.

Finally, Caporaso, Len and Melo [14] use the Baker-Norine rank [6] of the multidegrees,
to show that any multidegree is equivalent via chip–firing to a multidegree for which all line
bundles satisfy the classic Clifford inequality (1). It remains an intriguing open problem to
characterize the class of such multidegrees, or even to find explicit representatives in each
chip-firing class.
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1.3 Structure of the paper

In Sects. 2 and 3 we fix notations and recall some background. In Sect. 4 we collect the
graph-theoretical definitions and observations that will be needed in the statement and proof
of Theorem 1.1. More precisely, we introduce uniform multidegrees in Sect. 4.1, discuss the
tree of 2-edge-connected components G

Br
X in Sect. 4.2, and Dhar subgraphs in Sect. 4.3. In

Sect. 5 we describe counterexamples to the classic Clifford inequality in case of uniform
multidegrees. Proposition 5.4 establishes that the bound in Theorem 1.1 is sharp. In Sect. 6.1
we prove the Clifford inequality for uniform multidegrees, and in Sect. 6.2 we establish the
classic Clifford inequality for a general line bundle of fixed uniform multidegree. Finally, in
Sect. 6.3 we discuss the relationship with stable multidegrees.

2 Notation and conventions

Throughout the paper, we work over an algebraically closed field k of characteristic 0. We
consider curves X over k, whichwewill always assume to be reducedwith nodal singularities.

We denote the dual graph of X byGX . That is,GX contains a vertex v for every irreducible
component Xv of X ; an edge between vertices v and w for each node in Xv ∩ Xw , possibly
with v = w; and each vertex v is assigned the weight gv given by the geometric genus of Xv .
In particular, GX may contain multiple edges between the same two vertices, as well as loop
edges. We denote by V (GX ) and E(GX ) the sets of vertices and edges of GX , respectively.

An edge ofGX is a bridge if the graph obtained by removing the edge has more connected
components than GX . A node of X corresponding to a bridge of GX is called a separating
node.

The genus of GX is defined as

g(GX ) = 1 − χ(GX ) +
∑

v∈V (GX )

gv,

whereχ(GX ) is theEuler characteristic ofGX . That is, 1−χ(GX ) = 1−|V (GX )|+|E(GX )|.
The genus of GX equals the arithmetic genus g(X) of X . We write g := g(X) = g(GX ) if
X is clear from the context.

For a subcurve Y ⊂ X we write Y c = X \ Y for the closure of the complement in X . Any
subcurve Y ⊂ X corresponds to an induced subgraph GY of GX , that is, one that contains all
edges of GX between vertices contained in GY . The edges adjacent to GY but not contained
in it, correspond to the nodes in Y ∩ Y c.

We denote by val(v) the valence of v ∈ GX ; that is, the number of edges adjacent to v,
with loops counted twice. We denote by ωX the dualizing sheaf of X . It has total degree
2g − 2. The restriction of ωX to an irreducible component Xv is given as

(ωX ) |Xv � ωXv

(
Xv ∩ Xc

v

)
,

where ωXv is the dualizing sheaf of Xv . In particular, ωX has degree 2gv −2+val(v) on Xv .
A curve X is semistable, if val(v) ≥ 2 whenever Xv is rational. It is stable if val(v) ≥ 3,

whenever Xv is rational and val(v) ≥ 1 whenever gv = 1. Equivalently, X is semistable
(stable) if ωX has non-negative (positive) degree on each irreducible component of X .

We write d for a multidegree, that is, a formal linear combination of vertices of GX with
integer coefficients. We denote by dv the coefficient at a vertex v of GX . The multidegree
deg(L) of a line bundle L is defined to have value deg(L|Xv ) on v. The total degree of d is
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∑
v dv , which coincides with the total degree deg(L) of L if d is the multidegree deg(L) of

L .
The Picard scheme of X is denoted by Pic(X). The sublocus parametrizing line bundles

of degree d is denoted by Picd(X). The connected components of Picd(X) are denoted by
Picd(X), one for each multidegree d of total degree d . Picd(X) parametrizes line bundles of
multidegree d and any two such connected components are isomorphic. If X is irreducible,
there is a unique connected component of Picd(X); otherwise, there are infinitely many.

Clearly, Picd(X) � Picd1(X1) × Picd2(X2) if X1 and X2 are two connected components
of X and di denotes the restriction of d to the corresponding connected component. For a
connected curve X we have the following short exact sequence

1 → (k∗)1−χ(GX ) → Picd(X) → Picd
(
Xν

) → 0, (3)

where Xν denotes the normalization of X . The second map is given by pulling back the
line bundle. For the definition of the first map see for example [3, Theorem 2.3]. Roughly
speaking, a line bundle on X is specified by its pull-back to the normalization together with
gluing data over the nodes.

Given a node p ∈ X we still have a surjective morphism Picd(X) → Picd(Xν
p) given by

pull-back, where Xν
p denotes the partial normalization of X at p. It is an isomorphism if p

is a separating node and otherwise has fiber k∗. In particular, if p is a separating node, then
Pic(X) � Pic(X1) × Pic(X2), where the Xi denote the connected components of Xν

p .

3 Global sections of line bundles on nodal curves

In this section, we continue the preliminaries and collect some well-known results about the
dimension h0(X , L) of the space of global sections of a line bundle L on X .

We begin with the Clifford Theorem in case X is irreducible. We cite only the parts that
are used later and the statement found in [18, Theorem A, p. 533] is stronger.

Theorem 3.1 (Clifford inequality) Suppose X is an irreducible nodal curve and L a line
bundle of degree 0 ≤ d ≤ 2g − 2. Then

h0(X , L) ≤ d

2
+ 1.

Furthermore, there is a dense open subset of Picd(X) in which the inequality is strict.

Next, recall that the Riemann-Roch Theorem and Serre duality still hold for nodal curves.
See for example [1],[pp. 90 -91].

