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Abstract
In this paper, we consider L p- estimate for a class of oscillatory integral operators satisfying
theCarleson–Sjölin conditionswith further convex and straight assumptions.As applications,
themultiplier problem related to a general class of hypersurfaces with nonvanishingGaussian
curvature, local smoothing estimates for the fractional Schrödinger equation and the sharp
resolvent estimates outside of the uniform boundedness range are discussed.
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1 Introduction

Let n ≥ 2, a ∈ C∞
c (Rn × R

n−1) be non-negative and supported in Bn
1 (0) × Bn−1

1 (0) and
φ : Bn

1 (0) × Bn−1
1 (0) → R be a smooth function which satisfies the following Carleson–

Sjölin conditions:

(H1) rank ∂2ξ xφ(x, ξ) = n − 1 for all (x, ξ) ∈ Bn
1 (0) × Bn−1

1 (0);

(H2) Defining the map G : Bn
1 (0) × Bn−1

1 (0) → Sn−1 by G(x, ξ) := G0(x,ξ)
|G0(x,ξ)| where

G0(x, ξ) :=
n−1∧

j=1

∂ξ j ∂xφ(x, ξ),
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the curvature condition

det ∂2ξξ 〈∂xφ(x, ξ), G(x, ξ0)〉|ξ=ξ0 �= 0

holds for all (x, ξ0) ∈ supp a.

For any λ ≥ 1, define the operator T λ by

T λ f (x) :=
∫

Bn−1
1 (0)

e2π iφλ(x,ξ)aλ(x, ξ) f (ξ) dξ (1.1)

where f : Bn−1
1 (0) → C, a(x, ξ) ∈ C∞

c (Bn
1 (0) × Bn−1

1 (0)) and

aλ(x, ξ) := a(x/λ, ξ), φλ(x, ξ) := λφ(x/λ, ξ).

We say T λ is a Hörmander type operator if φ satisfies the conditions (H1) and (H2). A typical
example for the Hörmander-type operator is the following extension operator E defined by

E f (x) :=
∫

Bn−1
1 (0)

e2π i(x ′·ξ+xnψ(ξ)) f (ξ)dξ, (1.2)

with

rank
( ∂2ψ

∂ξi∂ξ j

)

(n−1)×(n−1)
= n − 1.

Hörmander conjectured that if φ satisfies conditions H1,H2, then

‖T λ f ‖L p(Rn) � ‖ f ‖L p(Bn−1
1 (0)), (1.3)

for p > 2n
n−1 . Hörmander [19] proved the above conjecture for n = 2. For the higher

dimensional case, Stein [26] proved (1.3) for p ≥ 2 n+1
n−1 and n ≥ 3. Later, Bourgain [2]

disproved Hörmander’s conjecture by constructing a kind of counterexample. Furthermore,
he showed that Stein’s result is sharp in the odd dimensions. For the even dimensions, up to
the endpoint case, Bourgain, Guth [4] proved the sharp result. In summary, we may state the
results as follows.

Theorem 1.1 [4, 26] Let n ≥ 3 and T λ be a Hörmander type operator. For all ε > 0, λ ≥ 1,

‖T λ f ‖L p(Rn) �ε,φ,a λε‖ f ‖L p(Bn−1
1 (0)) (1.4)

holds whenever

p ≥
{
2 n+1

n−1 for n odd,

2 n+2
n for n even.

(1.5)

Lee [23] observed that if we further impose the following convex condition

(H3) The eigenvalues of the Hessian

∂2ξξ 〈∂xφ(x, ξ), G(x, ξ0)〉|ξ=ξ0

are all positive for (x, ξ0) ∈ supp a;

on the phase, the range of p can be obtained beyond that in (1.5). Recently, Guth–Hickman–
Iliopoulou [15] proved the sharp results for the operator T λ with a convex phase. To be more
precise, they showed
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Theorem 1.2 [15] Let n ≥ 3 and T λ be a Hörmander type operator satisfying the convex
condition. For all ε > 0, λ ≥ 1,

‖T λ f ‖L p(Rn) �ε,φ,a λε‖ f ‖L p(Bn−1
1 (0)) (1.6)

holds whenever

p ≥
{
23n+1
3n−3 for n odd,

23n+2
3n−2 for n even.

(1.7)

The primary difference between the translation invariant case (1.2) and (1.1) is that the
main contribution of T λ f may be concentrated in a small neighborhood of a lower dimen-
sional submanifold which features slightly differently between the odd and even dimensions.
However, such phenomena can not happen for the extension operator E if the Kakeya con-
jecture holds. The difference between Theorems 1.1 and 1.2 arises from the fact that in the
convex setting, such concentration lies in an at least λ1/2 neighborhood of a submanifold
which can be manifested by the transverse equidistribution property, while for the general
phase, it can be further squeezed into an 1-neighborhood of a submainifold.

As one can see, the Kakeya compression phenomena prohibit the sharp range of p in
(1.5), (1.7) to be matched with the conjectured range p > 2n

n−1 . Therefore, it is natural to

conjecture the potentially possible range of p in (1.3) will be p > 2n
n−1 if the Kakeya com-

pression phenomena does not happen. A probable way to preclude the Kakeya compression
phenomena is to impose the following straight condition on the phase.

H4) For given ξ , G(x, ξ) keeps invariant when x changes.

Formally, we may formulate the following conjecture.

Conjecture 1.3 Let n ≥ 3 and T λ be a Hörmander type operator with the straight condition.
For all ε > 0, the estimate

‖T λ f ‖L p(Rn) �φ,a ‖ f ‖L p(Bn−1
1 (0)) (1.8)

holds uniformly for λ ≥ 1 whenever p > 2n
n−1 .

Obviously, Conjecture 1.3 implies the restriction conjecture, and thus the Kakeya con-
jecture. Furthermore, we may see later Conjecture 1.3 also has many other applications. For
example, Conjecture 1.3 implies the Bochner–Riesz conjecture related to a class of general
hypersurfaces with nonvanishing Gaussian curvature and the local smoothing conjecture for
the fractional Schrödinger equation and the sharp resolvent estimates outside of the uniform
boundedness range.

In this paper, we prove certain L p estimate for T λ being a Hörmander type operator with
the convex and straight conditions. Define pn as follows1

pn := min
2≤k≤

[
2n+4
3

]max

{
2
2n − k + 2

2n − k
, 2 + 6

2(n − 1) + (k − 1)
∏n−1

i=k
2i

2i+1

}
.

The exponent pn originally comes from the work [18] of Hickman and Zahl. For some lower
dimensional cases, the value of pn may be found in Fig. 2 of [18]. We state our main results
as follows.

1
[
2n+4
3

]
denotes the integer part of 2n+4

3 .
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Theorem 1.4 Let n ≥ 3 and T λ be a Hörmander type operator with the convex and straight
conditions. For all ε > 0 the estimate

‖T λ f ‖L p(Rn) �ε,φ,a λε‖ f ‖L p(Bn−1
1 (0)) (1.9)

holds uniformly for λ ≥ 1 whenever p ≥ pn.

Under the straight conditions, from the Fig. 2 in [18], we may break the sharp range
of p in [15] for oscillatory integrall operators satisfying the Carleson–Sjölin and convex
conditions in some dimensions.

The proof of Theorem 1.4 relies on the polynomial partitioning method which was intro-
duced by Guth [13, 14] to handle the restriction problem. Since then, it has been also used
to study the pointwise convergence problem for the Schrödigner operator, Bochner–Riesz
conjecture, Kakeya conjecture and local smoothing conjecture for the wave equation and the
fractional Schrödinger equation, one may refer to [5, 9, 12, 17, 29] and references therein for
more details. Technically speaking, the straight condition can not be kept under the change
of variables in the spatial space which can be explicitly demonstrated in the Sect. 2.1. To
overcome this obstacle, we need to work with a more general class of functions which satisfy
the straight condition up to a diffeomorphism in the spatial variables. It should be noted that
the proof of Theorem 1.4 is obtained by adapting the arguments in [12, 15]. Thus we only
streamline the structure of the proof when there are too many overlaps.

The rest of this paper is organized as follows: In Sect. 2, we will show the applications
of conjecture 1.3 to the multiplier problem, local smoothing estimates for the fractional
Schrödinger equation and the sharp resolvent estimates outside of the uniform boundedness
range. In Sect. 3, we perform some reductions. In particular, we introduce a special class
of functions to make the induction arguments completed. In Sect. 4, we introduce the wave
packet decomposition which is an important tool. In Section 5, we prepare some useful
ingredients which play important roles in the proof of the broad “norm” estimate in Sect. 6.
With the above preparations, finally, we prove Theorem 1.4 in Sect. 7.

Notations. For nonnegative quantities X and Y , we will write X � Y to denote the
inequality X ≤ CY for some C > 0. If X � Y � X , we will write X ∼ Y . Dependence
of implicit constants on the spatial dimensions or integral exponents such as p will be sup-
pressed; dependence on additional parameters will be indicated by subscripts. For example,
X �u Y indicates X ≤ CY for some C = C(u). We write A(R) ≤ RapDec(R)B to mean
that for any power β, there is a constant Cβ such that

|A(R)| ≤ Cβ R−β B for all R ≥ 1.

We will also often abbreviate ‖ f ‖Lr
x (Rn) to ‖ f ‖Lr . For 1 ≤ r ≤ ∞, we use r ′ to denote

the dual exponent to r such that 1
r + 1

r ′ = 1. Throughout the paper, χE is the characteristic
function of the set E . We usually denote by Bn

r (a) a ball in R
n with center a and radius

r . We will also denote by Bn
R a ball of radius R and arbitrary center in R

n . Denote by
A(r) := Bn

2r (0)\Bn
r/2(0). We denote wBn

R(x0) to be a nonnegative weight function adapted to
the ball Bn

R(x0) such that

wBn
R(x0)(x) � (1 + R−1|x − x0|)−M ,

for some large constant M ∈ N.
We define the Fourier transform on Rn by

f̂ (ξ) :=
∫

Rn
e−2π i x ·ξ f (x) dx := F f (ξ).
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A type of oscillatory integral operator and its applications 1555

and the inverse Fourier transform by

ǧ(x) :=
∫

Rn
e2π i x ·ξ g(ξ)dξ := (F−1g)(x).

These help us to define the fractional differentiation operators |∇|s and 〈∇〉s for s ∈ R via

|∇|s f (x) := F−1
{
|ξ |s f̂ (ξ)

}
(x) and 〈∇〉s f (x) := F−1

{
(1 + |ξ |2) s

2 f̂ (ξ)
}
(x).

In this manner, we define the Sobolev norm of the space L p
α(Rn) by

‖ f ‖L p
α (Rn) :=

∥∥∥〈∇〉α f
∥∥∥

L p(Rn)
.

2 Applications

In this section, we talk about the relations of Conjecture 1.3 to other associated problems. In
particular, the multiplier problem with respect to a general class of hypersurfaces with non-
vanishing Gaussian curvature, local smoothing conjecture for the fractional Schrödinger and
the sharp resovent estimate outside of uniform boundedness range will be discussed.

