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Abstract
We compute the sheaf homology of the intersection lattice of a hyperplane arrangement with
coefficients in the graded exterior sheafΛ•F of the natural sheaf F . This builds on the results
of our previous paper Everitt and Turner (AdvMath 402:Paper No. 108354, 2022. https://doi.
org/10.1016/j.aim.2022.108354) where this homology was computed for Λ1F = F , itself a
generalisation of an old result of Lusztig. The computational machinery we develop in this
paper is quite different though: sheaf homology is lifted to what we call Boolean covers,
where we instead compute homology cellularly. A number of tools are given for the cellular
homology of these Boolean covers, including a deletion–restriction long exact sequence.

Introduction

The combinatorics of a hyperplane arrangement is encapsulated by its intersection lattice. The
homology of this lattice, with constant coefficients, was first determined in [2, 7], withQuillen
[11] showing that it has the homotopy type of a wedge of spheres. Interest in homology may
be revived though by taking coefficients in a more interesting local system, that is to say, in a
sheaf on the lattice. The resulting sheaf homology H∗(L\0; F), where L is the intersection
lattice of a hyperplane arrangement and F is some interesting (naturally occuring) sheaf,
then becomes worthy of investigation.

Intersection lattices of hyperplanes arrangements come equipped with a canonical sheaf
as the elements of the lattice are vector spaces. We call this the natural sheaf, and in [4] we
showed that the reduced sheaf homology is trivial in all degrees, except the top one, whose
dimension is related to the β-invariant of the arrangement, i.e. the derivative of the character-
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istic polynomial of L evaluated at 1—see [15]. This generalises, to an arbitrary arrangement,
an old result of Lusztig [9] where he considers the arrangement of all hyperplanes in a vector
space over a finite field. There are various other sheaves that can be put on an intersection
lattice—see [10]—but they turn out to be what Yuzvinsky [14] calls local sheaves, and so
the homology vanishes for general reasons. The natural sheaf is not local.

In this paper our principal object of interest is the sheaf homology of L with coefficients
in the graded sheaf Λ•F , where F is the natural sheaf and Λ j F is the j th exterior power
of F . We concentrate first on the case where the arrangement is essential, meaning that the
intersection of all the hyperplanes is trivial. Our result here is:

Theorem 9 Let L be the intersection lattice of an essential hyperplane arrangement in a
space V . Let F be the natural sheaf on L and Λ j F be the j th exterior power of F. If
rk(L) ≥ 2 then Hi (L\0;Λ j F) is trivial unless:

– either 0 < i < rk(L) − 1 and i + j = rk(L) − 1, in which case

dim Hi (L\0;Λ j F) = (−1)i+1

j ! χ
( j)
L (1)

– or, i = 0 and or j = rk(L) − 1, in which case

dim H0(L\0;Λ j F) =
(

rk(L)

j

)
− 1

j !χ
( j)
L (1)

– or, i = 0 and j < rk(L) − 1, in which case

dim H0(L\0;Λ j F) =
(

rk(L)

j

)

where χ
( j)
L (t) is the j th derivative of the characteristic polynomial of L.

The case j = 1 reproduces the main result of [4], and the appearance there of the β-
invariant of the arrangement is expanded to the appearance of higher derivatives of the
characteristic polynomial that are related to the dimensions of the higher exterior powers.
The graded Euler characteristic of this (bi-graded) homology is (see Corollary 5)

χq H∗(L\0;Λ•F) = −χL (1 + q) + (1 + q)dim V

The homology H∗(L\0;Λ•F) can thus be interpreted as a categorification of the charac-
teristic polynomial of the hyperplane arrangement, although we do not pursue this point of
view. We extend the results above to non-essential arrangements in Theorem 11.

Our main computational tool is given by what we call Boolean covers. These are Boolean
lattices that keep track of all the expressions of elements as joins of atoms. As lattices they
are particularly amenable to having their homology computed cellularly—a philosophy that
we adopted in [6]. We then make the connection betwen this cellular homology of Boolean
covers and the sheaf homology of the lattices being covered.

This is a two step process. Writing L̃ for the Boolean cover of L , a number of spectral
sequence arguments establish:

Theorem 3 Let L be a graded atomic lattice with sheaf F and let f : L̃ → L be its Boolean
cover. Then

H∗(L\0; F) ∼= H∗(L̃\0; F).
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This result also appears in [9, §1.2]. The second step is:

Theorem 4 If B is a Boolean lattice and F is a sheaf on B then

H∗(B\0; F) ∼= H cell∗ (B\0; F).

If L is an intersection lattice, then for a hyperplane a the deletion La and restriction La

are lattices of “smaller” arrangements—see Sect. 1.1. The characteristic polynomial of L
satisfies a deletion–restriction relation in terms of La and La , and our main technical tool is
a lift of this to the setting of the cellular homology of Boolean covers.

Theorem 7 Let L be a geometric lattice equipped with a sheaf F and let f : L̃ → L be its
Boolean cover. Then for any atom a ∈ L there is a long exact sequence

· · · → H cell
i (L̃a; F) → H cell

i (L̃a; F) → H cell
i (L̃; F) → H cell

i−1 (L̃a; F) → H cell
i−1 (L̃a; F) → · · ·

This allows us to prove the analogue of Theorem 9 for the cellular homology of Boolean
covers:

Theorem 8 Let L be the intersection lattice of an essential hyperplane arrangement in a
space V , let F be the natural sheaf on L and Λ j F be the j th exterior power of F. If
rk(L) ≥ 2 and L̃ → L is the Boolean cover of L, then H cell

i (L̃;Λ j F) is trivial unless
0 ≤ i < rk(L) and i + j = rk(L) = dim V , in which case:

dim H cell
i (L̃;Λ j F) = (−1)i

j ! χ
( j)
L (1)

where χ
( j)
L (t) is the j th derivative of the characteristic polynomial of L.

Indeed this is proved first, and Theorem 9 is a corollary. It is extended to non-essential
sheaves in Theorem 10.

The theorems above, indeed all the results of this paper, hold for lattices in a range of
generalities. The broadest class—for example in Theorem 3—are the graded atomic lattices.
The proof of the long exact sequence in Theorem 7 requires the restriction La to also be
graded atomic; to ensure this we restrict to the smaller class of geometric lattices. Specific
computations of homology, such as Theorems 8 and 9, are done for the natural sheaf on the
further restricted class of arrangement lattices. Finally, for our cellular calculationswe restrict
yet further to the Boolean lattices, although this is purely for conciseness and convenience—
an analogous result to Theorem 4 holds for the class of cellular posets; see [6, Theorem
2].

Working with the Boolean cover takes us quite close to the perspective of Dansco and
Licata [3]. Motivated by Khovanov homology-style constructions, they make a number of
decorated hypercubes (some using exterior powers) which give rise to homologies which
categorify the characteristic polynomial, among other things, of a hyperplane arrangement.
Our cellular homology of the Boolean cover is very much of this type, but in fact the result-
ing decorated hypercube is not one they consider. They initiate some computations of the
homology for their examples and it would be interesting to see further (or full) computations.
The techniques we develop for Boolean covers may be of some use in this regard.

