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Abstract
Consider a shrinking neighborhood of a cusp of the unit tangent bundle of a noncompact
hyperbolic surface of finite area, and let the neighborhood shrink into the cusp at a rate of
T−1 as T → ∞. We show that a closed horocycle whose length � goes to infinity or even
a segment of that horocycle becomes equidistributed on the shrinking neighborhood when
normalized by the rate T−1 provided that T /� → 0 and, for any δ > 0, the segment remains
larger than max

{
T−1/6, (T /�)1/2

}
(T /�)−δ . We also have an effective result for a smaller

range of rates of growth of T and �. Finally, a number-theoretic identity involving the Euler
totient function follows from our technique.
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1 Introduction

Let G := PSL2(R), � ⊂ G be a cofinite Fuchsian group, κ1, . . . , κq ⊂ R ∪ {∞} be
inequivalent cusps with stabilizer groups �1, . . . , �q where q ∈ N, H be the upper-half
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plane model of the hyperbolic plane, and T 1
H be its unit tangent bundle. We may assume,

by conjugation of �, that κ1 = ∞ and has stabilizer group

�1 := �∞ :=
{(

1 b
0 1

) ∣∣∣∣ b ∈ Z

}
.

The cusp κ1 is called the standard cusp. The group G acts on H and T 1
H as follows: for any

γ :=
(
a b
c d

)
∈ G, we have

γ (z) =
(
az + b

cz + d

)
γ (z, θ) =

(
az + b

cz + d
, θ − 2 arg(cz + d)

)
, (1.1)

where θ is an angular variable measured from the upward vertical counterclockwise. Let
z := x + iy. We may identify G with T 1

H via the mapping γ �→ γ (i, 0) and also identify
�\G with�\T 1

H. TheHaarmeasureμ onG (which is unique up to amultiplicative constant)
is identified with the Liouville volume measure y−2dx dy dθ on T 1

H. Let T 1 (�\H) be the
unit tangent bundle of the surface �\H. Then we have T 1 (�\H) = �\T 1

H except at elliptic
fixed points (where �\H is an orbifold).

Let α < β be real numbers and consider the horocycle {(x + iy, 0) : α ≤ x ≤ β}. As
y → 0, this horocycle equidistributes, namely

1

β − α

∫ β

α

f (x + iy, 0) dx → 1

μ(�\G)

∫

�\G
f (z, θ) dμ

for any f ∈ Cc (�\G). Such equidistribution results have been studied by many mathemati-
cians such as Zagier [20], Sarnak [14], Dani and Smillie [3], Hejhal [6, 7], Flaminio and
Forni [4], and Strömbergsson [15, 16]. A natural question, asked by Hejhal, is the question
of what happens if β − α also shrinks. Clearly, if β − α shrinks too quickly relative to y,
then the horocycle can not equidistribute. If, however, β − α ≥ yC(�)−ε holds, then the
horocycle equidistributes uniformly, as Hejhal [6] showed for the exponent C(�) = 1/3
and Strömbergsson [16] showed for the best possible exponent C(�) = 1/2. Some of these
results are even effective, namely an error rate is computed.

In this paper, we study another natural and related question, namely the question of what
happens if we take a family of test functions with supports shrinking into one of the cusps at
a rate of, say, T−1 for T → ∞. If y shrinks fast enough and β − α does not shrink too fast,
then we would expect the horocycle to equidistribute uniformly, provided that we divide by
the rate T−1:

T

β − α

∫ β

α

· dx → 1

μ(�\G)

∫

�\G
· dμ as T → ∞ and y → 0. (1.2)

Let us refer to (1.2) as shrinking target horocycle equidistribution (STHE) for such a family of
test functions. Shrinking target horocycle equidistribution is what we show in this paper (see
Theorem 1.1) for a large collection of such test functions. A necessary condition for STHE,
for our large collection of test functions, is T y → 0. On the other hand, if T y � 0, then
there are cases for which STHE does not hold (even if β −α is fixed). See Example 3.5. With
more constraints on the various rates, we can also show an effective result (see Theorem 1.2).

Finally, we note that shrinking target equidistribution could more generally be formu-
lated on a finite-volume space with cusps and with a geometric object that, under a flow,
equidistributes on that space. For horospheres on SL(d, Z)\SL(d, R) where d ≥ 2, shrink-
ing target equidistribution has been very recently shown in [18]. A natural pair of parameters,

123



Shrinking target equidistribution of horocycles . . . 2007

the critical exponent of relative rate cr and the normalizing exponent ce, are defined, and this
pair (cr , ce) is shown to be equal to (d, d − 1) [18, Introduction]. Our results, Theorems 1.1
and 1.2, agree with the results in [18] for the common case where � is PSL(2, Z) and show,
more generally, that this pair is equal to (2, 1) for every cusp of every cofinite Fuchsian
group that we consider in this paper. It may be interesting from a geometric point of view to
understand how the pair (cr , ce), when it is defined, behaves for cusps of other finite-volume
spaces.

1.1 Statement of results

Our two main results, Theorems 1.1 and 1.2, both give shrinking target horocycle equidistri-
bution. Theorem 1.2 is effective while Theorem 1.1 allows for a larger range of the rate of
growth of T versus decay of y (or, more precisely, the decay of T y). Here φT ,η(z, θ) is an
automorphic function on T 1(H) defined by

φT ,η(z, θ) := φ
(κ j )

T ,η (z, θ) :=
∑

γ∈� j \�
fT ,η(σ

−1
j γ (z, θ)), (1.3)

where fT ,η(z, θ) is a function whose support lies in [0, 1] × [T − |η|,∞) × [0, 2π) and σ j

is a scaling matrix. The function fT ,η is constructed using another function h, and both of
these functions, along with σ j , B0, and B1, are defined in Sect. 2.1.

Theorem 1.1 Let j ∈ {1, . . . , q}, δ > 0, T > y, and 0 < T y < 1. Then we have
T

β − α

∫ β

α

φ
(κ j )

T ,0 (x + iy, 0) dx → 1

μ(�\G)

∫ 2π

0

∫ 1

0
h(x, θ) dx dθ

uniformly as T → ∞ and T y → 0 for

β − α ≥ max

{

T−1/6,

(
T y

B1

)1/2
}(

T y

B1

)−δ

.

Theorem 1.2 Let 0 ≤ α < β ≤ 1, j ∈ {1, . . . , q}, 1
2 ≥ δ > 0, |η| ≤ min

(
B1−B0

2 , 1
4

)
,

T − min
(
B1−B0

2 , 1
4

)
> y, and 0 < T y < 3

4 . Then, for η 
= 0, we have

T

β − α

∫ β

α

φ
(κ j )

T ,η (x + iy, 0) dx

=

⎧
⎪⎨

⎪⎩

〈
φ

(κ j )

T ,η

〉
+ E(α, β, T , y, B1, s1, s′

1, η) + O
(
T y
B1

)δ/2
if α 
= 0 or β 
= 1

〈
φ

(κ j )

T ,η

〉
+ E(α, β, T , y, B1, s1, s′

1, η) + O

((
T y
B1

)δ + 1√
T

)
if α = 0 and β = 1

and, for η = 0 and any 0 < |̃η| ≤ min
(
B1−B0

2 , 1
4

)
, we have

T

β − α

∫ β

α

φ
(κ j )

T ,0 (x + iy, 0) dx

=

⎧
⎪⎪⎨

⎪⎪⎩

〈
φ

(κ j )

T ,0

〉
+ E(α, β, T , y, B1, s1, s′

1, η̃) + O

((
T y
B1

)δ/2 + 1
T

)
if α 
= 0 or β 
= 1

〈
φ

(κ j )

T ,0

〉
+ E(α, β, T , y, B1, s1, s′

1, η̃) + O

((
T y
B1

)δ + 1√
T

)
if α = 0 and β = 1
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uniformly as T → ∞ and T y → 0 for

1 ≥ β − α ≥ max

(

T 4
(
T y

B1

)1/2

, T−1/6

)(
T y

B1

)−δ

.

Here,

〈
φ

(κ j )

T ,η

〉
:= T

μ(�\G)

∫ 2π

0

∫ 1

0

∫ ∞

0
1[T ,∞),η(y)h(x, θ)

dydxdθ

y2
,

〈
φ

(κ j )

T ,0

〉
:= 1

μ(�\G)

∫ 2π

0

∫ 1

0
h(x, θ) dx dθ,

E(α, β, T , y, B1, s1, s
′
1, ·)

:= O
(
T 4| · |−4)

((
T y

(β − α)2B1

)1/2

log2
(

(β − α)B1

T y

)

+
(

T y

(β − α)2B1

)1−s′1 +
(

T y

(β − α)B1

)1−s1
)

,

s1, s′
1 are as in (5.1), and the implied constants (including the one coming from E) depend

on �, κ1, κ j , and h.

Remark 1.3 Note that T y → 0 is necessary (in both Theorems 1.1 and 1.2); see Example 3.5.

1.2 Outline of themain proofs

The basic idea is to eliminate the growth of T by renormalizing in the y-coordinate to a
fixed value B1 (see Sect. 4) and to apply the usual horocycle equidistribution (see Sect. 5).
The renormalization is done using the double coset decomposition from Lemma 2.1. To
illustrate the renormalization in the simplest case of the closed horocycle (namely for α = 0

and β = 1), we apply Lemma 2.1 to
∫ 1
0 φ

(κ j )

T ,0 (x + iy, 0) dx and argue as in the proof of
Proposition 3.1 to obtain

y
∑∫ √

B

−√
B
fT ,0

(
a

c
− 1

c2y

1

x + i
,−2 arg(x + i)

)
dx,

where the sum is over the double cosets, B is as defined in the statement of Proposi-
tion 3.1, and fT ,0 (which involves the function h) is as defined in (2.2). Similarly, for
∫ 1
0 φ

0,(κ j )

0

(
x + i T

B1
y, 0

)
dx , we have

T

B1
y
∑∫ √

B

−√
B
f 00

(
a

c
− B1

c2T y

1

x + i
,−2 arg(x + i)

)
dx

where f 00 is defined in (2.3). Note that, while the support of φ
(κ j )

T ,0 shrinks into cusp κ j as

T → ∞, the support of φ
0,(κ j )

0 is fixed, and it is to these automorphic functions of fixed
support that we apply the usual horocycle equidistribution. Comparing term-by-term allows
us to obtain the estimate

∣∣∣∣
T

B1

∫ 1

0
φ

(κ j )

T ,0 (x + iy, 0) dx −
∫ 1

0
φ
0,(κ j )

0

(
x + i

T

B1
y, 0

)
dx

∣∣∣∣
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Shrinking target equidistribution of horocycles . . . 2009

under suitable conditions, and these and related estimates give STHE. The key part of the
term-by-term comparison (for closed horocycles and in general) is estimating the integrals
∫ √

B
−√

B
· dx , which we accomplish via the method of stationary phase.