Let ψ : Rn−1 → R be a smooth function with

rank
( ∂2ψ

∂ξi∂ξ j

)

(n−1)×(n−1)
= n − 1,

and
|∂αψ(ξ)| ≤ 1, α ∈ Z

n−1, |α| ≤ N ,

where N is a large constant. Therefore, by inverse function theorem, there exists locally a
function g : Rn−1 → R

n−1 such that

∂ξψ(g(x ′)) = −x ′, x ′ ∈ R
n−1. (2.1)

2.1 Multiplier problem

Let δ ≥ 0, ξ = (ξ ′, ξn) and mδ(ξ) := (ξn − ψ(ξ ′))δ+χ(ξ ′), where χ is a smooth compactly
supported function with suppχ ⊂ Bn−1

2 (0) and

tδ+ =
{

tδ, t ≥ 0,
0, t < 0.

We consider the following multiplier problem: for which δ and p such that
∥∥∥mδ(D) f

∥∥∥
L p(Rn)

�δ ‖ f ‖L p(Rn). (2.2)

It is conjectured that

Conjecture 2.1 For δ ≥ 0 and 1 ≤ p ≤ ∞, then

∥∥∥mδ(D) f
∥∥∥

L p(Rn)
�δ ‖ f ‖L p(Rn), δ > δ(p) := max

{
n
∣∣∣
1

2
− 1

p

∣∣∣− 1

2
, 0

}
. (2.3)
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We will show how Conjecture 1.3 implies Conjecture 2.1. Let p > 2n
n−1 and η : R → R

be a smooth compactly supported function, with suppη ⊂ (1/2, 1) satisfying
∑

j∈Z
η(2 j t) ≡ 1, t > 0.

We break mδ into pieces

mδ(ξ) =
∑

j≥1

η(2 j (ξn − ψ(ξ ′)))mδ(ξ) + r(ξ),

where r(ξ) is a smooth function with suppr ⊂ Bn
2 (0).

Define an operator mδ
j (D) as follows:

mδ
j (D) f (x) :=

(
η(2 j (ξn − ψ(ξ ′)))mδ(ξ) f̂ (ξ)

)∨
(x).

Let K δ
j (x) be the kernel of the multiplier mδ

j (D), i.e.

K δ
j (x) =

∫

Rn
e2π i x ·ξ η(2 j (ξn − ψ(ξ ′)))mδ(ξ)dξ.

Through changing of variables, we may reformulate K δ
j (x) as follows:

K δ
j (x) = 2− jδ

∫

R

e2π i xnξn η̃(2 jξn)

∫

Rn−1
e2π i(x ′·ξ ′+xnψ(ξ ′))χ(ξ ′)dξ ′dξn,

where
η̃(t) = η(t)tδ+.

For convenience, define

K j (x) :=
∫

R

e2π i xnξn η̃(2 jξn)

∫

Rn−1
e2π i(x ′·ξ ′+xnψ(ξ ′))χ(ξ ′)dξ ′dξn .

To handle the inner part of the integral with respect to ξ ′, we use the stationary phase method.
For this purpose, we borrow the following lemma from [22] with a slight modification. One
may refer to [22] for the proof.

Lemma 2.2 Define

Iψ(x) :=
∫

Rn−1
e2π i(x ′·ξ ′+xnψ(ξ ′))χ(ξ ′)dξ ′,

then

• If |xn | ≥ 1/2 and 25|x ′| ≤ |xn |, then for every M ∈ N satisfying 2M ≤ N we have

Iψ(x) = cn√|K |e
2π i

(
x ′·g

(
x ′
xn

)
+xnψ

(
g
(

x ′
xn

)))

×
M−1∑

j=0

D jχ(ξ ′)|
ξ ′=g

(
x ′
xn

)|xn |− n−1
2 − j +EM (x),

(2.4)
where cn is a constant depending on n, K denotes the Gaussian curvature of the hypersur-
face (ξ ′, ψ(ξ ′)) at point (g( x ′

xn
), ψ(g( x ′

xn
))), D0χ = χ and D j is a differential operator

in ξ ′ of order 2 j . For E , we have the estimate

|EM (x)| �M,ψ |xn |−M .
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• If 26|x ′| ≥ |xn | or |xn | ≤ 2, then for every 0 ≤ M ≤ N there exists a constant CM , such
that

|Iψ(x)| ≤ CM (1 + |x |)−M .

Let χ̃ ∈ C∞
c (R) with suppχ̃ ⊂ (−2−5, 2−5) equaling to 1 in (−2−6, 2−6), β ∈ C∞

0 (R)

with suppβ ⊂ [−9/8,−3/8] ∪ [3/8, 9/8] and
∞∑

�=−∞
β(2−�t) = 1, t �= 0.

We split K j as follows:

K j (x) = K j,0(x) +
∑

�≥1

K j,�(x),

where

K j,�(x) = χ̃
( |x ′|

xn

)
β(2−�xn)K j (x).

Using Lemma 2.2, we have
‖K j,0 ∗ f ‖L p � ‖ f ‖L p .

For � ≥ 1, the main contribution to K j,� comes from K̃ j,� defined by

K̃ j,�(x) = χ̃

( |x ′|
xn

)
β(2−�xn)|xn |− n−1

2 e
2π i

(
x ′·g

(
x ′
xn

)
+xnψ

(
g
(

x ′
xn

)))

×
∫

R

e2π i xnξn η̃(2 j ξn)dξn .

Thus it suffices to show

‖T̃ j,� f ‖L p(Rn) � 2

(
n+1
2 − n

p

)
�
2− j (1 + 2�− j )−M‖ f ‖L p ,

where T̃ j,� is defined by

T̃ j,� f (x) =
∫

Rn
K̃ j,�(x − y) f (y)dy.

Then by a standard optimization argument, we have

∞∑

�=1

‖T̃ j,� f ‖L p � 2

(
n−1
2 − n

p

)
j‖ f ‖L p . (2.5)

Therefore, by a localization argument, it suffices to show

‖2�n K̃ j,�(2
�·) ∗ f ‖L p(Bn

1 (0)) � 2

(
n+1
2 − n

p

)
�
2− j (1 + 2�− j )−M‖ f ‖L p(Bn

1 (0)).

Note that

2�n K̃ j,�(2
�·) ∗ f = 2

n+1
2 �

∫

Rn
e
2π i2�

(
(x ′−y′)·g

(
x ′−y′
xn−yn

)
+(xn−yn)ψ

(
g
(

x ′−y′
xn−yn

)))

a�, j (x, y) f (y)dy

= 2
n+1
2 �

∫

R

T 2�

yn
fyn dyn, (2.6)

where

a�, j (x, y) := β̃(xn − yn)χ̃
( x ′ − y′

xn − yn

)
×
∫

R

e2π i2�(xn−yn)ξn η̃(2 j ξn)dξn, β̃(t) := β(t)|t |− n−1
2
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1558 C. Gao et al.

and

T 2�

yn
fyn (x) :=

∫

Rn−1
e
2π i2�

(
(x ′−y′)·g

(
x ′−y′
xn−yn

)
+(xn−yn)ψ

(
g
(

x ′−y′
xn−yn

)))

a�, j (x, y) f (y′, yn)dy′, fyn (·) := f (·, yn).

It’s easy to show that
|∂α

x a�, j (x, y)| �α,M 2− j (1 + 2 j−�)M . (2.7)

Indeed, since ∂α
x

(
β̃(xn − yn)χ̃

(
x ′−y′
xn−yn

))
is bounded for any |α| ≥ 0, it suffices to show

∣∣∣∂α
xn

∫

R

e2π i2�(xn−yn)ξn η̃(2 jξn)dξn

∣∣∣ �α,M 2− j (1 + 2 j−�)M . (2.8)

By integration by parts, (2.8) follows easily.
For fixed yn , by changing of variables

x ′

xn − yn
→ x ′, 1

xn − yn
→ xn,

under the new coordinates, the phase (x ′− y′) ·g
(

x ′−y′
xn−yn

)
+(xn − yn)ψ

(
g
(

x ′−y′
xn−yn

))
becomes

�(x, y′) :=
( x ′

xn
− y′) · g(x ′ − xn y′) + 1

xn
ψ(g(x ′ − xn y′)). (2.9)

A direct computation shows that the associated Gauss map G(x, y′) related to the hypersur-
face {∂x�(x, y′)} at y′ is given by

G(x, y′) = (y′, 1)√
1 + |y′|2 , (2.10)

which is obviously independent of the spatial variables x . Indeed, suppose that g(ξ) =
(g1(ξ), g2(ξ), · · · , gn−1(ξ)), ξ ∈ R

n−1. For 1 ≤ i ≤ n − 1,

∂�

∂xi
(x ′, y′) = gi (x ′ − xn y′)

xn
+

∑

1≤ j≤n−1

( x j

xn
− y j

)∂g j

∂ξi
(x ′ − xn y′)

+
∑n−1

j=1

(
(∂ jψ)(g(x ′ − xn y′))

)
∂g j
∂ξi

(x ′ − xn y′)

xn

= gi (x ′ − xn y′)
xn

,

here we have used the fact that (∂ jψ)(g(x ′ − xn y′)) = xn y j − x j which follows from (2.1).
We also have

∂�

∂xn
(x ′, y′) = − x ′ · g(x ′ − xn y′) + ψ(g(x ′ − xn y′))

x2n
.

Therefore, for 1 ≤ i, k ≤ n − 1,

∂2�

∂ yk∂xi
(x ′, y′) = −∂gi

∂ξk
(x ′ − xn y′),
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A type of oscillatory integral operator and its applications 1559

and

∂2�

∂ yk∂xn
(x ′, y′)=−

∑n−1
j=1(−x j xn)

∂g j
∂ξk

(x ′ − xn y′) +∑n−1
j=1(−x2n y j + x j xn)

∂g j
∂ξk

(x ′ − xn y′)
x2n

=
n−1∑

j=1

y j
∂g j

∂ξk
(x ′ − xn y′).

Then it is obvious that for each x , (y′, 1) is orthogonal to ∂yk ∂x�(x, y′), 1 ≤ k ≤ n − 1.
Hence we can get (2.10). Furthermore, �(x, y′) satisfies the Carleson–Sjölin conditions by
our assumption that the Hessian of ψ is nondegerate.

Recall (2.7), we may use Conjecture 1.3 to obtain that

‖T 2�

yn
fyn ‖L p(Bn

1 (0)) � 2− n�
p 2− j (1 + 2�− j )−M‖ fyn ‖L p(Bn

1 (0)),

uniformly for yn . Finally, integrating with respect to yn , we will obtain the desired results.
If we impose an additional condition that all eigenvalues of the Hessian of ψ are positive,

then �(x, y′) also satisfies the convex condition. From the above discussion, as a direct
consequence of Theorem 1.4, we also have

Corollary 2.3 Let 1 ≤ p ≤ ∞, ψ : Rn−1 −→ R be smooth and
(

∂2ψ
∂ξi ∂ξ j

)

(n−1)×(n−1)
has

(n − 1) positive eigenvalues, then

‖mδ(D) f ‖L p(Rn) �δ,ψ,p ‖ f ‖L p(Rn) (2.11)

for all p such that max{p, p′} > pn and δ > δ(p).