The structure of the paper is as follows. In Sect. 1 we discuss the basics of lattices,
arrangements and sheaves. We recall the necessary background on hyperplane arrangements
and their intersection lattices, sheaves on lattices, and characteristic polynomials. We also
introduce Boolean covers. In Sect. 2 we move to homology, first discussing sheaf homology
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1454 B. Everitt, P. Turner

and its basic properties and calculating the Euler characteristic in the example of interest. We
then discuss a Leray–Serre type spectral sequence needed to make the connection between
a lattice and its Boolean cover. In Sect. 3 we introduce the cellular homology of a Boolean
lattice with coefficients in a sheaf.We show that cellular homology computes sheaf homology
and give a number of technical results about cellular homology, of which the most important
is the deletion–restriction long exact sequence. Section 4 studies the main example of the
homology of an arrangement lattice with coefficients in the exterior powers of the natural
sheaf. After a brief discussion of graded Euler characteristics, we state and prove our main
results first for essential arrangements and then in the non-essential case.

1 Lattices, arrangements and sheaves

This section summarises the basics of posets, lattices and sheaves. Section 1.1 presents
basic poset notions and terminology along with the examples that preoccupy this paper: the
intersection lattices of hyperplane arrangements. Section 1.2 gives basic sheaf notions and
constructions and the principal examples: the natural sheaf of a hyperplane arrangement and
its exterior powers. Section 1.3 recalls the characteristic polynomial and finally Sect. 1.4
introduces a key tool in the computation of sheaf homology: the Boolean cover of a graded
atomic lattice.

1.1 Posets, lattices and arrangements

Let P = (P,≤) be a finite graded poset with rank function rk : P → Z (see [13, Chapter 3]
for this and other basic poset terminology in this section). A minimum is an element 0 ∈ P
with 0 ≤ x for all x ∈ P and a maximum is an element 1 ∈ P with x ≤ 1 for all x ∈ P . We
assume rk(0) = 0. The atoms of P are the elements of rank 1. A poset map f : Q → P is
a set map such that f x ≤ f y ∈ P if x ≤ y ∈ Q.

A subset K ⊂ P is upper convex if x ∈ K and x ≤ y implies y ∈ K . If x ≤ y, the interval
[x, y] consists of those z ∈ P such that x ≤ z ≤ y; if x ∈ P the interval P≥x consists of
those z ∈ P such that z ≥ x ; one defines P≤x , P>x and P<x similarly.

A lattice is a poset equipped with a join ∨ and a meet ∧. A finite lattice has a minimum 0,
equal to the meet of all its elements, and a maximum 1, equal to the join. A graded lattice is
atomic if every element can be expressed (not necessarily uniquely) as a join of atoms, with
the convention that the empty join is the minimum 0. The rank rk(L) of a graded lattice L is
rk(L) := rk(1).

If A is a finite set then the Boolean lattice B = B(A) consists of the subsets of A ordered
by inclusion. The result is a graded atomic lattice with rk(x) = |x |, join x ∨ y = x ∪ y, meet
x ∧ y = x ∩ y, minimum 0 = ∅, maximum 1 = A and atoms A. Any element has a unique
expression as a join of atoms.

This paper is about arrangement lattices. If V is a finite dimensional vector space over
a field k, then an arrangement in V is a finite set A = {ai } of linear hyperplanes, i.e.
codimension one subspaces. The corresponding arrangement lattice L = L(A) has elements
all possible intersections of hyperplanes in A—with the empty intersection taken to be V—
andordered by reverse inclusion. Then L is a graded atomic latticewith atoms the hyperplanes
A, rank function rk(x) = codim x , minimum 0 = V , maximum 1 = ⋂

a∈A a,

x ∨ y = x ∩ y, and x ∧ y =
⋂

z
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where the intersection on the right is indexed by the set {z ∈ L : x ∪ y ⊆ z}. Moreover,
L is geometric, in that the rank function satisfies rk(x ∨ y) + rk(x ∧ y) ≤ rk(x) + rk(y).
An arrangement is essential when

⋂
a∈A a is the trivial subspace, or equivalently, rk(L) =

dim V . The arrangement lattices on at most three hyperplanes are shown in Fig. 1. The first
three are Boolean—realised by arrangements of coordinate hyperplanes with respect to a
basis in 1, 2 or 3-dimensions—and the last is a braid arrangement (see for instance [12])
combinatorially isomorphic to the partition lattice Π(3) of a set of size 3.

If a ∈ A is a hyperplane of an arrangement in V , then the deletion arrangement in V
has hyperplanes A\{a}. Its intersection lattice La consists of the elements of L that can be
expressed as a join of the atoms A\{a}. The restriction arrangement in a has hyperplanes the
subspaces a ∩ b for b ∈ A\{a}. Its intersection lattice La is the interval L≥a = {x ∈ L : x ≥
a}.

In any graded atomic lattice, a set S ⊂ A of atoms is independent if
∨

T <
∨

S for all
proper subsets T of S, and dependent otherwise. An atom a in a dependent set of atoms S with
the property that

∨
S\{a} = ∨

S is called a dependent atom. A schematic of L, La and La ,
when a is dependent, is shown in Fig. 2. It is well known (see for instance [1, 5]) that the only

Fig. 1 The arrangement lattices L(A) where |A| ≤ 3

Fig. 2 The decomposition of L
into the deletion La and
restriction La for a dependent
atom a
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1456 B. Everitt, P. Turner

graded atomic lattices without dependent atoms are the Booleans. Moreover, in a geometric
lattice L we have rk(

∨
S) ≤ |S|, and S is independent if and only if rk(

∨
S) = |S|.

1.2 Sheaves on lattices

A sheaf on a poset P is a contravariant functor F : P → RMod to the category of R-
modules, where R is a commutative ring with 1, and P is interpreted as a category in the
usual way (having a unique morphism x → y whenever x ≤ y). A morphism of sheaves is a
natural transformation of functors κ : F → G and an isomorphism is a natural isomorphism.
We write F y

x for the structure map of the sheaf given by F(x ≤ y) : F(y) → F(x).
For example, if M ∈ RMod is fixed, then the constant sheaf ΔM has ΔM(x) = M for

every x ∈ P and (ΔM)
y
x = id : M → M for every x ≤ y in P .

Many sheaf constructions can be done locally, or “pointwise”. For example, the direct sum
F ⊕ G of sheaves F and G has (F ⊕ G)(x) = F(x) ⊕ G(x) and structure maps F y

x ⊕ G y
x

when x ≤ y. The tensor product F ⊗ G can be formed in an analogous way. An (N-) graded
sheaf F• is a direct sum

⊕
i≥0 Fi of sheaves Fi .

If Z : RMod → RMod is a functor then we write Z F for the sheaf arising from the
composite Z ◦ F : P → RMod → RMod. For example, if F is a sheaf and j ≥ 0, we have
the exterior powers Λ j F of F , and hence the graded sheaf:

Λ•F =
⊕
j≥0

Λ j F .

It is easy to check that Λ jΔM = ΔΛ j M , and that the standard module result:

Λ j (F ⊕ G) ∼=
⊕

s+t= j

Λt F ⊗ Λs G

carries straight through to sheaves of modules.

1.3 The characteristic polynomial

Recall that if k is a field and L is a lattice then the Möbius function μ = μL of
L is the k-valued function on the intervals [x, y] defined recursively by μ(x, y) =
−∑

x≤z<y μ(x, z), for all x < y in L and μ(x, x) = 1. If L is an arrangement lattice

then the characteristic polynomial χL(t) is defined by χL(t) = ∑
x∈L μL (0, x)tdim(x). The

kth derivative of χL is denoted χ
(k)
L ; the value (−1)rk(L)−1χ(1)(1) of the derivative at 1 is

called the β-invariant of the arrangement [15, 7.3].
We generalise to when there is a sheaf F on L . The characteristic polynomial of the pair

(L, F), denoted χ(L,F)(t), is defined by

χ(L,F)(t) =
∑
x∈L

μL(0, x)tdim F(x).