Theorem 3.2 (Riemann-Roch) Let X be a nodal curve of genus g and L a line bundle on X
of total degree d. Then

h0(X , L) − h0
(
X , ωX ⊗ L−1) = d − g + 1.

Corollary 3.3 Let X be a nodal curve, p ∈ X a smooth point and L a line bundle on X. Then
p is a base point of L if and only if it is not a base point of (ωX ⊗ L−1)(p).

Proof Applying the Riemann-Roch Theorem gives on the one hand

h0 (X , L) − h0
(
X , ωX ⊗ L−1) = d − g + 1
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and on the other

h0 (X , L(−p)) − h0
(
X , (ωX ⊗ L−1)(p)

) = d − 1 − g + 1.

Hence h0(X , L) = h0(X , L(−p)) if and only if h0(X , ωX ⊗ L−1) = h0
(
X , (ωX ⊗ L−1)

)

(p) − 1. ��
Corollary 3.4 Let X be a nodal curve, p ∈ X a smooth point. Then p is a base point of
ωX (p).

Proof The Riemann-Roch Theorem gives h0 (X , ωX ) = h0 (X , ωX (p)) = g. ��
As a last immediate consequence of the Riemann-Roch Theorem, we observe that any

Clifford type inequality we want to prove holds for L if and only if it holds for its residual
ωX ⊗ L−1.

Corollary 3.5 Let X be a semistable curve, L a line bundle of total degree d on X and l ∈ R

any constant. Then

h0(X , L) ≤ d

2
+ l ⇔ h0(X , ωX ⊗ L−1) ≤ 2g − 2 − d

2
+ l.

Proof By the Riemann-Roch Theorem we have

h0(X , L) ≤ d

2
+ l

⇔ h0(X , ωX ⊗ L−1) + d − g + 1 ≤ d

2
+ l

⇔ h0(X , ωX ⊗ L−1) ≤ 2g − 2 − d

2
+ l.

��
Finally, we give two lemmas that help to calculate h0(X , L) inductively.

Definition 3.6 A neutral pair of L is a pair of smooth points p1, p2 on X , such that

h0 (X , L(−p1)) = h0 (X , L(−p2)) = h0 (X , L(−p1 − p2)) .

Notice that when p1 and p2 are contained in different connected components of X , they are
a neutral pair if and only if they are both base points of L .

Next, denote by ν : Xν → X the partial normalization of X at a single node p. We have
for any line bundle L on X

h0
(
Xν, ν∗L

) − 1 ≤ h0 (X , L) ≤ h0
(
Xν, ν∗L

)
.

The following lemma describes the possible cases in detail, see [9, Lemma 1.4].

Lemma 3.7 Let p be a node of a nodal curve X. Let ν : Xν → X be the partial normalization
of X at p and p1, p2 the two preimages of p. Let Lν be a line bundle on Xν with h0(Xν, Lν) �=
0.

Then there exists L on X with Lν = ν∗L and h0(Xν, Lν) = h0(X , L) if and only if p1
and p2 are a neutral pair of Lν . If p1 and p2 are not base points, there is at most one such
L.

123



A Clifford inequality for semistable... Page 7 of 20 15

Fig. 1 An example of deg(ωX )

on a dual graph GX . The bold
vertex has weight 1 and vertices
drawn as circles weight 0

Recall that we denote by Y c = X \ Y the closure of the complement of a subcurve Y . In
particular, Y c ∩ Y is a finite union of nodes of X , that are smooth points both on Y and Y c.

Lemma 3.8 Let X be a nodal curve, L a line bundle on X and Y � X a proper subcurve.
Then

h0(X , L) ≤ h0 (Y , L|Y ) + h0
(
Y c, L|Y c

(−Y ∩ Y c)) .

If all global sections of L vanish along Y , then h0(X , L) = h0 (Y c, L|Y c (−Y ∩ Y c)).

Proof The restriction map H0(X , L) → H0(Y , L|Y ) is linear with kernel the global
sections of L , that vanish along Y . Hence we may naturally identify this kernel with
H0 (Y c, L|Y c (−Y ∩ Y c)) and both claims follow immediately. ��

4 Graph theoretic notions

In this section, we introduce three notions of a combinatorial flavour: uniform multidegrees,
the tree/forest of 2-edge connected components and Dhar subgraphs. In each case, we collect
some observations that will be used in the proof of Theorem 6.1.

4.1 Uniformmultidegrees

Recall that val(v) denotes the number of edges adjacent to a vertex v in GX , with loops
counted twice, and that the dualizing sheaf ωX has degree 2gv −2+val(v) on the irreducible
component Xv (Fig. 1).

Definition 4.1 Let X be a semistable curve and L a line bundle on X of multidegree d . We
call the multidegree d uniform if it satisfies on each irreducible component Xv of X :

0 ≤ dv ≤ 2gv − 2 + val(v) = deg
(
ωX |Xv

)
.

Remark 4.2 Amultidegree deg(L) is uniform, if and only if its residualmultidegree deg(ωX⊗
L−1) is uniform. If a multidegree d is uniform of total degree d , then 0 ≤ d ≤ 2g− 2, while
the converse is not true. Other than in the irreducible case, if L does not have uniform
multidegree, it still can be special – that is, h0(X , L) > 0 and h0(X , ωX ⊗ L−1) > 0. See
[13] for a detailed discussion.

Remark 4.3 If X is nodal but not semistable, it contains a smooth rational component attached
at a single node. On this component, the dualizing sheaf has negative degree, and hence there
exist no uniform multidegrees on such a curve.

Recall that the stabilization Xstab of a connected semistable curve X of genus at least 2
is given by contracting all rational components Xv with val(v) = 2. Such components are
called exceptional components.
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Lemma 4.4 Let X be a connected semistable curve of genus at least 2, π : X → Xstab its
stabilization and d a uniform multidegree. Then π∗ induces an isomorphism Picd(X) →
Picd

′
(Xstab) that satisfies h0(X , L) = h0(Xstab, π∗L).