2.2 Local smoothing estimates for the fractional Schrödinger equation

Let u : Rn × R → C be the solution to the following equation
{

i∂t u + (−�)
α
2 u = 0, (t, x) ∈ R × R

n

u(0, x) = f (x),
(2.12)

where α ∈ (0, 1) ∪ (1,∞) and f is a Schwartz function. The solution u can be expressed by

u(x, t) = eit(−�)
α
2 f (x) :=

∫

Rn
e2π i(x ·ξ+t |ξ |α) f̂ (ξ)dξ. (2.13)

We are concerned with L p-regularity of the solution u. For a fixed time t , Fefferman and
Stein [7], Miyachi [24] showed the following optimal L p estimate:

‖eit(−�)
α
2 f ‖L p(Rn) ≤ Ct,p‖ f ‖L p

sα,p (Rn), sα,p := αn
∣∣∣
1

2
− 1

p

∣∣∣, 1 < p < ∞. (2.14)

It is conjectured that:

Conjecture 2.4 (Local smoothing for the fractional Schrödinger operator) Let α ∈ (0, 1) ∪
(1,∞), p > 2 + 2

n and s ≥ αn( 12 − 1
p ) − α

p . Then

‖eit(−�)
α
2 f ‖L p(Rn×[1,2]) ≤ C p,s‖ f ‖L p

s (Rn). (2.15)
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We will show Conjecture 1.3 implies Conjecture 2.4. Indeed, following the reduction
in [10], up to the endpoint regularity, to show (2.15), it suffices to prove

‖eitψ(D) f ‖L p
x,t (Bn

R2
×[R2/2,R2]) �ε R2n( 12− 1

p )+ε‖ f ‖L p(Rn), supp f̂ ⊂ Bn
1 (0), (2.16)

where ψ also satisfies

• ψ(0) = 0,∇ψ(0) = 0;

• For ξ0 ∈ Bn
1 (0), the absolute value of all eigenvalues of the Hessian

(
∂2ψ

∂ξi ∂ξ j

)
|ξ=ξ0 falls

into [1/2, 1).
By a localization argument, we may also assume supp f ⊂ Bn

R2 . Note that

eitψ(D) f (x) =
∫

Rn

∫

Rn
e
2π i

(
(x−y)·ξ+tψ(ξ)

)

a(ξ) f (y)dξdy,

where a ∈ C∞
c (Bn

2 (0)). We denote K (x, t, y) the kernel of the operator eitψ(D), then

K (x, t, y) =
∫

Rn
e2π i((x−y)·ξ+tψ(ξ))a(ξ)dξ.

Through a standard stationary phase argument, we have

K (x, t, y) ∼ |t |− n
2 e

2π i

(
(x−y)·g

( x−y
t

)
+tψ

(
g
(

x−y
t

)))

a(
x−y

t ),

where g is defined as in (2.1) with n − 1 being replaced by n. Note t ∼ R2, therefore, it
suffices to consider the following oscillatory integral operators

R−n
∫

Rn
e
2π i

(
(x−y)·g

( x−y
t

)
+tψ

(
g
(

x−y
t

)))

a(
x−y

t ) f (y)dy.

By changing of variables,

x → R2x, t → R2t, y → R2y,

we have

∥∥∥
∫

Rn
e
2π i

(
(x−y)·g(

x−y
t )+tψ

(
g
(

x−y
t

)))

a
( x−y

t

)
f (y)dy

∥∥∥
L p(Bn

R2
×[R2/2,R2])

� R
2n+ 2(n+1)

p
∥∥∥
∫

Rn
e
2π i R2

(
(x−y)·g

( x−y
t

)
+tψ

(
g
(

x−y
t

)))

a
( x−y

t

)
f (R2y)dy

∥∥∥
L p(Bn

1×[1/2,1]).

(2.17)

Performing change of variables as follows

x

t
→ x,

1

t
→ t,

the corresponding phase under the new coordinates becomes

�(x, t, y) :=
( x

t
− y

)
g(x − t y) + 1

t
ψ(g(x − t y)).
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By our assumption, �(x, t, y) satisfies the straight condition, as well as the Carleson–Sjölin
conditions. Therefore, by Conjecture 1.3, we have

∥∥∥
∫

Rn
e
2π i R2

(
(x−y)·g

( x−y
t

)
+tψ

(
g
(

x−y
t

)))

a
( x−y

t

)
f (R2y)dy

∥∥∥
L p(Bn

1×[1/2,1])

� R
− 2(n+1)

p ‖ f (R2·)‖L p(Bn
1 )

� R
− 2(n+1)

p − 2n
p ‖ f ‖L p(Bn

R2
). (2.18)

Thus, we complete the proof.
It should be noted that Gan–Oh–Wu [8] considered the local smoothing problem for the

fractional Schrödinger equation via a different approach and mentioned essentially the same
method as above discussed. Furthermore, it is possible to further improve Gan-Oh-Wu’s
result by considering the Hörmanger type operator with the convex and straight conditions
using Wang’s method [28] at least in dimension n = 2.

2.3 Sharp resolvent estimates outside of the uniform boundedness range

The resolvent estimate for the Laplatian is of the form

‖(−� − z)−1 f ‖Lq (Rn) ≤ C(z, p, q)‖ f ‖L p(Rn), ∀z ∈ Z\[0,∞). (2.19)

This inequality and its variants have been applied to study the problems of uniform Sobolev
estimates, unique continuation properties and limiting absorption principles, etc, one may
refer to [6, 11, 21] for more details.

Let’s briefly review the results related to (2.19). In [21], Kenig, Ruiz and Sogge showed,
for z ∈ C\[0,∞) and

1

p
− 1

q
= 2

n
,

2n

n + 3
< p <

2n

n + 1
,

with n ≥ 3, the constant C(p, q, n) > 0 can be obtained independent of z. By homogeneity,
a simple calculation shows that

‖(−� − z)−1‖p→q = |z|−1+ n
2

(
1
p − 1

q

)∥∥∥
(

−� − z

|z|
)−1 ∥∥∥

p→q
, ∀z ∈ C\[0,∞).

For z ∈ S
1\{1}, Gutiérrez [16] obtained the optimal range of p, q with n ≥ 3 in the sense

that the constant C(p, q, n) is independent of z. To be more precise, if z ∈ S
1\{1} and ( 1p , 1

q )

lies in the set
{
(x, y) : 2

n + 1
≤ x − y ≤ 2

n
, x >

n + 1

2n
, y <

n − 1

2n

}
, n ≥ 3,

the sharp constant C(p, q, z) in (2.19) can be obtained uniformly independent of z.
To formally state results regarding C(z, p, q) with z ∈ S

1\{1} and ( 1p , 1
q ) lying outside

of the uniform boundedness range, let’s firstly introduce some notations. Let I 2 be a closed
square defined by

I 2 := {(x, y) ∈ R
2 : 0 ≤ x, y ≤ 1}.

For each (x, y) ∈ I 2, define
(x, y)′ := (1 − x, 1 − y).
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1562 C. Gao et al.

Similarly, for any subset R ⊂ I 2, define R′ to be

R′ := {(x, y) ∈ I 2 : (x, y)′ ∈ R}.

Definition 2.5 For X1, . . . , X� ∈ I 2, we denote by [X1, . . . , X�] the convex hull of the points
X1, . . . , X�. In particular, [X , Y ] will denote the closed line segment jointing X and Y . We
also denote by (X , Y ) and [X , Y ) for the open interval [X , Y ]\{X , Y } and the half-open
interval [X , Y ]\{Y } respectively.

Set C = ( 12 ,
1
2 ) and

B :=
(

n + 1

2n
,

(n − 1)2

2n(n + 1)

)
, B ′ :=

(
n2 + 4n − 1

2n(n + 1)
,

n − 1

2n

)
,

D :=
(

n − 1

2n
,

n − 1

2n

)
, D′ :=

(
n + 1

2n
,

n + 1

2n

)
,

E :=
(

n + 1

2n
, 0

)
, E ′ :=

(
n − 1

2n
, 1

)
,

and

R0 = R0(n) :=
⎧
⎨

⎩

{
(x, y) : 0 ≤ x, y ≤ 1, 0 ≤ x − y < 1

}
if n = 2,{

(x, y) : 0 ≤ x, y ≤ 1, 0 ≤ x − y ≤ 2
n

}
\
{(

1, n−2
n

)
,
(
2
n , 0

)}
if n ≥ 3.

It is conjectured that:

Conjecture 2.6 Let n ≥ 2. If ( 1p , 1
q ) lies in R0\

(
[B, E] ∪ [B ′, E ′] ∪ [D, C) ∪ [D′, C)

)
,

then

‖(−� − z)−1‖p→q �p,q,n |z|−1+ n
2

(
1
p − 1

q

)
+γp,q dist(z, [0,∞))−γp,q (2.20)

holds for z ∈ C\[0,∞), where γp,q is defined as follows:

γp,q := max
{
0, 1 − n + 1

2

( 1
p

− 1

q

)
,

n + 1

2
− n

p
,

n

q
− n − 1

2

}
. (2.21)

Remark 1 If
(
1
p , 1

q

)
∈ {B, B ′}, the restricted weak type estimate

‖(−� − z)−1 f ‖q,∞ ≤ C |z|−1+ n
n+1 ‖ f ‖p,1 (2.22)

holds. One may refer to [22] for more details.

From [22], we know that the lower bounded of (2.20) is true for all n ≥ 2. For n = 2,
this conjecture has been completely established, one may refer to [22]. However, for n ≥ 3,
only partial positive results of Conjecture 2.6 have been proved, see Fig. 1. More presicely,
for n ≥ 3, setting

R1 := [P∗, P0, C]\{C}

Kown–Lee [22] showed Conjecture 2.20 holds except for
(
1
p , 1

q

)
∈ R1 ∪R′

1. Among other

things, following the proof of Proposition 4.1 in [22], we have
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A type of oscillatory integral operator and its applications 1563

Fig. 1 The conjectured range for the resolvent estimates outside of the uniform boundedness and current
progress

Theorem 2.7 Let T λ be a Hörmander type operator with the convex and straight conditions.
If p > 2n

n−1 and

‖T λ f ‖L p(Rn) � ‖ f ‖L p(Bn−1
1 (0)), (2.23)

then
‖(−� − z)−1‖p→p �p,n |z|−1+γp,pdist(z, [0,∞))−γp,p . (2.24)

Remark 2 Indeed, the proof of (2.24) can be reduced to showing a multiplier estimate

∥∥∥F−1
( χ̃(ξ) f̂ (ξ)

|ξ |2 − 1 − iδ

)∥∥∥
p

� |δ|−γp,p ‖ f ‖p

whereχ̃ ∈ C∞
0 (1 − 2δ0, 1 + 2δ0) for a small δ0 > 0 and 0 < |δ| � 1. Using the Carleson–

Sjölin reduction as displayed in Sect. 2.1, an important ingredient in the approach is the
following oscillatory integral operator estimate

∥∥∥
∫

Rn−1
e2π i�(x,y′)a(x, y′) f (y′)dy′

∥∥∥
L p(Rn)

� ‖ f ‖L p ,

where � is defined as in (2.9) and a ∈ C∞
c (Bn

1 (0) × Bn−1
1 (0)). Since �(x, y′), up to a

diffemorphism in x , satisfies the conditions H1,H2,H3,H4, we may apply Conjecture 1.3 to
get the desired results.