Two significant difficulties arise, both involving the x-coordinate. Dealing with general
h(x, ·), even just for closed horocycles, is a difficulty, which the method of stationary phase
allows us to handle via the Fourier expansion of h(x, ·). We show that the non-constant
Fourier modes are negligible, and, thus, can replace h(x, ·) with its average. See Sect. 3.
Dealing with general β − α is another difficulty, which we handle by taking the Fourier
expansion of a suitable smoothing and applying a theorem of Jackson to handle the high
Fourier modes. See Sects. 6 and 7 in which the proofs of Theorems 1.1 and 1.2, respectively,
are given.

2 Functions and the double coset decomposition

In this section, we define our test and auxiliary functions and develop a useful expansion for
both of these via the double coset decomposition.

2.1 Test and auxiliary functions

First, let us describe the space that contains the support of the test and auxiliary functions. To
each cusp κ j , there is an element σ j ∈ G (called a scaling matrix) such that σ j∞ = κ j and
σ−1
j � jσ j = �∞. We require that σ1 be the identity element ofG. Let F ⊂ [0, 1]× (0,∞) ⊂

H be a canonical fundamental domain for the action of � on H and F be its topological
closure (in the Riemann sphere). By modifying σ j for j ∈ {2, . . . , q}, we can ensure that

σ−1
j (F) ∩ {z ∈ H : y ≥ B} = [0, 1] × [B,∞) (2.1)

holds for all j ∈ {1, . . . , q} and for all B ≥ B0 > 1 (see [16, (2.2)] or [8, Page 268]). Here
B0 is a fixed constant depending on �. Note that F × [0, 2π) is a fundamental domain for
the action of � on T 1

H.
For any cusp κ j , we will define our test functions in two steps. The first step is to construct

suitable functions with support in [0, 1] × [B1,∞) × [0, 2π). For a set S ⊂ (0,∞), define
its indicator function 1S : (0,∞) → [0, 1] by

1S(y) :=
{
1 y ∈ S

0 y ∈ (0,∞)\S .

Let h : R/Z × R/(2πZ) → C be a C∞- function and h2(x, θ) := ∂2h(x,θ)

∂x2
. Choose a fixed

constant B1 > B0. Let T ≥ B1 and η be a real number for which min
(
B1−B0

2 , 1
4

)
≥ |η| > 0

holds. Then define
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2010 J. Tseng

fT ,0 := 1[T ,∞)(y)h(x, θ), (2.2)

which is our main interest in this paper. But, in order to give an effective result (see Theo-
rem 1.2), we will use (and also give results for) approximations by the smooth functions

fT ,η := 1[T ,∞),η(y)h(x, θ).

Here, 1[T ,∞),η : (0,∞) → [0, 1] is an approximation to 1[T ,∞),0(y) := 1[T ,∞)(y) defined
by the C∞-function 1[T ,∞),η(y) := 1[−T+η/2,∞) ∗ρ|η|/2(y− 2T ) where ∗ denotes convolu-
tion and ρ ∈ C∞

c (R) is the well-knownmollifier defined in (6.1). Note that 0 ≤ 1[T ,∞),η ≤ 1
and

supp(1[T ,∞),η) ⊂
{

[T − |η|,∞) if η < 0

[T ,∞) if η > 0
.

The second step is to use (2.1) to construct, for each fT ,η, the related automorphic function

on T 1(H) denoted by φ
(κ j )

T ,η (z, θ) and defined in (1.3). Here, η can also be zero. Note that,
as fT ,η is supported in the unit tangent bundle of the standard cusp, all but at most one

term in the automorphic function φ
(κ j )

T ,η is zero. Of course, the functions φ
(κ j )

T ,η themselves are

supported in the unit tangent bundle of the cusp κ j . The collection of φ
(κ j )

T ,η is our collection
of test functions.

Finally, the auxiliary functions, which we will use to study our test functions, are defined

as follows. Let mw(y) := wy for w ∈ C. For |η| ≤ min
(
B1−B0

2 , 1
4

)
, consider

gT ,η(z, θ) := 1[T ,∞),η(y)
∫ 1

0
h(t, θ) dt,

ϕT ,η(z, θ) := ϕ
(κ j )

T ,η (z, θ) :=
∑

γ∈� j \�
gT ,η(σ

−1
j γ (z, θ)),

f 0η (z, θ) := 1[T ,∞),η ◦ m T
B1

(y)
∫ 1

0
h(t, θ) dt,

φ0
η(z, θ) := φ

0,(κ j )
η (z, θ) :=

∑

γ∈� j \�
f 0η (σ−1

j γ (z, θ)). (2.3)

Note that, since |η| is small (or zero), the support of f 0η in the y-variable is approximately
(or exactly, respectively) [B1,∞).

2.2 The double coset decomposition

Now consider a cuspidal function in the unit tangent bundle of the standard cusp f :
T 1(�∞\H) → C such that the support of f (z, θ) is [B0,∞) in the y-variable. We note
that f is periodic: f (z + 1, θ) = f (z, θ) = f (z, θ + 2π). We can now define a family of
automorphic functions on T 1(H) by

φ(κ j )(z, θ) :=
∑

γ∈� j \�
f (σ−1

j γ (z, θ)) =
∑

γ∈�∞\σ−1
j �

f (γ (z, θ))
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for each j ∈ {1, . . . , q}. The double coset decomposition (see [9, Sect. 2.4] for example)
allows us, furthermore, to write

φ(κ j )(z, θ) = δ1 j f (z, θ) +
∑

n∈Z

∑

γ∈�∞\σ−1
j �/�∞

γ 
=ω�

f (γ (z + n, θ)) (2.4)

where

ω� := �∞
(
1 0
0 1

)
�∞, δ1 j :=

{
1 if j = 1

0 if j ∈ {2, . . . , q} .

Note that γ = ω� can only occur in the case j = 1.
The following expansion, which applies to both the test and auxiliary functions, is the key

setting of our proofs. For conciseness of notation, we use e(w) := e2π iw for any w ∈ C.

Lemma 2.1 Let m ∈ Z. We have
∫ 1

0
φ(κ j )(x + iy, 0) e(mx) dx

= δ1 j

∫ 1

0
f (x + iy, 0) e(mx) dx

+ y
∑

�∞

(
a b
c d

)

�∞∈�∞\σ−1
j �/�∞

c>0

∫ ∞

−∞
f

(
a

c
− 1

c2y

1

x + i
,−2 arg(x + i)

)

× e

(
mxy − m

d

c

)
dx .

Proof In the double coset decomposition, the condition �∞
(
a b
c d

)
�∞ 
= ω� is equivalent

to the condition c > 0. Summing over n, we have
∫ ∞

−∞
f

(
a(x + iy) + b

c(x + iy) + d)
,−2 arg(cx + d + icy)

)
e(mx) dx

=
∫ ∞

−∞
f

(
a

c
− 1

c2
1

x + iy
,−2 arg(x + iy)

)
e

(
mx − m

d

c

)
dx,

where we have changed variables x + d/c �→ x and simplified. To obtain the desired result,
we again change variables x/y �→ x . ��

3 An application of themethod of stationary phase

In this section, we state Proposition 3.1, its corollary (Corollary 3.3), and a generalization
of the corollary (Theorem 3.4) and give Example 3.5. We prove Proposition 3.1 and Corol-
lary 3.3, leaving the proof of Theorem 3.4 to Sect. 8 . Proposition 3.1 is the most important
tool in this paper. It comes from an application of the method of stationary phase to the
relevant integrals in Lemma 2.1 (see Corollary 3.9).
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Proposition 3.1 Let j ∈ {1, . . . , q}, m ∈ Z, |η| ≤ min
(
B1−B0

2 , 1
4

)
, and T −

min
(
B1−B0

2 , 1
4

)
> y. Then, as T → ∞, we have that

∫ 1

0
φ

(κ j )

T ,η (x + iy, 0)e(mx) dx

= O

(
1

T 3/2

)
+ y

∑

�∞

(
a b
c d

)

�∞∈�∞\σ−1
j �/�∞

c>0
∫ √

B

−√
B

(∫ 1

0
h(t,−2 arg(x + i)) dt

)
e

(
mxy − m

d

c

)
dx

where B := max{1/T yc2 − 1, 0} and the implied constant depends on h, κ1, and κ j .

Remark 3.2 (1) In the proposition, η is allowed to be 0.
(2) Note that, for fixed T and y, the sum over the double cosets is finite because B = 0 when

c is large.
(3) Also, note that there is a minimum strictly positive c (which depends on the cusps κ1 and

κ j ) in this setup. If
√
B is strictly less than this minimum, then

∫ 1

0
φ

(κ j )

T ,0 (x + iy, 0)e(mx) dx = 0.

As a corollary of the proposition, we have that the constant term of the Fourier expansion
of h with respect to x gives the dominant behavior for our setup.

Corollary 3.3 Let j ∈ {1, . . . , q}, m ∈ Z, |η| ≤ min
(
B1−B0

2 , 1
4

)
, and T−min

(
B1−B0

2 , 1
4

)
>

y. Then, as T → ∞, we have that
∫ 1

0
φ

(κ j )

T ,η (x + iy, 0)e(mx) dx =
∫ 1

0
ϕ

(κ j )

T ,̃η (x + iy, 0)e(mx) dx + O

(
1

T 3/2

)

where the implied constant depends on h, κ1, and κ j . Here, η̃ is a real number such that

|̃η| ≤ min
(
B1−B0

2 , 1
4

)
.