Proof Let Xv be a rational component of X with val(v) = 2. Hence 2gv − 2 + val(v) = 0
and since L has uniform multidegree, deg(L|Xv ) = 0. This ensures that π∗L indeed is a line
bundle on Xstab, see for example [19, Theorem 3.1 (3)]. In loc. cit it is furthermore shown that
in this case π∗π∗L � L , and thus the map π∗ : Picd ′

(Xstab) → Picd(X) induced by π∗ gives
an inverse to the one induced by π∗. Finally, the last claim, H0(X , L) � H0(Xstab, π∗L),
holds by definition of the push-forward. ��

Recall that the Clifford index of a smooth curve X is defined as

Cliff(X) := min
L∈Pic(X)

{
deg(L) − 2h0(X , L) + 2 | h0(X , L) ≥ 2 and h1(X , L) ≥ 2

}
.

If X is reducible, we can define the Clifford index of X as the minimum as above, requiring
of L in addition to have uniform multidegree. This is a variation of the definition introduced
by Franciosi [20, Definition 3.5] (see [5] for possible different definitions).

Corollary 4.5 Let X be a semistable curve of genus at least 2 and π : X → Xstab its stabi-
lization. Then

Cliff(X) = Cliff(Xstab).

Proof In the proof of Lemma 4.4 we saw that if L has uniform multidegree d, then it has
value 0 on exceptional components and hence π∗L is a line bundle. We write π∗d for the
multidegree of π∗L in this case. The claim follows immediately from Lemma 4.4, once we
establish that π∗ induces a bijection on the set of uniform multidegrees on X and Xstab.

On the one hand, π∗d has value dv on any vertex v of GXstab . The valence of v in GXstab

is equal to the valence of v viewed as a vertex in GX , since X is semistable. Thus if d is
uniform, then so is π∗d . Furthermore, π∗ is injective on the set of uniformmultidegrees since
every uniform multidegree on X has value 0 on exceptional components.

On the other hand, if d is a uniform multidegree on Xstab, the multidegree on X obtained
by setting all values on exceptional components equal to 0 gives a uniformmultidegreewhose
image under π∗ is d , so π∗ is also surjective on the set of all uniform multidegrees on Xstab.

��

4.2 The tree of 2-edge connected components.

Recall that an edge e of G is called a bridge, if G − e has more connected components than
G. Here G − e denotes the graph obtained from G by removing e. A graph G is called a
forest if every edge is a bridge. It is called a tree, if G is in addition connected. A leaf in a
forest or tree is a vertex that is adjacent to a single edge.

Definition 4.6 Let G be a tree. We denote its number of leaves by #l(G), where we set
#l(G) = 2 if G contains a single vertex. If G is more generally a forest, we set #l(G) =∑

i #l(Gi ), where the Gi are the connected components of G.

A graph G is called 2-edge-connected, if it is connected and contains no bridges. The
2-edge-connected components of a graph G are the maximal 2-edge-connected subgraphs.
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Fig. 2 An example of GBr with

#l
(
GBr

)
= 3

Definition 4.7 Let G be a graph. The associated forest of 2-edge-connected components GBr

is the graph obtained from G by contracting all edges of G that are not bridges. If G is
connected, we will call GBr the tree of 2-edge-connected components.

The edges of GBr correspond bijectively to bridges of G and the vertices of GBr to 2-
edge-connected components of G. Furthermore, as the name suggests, GBr is in general a
forest, and a tree if G is connected (Fig. 2).

Recall that a subgraph H of G is called an induced subgraph, if H contains all edges of
G between vertices that are contained in H .

Lemma 4.8 Let G be a connected graph and H � G an induced subgraph. Denote by k the
number of edges of G that are adjacent to H but not contained in H. Then

(1) We have

#l
(
HBr) ≤ #l

(
GBr) + k.

(2) If G is 2-edge-connected, then

#l
(
HBr) ≤ k.

Proof It suffices to show the claim for H connected, the general case then follows by applying
the claim to each connected component. So assume H is connected.

Assume first H contains no bridges, i.e., it is 2-edge-connected. Then by definition
#l

(
HBr

) = 2. Since #l
(
GBr

) ≥ 2, the first claim is immediate. If G is 2-edge-connected,
we have k ≥ 2. Otherwise there would be a single edge connecting H to its complement in
G, which then is a bridge. Thus also the second claim follows in this case.

Now let e ∈ E(H) be a bridge of H , whose image in HBr is the unique edge adjacent to
a leaf vi of HBr. Denote by Hi ⊂ H the 2-edge connected component corresponding to vi .
Assume furthermore, that e is not a bridge in G and thus vi not a leaf in GBr. Hence there
has to be an edge ei adjacent to Hi that is not contained in H . Since we obtain for each leaf
vi of HBr that is not a leaf of GBr a different ei , there are at most as many leaves as there are
edges of G adjacent to H , but not contained in it. This gives both claims in this case. ��
Lemma 4.9 Let G be a 2-edge connected graph. Then for any edge e of G we have

#l
(
(G − e)Br

) = #l
(
GBr) = 2.

Proof Since G is 2-edge connected, GBr consists of a single vertex and hence #l
(
GBr

) = 2
by definition. If G − e remains 2-edge connected, the claim is immediate. Otherwise, let
Gi � G − e be a 2-edge connected component, that is, a maximal subgraph that is 2-
edge connected. Assume furthermore, that Gi corresponds to a leaf of (G − e)Br, that is,
it is adjacent to a single bridge of G − e. Since G is 2-edge connected its unique 2-edge
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connected component is G itself. In particular, Gi is not a 2-edge connected component of G
since Gi �= G. It follows that Gi needs to be adjacent to an edge of G that is not contained in
G − e. Since e is the only such edge, and e can be adjacent to only two distinct subgraphs Gi

as above, it follows that (G − e)Br has two leaves and thus #l
(
(G − e)Br

) = 2, as claimed.
��

As for curves, to any semistable graph G of genus at least 2, we can associate a unique
stable graph Gstab by successively contracting edges that are adjacent to 2-valent vertices of
weight 0. We call Gstab the stabilization of G. If G is the dual graph of a semistable curve
X , then Gstab is the dual graph of the stabilization Xstab of X .