As a direct consequence of Theorem 2.7 and (2.22), by interpolation and the epsilon
removal arguments, up to a pair of intervals (B, D) ∪ (B ′, D′), we obtain Conjecture 1.3
implies Conjecture 2.6. Furthermore, we may use the new oscillatory integral estimates in
Theorem 1.4 to further improve the range of p in (2.24).
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3 Reductions

Typically speaking, the phase φ(x, ξ) which satisfies the conditions H1,H2,H3,H4 can be
viewed as a small perturbation of the translation invariant case. More precisely, through
changing of variables, it can be rewritten as

φ(x, ξ) = 〈x ′, ξ 〉 + xnh(ξ) + E(x, ξ), (3.1)

where h and E are smooth functions, h is quadratic in ξ and E is quadratic in x, ξ . However,
under the new coordinate, the formula of φ in (3.1) may not satisfy the straight condition,
even though H1,H2,H3 can be ensured. In other words, the straight condition may not be
kept under a general diffeomorphism in the spatial variables. Therefore, we should be careful
when performing the change of variables in x and, meanwhile, keeping track of the straight
condition.
Basic reductions As mentioned above, the straight condition may be destroyed while per-
forming a diffeomorphism with respect to the spatial variables, which inspires us to consider
a wider class of functions which, upon a diffeomorphism in the spatial variables, satisfy the
straight condition. To formalize that, we introduce a notion of �cs.

Definition 3.1 We say a function φ(x, ξ) lies in the class �cs, if, modulo a diffeomorphism
in the spatial variables x , φ(x, ξ) satisfies the conditions H1,H2,H3,H4.

Remark 3 In terms of �cs, it is an interesting problem to investigate the influence of the
higher order terms of φ(x, ξ) in x .

Example 3.2 In [2], Bourgain disproved Hormander’s conjecture by constructing a coun-
terexample where the Kakeya compression phenomena happen which roughly say that the
main contribution to the oscillatory integral may be concentrated in a lower dimensional
submanifold. Next we will analyse Bourgain’s counterexample to vividly show that there
does not exist a diffeomorphism in the spatial variables such that the Gauss map G(x, ξ) is
invariant when x changes.

Let

P(x, y) = x1y1 + x2y2 + 2x3y1y2 + x23 y21 .

Assume that there exists a diffeomorphism

x → κ(x̃),

such that for given ξ , the associated G(x, ξ) keeps invariant when x changes, where x =
(x1, x2, x3) = (κ1(x̃), κ2(x̃), κ3(x̃)). Then the tangent space of the hypersurface {∂x̃ P(x̃, y) :
y ∈ Bn−1

1 (0)} at point (x̃, y) can be spanned by the following two linear independent vectors

∂xy P(x, y)|x=κ(x̃)

(∂κ

∂ x̃

)
,

where

∂xy P(x, y) =
(
1 0 2y2 + 4x3y1
0 1 2y1

)
. (3.2)

We claim that there does not exist a diffeomorphism κ such that
(
1 0 2y2 + 4κ3(x̃)y1
0 1 2y1

)(∂κ

∂ x̃

)
=
(
1 0 C1(y1, y2)
0 1 C2(y1, y2)

)
, (3.3)
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where C1(y1, y2), C2(y1, y2) only depend on y1, y2. Indeed, if (3.3) holds, we have

∂κ1(x̃)

∂ x̃1
+ (2y2 + 4κ3(x̃)y1)

∂κ3(x̃)

∂ x̃1
= 1,

∂κ1(x̃)

∂ x̃2
+ (2y2 + 4κ3(x̃)y1)

∂κ3(x̃)

∂ x̃2
= 0,

∂κ1(x̃)

∂ x̃3
+ (2y2 + 4κ3(x̃)y1)

∂κ3(x̃)

∂ x̃3
= C1(y1, y2).

By solving the equations, one has κ1(x̃) = −2y2κ3(x̃) − 2y1κ3(x̃)2 + x̃1 + C1(y1, y2)x̃3 +
C3(y1, y2). Since C1(y1, y2), C3(y1, y2) are constants when y1, y2 are fixed, we get

κ1(x̃) = −2κ3(x̃) − 2κ3(x̃)2 + x̃1 + C1(1, 1)x̃3 + C3(1, 1)

= −κ3(x̃) − κ3(x̃)2 + x̃1 + C1(1/2, 1/2)x̃3 + C3(1/2, 1/2),

then κ3(x̃)+ κ3(x̃)2 = c1 x̃3 + c3, where c1 = C1(1, 1)− C1(1/2, 1/2) and c3 = C3(1, 1)−
C3(1/2, 1/2). By the same argument, κ2(x̃) = −2y1κ3(x̃)+ x̃2 +C2(y1, y2)x̃3 +C4(y1, y2)
and κ3(x̃) = c2 x̃3 + c4. Thus c2 x̃3 + c4 + (c2 x̃3 + c4)2 = c1 x̃3 + c3 holds for all x̃3 ∈ R,
which implies c1 = c2 = 0 and κ3(x̃) = c4, this is a contradiction since we assume κ is a
diffemorphism.

In addition, we also assume some additional quantitative conditions on φ. Firstly, let’s
introduce a notion of reduced form.

Definition 3.3 We say a function φ(x, ξ) is of reduced form if φ ∈ �cs with the following
conditions hold: let ε > 0 be a fixed constant and a(x, ξ) be supported on X × �, where
X := X ′ × Xn and X ′ ⊂ Bn−1

1 (0), Xn ⊂ (−1, 1) and � ⊂ Bn−1
1 (0), upon which the phase

φ has the form
φ(x, ξ) = 〈x ′, ξ 〉 + xnh(ξ) + E(x, ξ),

with
|∂α

x ∂
β
ξ φ(x, ξ)| ≤ Cα,β, |α|, |β| ≤ Npar, (3.4)

here h and E are smooth functions and h is quadratic in ξ , E is quadratic in x, ξ and Npar is
a given large constant.

Furthermore, φ also satisfies the following conditions:

C1 : The eigenvalues of the Hessian
(

∂2h
∂ξi ∂ξ j

)

(n−1)×(n−1)
all fall into [1/2, 2].

C2 : Let cpar > 0 be a small constant, Npar > 0 be a given large constant as above,

|∂α
x ∂

β
ξ E(x, ξ)| ≤ cpar, |α|, |β| ≤ Npar.

Let 1 ≤ R ≤ λ, T λ be defined with the reduced form and Q p(λ, R) be the optimal
constant such that

‖T λ f ‖L p(Bn
R(0)) ≤ Q p(λ, R)‖ f ‖

2
p

L2‖ f ‖1−
2
p

L∞ . (3.5)

We claim that the proof of Theorem 1.4 can be reduced to showing that for p ≥ pn and
for each ε > 0,

Q p(λ, R) �ε,p Rε. (3.6)

Indeed, we firstly claim that:
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Claim: If T λ is an operator satisfying the conditions H1,H2,H3,H4, then

‖T λ f ‖L p(Bn
R(0)) �φ ‖T λr̃2 f̃ ‖L p(Bn

C R(0)), (3.7)

where T λ is defined with the reduced form, r̃ > 0 is an appropriate constant depending on
φ and

‖ f̃ ‖L p �φ ‖ f ‖L p . (3.8)

We take the above claim for granted and prove (3.6) implies Theorem 1.4. To bemore precise,
we need to show (3.6) implies

‖T λ f ‖L p(Bn
R(0)) �ε,p,φ Rε‖ f ‖L p .

Indeed, by (3.6),(3.7), (3.8), we have

‖T λ f ‖L p(Bn
R(0)) �ε,p,φ Rε‖ f ‖

2
p

L2‖ f ‖1−
2
p

L∞ . (3.9)

By taking f = χE , we get

‖T λ f ‖L p(Bn
R(0)) �ε,p,φ Rε‖ f ‖L p .

Then the desired results follows by interpolation argument. Therefore, it suffices to verify
the claim. For convenience, we just need to track the phase when changing of variables.

The proof can be obtained by modifying the associated part in [15]. Without loss of
generality, we may assume

∂α
x φ(x, 0) = 0, ∂α

ξ φ(0, ξ) = 0, α ∈ Z
n .

Otherwise, we take φ to be

φ(x, ξ) + φ(0, 0) − φ(0, ξ) − φ(x, 0).

By Taylor’s formula, we have

φ(x, ξ) = ∂ξφ(x, 0) · ξ + ρ(x, ξ),

where ρ(x, ξ) is quadratic in ξ . By the condition H1, we may assume rank∂x ′ξ φ = n − 1
and G(0, 0) = (0, . . . , 1), thus we may find a smooth function �(x ′, xn, 0) such that

∂ξφ(�(x ′, xn, 0), xn, 0) = x ′.

By our assumption, one may also get

�(0, 0) = 0, ∂xn �(0, 0) = 0, ∂x ′�(0, 0) = ∂2x ′ξ φ(0, 0)−1. (3.10)

By changing of variables

x ′ −→ �(x ′, xn, 0), xn −→ xn,

thus it suffices to consider

〈x ′, ξ 〉 + ρ(�(x ′, xn, 0), xn, ξ).

Then taking another expansion in x and using (3.10) yield

ρ(�(x ′, xn, 0), xn, ξ)) = ρ(�(0, 0), 0, ξ) + ∂x ′ρ(0, ξ)∂x ′�(0)x ′

+
(
∂xn ρ

)
(0, ξ)xn + O(|x |2|ξ |2). (3.11)
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Finally, from (3.10), one deduces that

φ(x, ξ) = 〈x ′, ξ + ∂x ′ξ φ(0, 0)−T ∂x ′ρ(0, ξ)〉 + xn∂xn ρ(0, ξ) + O(|x |2|ξ |2).
Then by changing of variables

ξ + ∂x ′ξ φ(0, 0)−T ∂x ′ρ(0, ξ) −→ ξ,

and taking h(ξ) = ∂xn ρ(0, ξ), we have

φ(x, ξ) = 〈x ′, ξ 〉 + xnh(ξ) + O(|x |2|ξ |2).
Since � ⊂ Bn−1

1 (0), we partition � into a family of balls {Bα} of radius r and center ξα ,
such that

� ⊂
⋃

α

Bα.

By triangle inequality, it suffices to consider a single ball Bα . By changing of variables

ξ −→ r̃ξ + ξα,

where r̃ ≥ r , under the new coordinates, we just need to consider ξ ∈ Bn−1
r/r̃ (0) and

e2π iφλ(x,ξα)

∫
e2π i(φλ(x,ξ)−φλ(x,ξα))aλ(x, ξ) f (ξ)dξ.

Since φ(x, ξ) = 〈x ′, ξ 〉 + xnh(ξ) + E(x, ξ), we have

φλ(x, ξ) − φλ(x, ξα) = r̃∂ξφ
λ(x, ξα) · ξ + r̃2xnh̃(ξ) + r̃2Ẽλ(x, ξ),

where

h̃(ξ) : = r̃−2(h(r̃ξ + ξα) − h(ξα) − r̃∂ξ h(ξα) · ξ)

Ẽλ(x, ξ) : = r̃−2(Eλ(x, r̃ξ + ξα) − Eλ(x, ξα) − r̃∂ξEλ(x, ξα) · ξ). (3.12)

By another change of variables in x as follows

x ′ −→ λ�
( x ′

λr̃
,

xn

λr̃2
, ξα

)
, xn −→ r̃−2xn,

finally, it suffices to consider

φ̃ := 〈x ′, ξ 〉 + xnh̃(ξ) + Ēλr̃2(x, ξ), (3.13)

where Ē(x, ξ) := Ẽ(�(r̃ x ′, xn, ξα), xn, ξ).
From (3.12), h̃ is quadratic in ξ and Ē(x, ξ) is quadratic in x, ξ . Furthermore, through

an affine change of variables in ξ and by choosing appropriate small r̃ such that r/r̃ is
also sufficiently small, we may ensure the condition C1 and C2. Define T λ with the phase in
(3.13) and note that all the implicit constants arising when performing the change of variables
depend on φ, we will obtain (3.7) and (3.8).

