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Abstract

In this article, we prove that every quadratic rational map whose multipliers all lie in the
ring of integers of a given imaginary quadratic field is a power map, a Chebyshev map or a
Lattes map. In particular, this provides some evidence in support of a conjecture by Milnor
concerning rational maps that have an integer multiplier at each cycle.

Mathematics Subject Classification Primary 37P05 - 37P35; Secondary 37F10 - 37F44

1 Introduction

Given a rational map f: C— Canda point zg € @ we study the sequence (/" (20)),>0
of iterates of f at zg. The set { f°"* (zo) : n > 0} is called the forward orbit of zo under f.i

The point zg is said to be periodic for f if there exists an integer n > 1 such that
f°" (z0) = zo; the least such integer n is called the period of zg. Then the forward orbit of
20, which has cardinality #, is said to be a cycle for f. The multiplier of f at zg is the unique
eigenvalue of the differential of f°" at zg. The map f has the same multiplier at each point
of the cycle.

The multiplier is invariant under conjugacy: if f and g are rational maps, ¢ is a Mobius
transformation such that ¢ o f = g o ¢ and z is a periodic point for f, then ¢ (z¢) is a
periodic point for g with the same period and the same multiplier.

We wish to examine here the rational maps that have only integer multipliers.

Definition 1 A rational map f: C — Cof degree d > 2 is said to be a power map if it is
MGbius conjugate to z > z 9.

For every d > 2, there exists a unique polynomial 7, € C[z] such that
Ti(z+z7") =z +277.

The polynomial 7, is monic of degree d and is called the dth Chebyshev polynomial.

B Valentin Huguin
v.huguin @jacobs-university.de

1 Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, UPS, 31062
Toulouse Cedex 9, France

Present Address: Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-022-03076-7&domain=pdf

950 V. Huguin

Definition 2 A rational map f: C— Cof degree d > 2 is said to be a Chebyshev map if it
is Mobius conjugate to =75.

Remark 3 For every d > 2, the rational maps — 7, and T, are Mobius conjugate if and only
if d is even.

These rational maps share the following well-known property:

Proposition 4 [5, Corollary 3.9] Suppose that f: C— Cisa power map or a Chebyshev
map. Then f has only integer multipliers.

In fact, there exist also other rational maps that satisfy this special condition.
Definition 5 A rational map f: C — Cof degree d > 2 is said to be a Lattes map if

there exist a torus T = C/A, with A a lattice in C, a holomorphic map L: T — T and a
nonconstant holomorphic map p: T — C that make the following diagram commute:

I

S
f

L
_—

<
De—4

Remark 6 Suppose that A is a lattice in C and T = C/A. Then the holomorphic maps
L: T — T are precisely the maps of the form

LYy:z+ A az+b+A, with a,beC,aA CA.

Moreover, for all @, b € C such that a A C A, the map Lé\b: T — T has degree |a|2.

We distinguish two types of Latteés maps. A rational map f: C — Cof degree d > 2 is
said to be a flexible Lattes map if there exAist atorus T = C/A, with A alatticein C,a € Z,
b € C and a holomorphic map p: T — C of degree 2 such that

fop:poL‘ﬁb, where Lcﬁb:z+A|—>az+b+A.

A non-flexible Lattes map is said to be rigid. We refer the reader to [5] or [8, Chapter 6] for
further information about Lattés maps.

Remark 7 The degree of a flexible Lattes map is the square of an integer.

Given a positive squarefree integer D, we denote by Rp the ring of integers of the imag-
inary quadratic field Q (i \/5)
Lattes maps have the following remarkable property:

Proposition 8 [5, Corollary 3.9 and Lemma 5.6] Suppose that f: C — C is a Lattes map.

Then there exists a positive squarefree integer D such that the multipliers of f all lie in Rp.
Furthermore, the multipliers of f are all integers if and only if f is flexible.
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Quadratic rational maps with integer multipliers 951

In this paper, we are interested in the converse of Propositions 4 and 8. In [5], Milnor
conjectured that power maps, Chebyshev maps and flexible Lattes maps are the only rational
maps whose multipliers are all integers. More generally, we may wonder whether power
maps, Chebyshev maps and Lattés maps are the only rational maps whose multipliers all lie
in the ring of integers of a given imaginary quadratic field. We answer this question in the
case of quadratic rational maps.