Proof Apply the proposition to φ
(κ j )

T ,η and Lemma 2.1 to ϕ
(κ j )

T ,0 . For η̃ 
= 0, the error between

the application of Lemma 2.1 to ϕ
(κ j )

T ,0 and to ϕ
(κ j )

T ,̃η is O
(√|̃η|
T 3/2

)
where the implied constant

depends on h, κ1, and κ j . The proof is the same as the proof of the analogous additional error
in the proof of Proposition 3.1. This yields the desired result. ��
More generally, we have

Theorem 3.4 Let j ∈ {1, . . . , q}, |η| ≤ min
(
B1−B0

2 , 1
4

)
, T − min

(
B1−B0

2 , 1
4

)
> y, and

1
2 ≥ δ > 0. Then, as T → ∞, we have that

∫ β

α

φ
(κ j )

T ,η (x + iy, 0) dx =
∫ β

α

ϕ
(κ j )

T ,̃η (x + iy, 0) dx + O

(
1

T δ

)
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so long as β − α remains bounded and bigger than T−3/4+δ . Here η̃ is a real number such

that |̃η| ≤ min
(
B1−B0

2 , 1
4

)
, and the implied constant depends on h, κ1, κ j , and the maximum

value of β − α.

Finally, we show that T y → 0 is necessary in our main results, Theorems 1.1 and 1.2, by
giving an example of a case for which T y � 0.

Example 3.5 For this example and Remark 3.6, set � = PSL(2, Z). Define

gT ,0(z, θ) := 1[T ,∞)(y) ϕT ,0(z, θ) :=
∑

γ∈�∞\�
gT ,0(γ (z, θ)).

Let T y = 1/4. Then

T
∫ 1

0
ϕT ,0(x + iy, 0) dx =

√
3

2
(3.1)

as T → ∞, but

1

μ(�\G)

∫ 2π

0

∫ 1

0
dx dθ = 3

π
.

Note that the derivation of (3.1) follows easily fromProposition 3.1. The gist of this derivation
is to consider the left-hand side of (3.2) without the limit but, instead, with x set to 2.

Remark 3.6 If, in the example, we let T y → 0, then Theorem 1.1 applies, from which the
identity

lim
x→∞ 2

�x�∑

c=1

ϕ(c)

c

√
x2 − c2

x2
= 3

π
(3.2)

follows by Proposition 3.1. Here ϕ(·) is the Euler totient function, and �·� is the floor func-
tion. Thus, we have obtained a number-theoretic identity. The same identity will also follow
from applying a version of Proposition 3.1 to [16, Theorem 2] (or the other versions of horo-
cycle equidistribution mentioned above). Finally, Shucheng Yu has pointed out, in personal
communication, an alternative proof of (3.2) using summation by parts and an asymptotic
estimate, due to Walfisz [19], for the sum of the Euler totient function over the natural num-
bers from 1 to n. This same observation has been pointed out by both referees. Furthermore,
one of the referees has pointed out another alternative proof using double cosets and, in par-
ticular, using the asymptotic estimate for Kloosterman sums [5, Theorem 4] to count double
cosets, namely

∑

1≤c≤x

#(double cosets indexed by c) ∼ 2x2

μ(�\G)
(3.3)

as x → ∞. (See also [5, Corollaryonpages119–20].) Now applying summation by parts to
(3.3) yields (3.2). The author is grateful to Yu and the referees for their observations.
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3.1 Proof of Proposition 3.1

Proof of Proposition 3.1 We first give the proof for φ
(κ j )

T ,0 . Let f = fT ,0 and c > 0. Let us
compute

∫ ∞

−∞
f

(
a

c
− 1

c2y

1

x + i
,−2 arg(x + i)

)
e

(
mxy − m

d

c

)
dx .

Now

f

(
a

c
− 1

c2y

1

x + i
, θ

)
= 1[T ,∞)

(
1

yc2(x2 + 1)

)
h

(
a

c
− 1

yc2
x

x2 + 1
, θ

)
,

which is zero if

x2 ≤ 1/T yc2 − 1 =: A (3.4)

does not hold. If A < 0, then (3.4) cannot hold for any value of x , and, thus, the integral is
zero.

Otherwise, when A ≥ 0, (3.4) holds for some values of x , and, thus, the integral may be
nonzero. We now estimate the integral when A ≥ 0. Note that, since A ≥ 0, we have

T yc2 ≤ 1 (3.5)

holds, and we can replace the integration bounds with −√
A to

√
A. By smoothness and

periodicity, we have the Fourier series representation of h,

h(x, θ) =
∑

j∈Z
ĥ( j, θ)e(− j x) = ĥ(0, θ) +

∑

j∈Z\{0}

ĥ2( j, θ)

−4π2 j2
e(− j x).

We consider the integral term-by-term (because the Fourier series converges uniformly to h).
Thus, for each j ∈ Z, we need to evaluate the following integral:

I (T , j) := e

(
−m

d

c
− j

a

c

)∫ √
A

−√
A
eiT p(x)q(x) dx

where

p(x) := 2π j(A + 1)
x

x2 + 1
, q(x) := ĥ( j,−2 arg(x + i))e(mxy).

We wish to compute the asymptotics of the integral as T → ∞, uniformly for all A ≥ 0 and
all y ≥ 0, using the method of stationary phase (see, for example, [13] for an introduction).
The stationary points are x = ±1.

For convenience, let us introduce the following notation. Let X be a topological space.
The function g : X → C is locally zero at x0 ∈ X if there exists an open neighborhoodU of
x0 in X such that g(x) = 0 for every point x ∈ U .

Lemma 3.7 Let j ∈ Z\{0}. We have that
I (T , j) = I1(T , j) + I−1(T , j)

where

I1(T ) := I1(T , j)
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:=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

O
(
ĥ( j,−π/2)√| j |T

)
if ĥ( j,−π/2) 
= 0

O
(
ĥ( j,θ0)√| j |T

)
if ĥ( j,−π/2) = 0 and

ĥ( j, θ) is not locally zero at θ = −π
2

O
( |̂h( j,−2 arg(β+i))|+|̂h( j,−2 arg(

√
A+i))|

jT

)
+ o

(
1
j2T

)
if ĥ( j, θ) is locally zero at θ = −π

2

I−1(T ) := I−1(T , j)

:=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

O
(
ĥ( j,π/2)√| j |T

)
if ĥ( j, π/2) 
= 0

O
(
ĥ( j,θ1)√| j |T

)
if ĥ( j, π/2) = 0 and

ĥ( j, θ) is not locally zero at θ = π
2

O
( |̂h( j,−2 arg(β+i))|+|̂h( j,−2 arg(−√

A+i))|
jT

)
+ o

(
1
j2T

)
if ĥ( j, θ) is locally zero at θ = π

2

as T → ∞. Here θ0 and θ1 are any values θ in [0, 2π) for which ĥ( j, θ) 
= 0 and
−1 < β < 1 is any value bounded away from both −1 and 1. The first implied constant of
the third case for I−1(T ) depends on h and the first implied constant of the third case for
I1(T ) depends on h. All other implied constants have no dependence.

Remark 3.8 • One can choose θ0 arbitrarily close to −π/2 and θ1 arbitrarily close to π/2
if desired.

• The error terms o
(

1
j2T

)
can be replaced by o

(
1
j�T

)
where � is any natural number

because h is a C∞-function.
• The dependence on h in the two implied constants can be made explicit by inspection of

the proof below.
• In the case that ĥ( j, θ) is locally zero at θ = π

2 and θ = −π
2 , we can have

I (T , j) = O

(
|̂h( j,−2 arg(

√
A + i))| + |̂h( j,−2 arg(−√

A + i))|
jT

)

+ o

(
1

j�T

)

Where � is any natural number. Here, the first implied constant depends on h (and can
be made explicit) and the second has no dependence.

Proof We assume that j ≥ 1. The proof for j ≤ −1 is analogous. We break I (T , j) into four
(or, if A ≤ 1, two) integrals so that {±1,±A} appears as only one endpoint (and the other
endpoint of each integral does not matter). Let us for now assume that ĥ( j, π/2) 
= 0 and
ĥ( j,−π/2) 
= 0. We will remove this assumption at the end. There are a number of cases
of which we begin with the case 1 <

√
A. The stationary points (except in a special case of

ĥ( j,−2 arg(x + i)) being locally zero at both −1 and 1, detailed below) will contribute the
main term, and we consider them first. Let

I+
1 (T ) := e

(
−m

d

c
− j

a

c

)∫ α

1
eiT p(x)q(x) dx

where α := √
A. Using Taylor series for −p(x) and q(x), we have that, as x → 1+,

−p(x) + p(1) ∼ 1

2
π j(A + 1)(x − 1)2, q(x) ∼ ĥ( j,−π/2)e(my)

and, thus, the function q(x)/p′(x) is of bounded variation over every closed interval [k, α]
where k ∈ (1, α) because both the numerator and denominator are of bounded variation
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and the denominator is bounded away from zero. Now we may apply [13, Chapter 3, Theo-
rem 13.1] to obtain

I+
1 (T ) ∼

√
π

2
e

(
−m

d

c
− j

a

c

)
e−π i/4ĥ( j,−π/2)e(my)

eiT p(1)

( 12π j(A + 1)T )1/2

as T → ∞ uniformly for all A > 1 and y ≥ 0.
Now substituting A = 1/T yc2 − 1 from (3.4) yields

I+
1 (T ) ∼ 1√

2
e

(
−m

d

c
− j

a

c
+ j

1

2yc2
− 1

8

)
ĥ( j,−π/2)e(my)

c
√
y√
j

(3.6)

as T → ∞. Applying (3.5) gives

I+
1 (T ) = O

(
ĥ( j,−π/2)√

jT

)

as T → ∞. Here the implied constant has no dependence.
Let

I−
1 (T ) := e

(
−m

d

c
− j

a

c

)∫ 1

α

eiT p(x)q(x) dx

where −1 < α < 1. Then the analogous proof gives

I−
1 (T ) = O

(
ĥ( j,−π/2)√

jT

)

as T → ∞. In fact, (3.6) holds when I+
1 (T ) is replaced by I−

1 (T ). Let I+
−1(T ) and I−

−1(T )

denote the analogous integrals for the stationary point −1, then the analogous proof gives

I+
−1(T ) = O

(
ĥ( j, π/2)√

jT

)
= I−

−1(T )

as T → ∞. The implied constants for these latter three integral also have no dependence.
When A = 1, only the integrals I−

1 (T ) and I+
−1(T ) are needed.