Lemma 4.10 Let G be a semistable graph of genus at least 2 and Gstab its stabilization. Then

#l(GBr) = #l
(
GBr

stab

)
.

Proof A choice of edge contraction map π : G → Gstab allows to realize the edges of Gstab

as a subset of the edges of G. It is easy to see, that the bridges of Gstab are bridges of G under
this identification and the additional bridges of G all get contracted by π [11, Lemma 2.1.1].
In particular, we have a well-defined map πBr : GBr → GBr

stab given by contracting bridges
of G that get contracted by π .

The map π can be realized by successively contracting single edges. Thus wemay assume
that π contracts a single edge e of G. Since e gets contracted by π and G is semistable, it
is adjacent to a 2-valent weight 0 vertex v. By what we said above, πBr is trivial if e is not
a bridge of G. If e is a bridge, then also the second edge adjacent to v needs to be a bridge.
Thus v is itself a 2-edge connected component of G and we may view it as a vertex of GBr.
Then πBr contracts e, viewed as an edge of GBr and GBr is obtained from GBr

stab by replacing
one edge with a weight 0 vertex and two adjacent edges. In particular, the number of leaves
of the two graphs remains the same. ��

4.3 Dhar subgraphs

Let G be a graph, v ∈ V (G) a vertex and d a multidegree on G. Following [14],[§3.4], we
define a sequence of induced subgraphs

H0 = {v} ⊂ H1 ⊂ . . . ⊂ Hn = Dh(v, d), (4)

theDhar decomposition, iteratively as follows.Given a subgraph Hi , consider themultidegree
d ′ obtained from d by subtracting from each vertex v ∈ V (G) \ V (Hi ) the number of edges
that are adjacent to v and Hi . Then Hi+1 is the induced subgraph of vertices in Hi and those
vertices adjacent to Hi , on which d ′ is negative. Since there are only finitely many vertices,
at some point Hn = Hn+1 and we define Dh(v, d) := Hn for the Dhar subgraph associated
to d and v (Fig. 3).

Lemma 4.11 Let L be a line bundle of multidegree d and v ∈ V (GX ) a vertex correspond-
ing to an irreducible component Xv . Suppose that the Dhar set equals all of GX , that is,
Dh(v, d) = GX . Then the restriction map H0(X , L) → H0(Xv, L|Xv ) is injective. In par-
ticular, h0(X , L) ≤ h0(Xv, L|Xv ).

Proof Suppose a global section s of L is in the kernel of H0(X , L) → H0(Xv, L|Xv ), that
is, it vanishes on Xv . We need to show that then s vanishes on all of X .
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Fig. 3 A Dhar decomposition. The Hi are the subgraphs in red

Let

Y0 = Xv ⊂ Y2 ⊂ . . . ⊂ Yn = X

be the subcurves corresponding to the graphs Hi in the Dhar decomposition (4). Since s
vanishes on Xv and Dh(v, d) = GX , it suffices to show that if s vanishes on Yi then it
vanishes on Yi+1. So let w ∈ V (Hi+1) \ V (Hi ) be a vertex of Hi+1 but not of Hi . By
construction of the Hi , we then have dw < |Xw ∩ Yi |. On the other hand, if s vanishes on
Yi , it vanishes in particular at Xw ∩ Yi . Since dw is the degree of the restriction of L to Xw

this implies that s vanishes on all of Xw . ��

Recall that we defined uniform multidegrees in Definition 4.1.

Lemma 4.12 Let X be a semistable curve, v ∈ V (GX ) a vertex and L a line bundle on
X with uniform multidegree d. Let Y be the subcurve of X corresponding to the Dhar set
Dh(v, d), and Y c the closure of its complement. Then if Y c is not empty, it is semistable and
the multidegree of L|Y c (−Y ∩ Y c) is uniform on Y c.

Proof IfY c is not semistable, there exists no uniformmultidegrees on it byRemark 4.3.Hence
it suffices to show that L|Y c (−Y∩Y c) has uniformmultidegree. Let H = GY c be the subgraph
corresponding to Y c, that is, the induced subgraph with vertices V (GX ) \ V (Dh(v, d)). Let
d ′ be the multidegree of L|Y c (−Y ∩ Y c), for which we need to show that it is uniform on H .

If a vertex w of H is not adjacent to Dh(v, d) in GX , then dw = d ′
w and the valence of w

is the same in GX and H . Hence d ′ is uniform at w since so is d.
Now suppose w is adjacent to Dh(v, d) in GX . Then d ′

w = dw − k, where k = |Xw ∩
Y | is the number of edges adjacent to both w and Dh(v, d). Observe first, that d ′

w ≥ 0
since otherwise we would need to have w ∈ Dh(v, d) by the construction of Dh(v, d).
Thus the lower bound for being uniform is satisfied. For the upper bound, observe that by
assumption dw ≤ 2gw − 2 + valGX (w), where valGX (w) denotes the valence of w in GX .
Since valGX (w) = valH (w) + k, where k is as above and valH (w) denotes the valence of w

in H , we also get the upper bound

d ′
w = dw − k ≤ 2gw − 2 + valGX (w) − k = 2gw − 2 + valH (w).

��
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5 Counterexamples

In this section, we construct examples of uniform multidegrees that do not satisfy the classic
Clifford inequality h0(X , L) ≤ d

2 + 1. In Proposition 5.4, we show that in fact on every
semistable curve X there exist line bundles of uniform multidegree, that achieve equality in
Theorem 6.1.