If F is the natural sheaf on L then χ(L,F)(t) = χL(t).
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1.4 Boolean covers

Let L be a graded atomic lattice with atoms A and let B = B(A) be the Boolean lattice on
A. There is a canonical lattice map f : B → L given by

f : ∨
B ai �→ ∨

L ai

and we refer to the pair (B, f ) as the Boolean cover of L . We usually write L̃ , instead
of B, for the Boolean cover of L . If F is a sheaf on L , then there is an induced sheaf
F̃ on the Boolean cover defined at x ∈ L̃ by F̃(x) = F( f x) and with structure maps
F̃ y

x = F f y
f x : F( f y) → F( f x). To simplify the notation we will drop the tilde, writing1 F

for F̃ .
For a Boolean lattice B we have μB(0, x) = (−1)rk(x); see [13, Example 3.8.3]. Thus,

the characteristic polynomial for (B, F) is given by

χ(B,F)(t) =
∑
x∈B

(−1)rk(x)tdim F(x)

Proposition 1 If L̃ is the Boolean cover of L then χ(L̃,F)(t) = χ(L,F)(t).

Proof Unpacking [10, Lemma 2.35] gives μL(0, x) = ∑
y∈ f −1(x)(−1)rk(y). Hence

χ(L̃,F)(t) =
∑
y∈L̃

(−1)rk(y)tdim F(y)

=
∑
x∈L

∑
y∈ f −1(x)

(−1)rk(y)tdim F(y) =
∑
x∈L

μL(0, x)tdim F(x) = χ(L,F)(t)

��

2 Homology

In Sect. 2.1 we recall the basics of the homology of posets with coefficients in a sheaf and in
Sect. 2.2 we discuss the (graded) Euler characteristic of the resulting homology. Section 2.3
gives some spectral sequences that will prove useful in the next section where we compare
(sheaf) homology with the cellular homology defined in Sect. 3.

2.1 Sheaf homology

For a fixed poset P let lim−→
P be the colimit functor from sheaves on P to RMod, and let

lim−→
P∗ := L∗ lim−→

P

be the left derived functors, or higher colimits. The homology H∗(P; F) of P with coefficients
in the sheaf F are these higher colimits evaluated at the sheaf F . The homology can be
computed using a chain complex S∗(P; F) whose group of n-chains is

Sn(P; F) =
⊕
σ

F(x0)

1 In [6] we wrote f ∗F for this induced sheaf.
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1458 B. Everitt, P. Turner

where the direct sum is over the totally ordered chains σ = xn ≤ · · · ≤ x0 in P .
For such a chain σ and s ∈ F(x0) we write sσ for the element of Sn that has value
s in the component indexed by σ and value 0 in all other components. The differential
d : Sn(P; F) → Sn−1(P; F) is then given by

dsσ = F x0
x1 (s)d0σ +

n∑
i=1

(−1)i sdi σ (1)

where as usual diσ = xn ≤ · · · ≤ x̂i ≤ · · · ≤ x0 for 0 ≤ i ≤ n.
We have (see [8, Appendix II])

H∗(P; F) = lim−→
P∗ F ∼= H S∗(P; F).

The following are some well-known properties of homology.

Lemma 1 1. If ΔM is a constant sheaf then H∗(P;ΔM) ∼= H∗(|P |, M), the ordinary
simplicial homology of the order complex |P |, which is the geometrical realisation of
the simplicial complex whose vertices are elements of P and n-simplicies are chains
σ = xn ≤ · · · ≤ x0.

2. If P has a minimum or maximum, and ΔM is a constant sheaf, then H0(P;ΔM) = M
and Hi (P;ΔM) vanishes for i > 0.

3. If P has a minimum 0, and F is any sheaf, then H0(P; F) = F(0) and Hi (P; F) vanishes
for i > 0.

Let T∗(P; F) be the chain complex whose n-chains are Tn(P; F) = ⊕
σ F(x0), the

sum is over the non-degenerate chains σ = xn < · · · < x0, and with differential given by
the formula (1). Then T ∗(P; F) is a sub-complex of S∗ homotopy equivalent to it (see for
example [4, 2.1]). We will interchange between the S∗ and T∗ complexes as convenience
dictates.

If F• is a graded sheaf then H∗(P; F•) = ⊕
j H∗(P; F j ) has the structure of a bi-graded

vector space.

2.2 Euler characteristics

As usual, the Euler characteristic of homology is defined to be

χ H∗(P; F) =
∑

n

(−1)n dim Hn(P; F).

If V• is an graded vector space then its graded dimension is dimq V• = ∑
k dim Vk qk , and

if F• is a graded sheaf then the graded Euler characteristic of the homology H∗(P; F•) is
given by

χq H∗(P; F•) =
∑

n

(−1)n dimq Hn(P; F•) =
∑
n,k

(−1)n dim Hn(P; Fk)qk

=
∑

k

χ H∗(P; Fk)qk .
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Proposition 2 The Euler characteristic χ H∗(L\0; F) = −
∑

x∈L\0
μL (0, x) dim F(x)

Proof Let x ∈ L and define chn(x) to be the set of (strict) n-chains in L\0 of the form
xn < · · · < x1 < x0, where x0 = x . If σ is such a chain we write 	(σ ) = n. Then by [13,
Proposition 3.8.5] we have

μL(0, x) =
∑

σ∈ch∗(x)

(−1)	(σ )−1.

Recall that the Euler characteristic is the same as the alternating sum of the dimensions of
the chain groups in a complex computing the homology, so

χ H∗(L\0; F) = χT∗(L\0; F) =
∑
n≥0

(−1)n dim Tn(L\0; F).

The dimension of Tn(L\0; F) can calculated as

dim Tn(L\0; F) =
∑

xn<···<x1<x

dim F(x) =
∑

x∈L\0
|chn(x)| dim F(x)

giving

χ H∗(L\0; F) =
∑
n≥0

∑
x∈L\0

(−1)n |chn(x)| dim F(x) =
∑

x∈L\0

∑
n≥0

(−1)n |chn(x)| dim F(x).

The value of the Möbius function μL(0, x) may be expressed as

μL(0, x) = −
∑

n

(−1)n |chn(x)|

(see, for example, [13, Proposition 3.8.5]), from which we get

χ H∗(L\0; F) =
∑

x∈L\0

∑
n≥0

(−1)n |chn(x)| dim F(x) = −
∑

x∈L\0
μL(0, x) dim F(x).

��
Corollary 1 Writing χ ′

(L,F)(t) for the derivative of the characteristic polynomial χ(L,F)(t),
we have

χ H∗(L\0; F) = dim F(0) − χ ′
(L,F)(1).

Proof From the definition of the characteristic polynomial we have

χ ′
(L,F)(t) =

∑
x∈L

μL(0, x) dim F(x)tdim F(x)−1

so that

χ ′
(L,F)(1) =

∑
x∈L

μL(0, x) dim F(x).

This then gives

χ ′
(L,F)(1) = μL(0, 0) dim F(0) +

∑
x∈L\0

μL (0, x) dim F(x) = dim F(0) − χ H∗(L\0; F).

��
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2.3 Some spectral sequences

There is a Leray–Serre style spectral sequence associated to a poset map. The following is
an adaptation of [8, Appendix II, Theorem 3.6]—see also [4, §2.3].

Let f : P → Q be a poset map and let F be a sheaf on P . For each q ≥ 0 define a sheaf
Hfib

q on Q by

Hfib
q (x) = Hq( f −1Q≥x ; F)

for x ∈ Q. If x ≤ y in Q then the structure map Hfib
q (y) → Hfib

q (x) is induced by the
inclusion Q≥y ↪→ Q≥x .