For 0 ≤ A < 1, we must consider the two analogous integrals I−√
A
(T ) and I+

−√
A
(T ). To

obtain a result uniform in A ≥ 0, we write

I−√
A
(T ) = e

(
−m

d

c
− j

a

c

)(∫ 1

α

eiT p(x)q(x) dx −
∫ 1

√
A
eiT p(x)q(x) dx

)
,

from which it immediately follows that

I−√
A
(T ) = O

(
ĥ( j,−π/2)√

jT

)

as T → ∞. Similarly, for I+
−√

A
(T ), we have that

I+
−√

A
(T ) = O

(
ĥ( j, π/2)√

jT

)

as T → ∞. The implied constants for these two integrals have no dependence. This proves
the desired result in the cases for which both ĥ( j, π/2) 
= 0 and ĥ( j,−π/2) 
= 0.
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Finally, consider when ĥ( j,−π/2) = 0 or ĥ( j, π/2) = 0. As we have seen, the integrals
I±
1 (T ) and I−√

A
(T ) depend on ĥ( j,−π/2) and the integrals I±

−1(T ) and I+
−√

A
(T ) depend

on ĥ( j, π/2). Let us assume that ĥ( j,−π/2) = 0. There are two cases to consider.
The first case is that ĥ( j,−2 arg(x + i)) is not locally zero at x = 1. Thus, we have that,

for every δ > 0, there exists x ∈ (1− δ, 1+ δ) such that ĥ( j,−2 arg(x + i)) 
= 0. Let θ0 be
chosen such that ĥ( j, θ0) 
= 0. We note that

I+
1 (T ) = e

(
−m

d

c
− j

a

c

)(∫ √
A

1
eiT p(x)

(
q(x) + ĥ( j, θ0)

)
dx

−
∫ √

A

1
eiT p(x)ĥ( j, θ0) dx

)

.

Apply the above proof for I+
1 (T ), we obtain

I+
1 (T ) = O

(
ĥ( j, θ0)√

jT

)

as T → ∞. Similarly, we have

I−
1 (T ) = O

(
ĥ( j, θ0)√

jT

)
= I−√

A
(T )

as T → ∞. The implied constants have no dependence for any of these estimates. Note that
[13, Chapter 3, Theorem 13.2] does not apply to the first case as the hypothesis on bounded
variation does not hold.

The second case is that ĥ( j,−2 arg(x + i)) is locally zero at x = 1. Thus, we have that,
there exists a δ > 0 for which ĥ( j,−2 arg(x + i)) = 0 for every x ∈ (1 − δ, 1 + δ). Let
N denote the union of all open intervals U containing 1 such that ĥ( j,−2 arg(x + i)) = 0
for every x ∈ U . Since we are in the second case, N is not the empty set. Thus, we have
N =: (r , s) where r < s are unique values determined solely by h. Here r may be −∞ and
s may be ∞. We note that ĥ( j,−2 arg(x + i)) = 0 for every x in the topological closure
N . If s is finite, then there exists an interval (s, s+) such that ĥ( j,−2 arg(x + i)) 
= 0 for
every x ∈ (s, s+). Likewise, if r is finite, then there exists an interval (r−, r) such that
ĥ( j,−2 arg(x + i)) 
= 0 for every x ∈ (r−, r).

Let us consider the case 1 <
√
A first. If N ⊃ (1,

√
A), then I+

1 (T ) = 0. Otherwise, we
have that

√
A > s > 1. Let x0 ∈ (s, s+). We note that

I+
1 (T ) = e

(
−m

d

c
− j

a

c

)(∫ √
A

s
eiT p(x)q1(x) dx +

∫ √
A

s
eiT p(x)q2(x) dx

)

where q1(x) := q(x)−q(x0) and q2(x) = q(x0). Using Taylor series, we have, as x → s+,

−p(x) + p(s) ∼ 2π j(A + 1)
s2 − 1

(s2 + 1)2
(x − s), q1(x) ∼ −q(x0), q2(x) ∼ q(x0).

We may now apply [13, Chapter 3, Theorem 13.2] to obtain, as T → ∞,

I+
1 (T ) = e

(
−m

d

c
− j

a

c

)(
q(

√
A)eiT p(

√
A)

iT p′(
√
A)

+ ε1(T ) + ε2(T )

)

where

ε1(T ) := 1

iT

∫ √
A

s
eiT p(x)

d

dx

(
q1(x)

−p′(x)

)
dx
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= − 1

4π2i j2T

∫ √
A

s
eiT p(x)

× d

dx

(
ĥ2( j,−2 arg(x + i))e(mxy) − ĥ2( j,−2 arg(x0 + i))e(mx0y)

−p′(x)

)
dx

= o

(
1

j2T

)
,

ε2(T ) := 1

iT

∫ √
A

s
eiT p(x)

d

dx

(
q2(x)

−p′(x)

)
dx

= − 1

4π2i j2T

∫ √
A

s
eiT p(x)

d

dx

(
ĥ2( j,−2 arg(x0 + i))e(mx0y)

−p′(x)

)
dx

= o

(
1

j2T

)
.

Here the three implied constants have no dependence. Note the expressions for ε1(T ) and
ε2(T ) follow immediately from integration by parts for I+

1 (T ), and the third equality
for both ε1(T ) and ε2(T ) follow from the Riemann–Lebesgue lemma (see [13, Chap-
ter 3, (13.03) and Sect. 13.3]). Consequently, we have, as T → ∞,

I+
1 (T ) = O

(
ĥ( j,−2 arg(

√
A + i))

jT

)

+ o

(
1

j2T

)
.

Note that, since A > s2 > 1, we have that −2π j < p′(
√
A) < 2π j

(
2

s2+1
− 1

)
is bounded

away from zero. Here the first implied constant depends on s and the second implied constant
has no dependence. As s is uniquely determined by h, we can also state that the first implied
constant depends on h.

Next we consider the integral I−
1 (T ) for α (which, in our notation, denotes the lower

integration bound) such that −1 < α < 1 is bounded away from −1. If N ⊃ (α, 1), then
I−
1 (T ) = 0. Otherwise, we have that α < r < 1. Now, by the analogous proof for I+

1 (T ),
we have, as T → ∞,

I−
1 (T ) = e

(
−m

d

c
− j

a

c

)(
q(α)eiT p(α)

−iT p′(α)
+ ε(T )

)

where ε(T ) = o
(

1
j2T

)
. Here the implied constants have no dependence.Now, as−T p′(α) =

2π j α2−1
yc2(α2+1)2

, we have, by (3.5), that

I−
1 (T ) = O

(
ĥ( j,−2 arg(α + i))

jT

)
+ o

(
1

j2T

)

as T → ∞. Here the first implied constant depends on r and the second has no dependence.
As r is uniquely determined by h, we can also say that the first constant depends on h.

Now, for the case
√
A = 1, we only need to consider the integral I−

1 (T ) as above for the
case

√
A > 1.

For the case
√
A < 1, we only need to consider the integral I−√

A
(T ) for α such that

−1 < α <
√
A is bounded away from −1. If N ⊃ (α,

√
A), then I−√

A
(T ) = 0. Otherwise,

we have that α < r <
√
A. Now, by the analogous proof to the case

√
A > 1, we have, as
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T → ∞,

I−√
A
(T ) = O

(
|̂h( j,−2 arg(α + i))| + |̂h( j,−2 arg(

√
A + i))|

jT

)

+ o

(
1

j2T

)

where the first implied constant depends on r and the second has no dependence.
Finally, we consider when ĥ( j, π/2) = 0. As for ĥ( j,−π/2) = 0, there are two cases.

The first case is that ĥ( j,−2 arg(x + i)) is not locally zero at x = −1. Thus, we have that,
for every δ > 0, there exists x ∈ (−1 − δ,−1 + δ) such that ĥ( j,−2 arg(x + i)) 
= 0. Let
θ1 be chosen such that ĥ( j, θ1) 
= 0. By the proofs analogous to when ĥ( j,−π/2) = 0, we
have

I±
−1(T ) = O

(
ĥ( j, θ1)√

jT

)
= I−√

A
(T )

as T → ∞. The implied constants have no dependence for any of these estimates.
The second case is that ĥ( j,−2 arg(x + i)) is locally zero at x = −1. Thus, we have that

there exists a δ > 0 for which ĥ( j,−2 arg(x + i)) = 0 for every x ∈ (−1− δ,−1+ δ). Let
N denote the union of all open intervalsU containing −1 such that ĥ( j,−2 arg(x + i)) = 0
for every x ∈ U and set N =: (r , s). By the analogous proof for when ĥ( j,−π/2) = 0, we
have, as T → ∞,

I−
−1(T ) = O

(
ĥ( j,−2 arg(−√

A + i))

jT

)

+ o

(
1

j2T

)

I+
−1(T ) = O

(
ĥ( j,−2 arg(α + i))

jT

)
+ o

(
1

j2T

)

I+
−√

A
(T ) = O

(
|̂h( j,−2 arg(α + i))| + |̂h( j,−2 arg(−√

A + i))|
jT

)

+ o

(
1

j2T

)

for −1 < α < 1 bounded away from 1. For I−
−1(T ), the first implied constant depends on

r and the second has no dependence. For I+
−1(T ) and I+

−√
A
(T ), the first implied constant

depends on s and the second has no dependence. This concludes all cases and proves the
desired result. ��
Corollary 3.9 Let j ∈ Z\{0}. We have, as T → ∞,

I (T , j) =
⎧
⎨

⎩

O
(

1
j2T

)
if ĥ( j, θ) is locally zero at both θ = −π

2 and θ = π
2

O
(

1
j2

√
T

)
otherwise

where the implied constants depend only on h.

Proof By the smoothness of h, we can apply ĥ( j, θ) = ĥ2( j,θ)

−4π2 j2
to the lemma to obtain the

desired result. ��
Applying the corollary, we have that

∑
j∈Z\{0} I (T , j) = O(1/

√
T ) where the implied

constant depends on h. Thus, we have, as T → ∞,
∫ ∞

−∞
f

(
a

c
− 1

c2y

1

x + i
,−2 arg(x + i)

)
e

(
mxy − m

d

c

)
dx

=
∫ √

A

−√
A

(∫ 1

0
h(t,−2 arg(x + i)) dt

)
e

(
mxy − m

d

c

)
dx + O

(
H(A)√

T

)
(3.7)
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where

H(A) :=
{
1 if A > 0

0 if A = 0

and the implied constant depends on h. This finishes the estimate for the integral when A ≥ 0,
and, thus, in all cases. Note, in particular, for A = 0, the all the integrals we considered are
zero including those which give the error term.