Example 5.1 Let X be the stable curve consisting of three smooth, irreducible genus one
curves Xi , each attached along a single node pi to a smooth, irreducible rational curve Xv .
Consider the multidegree d with dv = 0 and dvi

= 1 where vi is the vertex corresponding
to Xi . Thus d is uniform of total degree 3. Let L be the line bundle of multidegree d whose
restriction to Xi isOXi (pi ). In particular, pi is a base point of L|Xi and global sections of L
vanish along Xv . Thus by Lemma 3.8,

h0(X , L) = h0(Xc
v, L|Xc

v

(−Xv ∩ Xc
v)

) =
3∑

i=1

h0(Xi ,OXi ) = 3 >
3

2
+ 1.

Remark 5.2 Example 5.1 contradicts the claim in [20, Theorem3.14] that every line bundle of
uniformmultidegree satisfies the classic Clifford inequality. In case of Example 5.1, Equation
(9) in the proof of loc. cit. no longer holds. The example also contradicts the claim of [9,
Proposition 3.1], that every multidegree d with 0 ≤ dv ≤ 2gv satisfies the classic Clifford
inequality. Here the issue is, that in an inductive argument, the claim is applied to L(−p)
for some smooth point p of X . But L(−p) can have negative degree on the irreducible
component containing p, which then is outside the range of the induction.

Example 5.3 More generally, let X be a stable curve and ωX its dualizing sheaf. Suppose ωX

has a smooth base point p ∈ X . We then have

h0(X , ωX (−p)) = h0(X , ωX ) = g > g − 1

2
= 2g − 3

2
+ 1.

Thus ωX (−p) does not satisfy the classic Clifford inequality. On the other hand, the mul-
tidegree of ωX (−p) is uniform since X is stable. By [10, Theorem D, p. 75], the dualizing
sheaf ωX has smooth base points precisely along smooth rational components Xv such that
all points in Xv ∩Xc

v are separating nodes. In this case, the global sections ofωX vanish on all
of Xv . Thus we can subtract up to val(v)−2 smooth points on Xv fromωX , obtaining in each
case a line bundle with uniform multidegree not satisfying the classic Clifford inequality.

Recall that we defined the forest of 2-edge-connected components G
Br
X of the dual graph

GX in Definition 4.7. Furthermore, we denote by #l
(
G

Br
X

)
its number of leaves as in Defini-

tion 4.6.

Proposition 5.4 Let X be a semistable curve. Then there is a line bundle L on X with uniform
multidegree such that

h0(X , L) = deg(L)

2
+ #l

(
G

Br
X

)

2
.

Proof We may assume that X is connected, since both sides of the equation are additive on
connected components. If #l

(
G

Br
X

) = 2, the claim is the classic Clifford inequality, and we
may choose for L either the dualizing sheaf or the structure sheaf of X .

123



A Clifford inequality for semistable... Page 13 of 20 15

Otherwise, set l := #l
(
G

Br
X

)
. Let vi with 1 ≤ i ≤ l denote the leaves of G

Br
X . Each of

them corresponds to a 2-edge-connected subgraph of GX , and we denote by Yi ⊂ X the
corresponding subcurves. Let

Y =
(

⋃

i

Yi

)c

be the closure of the complement in X . It is not empty, since #l
(
G

Br
X

) ≥ 3 implies that there
is a vertex of G

Br
X that is not a leaf. Set pi = Yi ∩ Y , a collection of l distinct separating

nodes of X .
Since the Yi are by definition connected to Y along separating nodes, we have Pic(X) �

Pic(Y ) × ∏
i Pic(Yi ) (see the discussion at the end of Section 2). Thus any line bundle on X

is up to automorphism specified by its restrictions to Y and the Yi . Vice versa, any collection
of line bundles on the Yi glues to a unique line bundle on X .

We define L by setting L|Y = OY and L|Yi = ωYi (pi ) where ωYi denotes the dualizing
sheaf of Yi . By construction, L has uniform multidegree. By Corollary 3.4, pi is a base point
of L|Yi . Thus global sections of L vanish on all of Y and by Lemma 3.8:

h0(X , L) =
l∑

i=1

h0
(
Yi , L|Yi (−pi )

) =
l∑

i=1

h0
(
Yi , ωYi

) =
l∑

i=1

g(Yi ).

On the other hand, we get for the total degree of L:

deg(L) =
l∑

i=1

(2g(Yi ) − 1) = 2
l∑

i=1

g(Yi ) − l.

And thus as claimed:

h0(X , L) =
l∑

i=1

g(Yi ) = 2
∑l

i=1 g(Yi ) − l

2
+ l

2
= deg(L)

2
+ #l

(
G

Br
X

)

2
.

��
Remark 5.5 The construction in the proof of Proposition 5.4 is not the only way to obtain
a line bundle realizing the upper bound in the Clifford inequality for uniform multidegrees.
For example, setting (some of the) L|Yi to be OYi (pi ) gives another way to construct d and
L .

6 The Inequality

6.1 The Clifford inequality for uniformmultidegrees

Recall that we defined the forest of 2-edge connected components G
Br
X of the dual graph of

GX in Definition 4.7. Recall furthermore, that #l
(
G

Br
X

)
denotes it’s number of leaves as in

Definition 4.6.

Theorem 6.1 Let X be a semistable curve and d a uniform multidegree of total degree d.
Then every line bundle L of multidegree d satisfies

h0(X , L) ≤ d

2
+ #l

(
G

Br
X

)

2
.

123



15 Page 14 of 20 K. Christ

Note, in particular, that #l
(
G

Br
X

) = 2 if X is connected and has no separating nodes, and
hence every line bundle of uniformmultidegree satisfies the classic Clifford inequality in this
case.

Proof We prove the claim by induction on the number of non-loop edges of GX . The base
of the induction is the case when X is a disjoint union of irreducible curves. In this case,
let X1, . . . Xk denote the connected components of X corresponding to vertices vi of GX .
Then by definition, #l

(
G

Br
X

) = 2k. On the other hand, the restriction of L to each connected
component Xi satisfies the classic Clifford inequality by Theorem 3.1, and hence we get

h0(X , L) =
k∑

i=1

h0
(
Xi , L|Xi

) ≤
k∑

i=1

(
dvi

2
+ 1

)
= d

2
+ #l

(
G

Br
X

)

2
.