Theorem 1 (Leray–Serre) There is a spectral sequence

E2
p,q = Hp(Q; Hfib

q ) ⇒ Hp+q(P; F)

We are interested in a special case of this spectral sequence which we now describe. Let
P be a poset equipped with sheaf F and let

P =
⋃
α∈K

Pα

be a covering of P by upper convex subposets.We define a poset N , the nerve of the covering,
that mimics the simplicial complex nerve of a covering of a space. If X is a non-empty subset
of the indexing set K , let

PX =
⋂
α∈X

Pα (2)

Then N is the sub-poset of the Boolean lattice B(K ) consisting of those X for which PX �= ∅.
For each q ≥ 0, define a sheaf Hq on N by

Hq(X) = Hq(PX ; F)

and with structure map Hq(X ⊂ Y ) : Hq(PY ; F) → Hq(PX ; F) induced by the inclusion
PY ↪→ PX .

Theorem 2 Given the set-up of the previous paragraph, there is a spectral sequence

E2
p,q = Hp(N ;Hq) ⇒ Hp+q(P; F).

Proof Define a map f : P → N by f (x) = {α ∈ K : x ∈ Pα}. Let x ≤ y in P and suppose
that α ∈ f (x), hence x ∈ Pα . As Pα is upper convex we have y ∈ Pα too, hence α ∈ f (y).
Thus f (x) ⊆ f (y) in N , and f is a poset map.

We now claim that for X ∈ N , the fiber f −1N≥X is the subposet PX in (2). It then follows
that the fiber sheaves Hfib∗ of f are theH∗ above, and hence the result after applying Theorem
1. To see the claim, we have x ∈ PX if and only if x ∈ Pα for all α ∈ X ; this in turn happens
if and only if X ⊆ f (x), or equivalently, x ∈ f −1N≥X . ��

Lusztig [9, §1.2] gives a simplicial complex version of this result which he describes as
“well known”, although the reader might struggle to find a reference.
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2.4 Passing to the Boolean cover

The spectral sequence of a covering from the previous section (Theorem 2) allows us to pass
from a lattice L to its Boolean cover L̃ when computing homology. The following result can
be found in [9, §1.2].

Theorem 3 Let L be a graded atomic lattice with sheaf F and let f : L̃ → L be its Boolean
cover. Then

H∗(L\0; F) ∼= H∗(L̃\0; F).

Proof We cover L\0 and apply the spectral sequence of Theorem 2. If A is the set of atoms
of L , then L\0 = ⋃

a∈A L≥a , is a covering by upper convex sets. If X ⊆ A then

L X =
⋂
a∈X

L≥a = Lb where b =
∨
a∈X

a

as L≥x ∩ L≥y = L≥x∨y . Thus L X �= ∅ for all non-empty X ⊆ A, and the nerve poset N is
just the Boolean lattice minus its minimum, i.e. N = B(A)\0 = L̃\0. The sheafHq is given
by

Hq(X) = Hq(L X ; F) = Hq(L≥X ; F) =
{

F(X), q = 0,
0, q > 0

for ∅ �= X ⊆ A. Thus Hq is the trivial sheaf when q > 0 and H0 = F . The E2-page of the
sequence of Theorem 2 is thus zero except for the q = 0 line, where E2

p,0 = Hp(L̃\0; F).

This gives the desired isomorphism H∗(L\0; F) ∼= H∗(L̃\0; F). ��

3 Cellular homology

The ordinary singular homology of a space can be computed cellularly. In [6] we define a
cellular cohomology that computes, for a large class of posets, the cohomology of a poset
with coefficients in a sheaf. In this section we recall the basics we need (for homology rather
than cohomology), restricting ourselves to the setting of Boolean lattices, and then reprove
a theorem of Lusztig relating the homology of a lattice equipped with a sheaf to the cellular
homology of the Boolean cover. Sections 3.3 and 3.4 contain technical results that give a
useful splitting theorem in Sect. 3.5. This leads to the first main theorem of the paper, the
deletion–restriction long exact sequence for cellular homology—Theorem 7 of Sect. 3.6.

3.1 Basics

Let B = B(A) be the Boolean lattice on the finite set A and let F be a sheaf on B. Pick
an ordering on A and write A = {a1, a2, . . . , an}. An element x ∈ B is a subset of A, say
x = {ai1 , . . . , aik }, which we write as x = ai1 . . . aik assuming that im < in for m < n. If

y = ai1 . . . âi j . . . aik

for some j then define εx
y := (−1) j−1.

The cellular chain complex C∗(B; F) has k-chains

Ck(B; F) :=
⊕

rk(x)=k

F(x)

123



1462 B. Everitt, P. Turner

where the direct sum is over the subsets x of size k. The differential d : Ck → Ck−1 is given
by d = ∑

y<x dx
y , where the sum is over the pairs y < x with y of size k − 1 and x of size

k, and with dx
y = εx

y F x
y .

If z is a subset of size k − 2 with z < x and y1, y2 are the two subsets of size k − 1 with
z < y1, y2 < x , then

ε
y1
z εx

y1 + ε
y2
z εx

y2 = 0. (3)

It follows that d2 = 0 and C∗(B; F) is a chain complex. Call H cell∗ (B; F) the cellular
homology of B with coefficients in F . Up to isomorphism this construction is independent
of the order chosen on A and of the sign assignment used (any collection of εx

y satisfying (3)
will do).

3.2 Sheaf = Cellular

For a Boolean lattice we now have two kinds of homology—sheaf and cellular—and we now
show these are isomorphic. The proof of the following is adapted from [6, Theorem 2].

Theorem 4 If B is a Boolean lattice and F is a sheaf on B then

H∗(B\0; F) ∼= H cell∗ (B\0; F).

The proof filters the complex S∗(L; F) so that the standard spectral sequence has E1-page
with single non-zero row the cellular chain complex C∗(L; F).

Proof Write L = B\0 and filter the complex S∗(L; F) by defining Fp S∗ = S∗(L p; F),
where L p = {x ∈ L : rkL(x) ≤ p}, the elements whose rank in L is at most p. The E0-page
of the standard spectral sequence of a filtration is then

E0
pq = Sp+q(L p; F)

Sp+q(L p−1; F)

a quotient complex that we denote by S∗(L p, L p−1; F).
The E1-page is E1

pq = Hp+q(L p, L p−1; F). Analysing this homology a little further, the
arguments of [6, §2] can be adapted to show

H∗(L p, L p−1; F) ∼=
⊕

rkL (x)=p

H∗(L≤x , L<x ;ΔF(x)) ∼=
⊕

rkL (x)=p

H̃∗−1(L<x ;ΔF(x)).

Here, as we have the constant sheaf ΔF(x), the homology H̃∗(L<x ;ΔF(x)) is just the
ordinary reduced singular homology of the order complex of L<x .

The poset L<x is isomorphic to a Boolean lattice of rank rkL(x) minus its minimum and
maximum. This, in turn, may be identified with the poset of sub-simplices of the boundary
of a standard rkL(x)-simplex. Thus, the order complex |L<x | is a (rk(x) − 1)-sphere and

H̃i−1(L<x ;ΔF(x)) ∼=
{

F(x), i = rk(x)

0, else.