Now the number of terms in the sum over the double cosets is counted by a suitable Kloost-
erman sum (see [9, (2.24)]). Using the trivial bound over the average of the Kloosterman
sum, namely [9, (2.38)], and Hölder’s inequality, we have

y
∑

�∞

(
a b
c d

)

�∞∈�∞\σ−1
j �/�∞

1√
T y

≥c>0

1√
T

≤ C
y

T y
√
T

= C
1

T 3/2

where C is a constant.1 Note that terms corresponding to c > 1√
T y

in the double coset
summation are identically zero. This yields the desired error term.

Finally, as T > y, we have that
∫ 1

0
f (x + iy, 0) e(mx) dx = 0.

Applying Lemma 2.1 yields the desired result for φ
(κ j )

T ,0 .
We now consider the case η > 0. We claim, for this case, that there is an additional error

term O
( √

η

T 3/2

)
, which, thus, is negligible. Here, the implied constant depends on h, κ1, and

κ j . Let fη := fT ,η and g := f − fη. Similar to the case η = 0, the c = 0 term is zero. Let
Aη := 1

(T−η)yc2
− 1. For any other term, we compute

∣∣∣∣

∫ ∞

−∞
g

(
a

c
− 1

c2y

1

x + i
,−2 arg(x + i)

)
e

(
mxy − m

d

c

)
dx

∣∣∣∣

≤ 2M

⎧
⎪⎨

⎪⎩

√
Aη − √

A if A >
η
T√

Aη if A ≤ η
T and Aη ≥ 0

0 if Aη < 0

where

M := max{|h(x, θ)| : x ∈ [0, 1] and θ ∈ [0, 2π]}.
1 Our technique of using the trivial bound over the average of the Kloosterman sum here and elsewhere could
be replaced by a more precise estimate [5, Theorem 4]:

∑

�∞
(
a b
c d

)

�∞∈�∞\σ−1
j �/�∞

1√
T y

≥c>0

1 = 2

μ(�\G)
(T y)−1 + O

(
(T y)−max{s1,2/3}

)
.

This shows that C = 2
μ(�\G)

. For the definition of s1, see Sect. 5.
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We note that Aη > A here.
Let us consider first A >

η
T . From this, it follows that 1

T yc2
T

T+η
> 1 and, thus,

√
A >

√
η√

2T
√
yc
. Now we have

√
Aη − √

A = Aη − A
√
Aη + √

A
≤ η

2
√
AT (T − η)yc2

≤ 4
√

η

T
√
yc

.

For A ≤ η
T and Aη ≥ 0, we have that Aη ≤ 2η

T−η
and 1 ≤ 1√

T−η
√
yc
, from which it

follows that
√
Aη ≤ 4

√
η

T
√
yc .

Now any term for which c > 1√
(T−η)y

is zero. Using the trivial bound over the average of

the Kloosterman sum ( [9, (2.38)]), we have that the additional error term is y
4
√

η

T
√
y

1√
(T−η)y

=
O
( √

η

T 3/2

)
, as desired. Finally, for the case η < 0, the analogous proof gives an additional

error of O
(√|η|
T 3/2

)
. This completes the proof of Proposition 3.1. ��

4 Renormalizing a shrinking neighborhood to a fixed neighborhood

In this section, we prove Proposition 4.1, which, roughly speaking, allows us to renormalize

a neighborhood, namely the support of our test function φ
(κ j )

T ,η , shrinking into the cusp κ j as
T → ∞ to a fixed neighborhood, namely the support of a suitable auxiliary function.

Proposition 4.1 Let j ∈ {1, . . . , q}, 1
2 > δ > 0, |η| ≤ min

(
B1−B0

2 , 1
4

)
, T −

min
(
B1−B0

2 , 1
4

)
> y, 0 < T y < B2

1 − 1
4 , and m ∈ Z be such that |m| ≤

(
T y
B1

)−1/2+δ

. Then,

as T → ∞ and T y → 0, we have

T
∫ 1

0
φ

(κ j )

T ,η (x + iy, 0)e(mx) dx

= B1

(

1 + O

(
T y

B1

)δ
)∫ 1

0
φ
0,(κ j )

η̃

(
x + i

T

B1
y, 0

)
e(mx) dx + O

(
1√
T

)

where η̃ is a real number such that |̃η| ≤ min
(
B1−B0

2 , 1
4

)
. Here, the first implied constant

depends on κ1 and κ j and the second depends on h, κ1, and κ j .

Proof We will show the desired result by equating each term of the summation over the
double coset decomposition given by Lemma 2.1. It is known that the decomposition is
uniquely determined by c and d(modc) [9, Theorem 2.7]. We first prove the proposition for

φT := φ
(κ j )

T ,0 and φ0 := φ
0,(κ j )

0 . Let fT := fT ,0 and f 0 := f 00 . Proposition 3.1 gives the
desired expression for

∫ 1

0
φT (x + iy, 0)e(mx) dx .

We now compute the desired expression for
∫ 1

0
φ0

(
x + i

T

B1
y, 0

)
e(mx) dx .
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As T y < B2
1 − 1

4 , we have that the c = 0 term is equal to zero, as desired. Now let c > 0
and consider the term in the summation determined uniquely by c and d( mod c). Let
B := max{1/T yc2 − 1, 0}. We have that

T

B1
y
∫ ∞

−∞
f 0

(
a

c
− B1

c2T y

1

x + i
,−2 arg(x + i)

)
e

(
mx

T

B1
y − m

d

c

)
dx

= T

B1
y
∫ √

B

−√
B

(∫ 1

0
h(t,−2 arg(x + i)) dt

)
e

(
mx

T

B1
y − m

d

c

)
dx

= T

B1
y

(

1 + O

(
T y

B1

)δ
)

e

(
−m

d

c

)

×
∫ √

B

−√
B

(∫ 1

0
h(t,−2 arg(x + i)) dt

)
dx

as T y → 0. Note that, over the integration bounds, we have that |2π imx T
B1

y| ≤ 2π
(
T y
B1

)δ

.

Here, the implied constant has no dependence.
By Proposition 3.1, the corresponding term in the double coset decomposition for φT is

y
∫ ∞

−∞
fT

(
a

c
− 1

c2y

1

x + i
,−2 arg(x + i)

)
e

(
mxy − m

d

c

)
dx

= y
∫ √

B

−√
B

(∫ 1

0
h(t,−2 arg(x + i)) dt

)
e

(
mxy − m

d

c

)
dx

= y

(

1 + O

(
T y

B1

)δ
)

e

(
−m

d

c

)∫ √
B

−√
B

(∫ 1

0
h(t,−2 arg(x + i)) dt

)
dx

as T → ∞. Here, the implied constant depends on κ1 and κ j . For B > 0, (3.4) in the proof
of Proposition 3.1 applies. Consequently, over the integration bounds −√

B to
√
B, we have

|2π imxy| ≤ O

(√
B1
T

(
T y
B1

)δ
)

≤ O
(
T y
B1

)δ

, where the implied constants depend on κ1 and

κ j . For B = 0, this term, the corresponding term in the other summation, and the error term

from Proposition 3.1 for φ
(κ j )

T ,0 are all equal to zero.
Thus, as T → ∞ and T y → 0, we have that

T

B1
y
∫ ∞

−∞
fT

(
a

c
− 1

c2y

1

x + i
,−2 arg(x + i)

)
e

(
mxy − m

d

c

)
dx

= T

B1
y

(

1 + O

(
T y

B1

)δ
)

×
∫ ∞

−∞
f 0

(
a

c
− B1

c2T y

1

x + i
,−2 arg(x + i)

)
e

(
mx

T

B1
y − m

d

c

)
dx

where the implied constant depends on κ1 and κ j . Adding in the error term of O
(

1
B1

√
T

)
,

we have, thus, shown the desired equality of each corresponding term in the double coset
decompositions. Here, the implied constant depends on h, κ1, and κ j . This proves the desired
result when η = 0 = η̃.

For η 
= 0, we must add another error term of O
( √|η|
B1

√
T

)
as shown in the proof of

Proposition 3.1. For η̃ 
= 0, we must add in yet another error term, namely O
( √|̃η|
B1

√
T

)
. This
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follows because the functions

1[T−η̃,∞) ◦ m T
B1

(
B1

T yc2(x2 + 1)

)
1[T−η̃,∞)

(
1

yc2(x2 + 1)

)

are the same. Then applying the proof of the additional error term in Proposition 3.1 (with
the η from the proposition replaced by η̃) yields the desired error term. Both of the implied
constants depend on h, κ1, and κ j . This proves the desired result in all cases. ��

5 Horocycle equidistribution for fixed functions

In this section, we give a variant of a general formulation of horocycle equidistribution for
fixed functions due to Strömbergsson. There are two formulations, an effective one and a
non-effective one. Strömbergsson’s results are for continuous functions, while, in our setting,
the non-effective version also needs to handle functions that are not continuous, as these
functions involve indicator functions. A simple approximation is needed to prove our variant
of the non-effective result (Lemma 5.3), namely use the smooth Urysohn lemma (see [12,
Lemma 2.1.17] for example) to give an upper and lower approximation for the indicator
function and apply Strömbergsson’s results. For the convenience of the reader, we will give
the details in the proof of Lemma 5.3 below.