To prove (3.6), we use the induction approach. For λ ≤ 1000, (3.6) holds trivially by
choosing the implicit constants sufficiently large.
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3.1 Further remarks on the phase

Let φ be of the reduced form, by our assumption, we may choose a smooth function p(x)

such that φ(p(x), ξ) satisfies the straight condition and

|∂α
x ∂

β
ξ φ(p(x), ξ)| ≤ C̄α,β, |α|, β| ≤ Npar, (3.14)

uniformly. Indeed, we may always choose a function p : Rn−1 → R
n−1 with |∂x p(x)| � 1

such that φ(Ap( x
A ), ξ) satisfies the straight condition where A is large enough to ensure

(3.14).

4 wave packet decomposition

Let r ≥ 1 and �r be a collection of cubes {θ} of sidelength 9
11r−1/2 and center ξθ which

cover the ball Bn−1
2 (0). Correspondingly, we take a smooth partition of unity {ψθ }θ∈�r with

respect to the cover �r . Let ψ̃θ be a non-negative smooth cut-off function supported on 11
9 θ

and equal to 1 on 11
10θ . Given a function g, by taking Fourier series expansion, we have

g(ξ)ψθ (ξ) · ψ̃θ (ξ) =
(r1/2

2π

)n−1 ∑

v∈r1/2Zn−1

(gψθ )̂ (v)e2π iv·ξ ψ̃θ (ξ).

Define

gθ,v(ξ) :=
(r1/2

2π

)n−1
(gψθ )̂ (v)e2π iv·ξ ψ̃θ (ξ).

Correspondingly, we may make the following decomposition

g =
∑

(θ,v)∈�r ×r1/2Zn−1

gθ,v.

Let 1 ≤ r ≤ R and Bn
r (x0) ⊂ Bn

R(0), define

φλ
x0(x, ξ) := φλ(x, ξ) − φλ(x0, ξ).

By the assumption of the phase, there exists γ λ
θ,v,x0

(xn) such that

∂ξφ
λ
x0(γ

λ
θ,v,x0(xn), xn, ξθ ) + v = 0.

Given θ, v, define a tube Tθ,v = Tθ,v(x0) to be

Tθ,v(x0) := {(x ′, xn) : |x ′ − γ λ
θ,v,x0(xn)| � r

1+δ
2 , |xn − xn

0 | ≤ Cr}, (4.1)

and
gTθ,v := e−2π iφλ(x0,ξ)(g(·)e2π iφλ(x0,·))θ,v.

Thus, we have
T λg(x) =

∑

θ,v

T λgTθ,v (x).

We define a collection of tubes associated to the ball Bn
r (x0) by

T[Bn
r (x0)] := {Tθ,v(x0) : (θ, v) ∈ �r × r1/2Zn−1}.

The main contribution of T λgTθ,v is concentrated on Tθ,v and rapidly decays outside of the
tube which can be manifested in the following lemma.
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A type of oscillatory integral operator and its applications 1569

Lemma 4.1 If x ∈ Bn
r (x0)\Tθ,v , then

|T λgTθ,v (x)| �N (1 + r−1/2|∇ξ φ
λ
x0(x, ξθ ) + v|)−NRapDec(r)‖g‖L2 .

Proof For convenience, we use T to denote Tθ,v and use gx0 to denote ge2π iφλ(x0,ξ). Recall
the definition of gT , we have

T λgT (x) =
( r

1
2

2π

)n−1
(gx0ψθ )̂ (v)

∫
e2π iφλ(x,ξ)−2π iφλ(x0,ξ)e2π iv·ξ aλ(x, ξ)ψ̃θ (ξ)dξ.

By changing of variables: ξ −→ r−1/2ξ + ξθ , it suffices to consider the integral
∫

e2π iφλ(x,r−1/2ξ+ξθ )−2π iφλ(x0,r−1/2ξ+ξθ )e2π ir−1/2v·ξ aλ(x, r−1/2ξ + ξθ )ψ̃(ξ)dξ.

Taking the derivative in ξ , we get

∂ξ (φ
λ(x, r−1/2ξ + ξθ ) − φλ(x0, r−1/2ξ + ξθ ) + r−1/2v · ξ)

= r−1/2(∂ξφ
λ(x, r−1/2ξ + ξθ ))−∂ξφ

λ(x, ξθ )−(∂ξφ
λ(x0, r−1/2ξ + ξθ )−∂ξφ

λ(x0, ξθ ))

+ r−1/2(v + ∂ξφ
λ
x0(x, ξθ ))

= r−1/2(v + ∂ξφ
λ
x0(x, ξθ )) + O(1).

Integration by parts, we will obtain the desired results. ��
We also have the following L2-orthogonality properties.

Lemma 4.2 (L2-orthogonality) For any T ⊂ T[Bn
r (x0)], it holds that

∥∥∥∥∥
∑

T ∈T
gT

∥∥∥∥∥

2

2

�
∑

T ∈T
‖gT ‖22 � ‖g‖22. (4.2)

Moreover, if T is any collection of tubes with the same θ , then
∥∥∥∥∥
∑

T ∈T
gT

∥∥∥∥∥

2

2

∼
∑

T ∈T
‖gT ‖22.

Comparing wave-packet at different scales. Let r1/2 < ρ < r . Consider another smaller
ball Bn

ρ (x̃0) ⊂ Bn
r (x0). Similarly, wemay define thewave-packet decompositionwith respect

to the ball Bn
ρ (x̃0). To distinguish the wave packet of different scales, we use T̃[Bn

ρ (x̃0)] to
denote the smaller scale wave-packet.

Definition 4.3 We say a function h is concentrated on wave packets from a tube set Tα , if

h =
∑

T ∈Tα

hT + RapDec(r)‖h‖2. (4.3)

Definition 4.4 Let (θ, v) ∈ �r × r1/2Zn−1 and let (θ̃ , ṽ) ∈ �ρ × ρ1/2
Z

n−1. We define a set
T̃θ,v[Bn

ρ (x̃0)] collection of smaller tubes as follows

T̃θ,v[Bn
ρ (x̃0)] := {T̃

θ̃ ,ṽ
∈ T̃[Bn

ρ(x̃0)] : dist(θ, θ̃) � ρ−1/2, |ṽ−(∂ξ φλ
x0 (x̃0, ξθ )+v)| � r (1+δ)/2}.

One may carry over the approach verbatim in [12] to obtain the following two lemmas.
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1570 C. Gao et al.

Lemma 4.5 [12] Let Tθ,v ∈ T[Bn
r (x0)]. Then it holds that

gTθ,v = (gTθ,v )|T̃θ,v[Bn
ρ (x̃0)] + RapDec(r)‖g‖2.

Lemma 4.6 [12] Assume Tθ,v ⊂ T[Bn
r (x0)]. If T̃θ̃ ,ṽ ∈ T̃θ,v[Bn

ρ (x̃0)], then it holds that

HausDist(T̃θ̃ ,ṽ , Tθ,v ∩ Bn
ρ (x̃0)) � r (1+δ)/2,

and
�(G(ξθ ), G(ξθ̃ )) � ρ−1/2.

5 Transverse equidistribution property

Transverse equidistribution property is based on a simple observation which can be roughly
stated as follows: if suppĝ ⊂ Bn

r (0), r > 0, then g can not be concentrated in a ball of radius
less than r−1. Starting from this fact and other geometric assumptions, Guth [13] established
the transverse equidistribution lemma for the extension operator. Then Guth–Hickman–
Iliopoulou [15] extended it to the Hörmander type operator with the convex condition. It
should be noted that the proof of the transverse equidistribution lemma in [15] relies on the
phase that belongs to a category which may not satisfy the straight condition. To overcome
this obstacle, we follow the approach in [12] which deals with the input function directly
without recourse to a further operation under T λ. Since T λ satisfies the straight condition
(i.e., for given ξ , Gλ(x, ξ) keeps invariant when x changes), we may use G(ξ) to denote
Gλ(x, ξ). It is worth noting that there are still some differences between [12] and our case
at this point, for example, in [12],

G(ξ) = (−ξ, 1)√
1 + |ξ |2 ,

therefore, if V ⊂ R
n is a subspace, then the set

S := {ξ ∈ R
n : G(ξ) ∈ V }

falls into an affine subspace in Rn . However, in general cases, for example,

G(ξ) = (−∂h(ξ), 1)√
1 + |∂h(ξ)|2 ,

where h is a smooth function with non-degenerate Hessian, the associated set S may be a
curved submanifold which requires more technical handling.

Since φ(x, ξ) satisfies the straight condition, in terms of the Gauss map, it suffices to
consider the following class of varying hypersurfaces {∂xφ(x, ξ) : ξ ∈ �} at x = 0. By the
condition H1, we may find locally a function q : Rn−1 −→ R

n−1 such that

∂x ′φ(0, q(ξ)) = ξ.

Define
h(ξ) := ∂xn φ(0, q(ξ)). (5.1)

We may assume the hypersurface {∂xφ(0, ξ) : ξ ∈ �} can be reparameterized by {(ξ, h(ξ) :
ξ ∈ �)} with

‖∂2ξξ h(ξ) − In−1‖op � 1, ξ ∈ �. (5.2)
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A type of oscillatory integral operator and its applications 1571

Otherwise, we can choose a non-degenerate matrix A such that

∂2ξξ h(Aξ)|ξ=0 = In−1.

By choosing the support of ξ sufficiently small, it holds that
∥∥∥∂2ξξ h(Aξ) − In−1

∥∥∥
op

� 1.

Correspondingly, we make another affine transformation in x and replace φ(x, ξ) by φ̃(x, ξ)

which is defined by
φ̃(x, ξ) := φ(A−1x ′, xn, q(Aξ)).

Obviously, φ̃(x, ξ) satisfies the straight conditions and

∂x φ̃(x, ξ)|x=0 = (ξ, ∂xn φ(0, q(Aξ))).

Definition 5.1 Let P1, . . . , Pn−m : Rn → R be polynomials. We consider the common zero
set

Z(P1, . . . , Pn−m) := {x ∈ R
n : P1(x) = · · · = Pn−m(x) = 0}. (5.3)

Suppose that for all z ∈ Z(P1, . . . , Pn−m), one has

n−m∧

j=1

∇ Pj (x) �= 0.

Then a connected branch of this set, or a union of connected branches of this set, is called an
m-dimensional transverse complete intersection. Given a set Z of the form (5.3), the degree
of Z is defined by

min
( n−m∏

j=1

deg(Pi )
)
,

where the minimum is taken over all possible representations of Z = Z(P1, . . . , Pn−m).