It follows that Hi (L p, L p−1; F) = 0 when i �= p, so the E1-page is trivial except along
the q = 0 line, where

E1
p,0 = Hp(L p, L p−1; F) =

⊕
rkL (x)=p

F(x) = C p(L; F)
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is themodule of cellular p-chains. The differential Hp−1(L p−1, L p−2; F) ← Hp(L p, L p−1;
F) coincides with the cellular differential C p−1 ← C p , and thus H∗(L; F) ∼= H cell∗
(L; F). ��

As a corollary to Theorems 3 and 4 we obtain a result of Lusztig [9, Chapter 1], who
proves that the homology of a lattice with coefficients in a sheaf is isomorphic to the cellular
homology of the Boolean cover equipped with the induced sheaf:

Corollary 2 (Lusztig) Let L be a graded atomic lattice with sheaf F and let L̃ → L be its
Boolean cover. Then,

H∗(L\0; F) ∼= H cell∗ (L̃\0; F),

3.3 Short exact sequences for cellular homology

There are two short exact sequences of cellular chain complexes that will prove useful.
The sequence induced by a sub-Boolean. Let B = B(A) be the Boolean lattice on the set

A and let x ∈ B. As x is a subset of A we can consider the Boolean B(x)—consisting of the
subsets of x ordered by inclusion—and this is naturally a sub-poset of B with minimum 0
and maximum x . If x = A\{a} then B(x) is just the deletion Ba ; if x = ∅ then B(x) = 0.

If F is a sheaf on B, then (up to choice of signage in constructing the differential) the
cellular complexC∗(B(x); F) is a subcomplex ofC∗(B; F). Moreover, the quotient complex
can be easily described: it is a “cellular like” complex of B\B(x). Specifically, let

Ck =
⊕

y

F(y)

the direct sum over the subsets y of size k + 1 such that y � x . Define d : Ck → Ck−1 as
before: d = ∑

w<y d y
w, where y has one more element thanw, but where now bothw, y � x .

If z � x has size k − 1 and z ≤ y, then the y1, y2 of size k with z < y1, y2 < y are also
such that y1, y2 � x . It follows from (3) that d2 = 0. Write C∗(B\B(x); F) for the resulting
complex.

There is then a short exact sequence of cellular complexes

0 → C∗(B(x); F) → C∗(B; F) → C∗−1(B\B(x); F) → 0 (4)

If x = A\{a} then B\B(x) is the restriction Ba , which is again a Boolean lattice.
The sequence induced by a short exact sequence of sheaves. Let F and G be sheaves on

the Boolean B = B(A) and κ = {κy} : G → F a map of sheaves. Then there is an induced
map κ∗ : C∗(B; G) → C∗(B; F) defined by

κ∗ : sy �→ κy(sy)

where sy ∈ Ck(B; G) has value s ∈ F(y) in the coordinate indexed by the k-subset y, and
value 0 elsewhere. Then κ∗ is a chain map andmoreover, the cellular chain complexC∗(B; –)
is an exact functor from the category of sheaves on B to the category of chain complexes.
Thus, a short exact sequence of sheaves

0 → G → F → H → 0

induces a short exact sequence of cellular complexes

0 → C∗(B; G) → C∗(B; F) → C∗(B; H) → 0. (5)
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Corollary 3 Let F and G be sheaves on the Boolean lattice B. Then,

H cell∗ (B; F ⊕ G) ∼= H cell∗ (B; F) ⊕ H cell∗ (B; G)

3.4 Fiddling with 0

We saw in Lemma 1 that a minimum needs to be removed for sheaf homology to be mean-
ingful. Corollary 2 above transfers this requirement to the Boolean cover. Nevertheless, it
will turn out to be more convenient to leave the miniumum in when performing calculations
with Boolean covers. This section marries the two points of view.

Proposition 3 Let B be a Boolean lattice and let F be a sheaf on B. Then H cell
i (B\0; F) ∼=

H cell
i+1 (B; F) for i > 0, and in low degrees there is an exact sequence

0 → H cell
1 (B; F) → H cell

0 (B\0; F) → F(0) → H cell
0 (B; F) → 0

Proof If we take x = 0 in the sequence induced by a sub-Boolean in Sect. 3.3 we get a short
exact sequence

0 → C∗(0; F) → C∗(B; F) → C∗−1(B\0; F) → 0.

The result follows immediately from the associated long exact sequence. ��

Putting this together with Corollary 2, we get the sheaf homology H∗(L\0; F) in terms
of the cellular homology H cell∗ (L̃; F):

Proposition 4 If L is a graded, atomic lattice then Hi (L\0; F) ∼= H cell
i+1 (L̃; F) for i > 0,

and

dim H0(L\0; F) = dim H cell
1 (L̃; F) − dim H cell

0 (L̃; F) + dim F(0).

Proof For i > 0 apply Corollary 2 and Proposition 3. For degree zero, consider the low
degree short exact sequence of Proposition 3:

0 → H cell
1 (L̃; F) → H cell

0 (L̃\0; F) → F(0) → H cell
0 (L̃; F) → 0

Now use Corollary 2 to replace H cell
0 (L̃\0; F) by H0(L\0; F) and recall that for an exact

sequence the alternating sum of dimensions is zero. ��

Corollary 4 Let χ ′
(L,F)(t) be the derivative of the characteristic polynomial of the pair (L, F).

Then the Euler characteristic of the cellular homology of the Boolean cover is

χ H cell∗ (L̃; F) = χ ′
(L,F)(1) =

∑
x∈L

μL(0, x) dim F(x).

Proof From the above and Corollary 1 we have

χ H cell∗ (L̃; F) = dim F(0) − χ H∗(L\0; F) = χ ′
(L,F)(1)

��
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Fig. 3 A double

3.5 Splitting Booleans

An atom a splits a Boolean B into the deletion Ba and the resriction Ba , both of which are
themselves Booleans of rank rk(B) − 1. Proposition 5 and Theorem 5 below describe two
situations where such a splitting can give useful information about the homology of B itself.

Doubling: Let F be a sheaf on B for which there is an atom a ∈ A such that for all x ∈ Ba

the structure map

F x∨a
x : F(x ∨ a) → F(x) (6)

is the identity. The restrictions of F to Ba and Ba are consequently exactly the same sheaf
and so we call (B; F) a double (see Fig. 3).

Proposition 5 Let (B, F) be a double. Then C∗(B; F) is acyclic, i.e. H cell
i (B; F) = 0 for

all i .

Proof Taking x = A\{a} in (4), gives the short exact sequence

0 → C∗(Ba; F) → C∗(B; F) → C∗−1(Ba; F) → 0

from which there results a long exact sequence

· · · → H cell
i (Ba; F)

δ→ H cell
i (Ba; F)

→ H cell
i (B; F) → H cell

i−1 (Ba; F)
δ→ H cell

i−1 (Ba; F) → · · ·
Recall that the signs in the definition of the differential of cellular homology required a choice
of ordering on A. By reordering if necessary we may place a in first position. It follows that
the signs εx∨a

x are equal to 1 for all x ∈ Ba and consequently the connecting homomorphism
δ is the map in homology induced by the identity map id : C∗(Ba; F) → C∗(Ba; F). Thus,
δ is an isomorphism and the result follows. ��

Decomposing: A small generalisation of the doubling idea gives a very useful recursive
procedure for computing cellular homology. We will use it for example in Sect. 4.2 in the
computation of H∗(L\0;Λ•F). Let F be a sheaf for which there is an atom a ∈ A such that
for all x ∈ Ba the structure map

F x∨a
x : F(x ∨ a) → F(x) (7)

is injective. We will call such a sheaf decomposable.
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Let Fa denote the restriction of F to Ba and Fa the restriction to Ba . Since Ba = Ba we
may also equip Ba with the sheaf Fa : for x ∈ Ba set Fa(x) = F(x ∨a) and for x ≤ y define
Fa(x ≤ y) = F y∨a

x∨a . The maps Fa(x) = F(x ∨ a) → F(x) = Fa(x) define a morphism
Fa → Fa of sheaves on Ba , which is injective by condition (7), and we will denote the
quotient sheaf by Fa/Fa .