For the induction step, let L be a line bundle with uniform multidegree d and total degree
d on X . Using the additivity on connected components of both sides of the claimed inequality
as in the base of the induction, it suffices to show the claim for each connected component
of X . So we assume X to be connected from now on. We deal successively with different
cases, that we then exclude going forward.

Step 0: Suppose X is not stable. If X has genus 1, L needs to have degree 0 on each irreducible
component and the claim holds by the Riemann-Roch Theorem. Otherwise g ≥ 2 and X con-
tains a rational component Xv with val(v) = 2. Then the dual graph of the stabilization Xstab

of X has less non-loop edges than that of X . Furthermore, we have #l
(
G

Br
X

) = #l
(
G

Br
Xstab

)

by Lemma 4.10. Hence the claim follows for X by induction and Corollary 4.5.
So we assume from now on, that X is stable.

Step 1: Suppose dv = 0 for some vertex v and all global sections of L vanish on all of
Xv . Let Dh(v, d) be the Dhar subgraph associated to v and d , as in Sect. 4.3. Denote by H
the induced subgraph containing all vertices of GX not contained in Dh(v, d). Let Y ⊂ X
be the subcurve corresponding to Dh(v, d), and Y c the closure of its complement, which is
the subcurve corresponding to H . Set k = |Y ∩ Y c|. By the assumption of Step 1, all global
sections of L vanish on all of Xv and hence by Lemma 4.11 also on all of Y . Thus if Y c is
empty, there is nothing to show. Otherwise, we get by Lemma 3.8 that

h0(X , L) = h0
(
Y c, L|Y c (−Y ∩ Y c)

)
. (5)

By Lemma 4.12, Y c is semistable and the multidegree of L|Y c (−Y ∩ Y c) is uniform on Y c.
Furthermore, H contains less edges than GX , and hence we obtain by induction

h0
(
Y c, L|Y c (−Y ∩ Y c)

) ≤ d − k

2
+ #l

(
HBr

)

2
. (6)

Now Lemma 4.8 (2) gives #l
(
HBr

) ≤ #l
(
G

Br
X

)+ k, and using (6) and (5) we get as claimed

h0(X , L) = h0
(
Y c, L|Y c (−Y ∩ Y c)

) ≤ d − k

2
+ #l

(
HBr

)

2
≤ d

2
+ #l

(
G

Br
X

)

2
.

So we assume from now on, that whenever dv = 0, not all global sections of L vanish on
all of Xv . We may assume the same for the residual ωX ⊗ L−1: by Lemma 3.5 L satisfies the
claim if and only if ωX ⊗ L−1 does, and ωX ⊗ L−1 has uniform multidegree since L does,
see Remark 4.2.
Step 2: Suppose GX contains a bridge e. Let p be the separating node of X corresponding
to e. Let X1, X2 be the two connected components of the partial normalization of X at p,
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and L1, L2 the respective pull backs of L . Let p1 ∈ X1, p2 ∈ X2 be the preimages of p
and denote by Xv, Xw the irreducible components containing p1 and p2, respectively. Let
G1,G2 denote the subgraphs corresponding to the Xi , that is, the connected components of
GX − e. Since we assume X to be stable following Step 0, the Xi are both semistable. By
Lemma 4.8 (1) and since the Gi are connected, we have

#l
(
GBr

1

) + #l
(
GBr

2

) ≤ #l
(
G

Br
X

) + 2. (7)

On the other hand, Lemma 3.7 gives

h0(X , L) ≤ h0(X1, L1) + h0(X2, L2) − c, (8)

where c = 0 if p1 is a base point of L1 and p2 is a base point of L2 and c = 1 otherwise.
Suppose first that c = 0 and thus that pi is a base point of Li and similarly all global

sections of L vanish at p. We claim that if dv = 0, then all global sections of L need
to vanish along Xv , which we excluded after Step 1. Indeed, consider the restriction map
H0(X , L) → H0(Xv, L|Xv ). If L|Xv has no global sections, then all global sections of L
vanish along Xv . Otherwise we need to have L|Xv � OXv since deg(L|Xv ) = 0. In particular,
h0(Xv, L|Xv ) = 1 and L|Xv is base point free. Since L1 does have a base point on Xv , it
follows that the restriction map H0(X , L) → H0(Xv, L|Xv ) is not surjective and hence the
zero map. Thus also in this case all global sections of L vanish along Xv . So we may assume
dv > 0 and, by the same argument for Xw , dw > 0.

With this assumption L1(−p1) and L2(−p2) have uniform multidegree on X1 and X2,
respectively. By induction and since the pi are base points we get:

h0 (Xi , Li ) = h0 (Xi , Li (−pi )) ≤ deg(Li ) − 1

2
+ #l

(
GBr

i

)

2
,

Using this together with (8) and (7) then gives as claimed

h0(X , L) ≤ h0(X1, L1) + h0(X2, L2) ≤ deg(L1) − 1

2

+#l
(
GBr

1

)

2
+ deg(L2) − 1

2
+ #l

(
GBr

2

)

2
≤ d

2
+ #l

(
G

Br
X

)

2

Suppose next, that c = 1. In this case, it suffices to show that

h0(Xi , Li ) ≤ di
2

+ #l
(
GBr

i

)

2
, (9)

which inserted in (8) gives the claim together with (7). To show (9), observe that it follows
immediately by induction if L1 and L2 have uniform multidegree on X1 and X2. Otherwise,
if, say, L1 is not uniform, we need to have dv = 2gv − 2 + val(v), since the valence of
v decreases by only one in passing from GX to G1. In particular, L1(−p1) has uniform
multidegree on X1. Consider the residual ωX ⊗ L−1. It has degree 0 on Xv and by the
assumption following Step 1, not all global sections of ωX ⊗ L−1 vanish on Xv . Hence it
has no base points on Xv . Observe that

(
ωX ⊗ L−1) |X1 �

(
ωX1 ⊗ L−1

1

)
(p).