Theorem 9 Assume that D is a positive squarefree integer and f - C—Cisa quadratic
rational map whose multiplier at each cycle with period less than or equal to 5 lies in Rp.
Then f is a power map, a Chebyshev map or a Lattés map.

In particular, together with Remark 7 and Proposition 8, this proves Milnor’s conjecture
for quadratic rational maps.

Corollary 10 Assume that f: C—Cisa quadratic rational map that has only integer
multipliers. Then f is either a power map or a Chebyshev map.

We may even extend Milnor’s question as follows:

Question 11 Assume that K is a number field, O is its ring of integers and f: C— Cis
a rational map of degree d > 2 whose multipliers all lie in Ox—or K. Is f necessarily a
power map, a Chebyshev map or a Lattes map?

In [3], the author answered this question for certain polynomial maps. More precisely,
he proved that every unicritical polynomial map of degree d > 2 that has only rational
multipliers is either a power map or a Chebyshev map. He also proved that every cubic
polynomial map with symmetries that has only integer multipliers is either a power map or
a Chebyshev map.

In [1], Eremenko and van Strien studied the rational maps of degree d > 2 that have only
real multipliers: they proved that, if f: C — C is such a map, then either f is a Lattes map
or its Julia set J is contained in a circle; they also gave a description of these maps.

In Sect. 2, we provide some background about the multiplier polynomials of a rational
map, the moduli space of quadratic rational maps and the ring of integers of an imaginary
quadratic field.

In Sect. 3, we prove Theorem 9. More precisely, we determine the quadratic rational maps
whose multiplier polynomials all split into linear factors over Rp, with D a given positive
squarefree integer. Using the holomorphic fixed-point formula, we are reduced to studying
two one-parameter families of rational maps and finitely many other cases. We then examine
the multiplier polynomials associated to these two families and to the remaining cases in
order to conclude.

2 Some preliminaries

We shall review here some necessary material for our proof of Theorem 9.

2.1 Dynatomic polynomials and multiplier polynomials

First, we present the dynatomic polynomials and the multiplier polynomials associated to
a rational map, which are related to its periodic points and its multipliers. In particular, we
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952 V. Huguin

provide a formula to compute the multiplier polynomials of a rational map, which will be
very useful in our proof of Theorem 9. For further information about these polynomials, we
refer the reader to [6, 7] and [8, Chapter 4].

Throughout this subsection, we fix an integer d > 2, which will denote the degree of a
rational map. In order to properly take the point co into account, we identify the Riemann
sphere C with the complex projective line P! (C)—defined as the quotient of C2\ {OCZ} by
the relation of collinearity—by the usual biholomorphism ¢ : C - P!(C) and its inverse
given by

[z:1] ifzeC 1 r ifyeC*
= d N = y .
W= o) ifrmoo M0 (D {oo ify=0

Suppose that f: P1(C) — P'(C) is a rational map of degree d. Then there exists a
homogeneous polynomial map F: C> — C? that does not vanish on C?\ {0c2} and makes
the diagram below commute, where 7 denotes the canonical projection. The map F is unique
up to multiplication by an element of C*, is homogeneous of degree d and is said to be a
homogeneous polynomial lift of f.

€\ {0pe ) —F—— 2\ {02}

P'(C) ————P'(©)

f

Given a homogeneous polynomial map F: C?> — C? of degree d and an integer n > 0,
we denote by G and H the polynomials in C[x, y] defined by

which are homogeneous of degree d”.

Suppose that f: P!(C) — P!(C) is a rational map of degree d and F: C2 — C2 is
a homogeneous polynomial lift of f. Then, for every n > 1, the roots in P'(C) of the
homogeneous polynomial

yGf (x,y) — xHF (x,y) € Clx, y]

are precisely the periodic points for f with period dividing n. Thus, it is natural to try to
factor these polynomials in order to separate their roots according to their periods, and the
following holds.