Theorem 5 Let B be Boolean and F a decomposable sheaf on B. Then

H cell∗ (B; F) ∼= H cell∗ (Ba; Fa/Fa)

Proof There is a short exact sequence of sheaves on B:

Fa

Fa

Fa

Fa

Fa/Fa

0
0 0

G F

The structure maps between the elements of Ba and Ba in the leftmost sheaf G are all the
identity; the middle sheaf is just F ; the rightmost sheaf is trivial on Ba and the quotient
sheaf Fa/Fa on Ba . By (5) we have a short exact sequence of cellular chain complexes with
resulting long exact sequence:

· · · → H cell
i (B; G) → H cell

i (B; F) → H cell
i (Ba; Fa/Fa) → · · ·

after identifying the cellular homology of the rightmost sheaf with H cell
i (Ba; Fa/Fa). But

(B; G) is a double (6), and so the result follows from Proposition 5. ��

3.6 The deletion–restriction long exact sequence

Let L be a geometric lattice and let f : L̃ → L be its Boolean cover. We will write B = L̃ .
If a is an atom of L then the Boolean cover L̃a of the deletion La can be identified with the
sub-Boolean Ba of L̃ . Under this identification F̃a on L̃a is the restriction of F (on B) to Ba .
Consequently, we just write F for the sheaf on L̃a induced by a sheaf F on L , and

H cell
i (Ba; F) = H cell

i (L̃a; F). (8)

The Boolean cover L̃a of the restriction La is not, however, the sub-Boolean Ba of B: the
rank of the cover is in general less than that of the sub-Boolean. Nevertheless, they have the
same cellular homology. If L̃a → La is the Boolean cover of the restriction we also just
write F for the sheaf induced on L̃a by the restriction of F to La .

Theorem 6 Let L, L̃ and a ∈ L be as above. Then, for all i ,

H cell
i (Ba; F) ∼= H cell

i (L̃a; F).

Proof Write B = Ba = (L̃)a . Let A be the set of atoms of L and let Aa = A\{a} be the
atoms of La . The set of atoms of the restriction La is Aa = {b ∨L a : b ∈ Aa}. The atoms
of the sub-Boolean B are the elements b ∨B a where b ∈ Aa . Note that these are all distinct.
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If the elements b ∨L a for b ∈ Aa are all are distinct (in L itself), then the Boolean cover
L̃a is precisely the sub-Boolean B, and the result follows.

Otherwise, there exist distinct atoms s = a ∨B b and s′ = a ∨B b′ of B that are mapped
by f to the same atom a ∨L b = a ∨L b′ of La . As usual let Bs and B

s denote the deletion
and restriction of B with respect to the atom s. We claim that, for all i ,

H cell
i (B; F) ∼= H cell

i (Bs; F) (9)

To prove this we will show that B
s is a double. Let α = s ∨B s′ = a ∨B b ∨B b′. This is an

atom of B
s and we may consider the deletion (Bs)α and the restriction (Bs)α . Note that α

and s are mapped by f to the same element of La :

f (α) = f (a ∨B b ∨B b′) = a ∨L b ∨L b′ = (a ∨L b′) ∨L b

= (a ∨L b) ∨L b = a ∨L b = f (a ∨B b) = f (s).

Let y ∈ (Bs)α . There is a corresponding element y′ = y ∨B α in (Bs)α . We may write
y = x ∨B s for some x ∈ Bs and since s ∨B α = s ∨B s ∨B s′ = s ∨B s′ = α we have

y′ = x ∨B s ∨B α = x ∨B α.

Applying f , while recalling that f α = f s, gives

f (y′) = f (x ∨B α) = f x ∨L f α = f x ∨L f s = f (x ∨B s) = f (y).

It follows from the definition of the induced sheaf on the Boolean cover that the map F y′
y is

the identity. This shows that B
s is a double with respect to the atom α.

To finish the proof of (9), we use Proposition 5 and the long exact sequence resulting from

0 → C∗(Bs; F) → C∗(B; F) → C∗(Bs; F) → 0.

Wemay now repeat this process by taking a sequence of deletions of B until we arrive at L̃a .
Courtesy of (9), the homology remains unchanged at each step, giving the required result. ��

The previous result allows us to relate the cellular homology of the Boolean cover of a
lattice with the homology of the Boolean covers of the restriction and deletion.

Theorem 7 (Deletion–restriction long exact sequence) Let L be a geometric lattice equipped
with a sheaf F and let f : L̃ → L be its Boolean cover. Then for any atom a ∈ L there is a
long exact sequence

· · · → H cell
i (L̃a; F) → H cell

i (L̃a; F) → H cell
i (L̃; F) → H cell

i−1 (L̃a; F)

→ H cell
i−1 (L̃a; F) → · · ·

Proof If A are the atoms of L then we can use the short exact sequence (4), induced by a
sub-Boolean with x = A\{a}, to get a short exact sequence

0 → C∗(Ba; F) → C∗(L̃; F) → C∗−1(Ba; F) → 0

where, as above, B = L̃ . The result follows by applying Theorem 6 and (8) to the resulting
long exact sequence. ��
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4 Sheaves on hyperplane arrangements

Wereturn to the arrangement lattices of Sect. 1.1, the natural sheaf and its exterior powers from
Sect. 1.2. In Sect. 4.1 we discuss graded Euler characteristics and their computation in terms
of characteristic polynomials. Section 4.2 gives a complete calculation of the homology of an
essential hyperplane arrangement with coefficients in the exterior natural sheaf. Section 4.3
extends this to the non-essential case.

Throughout, V is a finite dimensional vector space over a field k (initially arbitrary, then
restricted to a subfield of C in Sect. 4.3); A is an arrangement in V and L = L(A) is the
intersection lattice; F is the natural sheaf associated to A.

4.1 Graded Euler characteristics

For F the natural sheaf on the arrangement lattice L we have the exterior sheaf Λ•F . The
graded Euler characteristic of the cellular homology of L̃ with coefficients in Λ•F turns out
to be very close to the characteristic polynomial of the arrangement lattice L .

Proposition 6 The graded Euler chracteristic χq H cell∗ (L̃;Λ•F) = χL(1 + q).

Proof This is a straight-forward calculation (recalling that dim F(x) = dim x):

χq H cell∗ (L̃;Λ•F) =
∑

k

qkχ H cell∗ (L̃;Λk F) =
∑

k

qk
∑
x∈L

μL(0, x) dimΛk F(x)

=
∑

k

qk
∑
x∈L

μL(0, x)

(
dim x

k

)
=

∑
x∈L

μL(0, x)
∑

k

qk
(
dim x

k

)

=
∑
x∈L

μL(0, x)(1 + q)dim x = χL(1 + q)

where we have used Corollary 4 at the second equality. ��
From this, another application of Corollary 4 gives the graded Euler characteristic for the

sheaf homology:

Corollary 5 χq H∗(L\0;Λ•F) = −χL (1 + q) + (1 + q)dim V .

4.2 The exterior sheaf on an essential arrangement

We focus first on essential arrangements—those for which the intersection of all hyperplanes
is trivial.