First, let us prove our variant of the effective result, Lemma 5.1. Let � be the Laplacian
on �\H. If there exist small eigenvalues λ ∈ (0, 1

4 ) in the discrete spectrum of �, let λ1 be

the smallest. Likewise, if it exists, let λ
( j)
1 ∈ [λ1, 1

4 ) be the smallest positive eigenvalue for
which there exists an eigenfunction which has non-zero constant term (see [2, Chapter 7]) at
cusp κ j . Define

s1 :=
{

1+√
1−4λ1
2 if there exists small eigenvalues

1
2 if there does not exist small eigenvalues

s( j)
1 :=

⎧
⎨

⎩

1+
√
1−4λ( j)

1
2 if λ

( j)
1 exists

1
2 if λ

( j)
1 does not exist

s′
1 := max

(
s(1)
1 , . . . , s(q)

1

)
. (5.1)

Note that 1
2 ≤ s′

1 ≤ s1 < 1.
Our variant of the results in [15] is the following:

Lemma 5.1 Let j ∈ {1, . . . , q}, δ > 0, and |η| > 0. Then

1

β − α

∫ β

α

φ
0,(κ j )
η (x + iy, 0) dx = T

B1μ(�\G)

∫ 2π

0

∫ 1

0

∫ ∞

0
1[T ,∞),η(y)h(x, θ)

dy dx dθ

y2

+ O(B−1
1 T 4|η|−4)

(
y1/2

β − α
log2

(
β − α

y

)
+ y1−s′1

(β − α)2(1−s′1)
+
(

y

β − α

)1−s1
)

where the implied constant depends on �, κ1, κ j and h.

Remark 5.2 The main term is bounded for all T > 1
4 . For fixed T , the error term goes

uniformly to 0 as y → 0 so long as 1 ≥ β − α ≥ y1/2−δ . Moreover, the implied constant in
the error term is effective, meaning that, in principle, it can be computed from the proof of
[15, Proposition 3.1] and the proof of the lemma.
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Proof The proof is applying [15, Proposition 3.1] (c.f. [15, Remark 3.4]) to f := φ
0,(κ j )
η .

The details are as follows. Let

n(t) :=
(
1 t
0 1

)
a(y) :=

(
y1/2 0
0 y−1/2

)
.

As n(α)a(y)n(t)i = yt + α + iy by (1.1), we have

1

T

∫ T

0
f (n(α)a(y)n(t)) = 1

β − α

∫ β

α

f (x + iy, 0) dx

and β − α = yT .
To finish, it remains only to estimate the Sobolev norm ‖ f ‖W4 . We first show that it is

finite. Let π denote the right regular representation of G on L2(�\G), g denote the Lie
algebra of SL2(R), and U(g) denote the universal enveloping algebra of g. Then the action
of g on the smooth functions of L2(�\G) is by the (left) Lie derivative, and, for a fixed basis
X1, X2, X3 of g and all k ∈ N, the Sobolev norm ‖ f ‖Wk is equivalent to the norm given by∑ ‖π(Xζ ) f ‖where the sum runs over all monomials Xζ = Xi1Xi2 · · · Xil ∈ U(g) of degree
≤ k and the norm ‖ · ‖ is the L2-norm (see [15, Sect. 2], [1, Sect. 3.2], and [2, Chapter 14]).

A standard basis for g is

H :=
(
1 0
0 −1

)
X− :=

(
0 0
1 0

)
X+ :=

(
0 1
0 0

)

and the associated Lie derivatives to these basis elements are [11, Chapter IV, §4]

LH = −2y sin 2θ
∂

∂x
+ 2y cos 2θ

∂

∂ y
+ sin 2θ

∂

∂θ

LX+ = y cos 2θ
∂

∂x
+ y sin 2θ

∂

∂ y
+ sin2 θ

∂

∂θ

LX− = y cos 2θ
∂

∂x
+ y sin 2θ

∂

∂ y
− cos2 θ

∂

∂θ
.

As f is constant in x and ∂ i

∂ yi
(
1[T ,∞),η(mT /B1(y))

)
has support in [B1 − |η|, B1 + |η|]

for every i ∈ N, any term of LXl · · ·LX1 f having y as a factor must have support in [B1 −
|η|, B1 + |η|] for the y-variable by elementary calculus. Likewise, any term not having y as
a factor must have support in [B1 − |η|,∞) for the y-variable. Here, for 1 ≤ j ≤ l, X j is
one of the standard basis elements of g. Recalling that dμ = y−2 dx dy dθ , we have that
LXl · · ·LX1 f ∈ L2(�\G). Consequently, ‖ f ‖Wk < ∞.

Also note that, by elementary calculus, every term of LXl · · ·LX1 f is of the form

g(θ)yi ∂ i+ j f
∂ yi ∂θ j for some (i, j) ∈ (N ∪ {0}) × (N ∪ {0}) and some C∞-function g(θ).

We now estimate ‖ f ‖Wk . By the above, we need only consider a finite number of mono-
mials of the form LXl · · ·LX1 f where 1 ≤ l ≤ k, and, thus, only a finite number of terms

of the form g(θ)yi ∂ i+ j f
∂ yi ∂θ j where 1 ≤ i + j ≤ k. By the above, terms for which i ≥ 1 have

support in [B1 − |η|, B1 + |η|]. Applying Young’s inequality (as in the proof of Lemma 6.1)

and the chain rule, we have ‖ ∂ i

∂ yi
(
1[T ,∞),η(mT /B1(y))

) ‖∞ ≤ O(T i B−i
1 |η|−(i+1)) and, con-

sequently, the contribution to ‖ f ‖Wk from these terms are bounded by O(T i B−3/2
1 |η|−i ) ≤

O(T k B−3/2
1 |η|−k). (Note that, here, (B1 + |η|)i−1/2 − (B1 − |η|)i−1/2 contributes a factor

of Bi−3/2
1 |η|.) The contribution from the terms for which i = 0 are bounded by O(B−1

1 ).
Consequently, ‖ f ‖Wk ≤ O(T k B−1

1 |η|−k). Here, all of the implied constants depend on h. ��
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Our variant of [16, Theorem 2] is the following:

Lemma 5.3 Let j ∈ {1, . . . , q}, δ > 0 and fix A > B0 > 1. Then

1

β − α

∫ β

α

φ
(κ j )

A,0 (x + iy, 0) dx → 1
μ(�\G)

∫
�\G φ

(κ j )

A,0 (p) dμ(p)

= 1
Aμ(�\G)

∫ 2π
0

∫ 1
0 h(x, θ) dx dθ

uniformly as y → 0 so long as β − α remains bigger than y1/2−δ .

Proof Let A − B0 > ε > 0 and φA := φ
(κ j )

A,0 . Using the smooth Urysohn lemma, define
C∞-functions 1+ : (0,∞) → [0, 1] and 1− : (0,∞) → [0, 1] by

1+(y) := 1ε,+
[A,∞)(y) :=

{
1 if y ∈ [A,∞)

0 if y ∈ (0, A − ε]

1−(y) := 1ε,−
[A,∞)(y) :=

{
1 if y ∈ [A + ε,∞)

0 if y ∈ (0, A] .

(Here, we are not giving an explicit formula for 1+|(A−ε,A) or for 1−|(A,A+ε).) These func-
tions, furthermore, define the C∞-functions

f +(z, θ) = 1+(y)h(x, θ) and φ+(z, θ) =
∑

γ∈�∞\σ−1
j �

f +(γ (z, θ))

f −(z, θ) = 1−(y)h(x, θ) and φ−(z, θ) =
∑

γ∈�∞\σ−1
j �

f −(γ (z, θ)).

Recall (1.3, 2.2) that

φA(x + iy, 0) =
∑

γ∈�∞\σ−1
j �

f A,0(γ (z, θ)),

and, thus, we have that the inequalities φ− ≤ φA ≤ φ+ hold pointwise. Let

M := max{|h(x, θ)| : x ∈ [0, 1] and θ ∈ [0, 2π]}.
Let us first give the proof for the case h ≥ 0. Let ε > 0. Choose ε such that 2πMε

A−ε
< ε/2.

The inequalities imply that

1

β − α

∫ β

α

φA(x + iy, 0) dx ≤ 1

β − α

∫ β

α

φ+(x + iy, 0) dx

≤ 1

Aμ(�\G)

(∫ 2π

0

∫ 1

0
h(x, θ) dx dθ + 2πMε

A − ε

)
+ ε

2

≤ 1

Aμ(�\G)

(∫ 2π

0

∫ 1

0
h(x, θ) dx dθ

)
+ ε

for y small enough and all α ≤ β such that β − α ≥ y1/2−δ . Here the second inequality
follows from [16, Theorem 2]. Using the analogous proof for φ−, we obtain

1

β − α

∫ β

α

φA(x + iy, 0) dx ≥ 1

Aμ(�\G)

(∫ 2π

0

∫ 1

0
h(x, θ) dx dθ

)
− ε
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for y small enough and all α ≤ β such that β − α ≥ y1/2−δ . Consequently, we have that
∣∣∣∣

1

β − α

∫ β

α

φA(x + iy, 0) dx − 1

Aμ(�\G)

(∫ 2π

0

∫ 1

0
h(x, θ) dx dθ

)∣∣∣∣ < ε

for y small enough and all α ≤ β such that β − α ≥ y1/2−δ , which proves the desired result
when h ≥ 0.

Since h + M ≥ 0, applying the above proof with h replaced by h + M yields the desired
result for h + M . Applying the above proof with h replaced by M yields the desired result
for M . Subtracting these two results yields the desired result for general h and proves the
desired result in all cases. ��

6 Proof of Theorem 1.1

In this section, we prove Theorem 1.1, which is our non-effective main result and which
allows a greater range for the rate of growth of T versus the decay of T y than our effective
main result. The idea of the proof is as follows. We will approximate integrating from α to β

via C∞-functions constructed from a well-known mollifier. Using the Fourier series of these
approximations, we apply Proposition 4.1 to the low modes of these Fourier series. Using a
classical result for the uniform convergence of the Fourier series for smooth functions, we
show the high modes are negligible. This allows us to apply horocycle equidistribution for
fixed functions, namely Lemma 5.3, to obtain the desired result.

Proof of Theorem 1.1 Let φT := φ
(κ j )

T ,0 , φ
0 := φ

0,(κ j )

0 , and α < β. Without loss of generality,
we may assume that 0 ≤ α, β ≤ 1, and 1/2 ≥ δ > 0. Otherwise, we can break the integral
into a finite number of pieces and use the periodicity in x . Let us first assume that either
0 ≤ α < β < 1 or 0 < α < β ≤ 1. The final case of α = 0 and β = 1 is a simplification
and will be proved at the end.

Let 1
2 (β − α) > ε > 0 and

M := max{|h(x, θ)| : x ∈ [0, 1] and θ ∈ [0, 2π]}.
Define the indicator function χ : R → [0, 1] by

χ(x) := χ[α,β](x) :=
{
1 if x ∈ [α, β]
0 if x /∈ [α, β] .