Definition 5.2 Let r ≥ 1 and Z be an m-dimensional transverse complete intersection. A
tube Tθ,v(x0) ∈ T[Bn

r (x0)] is said to be r−1/2+δm -tangent to Z in Bn
r (x0) if it satisfies

• Tθ,v(x0) ⊂ Nr1/2+δm (Z) ∩ Bn
r (x0);

• For every z ∈ Z ∩ Bn
r (x0), if there is y ∈ Tθ,v(x0) with |z − y| � r1/2+δm , then one has

�(G(θ), Tz Z) � r−1/2+δm .

Here, Tz Z is the tangent space of Z at z and

G(θ) := {G(ξ) : ξ ∈ θ}.
Definition 5.3 Let 1 ≤ ρ ≤ r and Z be an m-dimensional transverse complete intersection
and let Bn

ρ (x̃0) ⊂ Bn
r (x0). Define a collection of tangent tubes inside a ball as

TZ [Bn
r (x0)] := {T ∈ T[Bn

r (x0)] : T is r−1/2+δm -tangent to Z in Bn
r (x0)}.

Given an arbitrary translation b ∈ R
n , define

T̃b[Bn
ρ (x̃0)] := {T̃ ∈ T̃[Bn

ρ (x̃0)] : T̃ is ρ−1/2+δm -tangent to Z + b in Bn
ρ (x̃0)}.

For simplicity, we also abbreviate TZ and T̃b for TZ [Bn
r (x0)] and T̃b[Bn

ρ (x̃0)] respectively.
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We may state our main results in this section as follows.

Lemma 5.4 Let |b| � r1/2+δm . Suppose that h is concentrated on large wave packets from
TZ ∩ Tθ̃ ,w for some (θ̃ , w) ∈ �ρ × r1/2Zn−1. Then for every W̃ ⊂ T̃b, we have

∥∥∥h|W̃
∥∥∥
2

2
� r O(δm )(r/ρ)−

n−m
2 ‖h‖22. (5.4)

As a direct consequence of Lemma 5.4, we may obtain the following results.

Corollary 5.5 Let |b| � r1/2+δm . Suppose that h is concentrated on large wave packet from
TZ . Then for every W̃ ⊂ T̃b, we have

∥∥∥h|W̃
∥∥∥
2

2
� r O(δm )(r/ρ)−

n−m
2 ‖h‖22.

Proof We may rewrite

h|W̃ =
∑

(θ̃ ,w)

h θ̃ ,w,

such that h θ̃ ,w is concentrated on wave packets from TZ ∩ Tθ̃ ,w. Then, we may apply (5.4)

to each h θ̃ ,w and recall the L2-orthogonality in Lemma 4.2. ��

Let x̃0 := (x̃ ′
0, x̃n

0 ), and define xγ := γ λ

θ̃,ṽ,x̃0
(x̃n

0 ), B := Bn−1
Cr1/2+δ (xγ ). Let Z0 be the

intersection of Z + b of the hyperplane {x : xn = x̃0}. Up to a harmless small perturbation2

in the xn direction, we may assume Z0 is a transverse complete intersection in Rn−1. Define
a smooth map � : Rn−1 → R

n−1 as follows

�(x ′) := −∂ξφ(x ′, x̃n
0 , ξθ̃ ).

Proposition 5.6 Let h be concentrated on bigger wave packets from Tθ̃ ,w ∩ TZ . Then

‖(h|W̃ )̂ ‖2 � ‖ĥχNCρ1/2+δm (�(Z0)∩�(C B))‖2 + RapDec(ρ)‖h‖2. (5.5)

Proof First we claim that
Claim: Let T̃θ̃ ,ṽ ∈ W̃ , then

∣∣∣
∑

T̃
θ̃ ,ṽ

∈W̃

(
ρ

n−1
2 e2π iφλ(x̃0,ξ)ψθ̃

)̂
(ṽ − y)

∣∣∣ ≤ CχNCρ1/2+δm (�(Z0)∩�(C B))(y) +RapDec(ρ)‖h‖2.

(5.6)
We firstly take the above claim for granted and continue the proof of (5.5). By the definition,

h|W̃ =
∑

T̃ ∈W̃

hT .

Therefore, by the orthogonality property, we have

‖(h|W̃ )‖22 �
∑

T̃ ∈W̃

‖hT̃ ‖22.

2 see the appendix in [12]
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By the Plancherel’s theorem, we get
∑

T̃ ∈W̃

‖hT̃ ‖22 � ρn−1
∑

T̃ ∈W̃

|(hx̃0ψθ̃ )̂ (v)|2‖ψθ̃‖22 = ρ
n−1
2
∑

T̃ ∈W̃

|(hx̃0ψθ̃ )̂ (v)|2.

Note that
(hx̃0ψθ̃ )̂ (ṽ) = ĥ ∗ (e2π iφλ(x̃0,·)ψθ̃ )̂ (ṽ).

Using Hölder’s inequality, we obtain

ρ
n−1
2
∑

T̃ ∈W̃

|(hx̃0ψθ̃ )̂ (v)|2 �
∫

|ĥ(y)|2
( ∑

T̃ ∈W̃

|(ρ n−1
2 e2π iφλ(x̃0,·)ψθ̃ )̂ (ṽ − y)|

)
dy. (5.7)

Then (5.5) follows from (5.6). Therefore, it remains to show the claim. By changing of
variables: ξ → ρ−1/2ξ + ξθ̃ , we have

(
e2π iφλ(x̃0,ξ)ψθ̃

)̂
(ṽ − y) = ρ− n−1

2

∫
e2π iφλ(x̃0,ρ−1/2ξ+ξ

θ̃
)−2π i(ṽ−y)(ρ−1/2ξ+ξ

θ̃
)ψ(ξ)dξ.

Recall that
∂ξφ

λ
x0(γ

λ

θ̃,ṽ,x̃0
(t), t, ξθ̃ ) = ṽ.

A stationary phase argument shows that the above integral is essentially nontrivial when
y ∈ Bn

ρ1/2+δm (ṽ − ∂ξφ
λ(x̃0, ξθ̃ )). By our assumption and definition, we have

γ λ

θ̃,ṽ,x̃0
(x̃n

0 ) ⊂ NCρ1/2+δm (Z0) ∩ C B,

Thus
ṽ ⊂ NCρ1/2+δm (�(Z0)) ∩ �(C B),

where � : Rn−1 → R
n−1 is defined by

�(x ′) := ∂ξφ
λ
x0(x ′, x̃n

0 , ξθ̃ ).

Recall that
φλ

x̃0
(x, ξ) = φλ(x, ξ) − φλ(x̃0, ξ),

thus we obtain the desired results. ��
Proposition 5.7 Assume Z0 = (Z + b) ∩ {xn = x̃n

0 } and B = Bn
r1/2+δm (x̃0). Suppose h is

concentrated on scale r wave packets in Tθ̃ ,w ∩ TZ . Then
∫

|ĥ|2 · χNCρ1/2+δm (�(Z0)∩�(C B)) � r O(δm )
(ρ

r

)(n−m)/2‖h‖22. (5.8)

The proof of Proposition 5.7 is left to the end of this section.
Define TZ ,B,θ̃ as follows

TV ,B,θ̃ := {(θ, v) : Tθ,v ∩ B �= ∅,�(G(ξθ ), V ) � r−1/2+δm , dist(θ, θ̃ ) � ρ−1/2}.
Let V be an m-dimensional subspace defined by

V := {x ∈ R
n :

n∑

j=1

ai, j x j = 0, i = 1, . . . , n − m}.
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If φ(x, ξ) = x ′ · ξ + 1
2 xn |ξ |2, then

G(ξ) = (−ξ, 1)√
1 + |ξ |2 .

It is easy to see that {ξ ∈ R
n : G(ξ) ∈ V } defines an affine subspace. Therefore, the set

{ξ ∈ R
n : �(G(ξ), V ) � r−1/2+δm }

is contained in a Cr−1/2+δm -neighborhood of an affine subspace. However, if we only know
φ(x, ξ) satisfies the Carleson–Sjölin conditions with the convex and straight assumptions,
things may be a little trickier. Since in the general setting, {ξ ∈ R

n : G(ξ) ∈ V } may be a
curved submanifold. Specially, for our case,

G(ξ) = (−∂ξ h(ξ), 1)√
1 + |∂ξ h(ξ)|2 ,

where h(ξ) is defined in (5.1) and satisfies (5.2). Let L denote the submanifold

L := {ξ ∈ R
n : G(ξ) ∈ V },

by the implicit function theorem, we know the dimension of L is m − 1. Define V ′ to be the
tangent space Tξ̃ L of L at a given point ξ̃ ∈ L with dist(ξ̃ , θ̃ ) � ρ−1/2.

Lemma 5.8 The set

{ξ ∈ R
n : �(G(ξ), V ) � r−1/2+δm , dist(ξ, θ̃ ) � ρ−1/2}

is contained in a Cr−1/2+δm -neighborhood of an affine subspace V ′.

Proof Obviously, the set

{ξ ∈ R
n : �(G(ξ), V ) � r−1/2+δm }

is contained in a Cr−1/2+δm -neighborhood of L . Recall that

V ′ = Tξ̃ L, and dist(ξ̃ , θ̃ ) � r−1/2+δm ,

thus

dist(ξ̃ , ξ) � ρ−1/2.

Therefore, it suffices to show

NCr−1/2+δm (L) ∩ {ξ : dist(ξ, ξ̃ ) � ρ−1/2} ⊂ NCr−1/2+δm (V ′).

Without loss of generality, we may assume ξ̃ and L can be parametrized by (0, u(0)) and

L := {(ξ ′, u(ξ ′)) : ξ ′ ∈ R
m−1}, with u′(0) = 0,

respectively. Therefore, it remains to show : if |ξ ′| � ρ−1/2

|u(ξ ′)| � r−1/2+δm . (5.9)

Indeed, (5.9) can be easily obtained from Taylor’s formula and the fact the second order
derivatives of u can be uniformly bounded. ��

Define Ṽ to be the orthogonal complement in R
n−1, that is Ṽ := (V ′)⊥, and V̄ ⊂ R

n−1

to be identified with V ∩ {xn = 0}.
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Lemma 5.9 Let V and Ṽ be defined as above, then Ṽ and V are transverse in the sense that

Angle
v∈V̄ \{0},ṽ∈Ṽ \{0}

(v, ṽ) � 1. (5.10)

Proof Since G(ξ̃ ) ∈ V , we may write it explicitly as follows

n−1∑

j=1

ai, j∂ξ j h(ξ̃ ) − ai,n = 0, i = 1, . . . , n − m. (5.11)

Define αi := (ai,1, . . . , ai,n) and α′
i := (ai,1, . . . , ai,n−1). From (5.11), we have

rank(α′
1, . . . α

′
n−m) = n − m.