Thus since p is not a base point of
(
ωX ⊗ L−1

) |X1 , it is also not a base point of(
ωX1 ⊗ L−1

1

)
(p). By Corollary 3.3 this implies that p is a base point of L1, and hence
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h0(X1, L1) = h0 (X1, L1(−p)). Since L1(−p) has uniform multidegree, (9) follows by
induction for L1. Analogously for L2.

So we assume from now on, thatGX contains no bridges, that is, it is 2-edge-connected. In
this case, we need to show that L satisfies the classic Clifford inequality h0(X , L) ≤ d

2 + 1.

Step 3: Suppose dv = 0 for some vertex v of GX . We argue similarly as in Step 1, but now
may employ the stronger version Lemma 4.8 (2) instead of Lemma 4.8(1). As before, we
denote by Dh(v, d) the Dhar set of v and d , by Y the subcurve corresponding to Dh(v, d)

and by Y c the closure of its complement corresponding to the induced subgraph H . Set
k = |Y ∩ Y c|. Then by Lemma 4.8 (2), we have

#l
(
HBr) ≤ k. (10)

ByLemma 4.11we have that h0(Y , L|Y ) = h0(Xv, L|Xv ) = 1 and thuswe get by Lemma 3.8
that

h0(X , L) ≤ 1 + h0
(
Y c, L|Y c (−Y ∩ Y c)

)
. (11)

By Lemma 4.12, Y c is semistable and L|Y c (−Y ∩ Y c) has uniform multidegree on Y c and
hence by induction and (10)

h0(Y c, L|Y c (−Y ∩ Y c) ≤ d − k

2
+ #l

(
HBr

)

2
≤ d

2
. (12)

The claim in this case follows by combining (12) and (11).
So we assume from now on, that dv > 0 for all vertices v of GX .

Step 4: Conclusion. Let e be a non-loop edge of GX corresponding to a node p of X . Let
Xν be the partial normalization of X at p and Lν the pull back of L to Xν . Since we assume
that X is stable and contains no separating nodes, Xν is semistable and connected. Denote
by p1, p2 the two preimages of p in Xν . Then we get by Lemma 3.7:

h0(X , L) = h0
(
Xν, Lν

) − c, (13)

where c = 1 if p1, p2 are not a neutral pair of Lν and c = 0 otherwise (see Definition 3.6
for the definition of neutral pairs). Furthermore we have by definition that

h0
(
Xν, Lν

) = h0
(
Xν, Lν(−p1 − p2)

) + c′, (14)

where c′ ≤ 1 if the pi are a neutral pair of Lν , and c′ = 2 otherwise. Thus in any case
c′ − c ≤ 1. Since dv > 0 for all v by assumption and e is not a loop edge, we have that
Lν(−p1 − p2) has uniform multidegree on Xν . Furthermore, since GX is 2-edge-connected,
Lemma 4.9 gives #l

(
(GX − e)Br

) = 2. Since GX − e is the dual graph of Xν , we get by
combining (13), (14) and the induction assumption as claimed:

h0(X , L) ≤ h0
(
Xν, Lν

) − c ≤ h0
(
Xν, Lν(−p1 − p2)

) + c′ − c ≤ d − 2

2
+ 1 + 1.

��

6.2 Generic behaviour

Recall that we denote by Picd(X) ⊂ Pic(X) the irreducible component of the Picard scheme,
that parametrizes line bundles of multidegree d .
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Proposition 6.2 Let X be a connected semistable curve and d a uniform multidegree on X.
Then there is a dense open subset U of Picd(X) such that every L contained in U satisfies
the classic Clifford inequality

h0(X , L) ≤ d

2
+ 1.

Proof We prove the claim by induction on the number of non-loop edges in GX . As base
case we use the case #l

(
G

Br
X

) = 2, in which case Theorem 6.1 gives the claim for any line
bundle of uniform multidegree.

So suppose #l
(
G

Br
X

) ≥ 3. We choose a non-loop edge e of GX and consider the partial
normalization Xν of X at the node p corresponding to e. Denote by p1, p2 the two preimages
of p in Xν and by Lν the pull back of a line bundle L of multidegree d .

Arguing as in Step 0 in the proof of Theorem 6.1, we may assume that X is stable.

Step 1: Suppose every non-loop edge of GX is a bridge.We may assume that e is the unique
non-loop edge adjacent to a vertex v of GX . Then Xν has two connected components, Xv

and X ′. Since X is stable, X ′ is semistable. Since either L|X ′ or L|X ′(−p1) has uniform
multidegree on X ′, we get by induction for L|X ′ general

h0
(
X ′, L|X ′

) ≤ deg(L|X ′)

2
+ c, (15)

with c = 1 if p1 is a base point of L|X ′ and c = 3
2 otherwise.

On the other hand, dv ≤ 2gv − 1, thus either by the Clifford inequality 3.1 for irreducible
curves (if dv ≤ 2gv − 2) or by the Riemann-Roch Theorem 3.2 (if dv = 2gv − 1), we get
for L|Xv general

h0
(
Xv, L|Xv

) ≤ dv

2
+ 1

2
. (16)

Suppose first h0
(
Xv, L|Xv

) = 0. Then h0(X , L) = h0
(
X ′, L|X ′

) − c′ by Lemma 3.7,
with c′ = 0 if p1 is a base point of L|X ′ and c′ = 1 otherwise. Thus the claim follows from
(15).

Now suppose h0
(
Xv, L|Xv

)
> 0. Then for L|Xv general, p2 is not a base point of L|Xv .

Thus we get by Lemma 3.7:

h0(X , L) ≤ h0
(
X ′, L ′|X ′

) + h0
(
Xv, L|Xv

) − 1.