Theorem 8 Let L be the intersection lattice of an essential hyperplane arrangement in a
space V , let F be the natural sheaf on L and Λ j F be the j th exterior power of F. If
rk(L) ≥ 2 and L̃ → L is the Boolean cover of L, then H cell

i (L̃;Λ j F) is trivial unless
0 ≤ i < rk(L) and i + j = rk(L) = dim V , in which case:

dim H cell
i (L̃;Λ j F) = (−1)i

j ! χ
( j)
L (1)

where χ
( j)
L (t) is the j th derivative of the characteristic polynomial of L.
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Fig. 4 Support of H cell
i (L̃; Λ j F) for L essential in the (i, j)-plane, with the dimension of the red square

given in Theorem 8

The support of H cell
i (L̃;Λ j F) is shown in Fig. 4. The remainder of the section is devoted

to the proof of Theorem 8, which is broken down into several subparts:
The proof of Theorem 8 when L itself is Boolean. We prove the result where L itself is

Boolean (and hence L̃ = L) separately from the general case. The characteristic polynomial
is given by

χL(t) = (t − 1)rk(L)

and we require:

Proposition 7 Let L be a Boolean intersection lattice of an essential hyperplane arrangement
in a space V , let F be the natural sheaf on L and Λ j F be the j th exterior power of F. If
rk(L) ≥ 1 then

dim H cell
i (L;Λ j F) =

{
1 if i = 0 and j = rk(L)

0 else.

Proof The proof is an induction on the rank of L . The case where rk(L) = 1 (and so we
have a single hyperplane the trivial space in a 1-dimensional V ) can be verified by brute
force. Otherwise, for rk(L) ≥ 2, there is a basis Z = {v1, . . . , vn} for V such that L is the
lattice of subsets of Z ordered via reverse inclusion, with the subset corresponding to x ∈ L
giving a basis for F(x). If a ∈ A is a hyperplane with basis {v1, . . . , v̂i , . . . , vn}, then for
x ∈ La the space F(x ∨a) has basis some subset {u1, . . . , um} of Z\{vi } and F(x) has basis
{vi , u1, . . . , um}.
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A basis vector ui1 ∧ · · · ∧ ui j of Λ j F(x) may or may not contain the element vi , leading
to a decomposition

Λ j F(x) ∼= Λ j−1F(x ∨ a) ⊕ Λ j F(x ∨ a). (10)

Writing G = Λ j F for j ≥ 1 (and similarly Ga and Ga) the structure maps

Gx∨a
x : G(x ∨ a) = Λ j F(x ∨ a) → Λ j F(x) = G(x)

are the obvious inclusions, so G is decomposable in the sense of Sect. 3.5. Moreover, the
isomorphism (10) leads to an isomorphism of sheaves

Ga/Ga ∼= Λ j−1Fa (11)

(some care is needed in checking what happens when j is close to dim x , as some of the
spaces become 0). Theorem 5 thus gives

H cell∗ (L;Λ j F) ∼= H cell∗ (La;Λ j−1Fa) (12)

with Fa the natural sheaf of the essential arrangement Aa on La ∼= La (both are Boolean of
one smaller rank than L). Hence, by induction

dim H cell
i (L;Λ j F) = dim H cell

i (La;Λ j−1Fa) =
{
1 if i = 0 and j − 1 = rk(L) − 1

0 else.

��
Suppose now that L is not Boolean. We argue by induction on the number |A| of hyper-

planes. Throughout, if j > rk(L) = dim V then the sheaf Λ j F = 0; we thus need only
consider j in the range 0 ≤ j ≤ rk(L) = dim V . When |A| = 1 or 2, the intersection lattice
L(A) is Boolean of rank |A|, and so these cases have been handled already.

The base case |A| = 3. We saw in Sect. 1.1 that the only non-Boolean L on three
hyperplanes is realised by a braid arrangement, and with L isomorphic to the partition lattice
Π(3). When essential, the arrangement lives in a 2-dimensional V with basis {v1, v2} and
consists of the lines spanned by v1, v2 and −v1 − v2.

The characteristic polynomial (see [13, §3.10.4]) is χL(t) = (t − 1)(t − 2) and Theorem
8 becomes: H cell

i (L̃;Λ0F) are all trivial; dim H cell
1 (L̃;Λ1F) = 1 and the remaining groups

H cell
i (L̃;Λ1F) are trivial; dim H cell

0 (L̃;Λ2F) = 1 and the remaining groups H cell
i (L̃;Λ2F)

are trivial. To prove this, each case is treated separately. For j = 0 the sheaf is constant
Λ0F = Δk and so the induced sheaf on the Boolean cover is also constant and by applying
Theorem 5 we have

H cell
i (L̃;Δk) = H cell

i (L̃a; zero sheaf) = 0, for all i .

For j = 1, we have the natural sheaf and the induced sheaf on the Boolean cover L̃ has
constant value F(1) on all the elements of ranks 2 and 3. Two applications of Theorem 5
give the required result. For j = 2, the sheaf Λ2F is trivial except at 0 ∈ L where it is
1-dimensional with basis v1 ∧ v2, once again in happy agreement with Theorem 8.

The vanishing degrees in the general case |A| > 3.Wemay assume that L is non-Boolean
and so, by the results of Sect. 1.1, it has a dependent atom a ∈ A.

The deletion La is then an essential arrangement lattice having |A| − 1 hyperplanes and
rk(La) = rk(L), by the dependence of a. The sheaf Fa , which is just F restricted to La ,
is the natural sheaf of this arrangement, and the restriction of Λ j F to La is just Λ j Fa . The
restriction La is an essential arrangement lattice having at most |A| − 1 hyperplanes and
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rk(La) = rk(L) − 1. The sheaf Fa is the natural sheaf of this arrangement and Λ j Fa is the
restriction of Λ j F to La .

Both La and La are either Boolean, or essential arrangement lattices on fewer than |A|
hyperplanes, hence come under the auspices of the inductive hypothesis. The deletion–
restriction long exact sequence, Theorem 7, gives

· · · → H cell
i (L̃a;Λ j Fa) → H cell

i (L̃;Λ j F) → H cell
i−1 (L̃a;Λ j Fa) → · · ·

If i �= rk(L) − j or i = rk(L), then both the left and right terms vanish, hence by induction
we get H cell

i (L̃;Λ j F) = 0 as required.
The non-vanishing degree in the general case |A| > 3.
For fixed j we have shown that there is only one non-trivial group among the

H cell
i (L̃;Λ j F), namely when i = rk(L) − j . This reduces the task to an Euler charac-

teristic computation. We have

χ H cell∗ (L̃;Λ j F) =
∑

n

(−1)n dim H cell
n (L̃;Λ j F) = (−1)rk(L)− j dim H cell

rk(L)− j (L̃;Λ j F).

From this we get

χq H cell∗ (L̃;Λ•F) =
∑

j

q jχ H cell∗ (L̃;Λ j F) =
∑

j

q j (−1)rk(L)− j dim H cell
rk(L)− j (L̃;Λ j F).

Thus, for i = rk(L) − j ,

dim H cell
i (L̃;Λ j F) = (−1)i × (coefficient of q j inχq H cell∗ (L̃;Λ•F))

= (−1)i × (coefficient of q j inχL (1 + q))

where the last equality is due to Proposition 6. The Taylor expansion of (the polynomial)
χL(1 + q) immediately reveals the coefficient of q j in χL(1 + q) to be 1

j ! χ
( j)
L (1) giving

dim H cell
i (L̃;Λ j F) = (−1)i

j ! χ
( j)
L (1).

This completes the proof of Theorem 8 computing the cellular homology. Our real interest
is in the sheaf homology, whichwe can now compute by applying Proposition 4 to Theorem8.