We denote by : Z>1 — {—1, 0, 1} the M6bius function, which is given by

(=D" if nis the product of r distinct primes
un) = . .
0 if n has a square factor

Forn > 1, we define

vy(n) = Z,u (%) dr.

k|n
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Quadratic rational maps with integer multipliers 953

Proposition 12 [6, Proposition 3.2] Suppose that F: C> — C? is a homogeneous polyno-
mial map of degree d that does not vanish on C*\ {Ocz } Then there exists a unique sequence
(®5)n>1 of elements of C[x, y] such that, for every n > 1, we have

Y6y (x, ) —xHf (e, y) = [of (x, ).
kln

Furthermore, for everyn > 1, the polynomial <I>,f is nonzero and homogeneous and we have

d+1 ifn=1

deg ®f = .
&%n {vd(n) ifn>2

Definition 13 Suppose that F: C> — C? is a homogeneous polynomial map of degree d
that does not vanish on C2\ {OCZ } Forn > 1, the polynomial ® is called the nth dynatomic
polynomial of F.

Remark 14 1f F: C*> — C? is a homogeneous polynomial map of degree d that does not
vanish on C?\ {O¢2}, then we have
F F F n(f)
o @, y) = [T (v6 @3 — xH @, )
kln

for all n > 1 by the Mobius inversion formula.

The following gives the relation between the periodic points for a rational map and the
dynatomic polynomials of its homogeneous polynomial lifts.

Proposition 15 [6, Proposition 3.2] Assume that f: P'(C) — PY(C) is a rational map of
degree d, F: C*> — C? is a homogeneous polynomial lift of f and n > 1. Then zo € P'(C)
is a root of the polynomial @,f if and only if 7 is either a periodic point for f with period n
or a periodic point for f with period a proper divisor k of n and multiplier a primitive % th
root of unity.

Let us now present the multiplier polynomials of a rational map. Suppose that f : P!(C) —
P!(C) is arational map of degree d and n > 1. Informally, we want to compute the polynomial

r

[T =2))eci.

j=1
where Aq, ..., A, denote the multipliers of f at its periodic points with period n. In fact,
since f has the same multiplier at each point of a cycle, we want to obtain the nth root of this
polynomial. Assume that zg € P! (C) is a periodic point for f with period n and multiplier
Xo and F: C* — C? is a homogeneous polynomial lift of f. Then there exists a periodic
point (xg, yo) € zo for F with period n, and the eigenvalues of the differential of F°" at
(x0, o) are precisely d" and Ag. Therefore, considering the trace of the differential of F°"
at (xg, o), we have

2 +d" =TF (x0, yo) ,
where
9Gr  oH[
y " e Clx,y].
n o T 3y [x, y]

This discussion leads us to the result below (see [2, Chapitre 3]).
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Proposition 16 Suppose that f: P'(C) — P (C) is a rational map of degree d, F: C* —
C2 is a homogeneous polynomial lift of f and n > 1. Then there exists a unique monic
polynomial M,‘,f € C[A] such that, for every homogeneous polynomial P € C[x, y] of degree
1, we have

res (cb,f, Po F°”) M ()" = res (ob,f, (h+d") PoF — PTnF) ,

where res denotes the homogeneous resultant. Furthermore, M,‘,f does not depend on the
homogeneous polynomial lift F of f and we have

r_Jd+1 ifn=1
deg M;; —{Vd(n) ifn>2'
- >
Definition 17 Suppose that f: P!(C) — P(C) is a rational map of degree d. For n > 1,
the polynomial M,{ is called the nth multiplier polynomial of f.

Remark 18 1f F: C*> — C? is a homogeneous polynomial map of degree d that does not
vanish on (Cz\ {0<c2 }, n > land P € C[x, y] is ahomogeneous polynomial of degree ¢ > 0,
then we have

evg(n)(d"—1)

res (CD,',V Po FOn) = 651?1 res ((D,f P) res(F)~ d@-n |
where effl € {—1, 1} equals —1 if and only if n = 1, d is even and e is odd.

Note that, given a rational map f: P! (C) — P!(C) of degree d, a homogeneous polyno-
mial lift F: C?> — C2 of f and n > 1, the formula in Proposition 16 enables us to compute
the polynomial M,',f by considering a nonzero homogeneous polynomial P € C[x, y] of
degree 1 that does not divide ®F.