Because we require explicit Lipschitz constants, we will approximate χ via convolutions
with an explicit C∞-function, namely the well-known mollifier (see [17, Example 9.23] for
example) ρ : R → R defined by

ρ(x) :=
{

�−1e
− 1

1−x2 if |x | < 1

0 if |x | ≥ 1
ρε(x) := 1

ε
ρ
( x

ε

)
(6.1)

where

� :=
∫ 1

−1
e
− 1

1−x2 dx .

Define C∞-functions ψ+ : R → [0, 1] and ψ− : R → [0, 1] by the convolutions

ψ+(x) := ψ
ε,+
[α,β](x) :=

∫ ∞

−∞
χ[−r+,r+](x − y)ρε/2(y) dy
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ψ−(x) := ψ
ε,−
[α,β](x) :=

∫ ∞

−∞
χ[−r−,r−](x − y)ρε/2(y) dy

where r+ := β−α+ε
2 and r− := β−α−ε

2 . Translating these functions, we obtain our desired
upper and lower approximations:

χ+(x) := χ
ε,+
[α,β](x) := ψ+

(
x − α + β

2

)
χ−(x) := χ

ε,−
[α,β](x) := ψ−

(
x − α + β

2

)
.

Note that here χ+ and χ− are both C∞-functions with 0 ≤ χ+ ≤ 1 and 0 ≤ χ− ≤ 1
such that

χ+|[α,β] = 1, χ+|(−∞,α−ε]∪[β+ε,∞) = 0

χ−|[α+ε,β−ε] = 1, χ−|(−∞,α]∪[β,∞) = 0.

Now, as ρ is smooth and compactly supported, the boundsMρ(n) := max
{∣∣∣ d

nρ
dxn (x)

∣∣∣ : x ∈
R} are finite for every n ∈ N. For concision, let us define d0χ+

dx0
to be χ+ and d0χ−

dx0
to be χ−.

Lemma 6.1 Let n ∈ N ∪ {0}. A Lipschitz constant for dnχ+
dxn is

( 2
ε

)n+2
(β − α + ε)Mρ(n + 1)

and a Lipschitz constant for dnχ−
dxn is

( 2
ε

)n+2
(β − α − ε)Mρ(n + 1).

Proof By the mean value theorem, a bound for the derivative will be a Lipschitz constant for
the function. By induction on the chain rule, we have

∣∣∣∣
dn+1ρε/2

dxn+1 (x)

∣∣∣∣ ≤
(
2

ε

)n+2

Mρ(n + 1)

for all x ∈ R. Applying Young’s inequality gives
∥∥∥∥
dn+1χ+

dxn+1

∥∥∥∥∞
≤ ∥∥χ[−r+,r+]

∥∥
1

∥∥∥∥
dn+1ρε/2

dxn+1

∥∥∥∥∞
≤
(
2

ε

)n+2

(β − α + ε)Mρ(n + 1)

and the desired result. The proof for χ− is analogous. ��
Corollary 6.2 Let n ∈ N ∪ {0}. The functions

ω+,n(t) :=
((

2

ε

)n+2

(β − α + ε)Mρ(n + 1)

)

t

ω−,n(t) :=
((

2

ε

)n+2

(β − α − ε)Mρ(n + 1)

)

t

are moduli of continuity for dnχ+
dxn and dnχ−

dxn , respectively.

Proof This is immediate from the definitions. ��
Lemma 6.3 Let n ∈ N ∪ {0} and m ∈ Z. We have that

∣∣∣∣∣
d̂nχ+
dxn

(m)

∣∣∣∣∣
≤ 2(β − α + ε)

(
2

ε

)n

Mρ(n)

∣∣∣∣∣
d̂nχ−
dxn

(m)

∣∣∣∣∣
≤ 2(β − α − ε)

(
2

ε

)n

Mρ(n)

for all small enough ε.
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Proof Since the supports of dnχ+
dxn and dnχ−

dxn are contained in [0, 1] (perhaps after applying
the periodicity in x and, because ε is small enough, there are no overlaps), we can replace
the Fourier transform over the circle by that over the line. By elementary properties of
convolutions and Fourier analysis, it suffices to give a bound for

∣∣∣∣

∫ ∞

−∞
dnρε/2

dxn
(x)e(−mx) dx

∣∣∣∣ =
∣∣∣∣∣

(
2

ε

)n+1 ∫ ∞

−∞
dnρ

dxn

(
2x

ε

)
e(−mx) dx

∣∣∣∣∣

=
∣∣∣∣∣

(
2

ε

)n+1 ∫ ε/2

−ε/2

dnρ

dxn

(
2x

ε

)
e(−mx) dx

∣∣∣∣∣

=
∣∣∣∣

(
2

ε

)n ∫ 1

−1

dnρ

dxn
(x) e(−εmx/2) dx

∣∣∣∣

≤ 2

(
2

ε

)n

Mρ(n).

The first equality follows from induction on the chain rule, the second equality follows from
the fact that the supports of all of the derivatives of ρ are contained in the support of ρ,
namely the closed interval [−1, 1], and the third equality follows from changing variables
2x
ε

�→ x . The desired result now follows. ��

By smoothness and periodicity, we have

χ+(x) =
∑

m∈Z
χ̂+(m)e(mx) χ−(x) =

∑

m∈Z
χ̂−(m)e(mx)

where χ̂+(m) and χ̂−(m) are the Fourier transforms on R/Z of χ+(x) and χ−(x), respec-
tively. Moreover, the convergence of each sum to each function is uniform, and, we have, by
a classical theorem due to Jackson [10, Page 21]

∣∣∣∣∣
χ+(x) −

N∑

m=−N

χ̂+(m)e(mx)

∣∣∣∣∣
≤ K0ω+,n(2π/N )

log N

Nn
= K1(β − α + ε) log N

εn+2Nn+1

∣∣∣∣∣
χ−(x) −

N∑

m=−N

χ̂−(m)e(mx)

∣∣∣∣∣
≤ K0ω−,n(2π/N )

log N

Nn
= K1(β − α − ε) log N

εn+2Nn+1

where K0 > 0 is a fixed constant independent of x , N , n, ε, ρ, α, and β and where K1 :=
π2n+3K0Mρ(n + 1). Note that both bounds are uniform in x .

Let us first give the proof for the case h ≥ 0. In particular, this implies that φT ≥ 0
pointwise, from which it follows that φTχ− ≤ φTχ ≤ φTχ+ pointwise. Let

n := 2

δ
ε := 1

8
max

{

T−1/6,

(
T y

B1

)1/2
}(

T y

B1

)−δ/2

ε > 0

N :=
⌊(

T y

B1

)−1/2+δ/4
⌋

.

We have that

T

β − α

∫ β

α

φT (x + iy, 0) dx
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= T

β − α

∫ 1

0
φT (x + iy, 0)χ(x) dx

≤ T

β − α

N∑

m=−N

χ̂+(m)

∫ 1

0
φT (x + iy, 0)e(mx) dx

+ T

β − α

K1(β − α + ε) log N

εn+2Nn+1

∫ 1

0
φT (x + iy, 0) dx . (6.2)

Applying Proposition 4.1, we obtain, as T → ∞ and T y → 0,

T K1

∫ 1

0
φT (x + iy, 0) dx

= B1K1

(

1 + O

(
T y

B1

)δ
)∫ 1

0
φ0

(
x + i

T

B1
y, 0

)
dx + O

(
K1√
T

)
. (6.3)

Now, by Lemma 5.3 , we have that, as T y → 0,

B1K1

∫ 1

0
φ0

(
x + i

T

B1
y, 0

)
dx → K1

μ(�\G)

∫ 2π

0

∫ 1

0
h(x, θ) dx dθ ≤ 2πM

K1

μ(�\G)
.

Moreover, as β − α ≥ max

{
T−1/6,

(
T y
B1

)1/2}( T y
B1

)−δ

, we have

0 ≤ ε

β − α
≤ 1

8

(
T y

B1

)δ/2

, (6.4)

and we also have that

0 ≤ 1

εn+2Nn+1−δ/2 ≤ 22/δ+1−δ/282/δ+2
(
T y

B1

)δ/2+δ2/8

.

Consequently, for all T large enough and all T y small enough, we have that

T

β − α

K1(β − α + ε) log N

εn+2Nn+1

∫ 1

0
φT (x + iy, 0) dx ≤ ε

4
. (6.5)

Another application of Proposition 4.1 yields, as T → ∞ and T y → 0,

T

β − α

N∑

m=−N

χ̂+(m)

∫ 1

0
φT (x + iy, 0)e(mx) dx

= B1

β − α

(

1 + O

(
T y

B1

)δ
)

N∑

m=−N

χ̂+(m)

∫ 1

0
φ0

(
x + i

T

B1
y, 0

)
e(mx) dx

+
N∑

m=−N

O

(
χ̂+(m)

(β − α)
√
T

)

≤ B1

β − α

(

1 + O

(
T y

B1

)δ
)∫ 1

0
φ0

(
x + i

T

B1
y, 0

)
χ+(x) dx

+ B1

β − α

(

1 + O

(
T y

B1

)δ
)

K1(β − α + ε) log N

εn+2Nn+1

∫ 1

0
φ0

(
x + i

T

B1
y, 0

)
dx
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+
N∑

m=−N

O

⎛

⎝

∣∣∣χ̂+(m)

∣∣∣

(β − α)
√
T

⎞

⎠ .

Note, as h ≥ 0, we have that φ0 ≥ 0 pointwise. By (6.3, 6.5), we have, for all T large enough
and all T y small enough, that

B1

β − α

(

1 + O

(
T y

B1

)δ
)

K1(β − α + ε) log N

εn+2Nn+1

∫ 1

0
φ0

(
x + i

T

B1
y, 0

)
dx ≤ ε

4
. (6.6)

Now, by Lemma 6.3, we have that

N∑

m=−N

O

⎛

⎝

∣∣∣χ̂+(m)

∣∣∣

(β − α)
√
T

⎞

⎠ ≤ O

(
1

(β − α)
√
T

)
⎛

⎜⎜
⎝

∑

m∈Z\{0}

∣∣∣∣
d̂2χ+
dx2

(m)

∣∣∣∣

4π2m2 +
∫ 1

0
χ+(x) dx

⎞

⎟⎟
⎠

= O

(
1

ε2(β − α)
√
T

)
≤ O

((
T y

B1

)2δ
)

. (6.7)

Note that the implied constant depends on h, κ1, and κ j . Consequently, for all T large enough
and all T y small enough, we have that

N∑

m=−N

O

⎛

⎝

∣∣∣χ̂+(m)

∣∣∣

(β − α)
√
T

⎞

⎠ ≤ ε

4
.