Since V ′ = Tξ̃ L , and Ṽ = (V ′)⊥, by (5.11), we have

Ṽ = span〈∂2ξξ h(ξ̃ )α′
1, . . . , ∂

2
ξξ h(ξ̃ )α′

n−m〉.
To prove (5.10), it suffices to show: for each v̄ ∈ V̄ \{0}, then

〈∂2ξξ h(ξ̃ )α′
i , v̄〉 � 1. (5.12)

Since

〈α′
i , v̄〉 = 0

and
‖∂2ξξ h(ξ̃ ) − In−1‖op ≤ ε0,

thus (5.12) follows immediately by choosing ε0 sufficiently small. ��
Lemma 5.10 [14] Suppose that G : Rn → C is a function, and Ĝ is supported in a ball
Bn

r1(ξ0) of radius r1. Then, for any ball Bn
r2(x0) of radius r2 ≤ r1−1,

∫

Bn
r2

(x0)
|G|2 �

|Bn
r2 |

|Bn
r1−1 |

∫
|G|2. (5.13)

Finally, as a consequence of the above preparations, we have

Proposition 5.11 Let V , V̄ , Ṽ , V ′ be defined as above. If g is concentrated on wave packets
from TV ,B,θ̃ , if � ⊂ {xn = x̃0n } is any affine subspace parallel to Ṽ and y ∈ � ∩ �(C B),
then ∫

�∩Bn
ρ1/2+δm

(y)

|ĝ|2 � r O(δm )
(ρ1/2

r1/2

)dim(Ṽ )
∫

�

|ĝ|2.

Proof Note that g is concentrated from TV ,B,θ̃ , from the above discussion, we have g is

supported in the r−1/2+δm neighborhood of V ′. Thus,
(

ĝ|�
)∨

is supported in an n − m

dimensional r−1/2+δm ball centered at projṼ (ξV ), by Lemma 5.10, we obtain the desired
results. ��

Before the proof Proposition 5.7, we still needs some additional inputs. One may follow
the approach in Section 6 of [12] to obtain

Proposition 5.12 1. �(Z0) is quantitatively transverse to Ṽ at every point z ∈ �(Z0) ∩
�(C B).
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2. �−1(�) is an n − 1 − dim(V ′) dimensional transverse complete intersection in R
n−1.

3. �∩ NCρ1/2+δm (�(Z0)∩�(C B)) can be covered by
(

r1/2

ρ1/2

)dimZ0−dimV0
many balls in �

of radius ρ1/2+δm .

Proof of Proposition 5.7 Since the wave packets in TZ ,B,θ̃ are tangent to Z in B, thus

�(G(θ), Tz Z) � r−1/2+δm

for every z ∈ Z ∩ 2B and Tθ,v ∈ TZ ,B,θ̃ . There is a subspace V of minimal dimension and
dimV ≤ dimZ such that for all θ making contribution to TZ ,B,θ̃ , we have

�(G(θ), V ) � r−1/2+δm ,

which indicates that h is concentrated on wave packets from TV ,B,θ̃ . Therefore, by
Lemma 5.11, we have

∫

�∩Bn
ρ1/2+δm

(y)

|ĥ|2 � r O(δm )
(ρ1/2

r1/2

)dim(Ṽ )
∫

�

|ĥ|2.

Finally, by Proposition 5.12, we get
∫

|ĥ|2 · χNCρ1/2+δm (�(Z0)∩�(C B)) � r O(δm )
(ρ

r

)(n−m)/2
∫

�

|ĥ|2. (5.14)

Integrate over the affine subspace � which is parallel to Ṽ , we will obtain the desired
results. ��

6 Broad-norm estimate

In this section, we assume the operator T λ satisfies the straight condition. In this setting,
the tubes introduced in (4.1) is straight. To prove Theorem 1.4, we will use the broad-
narrow analysis developed by Bourgain–Guth [4], which deduces the linear estimates from
the multilinear ones. In [13], Guth observed that full power of the k−linear inequality could
be replaced by a certainweakened version of themultilinear estimate for the Fourier extension
operators known as k−broad “norm” estimates. Following the approach developed by Guth
in [13], we shall divide T λ f into narrow and broad parts in the frequency space, and one part
is around a neighborhood of (k − 1)-dimensional subspace, another comes from its outside.
We estimate the contribution of the first part through the decoupling theorem and an induction
on scales argument, and then use the k-broad “norm” estimates to handle the broad part.

First, we shall introduce a notion of broad “norm”. Let V ⊂ R
n be a (k − 1)-dimensional

subspace. Assume {τ } are a collection of balls in Rn−1 of radius K −1 which form a partition
of Bn−1

1 (0). We denote by �(G(τ ), V ) the smallest angle between the non-zero vectors
v ∈ V and v′ ∈ G(τ ), where

G(τ ) := {G(ξ) : ξ ∈ τ }.
Define

fτ := f χτ .
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For each ball Bn
K 2 ⊂ Bn

R , define

μT λ(Bn
K 2) := min

V1,...,VL
max
τ /∈V�

1≤�≤L

( ∫

Bn
K2

|T λ fτ |pdx
)
,

where for each 1 ≤ � ≤ L , V� is a (k − 1)−dimensional subspace and τ /∈ V� means
Ang(G(τ ), V�) > K −1.

Let {Bn
K 2} be a collection of finitely overlapping balls which form a cover of Bn

R . We
define the k-broad “norm” by

∥∥∥T λ f
∥∥∥

p

BLp
k,L (Bn

R)
:=

∑

Bn
K2⊂Bn

R

μT λ (Bn
K 2).

We will establish the following broad norm estimate.

Theorem 6.1 Let T λ be defined with φ satisfying the conditions H1,H2,H3,H4 and

• The eigenvalues of the Hessian

∂ξξ 〈∂xφ(x, ξ), G(x, ξ0)〉|ξ=ξ0

all fall into [1/2, 2] for x ∈ X , ξ0 ∈ �.
• Let Npar > 0 be a given large constant as above,

|∂α
x ∂

β
ξ φ(x, ξ)| ≤ Cα,β, |α|, |β| ≤ Npar.

If 2 ≤ k ≤ n − 1 and

p ≥ pn(k) := 2 + 6

2(n − 1) + (k − 1)
∏n−1

i=k
2i

2i+1

, (6.1)

then for every ε > 0, there exits L such that
∥∥∥T λ f

∥∥∥
BLp

k,L (Bn
R(0))

�ε,L,K Rε‖ f ‖2/p
L2 ‖ f ‖1−2/p

L∞ , (6.2)

for every K ≥ 1, 1 ≤ R ≤ λ. Furthermore, the implicit constant depends polynomially on
K .

By combining the material in Sect. 4, 5 and using the polynomial partitioning method, we
may obtain the proof of Theorem (6.1). At this point, there is no difference between our case
and that in [12]. Therefore, one may refer to [12] for details.

7 Going from k-broad to linear estimates

Proposition 7.1 Let T λ be defined with the reduced form andT λ be defined as above. Suppose
that for all K ≥ 1, ε > 0, the operator T λ obeys the k-broad inequality

‖T λ f ‖BLp
k,L (Bn

R(0)) �K ,ε,L Rε‖ f ‖
2
p

L2‖ f ‖1−
2
p

L∞ , (7.1)

for some fixed k, p, L and all R ≥ 1. If

2
2n − k + 2

2n − k
≤ p ≤ 2

k − 1

k − 2
,

123
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then

‖T λ f ‖L p(Bn
R(0)) �ε Rε‖ f ‖

2
p

L2‖ f ‖1−
2
p

L∞ .

Therefore, as a consequence of Theorem 6.1 and Proposition 7.1, Theorem 1.4 holds for
all p ≥ pn . To prove Proposition 7.1, we also need the decoupling inequality.

Lemma 7.2 (Decoupling inequality) Let T λ be a Hörmander-type operator with the convex
condition and V ⊂ R

n be an m-dimensional linear subspace, then for 2 ≤ p ≤ 2m/(m − 1)
and δ > 0, we have

∥∥∥
∑

τ∈V

T λgτ

∥∥∥
L p(Bn

K2 )
�δ K (m−1)(1/2−1/p)+δ

(
∑

τ∈V

‖T λgτ‖p
L p(wBn

K2
)

)1/p

.

Here, the sum over all caps τ for which �(G(τ ), V ) ≤ K −1.

Heuristically, if K 2 ≤ λ1/2−δ with 0 < δ < 1/2, T λ is essentially equivalent to the
translation invariant case on Bn

K 2 , the fact can be seen by expanding the phase using Taylor’s

formula. Then Lemma 7.2 can be obtained directly by using the sharp �2-decoupling theorem
of Bourgain-Demeter [3] and Hölder’s inequality. For more details, One may refer to [1, 20].

Lemma 7.3 Let D is a maximal R−1-separated discrete subset of �, then

∥∥∥∥∥∥

∑

ξθ ∈D
e2π iφλ(·,ξθ )F(ξθ )

∥∥∥∥∥∥
L p(Bn

R(0))

� Q p(λ, R)R(n−1)/p′ ‖F‖
2
p

l2(D)
‖F‖1−

2
p

l∞(D) (7.2)

for all F : D → C, where

‖F‖�p(D) :=
( ∑

ξθ ∈D
|F(ξθ )|p

) 1
p
,

for 1 ≤ p < ∞ and p = ∞ with a usual modification.

Proof Here our proof is essentially the same as that of Lemma 11.8 in [15]. Let η be a bump
smooth function on R

n−1, which is supported on Bn−1
2 (0) and equals to 1 on Bn−1

1 (0). For
each ξθ ∈ D, we set ηθ (ξ) := η(10R(ξ − ξθ )).

Then as in Lemma 11.8 of [15], we have
∣∣∣∣∣∣

∑

ξθ ∈D
e2π iφλ(·,ξθ )F(ξθ )

∣∣∣∣∣∣
� Rn−1

∑

k∈Zn

(1 + |k|)−(n+1)|T λ fk(x)|, (7.3)

where T λ is defined with the reduced form and

fk(ξ) :=
∑

ξθ ∈D
F(ξθ )ck,θ (ξ)ηθ (ξ)
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with ‖ck,θ (ξ)‖∞ ≤ 1. By the definition of Q p(λ, R) and (7.3),
∥∥∥∥∥∥

∑

ξθ ∈D
e2π iφλ(·,ξθ )F(ξθ )

∥∥∥∥∥∥
L p(Bn

R(0))

� Q p(λ, R)Rn−1
∑

k∈Zn

(1 + |k|)−(n+1)‖ fk‖
2
p

L2(Bn−1
2 )

‖ fk‖1−
2
p

L∞(Bn−1
2 )

.

The support of ηθ are pairwise disjoint, for any q > 0, we have

‖ fk‖Lq (Bn−1
2 )

� R−(n−1)/q‖F‖lq (D).

Thus we get
∥∥∥∥∥∥

∑

ξθ ∈D
e2π iφλ(·,ξθ )F(ξθ )

∥∥∥∥∥∥
L p(Bn

R(0))

� Q p(λ, R)Rn−1
∑

k∈Zn

(1 + |k|)−(n+1) R−(n−1)/p‖F‖
2
p

l2(D)
‖F‖1−

2
p

l∞(D)

� Q p(λ, R)R(n−1)/p′ ‖F‖
2
p

l2(D)
‖F‖1−

2
p

l∞(D).

��
Lemma 7.4 (Parabolic rescaling) Let 1 ≤ R ≤ λ, and f supported in a ball of radius K −1,
where 1 ≤ K ≤ R. Then for all p ≥ 2 and δ > 0, we have

‖T λ f ‖L p(Bn
R(0)) �δ Q p

( λ

K 2 ,
R

K 2

)
Rδ K 2n/p−(n−1)‖ f ‖

2
p

L2(Bn−1
1 )

‖ f ‖1−
2
p

L∞(Bn−1
1 )

.