Let us now describe precisely the relation between the multiplier polynomials of a rational
map and its multipliers. Given a rational map f: P!(C) — P!(C) of degree d, a homoge-
neous polynomial lift F: C2 — C2 of f and n > 1, we have

deg <I>,’,:
iy =TT (=2,
j=1
where A, ..., Ageg oF are the multipliers of f°" at the roots of the polynomial Qf repeated

according to their multiplicities. Therefore, we have the following, which follows immedi-
ately from Proposition 15:

Proposition 19 Assume that f: P'(C) — IE’I (©) is a rational map of degree d and n > 1.
Then Ag € C is a root of the polynomial M,{ if and only if

e Aq is the multiplier of f at a cycle with period n,
e or Ay equals 1 and f has a cycle with period a proper divisor k of n and multiplier a
primitive Tth root of unity.

A direct consequence of Proposition 19 is the following, which plays a key role in our
proof of Theorem 9. It states that our problem comes down to determining the quadratic
rational maps whose multiplier polynomials all split into linear factors in Rp[A], with D a
given positive squarefree integer.

@ Springer



Quadratic rational maps with integer multipliers 955

Corollary 20 Assume that R is a subring of C, f: PY(C) — PY(C) is a rational map of
degree d and n > 1. Then the multipliers of f at its cycles with period n all lie in R if and
only if the polynomial M,{ splits into linear factors in R[A].

2.2 The moduli space of quadratic rational maps

We now recall certain factsA about the Mobius conjugacy classes of quadratic rational maps.

Suppose that f: C — C is a quadratic rational map, and denote by A1, A, A3 its multi-
pliers at its fixed points repeated according to their multiplicities. If f has only simple fixed
points or, equivalently, if 1; # 1 for all j € {1, 2, 3}, then we have

1 1 1

+

=1.
1 -1 ]—k2+1—)»3

In particular, note that AjA> = 1 if and only if .1 = A, = 1 since it follows that
A=2)A—=2) =i — 1A —-23),

which holds even if f has a multiple fixed point.
Given a quadratic rational map f: C — C, we define

Uljc:)»l+)»z+?»3, 0{=k112+k1?»3+)»2k3, G3f=)»1)»2)»3

to be the elementary symmetric functions of the multipliers A1, A2, A3 of f atits fixed points,
so that

Miy =2 o/ 22 +ofr—0of.

By the formula above that relates the multipliers of a quadratic rational map at its fixed points,
for every quadratic rational map f: C — C, we have

a3f:af—2.

In fact, we will see that this relation uniquely determines the Mobius conjugacy classes of
quadratic rational maps.

We now give normal forms for the Mobius conjugacy classes of quadratic rational maps.
For a, b € C such that ab # 1, define

2(z+a)
bz+1 "~

which fixes 0 with multiplier a and fixes oo with multiplier b. Define

8a,b: T >

1
h:iz—>z+ -,
z
which has oo as its unique fixed point. The following holds.

Proposition 21 [4, Lemma 3.1] Suppose that f: C—Cisa quadratic rational map. If f
has two distinct fixed points with multipliers a, b € C, then we have ab # 1 and f is Mobius
conjugate to g4 p. If f has a unique fixed point, then f is Mobius conjugate to h.

‘We will also use another normal form. For ¢ € C, define

fc:zr—>z2+c.
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956 V. Huguin

Forevery ¢ € C,the map f, has oo as a superattracting fixed point. Furthermore, if f : C-C
is a quadratic rational map that has a superattracting fixed point, then there exists a unique
parameter ¢ € C such that f is Mobius conjugate to f.. Note that, for every ¢ € C, the map
fe 1s a power map if and only if ¢ = 0 and is a Chebyshev map if and only if ¢ = —2.

Let M(C) be the set of Mobius conjugacy classes of quadratic rational maps. Given
a quadratic rational map f: C — C, denote by [f] € M2(C) its conjugacy class. The
following is a direct consequence of Proposition 21.