Finally, to obtain an upper bound for the left-hand side of (6.2), we must give an upper
bound for

D := B1

β − α

(

1 + O

(
T y

B1

)δ
)∫ 1

0
φ0

(
x + i

T

B1
y, 0

)
χ+(x) dx .

Since φ0 ≥ 0 pointwise, we have that

D ≤
(
1 + 2ε

β − α

)
B1

β − α + 2ε

(

1 + O

(
T y

B1

)δ
)∫ β+ε

α−ε

φ0
(
x + i

T

B1
y, 0

)
dx . (6.8)

Applying (6.4) and Lemma 5.3, we have, for all T large enough and T y small enough, that

D ≤ 1

μ(�\G)

∫ 2π

0

∫ 1

0
h(x, θ) dx dθ + ε

4
. (6.9)

Note that Lemma 5.3 applies because β−α+2ε ≥ β−α ≥
(
T y
B1

)1/2−δ

holds. Consequently,

we can conclude that

T

β − α

∫ β

α

φT (x + iy, 0) dx ≤ 1

μ(�\G)

∫ 2π

0

∫ 1

0
h(x, θ) dx dθ + ε.

Using the analogous proof for χ−, we obtain that

T

β − α

∫ β

α

φT (x + iy, 0) dx ≥ 1

μ(�\G)

∫ 2π

0

∫ 1

0
h(x, θ) dx dθ − ε,
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where we are able to apply Lemma 5.3 to compute the main term in the analogous proof
because

β − α − 2ε ≥ max

{

T−1/6,

(
T y

B1

)1/2
}(

T y

B1

)−δ

− 1

4
max

{

T−1/6,

(
T y

B1

)1/2
}(

T y

B1

)−δ/2

≥ max

{

T−1/6,

(
T y

B1

)1/2
}(

T y

B1

)−δ/2

for T y small enough. This yields the desired result for the case h ≥ 0.
Since h + M ≥ 0, applying the above proof with h replaced by h + M yields the desired

result for h + M . Applying the above proof with h replaced by M yields the desired result
for M . Subtracting these two results yields the desired result for general h.

Thefinal case to consider iswhenα = 0 andβ = 1 (namely, the case of closed horocycles).
This final case follows by applying Proposition 4.1 (withm = 0) and Lemma 5.3. This proves
the desired result in all cases. ��

7 Proof of Theorem 1.2

In this section, we prove Theorem 1.2, which is our effective main result. The proof is
analogous to that of Theorem 1.1 except that we replace Lemma 5.3 with its effective version,
Lemma 5.1, and keep track of the error terms. For η = 0, there is an additional step of
obtaining the correct main term. Before we give the details, let us first note that

max

(

T 4
(
T y

B1

)1/2

, T−1/6

)(
T y

B1

)−δ

can decay provided the relative rate of decay of y to the growth of T is constrained. For exam-
ple, if we substitute y = T−10 and δ = 1

60 into this expression, then we obtain T−1/60B1/60
1 ,

which decays as T → ∞. Also note that, as this expression is larger than or equal to the analo-
gous expression for Theorem 1.1, there is no hinderance to applying the proof of Theorem 1.1
with the noted changes.

Proof of Theorem 1.2 Let 0 < |̃η| ≤ min
(
B1−B0

2 , 1
4

)
, φT := φ

(κ j )

T ,η , and φ0 := φ
0,(κ j )

η̃ . We

follow the proof of Theorem 1.1. Let

Q := T

μ(�\G)

∫ 2π

0

∫ 1

0

∫ ∞

0
1[T ,∞),̃η(y)h(x, θ)

dydxdθ

y2

R := R(̃η) := O
(
T 4 |̃η|−4)

((
T y

B1

)1/2

log2
(
B1

T y

)
+
(
T y

B1

)1−s1
)

R̃ := R̃(̃η) := O
(
T 4 |̃η|−4)

((
T y

(β − α)2B1

)1/2

log2
(

(β − α)B1

T y

)

+
(

T y

(β − α)2B1

)1−s′1 +
(

T y

(β − α)B1

)1−s1
)

.
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Note that |Q| ≤ 8πM
3μ(�\G)

. By applying Lemma 5.1 in place of Lemma 5.3, we replace (6.5)
with the following:

T

β − α

K1(β − α + ε) log N

εn+2Nn+1

∫ 1

0
φT (x + iy, 0) dx

≤ 22/δ82/δK1

(
T y

B1

)δ/2+δ2/8

×
(

1 + 1

8

(
T y

B1

)δ/2
)((

1 + O

(
T y

B1

)δ
)

(Q + R) + O

(
1√
T

))

. (7.1)

Note that (7.1) holds when log N
N δ/2 ≤ 128, a condition which, for the given δ > 0, we can

ensure for all T y small enough. Also, the left-hand side of (6.6) is bounded by the right-hand

side of (7.1). Moreover, (6.7) holds, giving an additional error term of O
(
T y
B1

)2δ
.

Finally, we compute D, which will yield the main term (and additional error terms). By
applying Lemma 5.1 in place of Lemma 5.3 to (6.8), we obtain the analog of (6.9):

D ≤
(

1 + O

(
T y

B1

)δ/2
)
(
Q + R̃

)
.

Note that ε ≤ 1
8 (β − α). Thus, the main term is Q and the error terms that are significant

coming from this expression are O(|Q|)
(
T y
B1

)δ/2 = O
(
T y
B1

)δ/2
and R̃.2 Here, the implied

constant depends on h, κ1, and κ j . Note that the error term coming from (6.7) is negligible
compared to these terms. Similarly, for T y small enough, the bound coming from the right-
hand side of (7.1) is negligible.

Consequently, we have that

T

β − α

∫ β

α

φT (x + iy, 0) dx ≤ Q + R̃ + O

(
T y

B1

)δ/2

for T → ∞ and T y → 0. Giving the analogous proof for χ− yields the reverse inequality
and, thus, equality for h ≥ 0:

T

β − α

∫ β

α

φT (x + iy, 0) dx = Q + R̃ + O

(
T y

B1

)δ/2

. (7.2)

Here, the implied constant depends on h, κ1, and κ j . In the analogous way as in the proof of
Theorem 1.1, we obtain (7.2) for general h.

Similar to the proof of Theorem 1.1, it remains to show the analog of (7.2) for the case of
α = 0 andβ = 1. By applying Lemma 5.1 in place of Lemma 5.3 in the proof of Theorem1.1,
we obtain

T
∫ 1

0
φT (x + iy, 0) dx = Q + R + O

((
T y

B1

)δ

+ 1√
T

)

. (7.3)

Here, the implied constant depends on h, κ1, and κ j . Now, for η 
= 0, set η̃ = η to obtain the
desired result.

2 Theorem 1.2 provides a meaningful result only when the term R̃ decays.
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Finally, for η = 0, we can pick any 0 < |̃η| ≤ min
(
B1−B0

2 , 1
4

)
. Let us first assume that

η̃ > 0. Note that

Q = T

μ(�\G)

∫ 2π

0

∫ 1

0

∫ ∞

T
h(x, θ)

dy dx dθ

y2

+ T

μ(�\G)

∫ 2π

0

∫ 1

0

∫ T

T−η̃

1[T ,∞),̃η(y)h(x, θ)
dy dx dθ

y2

= 1

μ(�\G)

∫ 2π

0

∫ 1

0
h(x, θ) dx dθ + O

( |̃η|
T

)
.

The implied constant depends on h and �. A similar proof for η̃ < 0 yields the same result.
This obtains the desired result and concludes the proof of the theorem. ��

8 Proof of Theorem 3.4

This proof is a simplification of the proof of Theorem 1.1. For the convenience of the reader,
we now give the details.

Proof of Theorem 3.4 Let φT := φ
(κ j )

T ,η , φ
0 := φ

0,(κ j )

η̃ , and α < β. Without loss of generality,
we may assume that 0 ≤ α and β ≤ 1. Otherwise, we can break the integral into a finite
number of pieces and use the periodicity in x . If α = 0 and β = 1, then apply Corollary 3.3
to obtain the desired result. Otherwise, let us assume that either 0 ≤ α < β < 1 or 0 < α <

β ≤ 1. Define χ , χ±, M , and Mρ(n) as in the proof of Theorem 1.1.
Now set ε := 1

4T
−3/4+δ/2. Let us first consider the case h ≥ 0. We have, for all T

sufficiently large, that
∫ β

α

φT (x + iy, 0) dx ≤
∫ 1

0
φT (x + iy, 0)χ+(x) dx

≤
∫ 1

0
ϕT (x + iy, 0)χ+(x) dx + O

(
1

T 3/2

)
⎛

⎜⎜
⎝

∑

m∈Z\{0}

∣∣∣∣
d̂2χ+
dx2

(m)

∣∣∣∣

4π2m2 +
∫ 1

0
χ+(x) dx

⎞

⎟⎟
⎠

≤
∫ β

α

ϕT (x + iy, 0) dx + 2εM + O

(
1

ε2T 3/2

)

≤
∫ β

α

ϕT (x + iy, 0) dx + O

(
1

T δ

)

where the implied constant depends on h, κ1, and κ j . The second inequality follows from
an application of Corollary 3.3 and from the fact that χ+ is smooth, and the third inequality
comes from Lemma 6.3. The analogous proof using χ− in place of χ+ allows us to obtain
the desired lower bound. Consequently, we have that

∫ β

α

φT (x + iy, 0) dx =
∫ β

α

ϕT (x + iy, 0) dx + O

(
1

T δ

)

where the implied constant depends on h, κ1, and κ j .
Since h + M ≥ 0, applying the above proof with h replaced by h + M yields the desired

result for h + M . Applying the above proof with h replaced by M yields the desired result
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for M . Subtracting these two results yields the desired result for general h and proves the
desired result in all cases. ��
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