Theorem 9 Let L be the intersection lattice of an essential hyperplane arrangement in a
space V . Let F be the natural sheaf on L and Λ j F be the j th exterior power of F. If
rk(L) ≥ 2 then Hi (L\0;Λ j F) is trivial unless:

– either 0 < i < rk(L) − 1 and i + j = rk(L) − 1, in which case

dim Hi (L\0;Λ j F) = (−1)i+1

j ! χ
( j)
L (1)

– or, i = 0 and or j = rk(L) − 1, in which case

dim H0(L\0;Λ j F) =
(

rk(L)

j

)
− 1

j !χ
( j)
L (1)

– or, i = 0 and j < rk(L) − 1, in which case

dim H0(L\0;Λ j F) =
(

rk(L)

j

)

where χ
( j)
L (t) is the j th derivative of the characteristic polynomial of L.
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4.3 The exterior sheaf for a non-essential arrangement

In this section we assume our field to be a sub-field ofC and so wemay assume that the vector
space V comes equipped with an inner product 〈−,−〉. Let L be the intersection lattice of a
hyperplane arrangement in a space V with U = ⋂

a∈A a. Let F be the natural sheaf on L .
For a subspace B ⊂ V such that U ⊂ B ⊂ V we define the orthogonal complement of U

in B to be

U⊥B = {b ∈ B | 〈b, u〉 = 0, for all u ∈ U }.
Note that U⊥B is a subspace of B and B = U ⊕ U⊥B . (This last condition may fail in finite
characteristic.) Moreover, if U ⊂ B ⊂ B ′ ⊂ V , there is an inclusion ι : U⊥B ⊂ U⊥B′

and
with respect to the decompositions B = U ⊕U⊥B and B ′ = U ⊕U⊥B′

the inclusion B ⊂ B ′
decomposes as 1 ⊕ ι.

We define a sheaf F⊥ on L as follows. For x ∈ L we set F⊥(x) = U⊥F(x). If x ≤ y
then the structure map F⊥(x ≤ y) is the inclusion F⊥(y) = U⊥F(y) ⊂ U⊥F(x) = F⊥(x)

induced by the inclusion F(y) ⊂ F(x).
We have:

Lemma 2 There is a direct sum decomposition of sheaves F = ΔU ⊕ F⊥.

By definition F⊥ is a sub-sheaf of F on L , but it is also the natural sheaf of an essential
hyperplane arrangement inU⊥V . There is one hyperplaneU⊥H for each hyperplane H of the
original arrangement and courtesy of the relation U⊥(B∩C) = U⊥B ∩ U⊥C we see that the
lattice of this new arrangement is again L . The natural sheaf on the new arrangement is pre-
cisely F⊥, seen immediately from the definition of F⊥.We refer to F⊥ as the essentialisation
of F .

We will continue to write χL(t) for the characteristic polynomial of L equipped with
the natural sheaf F , that is to say, χL(t) = ∑

μL(0, x)tdim x . Writing χ(L,F⊥)(t) for the
characteristic polynomial of the essentialisation we easily see

χL (t) = tdimU χ(L,F⊥)(t).

Let Λ j F be the j th exterior power of F (the natural sheaf). Theorem 10 below gives the
cellular homology H cell

i (L̃;Λ j F) and the support in the (i, j)-plane is illustrated in Fig. 5.

Theorem 10 Let L be the intersection lattice of a hyperplane arrangement in a space V with
U = ⋂

a∈A a. Let F be the natural sheaf on L and Λ j F be the j th exterior power of F.
If rk(L) ≥ 2 and L̃ → L is the Boolean cover of L, then H cell

i (L̃;Λ j F) is trivial unless
0 ≤ i < rk(L) and rk(L) ≤ i + j ≤ dim V , in which case:

dim Hcell
i (L̃;Λ j F) = (−1)i

(rk(L) − i)!
(

dimU
i + j − rk(L)

)
χ

(rk(L)−i)
(L,F⊥)

(1)

with χ
(k)

(L,F⊥)
(t) the kth derivative of the characteristic polynomial of the essentialisation of

L.

Proof The decomposition F = ΔU ⊕ F⊥ allows us to write

Λ j F = Λ j (ΔU ⊕ F⊥) =
⊕

s+t= j

ΛsΔU ⊗ Λt F⊥ =
⊕

s+t= j

ΔΛsU ⊗ Λt F⊥.
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Fig. 5 Support of H cell
i (L̃;Λ j F) in the (i, j)-plane, with the dimension of the red square given by Theorem

10

Applying, Corollary 3 gives

H cell
i (L̃;Λ j F) =

⊕
s+t= j

H cell
i (L̃;ΔΛsU ⊗ Λt F⊥).

Recalling that we are working in characteristic zero, the universal coefficient theorem tells
us that

H cell∗ (L̃;ΔΛsU ⊗ Λt F⊥) ∼= ΛsU ⊗ H cell∗ (L̃;Λt F⊥)

and we have

dim H cell
i (L̃;ΔΛsU ⊗ Λt F⊥) =

(
dimU

s

)
dim H cell

i (L̃;Λt F⊥). (13)

The dimension on the right can be computed from Theorem 8 because F⊥ is essential: we
have that dim H cell

i (L̃;Λt F⊥) = 0 unless t = rk(L) − i , in which case

dim H cell
i (L̃;Λrk(L)−i F⊥) = (−1)i

(rk(L) − i)!χ
(rk(L)−i)
(L,F⊥)

(1).
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Since s + t = j we have s = i + j − rk(L) which means given i, j the values of s and t
must be taken to be t = rk(L) − i and s = i + j − rk(L) and so we get

dim H cell
i (L̃;Λ j F) = (−1)i

(rk(L) − i)!
(

dimU

i + j − rk(L)

)
χ

(rk(L)−i)
(L,F⊥)

(1).

What remains is to find the values of i and j for which this computation is valid. The
conditions are (i) 0 ≤ i < rk(L) (in order to be able to apply Theorem 8), (ii) s ≤ dimU
(otherwise ΛsU is trivial) and (iii) t ≤ j (since s + t = j in the sum above). Condition (i) is
seen in the statement of the theorem; since dimU = dim V − rk(L), condition (ii) implies
i + j ≤ dim V ; condition (iii) implies rk(L) ≤ i + j . So conditions (ii) and (iii) together
give the other condition in the statement of the theorem, namely rk(L) ≤ i + j ≤ dim V . ��

As in the essential case, we can convert this into a result about sheaf homology. As
before we write χ

(k)

(L,F⊥)
(t) for the kth derivative of the characteristic polynomial of the

essentialisation of L .

Theorem 11 Let L be the intersection lattice of a hyperplane arrangement in a space V with
U = ⋂

a∈A a. Let F be the natural sheaf on L and Λ j F be the j th exterior power of F. If
rk(L) ≥ 2 then Hi (L\0;Λ j F) is trivial unless:

– either 0 < i < rk(L) − 1 and rk(L) ≤ i + j + 1 ≤ dim V , in which case

dim Hi (L\0; Λ j F) = (−1)i+1

(rk(L) − i − 1)!
(

dimU

i + 1 + j − rk(L)

)
χ

(rk(L)−i−1)
(L,F⊥)

(1)

– or, i = 0 and rk(L) ≤ j < dim V , in which case dim H0(L\0; Λ j F) equals(
dim V

j

)
− 1

rk(L)!
(

dimU

j − rk(L)

)
χ

(rk(L))

(L,F⊥)
(1) − 1

(rk(L) − 1)!
(

dimU

j + 1 − rk(L)

)
χ

(rk(L)−1)
(L,F⊥)

(1)

– or, i = 0 and j = rk(L) − 1, in which case

dim H0(L\0;Λrk(L)−1F) =
(

dim V

rk(L) − 1

)
− 1

(rk(L) − 1)! χ
(rk(L)−1)
L (1)

– or, i = 0 and j < rk(L) − 1, in which case

dim H0(L\0; Λ j F) =
(
dim V

j

)
.
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