Corollary 22 [4, Lemma 3.1] The map Multél): M, (C) — C2 given by
Ml (/) = (o . of )

is well defined and bijective. In particular, a quadratic rational map f : C — C is charac-
terized by its multipliers L1, Ay, A3 at its fixed points up to Mobius conjugacy.

By Corollary 22 and the invariance of the multiplier under Mobius conjugacy, the multi-
plier polynomials of f, with f: C—Ca quadratic rational map, depend only on olf and

sz . More precisely, the following holds.

Proposition 23 [7, Corollary 5.2] Assume that n > 1. Then the coefficients of the polynomial
M,',f ,with f: C — C a quadratic rational map, are polynomials in alf and o, with integer
coefficients—which are independent of f.

Remark 24 1f f and g are quadratiirational maps with multipliers A, A2, A3 and M, Ao, Az

at their fixed points, then M = M,‘,f for all n > 1 by Proposition 23—where 7 denotes the
complex conjugate of z for z € C and P denotes the polynomial whose coefficients are the
complex conjugates of those of P for P € C[A].

Using the software SageMath, we can compute the first multiplier polynomials of g, 5,
with a, b € C such that ab # 1. Thus, we can express the first multiplier polynomials of a

quadratic rational map f': C — C in terms of alf and aZf .
Example 25 Suppose that f : C— Cis a quadratic rational map. For simplicity, set o] = crlf

and oy = sz , so that

MGy =23 012 + ook — (01 — 2) .
For n > 1, write

deng
Mf()\.) )\'dchn + Z ( 1)] (")}"degMn
j=1
Then we have
01(2) =201 + 02,
01(3) =01 (201 +02) + 301 + 2,
0y = Q201 + 0) (01 +02)> — 01 (01 + 202) + 1207 + 28,

01(4) = (201 + 02) 0f + (01 — 02) (301 + 02) + 1007 ,
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Quadratic rational maps with integer multipliers 957

02(4) =201 + 02) 012 (01 4+ 02)* + (o1 — 02) (7013 + 901202 + 501022 + 023)
+ (2601 — 02) 07 + 401 (1601 — 502) + 4 (1007 — 1307) + 48,

o\ =63 (01 + 02)% 201 + 02)% + 01 201 + 0) (07 — 20702 — 6107 — 207)
+ 01 (2707 + 30002 + 680105 + 2805 + 4 (260} + ofos + 320105 + 1503)
+8 (370} — 190102 — 6073) + 32 (2007 + 302) + 304.
We do not give the expressions for the terms o ), with Jj €{1,..., 6}, because they are very
long.

Finally, let us describe the Mobius conjugacy classes of Lattes maps of degree 2. Suppose
that A is a lattice in C, and set T = C/A. Recall that the Weierstrass’s function o : T — C
given by

1 1 1
@A(Z+A):7+ Z (m—ﬁ>

< weA\{0}
is well defined, even and holomorphic of degree 2. Therefore forall a,b € C such that
al C A and 2b € A, there exists a unique rational map Lat?® b :C — Cof degree |a|? such
that
Lat(ﬁ‘bzopA = PA oLfl\,b, where Lgb: Z+A+—az+b+ A,
since LA ', commutes with the multiplication by —1 in T.
Note that certain lattices in C are invariant by rotations about the origin other than z — =z,

which gives rise to additional Lattés maps. Suppose that A = Z[i] and T = C/A. Then, for
every z € C, we have

paliz+ A) = —pa(z+A).

Therefore, forA all a,l) € Csuchthata € A and (1 +i)b € A, there exists a unique rational
map Latﬁf: C — C of degree |a|* such that

A4 2 2 A
Lata’b opy = @) © La’b

since L2 2.p commutes with the multiplication by 7 in T.
The followmg lists the Lattes maps of degree 2 up to Mdobius conjugacy.