Proof Without loss of generality, we may assume the ball to be Bn−1
K −1(ξ̄ ). Doing the same

argument as in Sect. 3, we obtain

‖T λ f ‖L p(Bn
R(0)) �δ K (n+1)/p‖T̃ λ/K 2

f̃ ‖L p(D̃R)

where T̃ λ/K 2
is defined with phase φ̃ as in (3.13) and D̃R is an ellipse with principle axes

parallel to the coordinate axes and dimensions O(R/K ) × · · · × O(R/K ) × O(R/K 2) and
f̃ (ξ) := K −(n−1) f (ξ̄ + K −1ξ), note that for each q > 0,

‖ f̃ ‖Lq � K −(n−1)+(n−1)/q‖ f ‖Lq .

Then it suffice to show that

‖T̃ λ/K 2
f̃ ‖L p(D̃R)

�δ Q p

( λ

K 2 ,
R

K 2

)
Rδ‖ f̃ ‖

2
p

L2(Bn−1
1 )

‖ f̃ ‖1−
2
p

L∞(Bn−1
1 )

.

Since the phase φ̃ is also of reduced form, to ease notations, we just need to show

‖T λ f ‖L p(DR) �δ Q p(λ, R)Rδ‖ f ‖
2
p

L2(Bn−1
1 )

‖ f ‖1−
2
p

L∞(Bn−1
1 )

.

for all 1 � R ≤ R′ ≤ λ and δ > 0, where

DR :=
{

x ∈ R
n :
( |x ′|

R′

)2

+
( |xn |

R

)2

≤ 1

}

123
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is an ellipse and T λ is an operator with the reduced form. Choose a collection of essentially
disjoint R−1-caps θ covers Bn−1, denote the center of θ by ξθ and decompose f as f =∑

θ fθ . Set

T λ
θ f (x) := e−2π iφλ(x,ξθ )T λ(x),

hence we have
T λ f (x) =

∑

θ

e−2π iφλ(x,ξθ )T λ
θ fθ (x).

Fix δ > 0 to be sufficiently small for the purpose of the forthcoming argument. We may also
write

T λ
θ fθ (x) = T λ

θ fθ ∗ ηR1−δ (x) + RapDec(R)‖ f ‖L2(Bn−1)

for some choice of smooth, rapidly decreasing function η such that |η| admits a smooth
rapidly decreasing majorant ζ : R

n → [0,+∞) which is locally constant at scale 1. In
particular, one has

ζR1−δ (x) � RδζR1−δ (y) if |x − y| � R. (7.4)

Cover DR by finitely-overlapping R-balls, and let Bn
R be some member of this cover with

the center denoted by x̄ , by the above observation, for z ∈ Bn
R(0), we have

|T λ f (x̄ + z)| � Rδ

∫

Rn

∣∣∣∣∣
∑

θ

e2π iφλ(x̄+z,ξθ )T λ
θ fθ (y)

∣∣∣∣∣ ζR1−δ (x̄ − y)dy.

By taking the L p-norm in z andmodifying the proof of Lemma 7.3 for the phaseφλ(x̄ +·, ξθ ),
we have

‖T λ f ‖L p(Bn
R (0)) � Rδ

∫

Rn

∥∥∥∥∥
∑

θ

e2π iφλ(x̄+z,ξθ )T λ
θ fθ (y)

∥∥∥∥∥
L p(Bn

R (0))

ζR1−δ (x̄ − y)dy

� Q p(λ, R)R(n−1)/p′
Rδ

∫

Rn
‖T λ

θ fθ (y)‖2/p
l2(θ)

‖T λ
θ fθ (y)‖1−2/p

l∞(θ) ζR1−δ (x̄ − y)dy,

where we use ‖aθ‖�p(θ) to denote
(∑

θ

|aθ |p
)1/p

.

By property (7.4), for z ∈ Bn
R(0)

∫

Rn
‖T λ

θ fθ (y)‖2/p
l2(θ)

‖T λ
θ fθ (y)‖1−2/p

l∞(θ) ζR1−δ (x̄ − y)dy

=
∫

Rn
‖T λ

θ fθ (x̄ + z − y)‖2/p
l2(θ)

‖T λ
θ fθ (x̄ + z − y)‖1−2/p

l∞(θ) ζR1−δ (y − z)dy

� RO(δ)

∫

Rn
‖T λ

θ fθ (x̄ + z − y)‖2/p
l2(θ)

‖T λ
θ fθ (x̄ + z − y)‖1−2/p

l∞(θ) ζR1−δ (y)dy

� RO(δ)

(∫

Rn
‖T λ

θ fθ (x̄ + z − y)‖2l2(θ)
‖T λ

θ fθ (x̄ + z − y)‖p−2
l∞(θ)ζR1−δ (y)dy

)1/p

Then we deduces that for all z ∈ Bn
R(0)

‖T λ f ‖L p(Bn
R(0)) � Q p(λ, R)R(n−1)/p′

RO(δ)

×
(∫

Rn
‖T λ

θ fθ (x̄ + z − y)‖2l2(θ)
‖T λ

θ fθ (x̄ + z − y)‖p−2
l∞(θ)

ζR1−δ (y)dy

)1/p
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By raising both sides of this estimate to the pth power, averaging in z and summing over all
balls Bn

R(0) in the covering, it follows that ‖T λ f ‖L p(DR) is dominated by

Q p(λ, R)R(n−1)/p′−n/p RO(δ)

(∫

Rn

∑

θ

‖T λ
θ fθ‖2L2(DR−y)

sup
θ

‖T λ
θ fθ‖p−2

L∞(DR−y)ζR1−δ (y)dy

)1/p

We have the trivial estimate

‖T λ
θ fθ‖L∞(DR−y) � ‖ fθ‖L1 � R−(n−1)‖ fθ‖L∞

and
‖T λ

θ fθ‖L2(DR−y) � R1/2‖ fθ‖L2 .

Hence ‖T λ f ‖L p(DR) is dominated by Q p(λ, R)RO(δ)‖ f ‖
2
p

L2‖ f ‖1−
2
p

L∞ . ��
Proof of Proposition 7.1 Let T λ be defined with the reduced form. Then there exits a smooth
function p(x) such that φ(p(x), ξ) satisfies the straight condition with (3.14) holding. For
convenience, we denote φ̄(x, ξ) := φ(p(x), ξ) and T λ be defined with φ̄. Hence, we have

‖T λ f ‖L p(Bn
R(0)) � ‖T λ f ‖L p(Bn

C R(0)).

For a given ball Bn
K 2 , we chose a collection of (k − 1)- subspaces V1, ..., VL which achieve

the minimum under the definition of k- board “norm”. Then
∫

Bn
K2

|T λ f |p � K O(1) max
τ /∈V�,1≤�≤L

∫

Bn
K2

|T λ fτ |p +
L∑

�=1

∫

Bn
K2

|
∑

τ∈V�

T λ fτ |p.

We can use the k-broad hypothesis to dominate the first term, indeed, let BK 2 be a collection
of finitely overlapping balls of radius K 2 which cover Bn

C R(0), then one has

∫

Bn
C R(0)

|T λ f |p � K O(1)‖T λ f ‖p
BLp

k,L (Bn
C R(0))

+
∑

Bn
K2∈BK2

L∑

�=1

∫

Bn
K2

∣∣∣∣
∑

τ∈V�

T λ fτ |p

� K O(1)C(K , ε1, L)R pε1‖ f ‖p
L p +

∑

Bn
K2∈Bn

K2

L∑

�=1

∫

Bn
K2

∣∣∣∣
∑

τ∈V�

T λ fτ |p,

where ε1 > 0 is a small constant which we will chose later.
By Lemma 7.2, for any δ′, we have

∫

Bn
K2

|
∑

τ∈V�

T λ fτ |p �δ′ K (k−2)(p/2−1)+δ′ ∑

τ∈V�

∫

Rn
|T λ fτ |pwBn

K2

for each 1 ≤ � ≤ L . Since wBn
R(0) = ∑

Bn
K2∈BK2

wBn
K2
, one has

∑

Bn
K2∈BK2

L∑

�=1

∫

Bn
K2

|
∑

τ∈V�

T λ fτ |p �δ′ K (k−2)(p/2−1)+δ′ ∑

τ

∫

Rn
|T λ fτ |pwBn

R(0).

For each τ , we take the same approach as in Sect. 3 which obtains the reduced form from a
general phase. To ease the notations, under the new coordinates, we use T λ fτ to denote the
new operator which belongs to the reduced form and the new function. Therefore,

∫

Rn
|T λ fτ |pwBn

R(0) �
∫

Rn
|T λ fτ |pwBn

C R (0).
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Note that wBn
C R(0) rapidly decay outside Bn

2C R(0), we get

∑

Bn
K2∈BK2

L∑

�=1

∫

Bn
K2

|
∑

τ∈V�

T λ fτ |p �δ′ K (k−2)(p/2−1)+δ′ ∑

τ

∫

Bn
2C R(0)

|T λ fτ |p.

Let δ > 0 be a small number to be determined later. By a finitely-overlapping decomposition
and translation, from Lemma 7.4, we obtain

∫

Bn
2C R(0)

|T λ fτ |p � Q p

( λ

K 2 ,
R

K 2

)p
Rδ K 2n−(n−1)p‖ fτ‖2L2‖ fτ‖p−2

L∞ .

Let

e(k, p) := (k − 2)(1 − 1

2
p) − 2n + (n − 1)p.

Recall ∑

τ

‖ fτ‖2L2 � ‖ f ‖2L2 ,

therefore, we have

∑

Bn
K2∈Bn

K2

L∑

�=1

∫

BK2

∣∣∣∣∣∣

∑

τ∈V�

T λ fτ

∣∣∣∣∣∣

p

�δ,δ′ Q p

( λ

K 2 ,
R

K 2

)p
Rδ K −e(k,p)+δ′ ‖ f ‖2L2‖ f ‖p−2

L∞ .

Combining above estimates, we get
∫

Bn
R(0)

|T λ f |p ≤ (K O(1)C(K , ε1, L)R pε1

+Cδ,δ′ Q p

( λ

K 2 ,
R

K 2

)p
Rδ K −e(k,p)+δ′

)‖ f ‖2L2‖ f ‖p−2
L∞ .

Then our induction assumption, it holds

Q p(λ, R)p ≤ K O(1)C(K , ε1, L)R pε1 + Cδ,δ′ Q p

( λ

K 2 ,
R

K 2

)p
Rδ K −e(k,p)+δ′

.

When p ≥ 22n−k+2
2n−k , e(k, p) ≥ 0, thus

Q p(λ, R)p ≤ K O(1)C(K , ε1, L)R pε1 + C p
ε RεpCδ,δ′ K −2εp Rδ K δ′

.

If we choose K = K0Rε2 where K0 > 0 is a sufficiently large constant depending on ε, δ, p,
then

Q p(λ, R)p ≤ K O(1)C(K , ε1, L)R pε1 + C p
ε RεpCδ,δ′ K −2εp+δ′

0 R−2ε3 p+ε2δ′+δ.

We choose δ′ = εp, δ = 1
2ε

3 p and K0 sufficiently large such that

K −2εp+δ′
0 Cδ,δ′ ≤ 1

2
, −2ε3 p + ε2δ′ + δ < 0.

Recall that C(K , ε1, L) depends polynomially on K , then we will complete the proof by
choosing suitable 0 < ε1 � ε. ��
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