Inserting (15) and (16) this gives as claimed

h0(X , L) ≤ h0
(
X ′, L ′|X ′

) + h0
(
Xv, L|Xv

) − 1 ≤ deg(L|X ′)

2
+ 3

2
+ dv

2
+ 1

2
− 1 = d

2
+ 1.

Step 2: Conclusion. It remains to show the claim if e is neither a bridge nor a loop. Since X
is stable and e is not a loop, Xν is semistable. We distinguish two cases.

Case 1: both p1 and p2 are base points of Lν . Then by Lemma 3.7 we have

h0(X , L) = h0
(
Xν, Lν

) = h0
(
Xν, Lν(−pi )

) = h0
(
Xν, Lν(−p1 − p2)

)
.

Since at least one of Lν, Lν(−p1), Lν(−p2) and Lν(−p1 − p2) has uniform multidegree
on Xν , the claim follows by induction for L general.

Case 2: Otherwise, and again by Lemma 3.7, we have

h0(X , L) = h0(Xν, Lν) − 1, (17)
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if L is general. Indeed, if p1 and p2 are not a neutral pair Lν , then (17) holds for every L that
pulls back to Lν . If on the other hand p1 and p2 are a neutral pair of Lν , they are by assumption
not base points. Then the last claim of Lemma 3.7 ensures that (17) holds for all but one L that
pulls back to Lν . Since e is not a bridge, the pull-backmapPic(X) → Pic(Xν) has fiber k∗ and
hence (17) holds for a general L . We again have that at least one of Lν, Lν(−p1), Lν(−p2)
and Lν(−p1 − p2) is uniform, and hence induction gives

h0(Xν, Lν) ≤ d

2
+ 2. (18)

Inserting (18) in (17) then gives the claim. ��

6.3 Relation to stable multidegrees

Finally, we discuss another important class ofmultidegrees, the stable ones. They are essential
in the construction of universal compactified Jacobians [7]. We restrict to stable multidegrees
of total degrees d = g − 1 or d = g, since all phenomena already appear and the definition
of stability is significantly easier. We refer the interested reader to [8, §1.3], [11, §§3.2 and
3.3], [15, §5.4] or [13, §§4 and 5] for details about semistability and compactified Jacobians
in these two cases.

Definition 6.3 Let X be a stable curve and d a multidegree of total degree d ∈ {g − 1, g}.
Then d is called stable, if for every proper subcurve Y ⊂ X of genus g(Y ) we have

∑

Xv⊂Y

dv ≥ g(Y ).

Stable multidegrees of total degree g − 1 exist if and only if X contains no separating
nodes. Stable multidegrees of total degree g exist on any X .

In general, stable multidegrees are not uniform and vice versa. In particular, as the follow-
ing example shows, stable multidegrees need not satisfy the Clifford inequality for uniform
multidegrees established in Theorem 6.1 (see also [9, Example 4.15 and 4.17]).

Example 6.4 Let GX and d be as in Fig. 4. Let v1 be the 9-valent vertex in the middle and
vi , 2 ≤ i ≤ 10, the 2-valent vertices of weight 1. Denote by Xi the irreducible components
of X corresponding to the vertices vi and let pi = X1 ∩ Xi . Let L have multidegree d and
satisfy L|Xi = OXi (pi ) for i ≥ 2 and an arbitrary choice of gluing data. One checks that

h0(X , L) = 9 > 8, 5 = d

2
+ 1.

But X is stable without separating nodes and d is a stable multidegree. Hence the Clifford
inequality for uniform multidegrees of Theorem 6.1 would be h0(X , L) ≤ d

2 + 1 and is not
satisfied.

A general line bundle in Picd(X) with d stable satisfies the Clifford inequality. In fact,
[13] establishes the much stronger claim that a general semistable line bundle L is non-
special, i.e., h0(X , L) = max {0, d − g + 1}, which in particular implies the classic Clifford
inequality for general line bundles if 0 ≤ d ≤ 2g − 2.

There are two special cases, for which the bound on all line bundles in Picd(X) established
in Theorem 6.1 applies also to stable multidegrees d:
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Fig. 4 The graph GX and the
multidegree d of Example 6.4.
Bold vertices have weight 1 and
vertices drawn as circles weight
0. We included the generalized
orientation giving d , and stability
of d follows from [11, Lemma
3.3.2]

Lemma 6.5 Let X be a stable curve and d a stable multidegree of total degree d. Then d is
uniform if either d = g−1, or d = g and X contains no irreducible components of geometric
genus 0.

Proof Definition 6.3 always gives dv ≥ 0 for all vertices v. It remains to show dv ≤ 2gv −
2 + val(v). To see this, we apply Definition 6.3 to Xc

v , the closure of the complement of Xv

in X . We get

d − dv ≥ g(Xc
v).

Since g(Xc
v) = g − gv − val(v) + 1 we obtain

dv ≤ d − g(Xc
v) = d − g + gv + val(v) − 1.

Now if either d = g − 1 or d = g and gv ≥ 1, the claim follows. ��
Remark 6.6 Suppose X contains no separating nodes. Then the compactified Jacobian P

g−1
X

in degree g− 1 parametrizes line bundles with stable multidegree of total degree g− 1 away
from the boundary. By Theorem 6.1 and Lemma 6.5, all such line bundles satisfy the classic

Clifford inequality. The boundary of P
g−1
X on the other hand parametrizes torsion-free rank

1 sheaves, that satisfy a related stability condition. They need not satisfy the classic Clifford
inequality. For example, suppose X contains three irreducible components, each smooth and
of genus 1, with any two of them intersecting in a single node. Let F be the sheaf that modulo
torsion restricts to the structure sheaf on each of the 3 irreducible components and fails to be
locally free at all three nodes. Then deg(F) = 3 and h0(X , F) = 3 > 3

2 + 1 even though X
contains no separating nodes.
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