Proposition 26 [5, Subsection 8.1] Assume that f: C —> C is a Lattes map of degree 2.
Then f is Mobius conjugate to either Latlﬂ 0 Oor Latu b, with

c {Z[i],z[ifz] Z [szﬁ“
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958 V. Huguin

Table 1 Multipliers A1, A2, A3 of

Ar . ; A r a b Al A2, A3
Lat 4. Aatits fixed points
Z[i] 2 1—i 0 —1+i,— 141, —2i
Z[i] 2 1+i 0 —1—-i,—-1-14,2i
Zli] 4 1+i 0 —4,—1—i—1+i
Z[iﬁ 2 V2 0 —2,-iv2.iv2
1+iy/7 1-i/7 —3—iT =3-i/T —1+i/7
Z[H97] 2 A o P, S
Z[Hiﬁ] 5 1-iv/7 1 —14iVT =14V 1-iT
) 2 2 P R
14+iy/7 1+iy/7 =34iVT =347 =1-iVT
Z[HI] 2 I T, T L
Z[1+iﬁ] 2 1+iV/7 1 —1=i/T —1=i/7 147
2 2 2 2 T2 T2
and
{1—-1i,0),0+1i,0)} if A = Zli]
(@.b) e {(ifz,o)} ifA:Z[iﬁ]

(2.0).(42.). (2.0 (42,9 02 =2[157]

We can compute the multipliers of the Lattes maps appearing in Proposition 26 at their
fixed points (see Table 1). Thus, we immediately have the following from Corollary 22 and
Proposition 26, which gives a characterization of the Lattes maps of degree 2.

Corollary 27 Assume that f: C— Cisa quadratic rational map. Then f is a Lattées map if
and only if its multipliers at its fixed points are

o cither —4, —1 —i and —1 + i,

e or—1—1i,—1—1iand?2i,

e or—1+i, —1+iand —2i,

e or -2, —i/2andiv?2,

or 73721«ﬁ’ 73721\/7 and 7l+21«/7

[ ] »
. Or —3-'51‘\/7’ —34;'[7 and —1—2i\f7’
® or 7172"‘ﬁ, 7172"ﬁ and l+£ﬁ,
e or _H;ﬁ, _H;ﬁ and l_é‘ﬁ.

2.3 Thering of integers of an imaginary quadratic field

Finally, we recall here some properties of the ring of integers Rp of the imaginary quadratic
field Q (i D), with D a positive squarefree integer.
Assume that D is a positive squarefree integer. Then we have
ivD ifD=1,2 (mod 4)

Rp =27 ,  where = ;
p =7Z[yp] P11/ D=3 (mod 4)
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Quadratic rational maps with integer multipliers 959

Thus, the elements of Rp form a lattice in C. Let us describe the intersections of Rp
with the Euclidean disks centered at the origin. We denote by N: C — Ry the map given
by N(z) = |z|?, which is multiplicative and agrees with the norm of the field extension

(ivD) /2.
Suppose first that D = 1,2 (mod 4). For all x, y € Z, we have

N (x +yyp) = x> + Dy* € Zo .

Therefore, for every B > 0, we have

B
{ze Rp:N() < B} C {x+m:x,yez, x| < VB, 'y'fw/n}’

and in particular
{ze Rp:N@)<B}yCZ if B<D.

Suppose next that D = 3 (mod 4). For all x, y € Z, we have

2 4

Therefore, for every B > 0, we have

B B
{zeRp:N(@ =B} C [x+m:x,yez, |x|sﬁ+,/5, |y|sz,/D},

and in particular

1\ D, , D+1 ,
NGx+yyp)=|x+zy) +—y" =x oy 4y €Zso.

{ze Rp:N(x) <B}CZ if 4B < D.

Thus, the set of all imaginary quadratic integers is a discrete subset of C and, for every
B > 0, we can determine the pairs (D, z) € Z x C such that D is a positive squarefree
integer, z € Rp and N(z) < B.

Finally, the ring R p is an integrally closed domain for each positive squarefree integer D.
In particular, we have the result below, which will be useful in our proof of Theorem 9.

Claim 28 Suppose that D is a positive squarefree integer and a, b € Rp are such that ab? is
a square in Rp. Then a is a square in Rp or b is zero.

Proof Assume that b is nonzero, and let us prove that a is a square in Rp. There exists
¢ € Rp such that ab> = ¢? by hypothesis, and we have a = (%)2 Therefore, 7 is a root
of the polynomial T2 —a € Rp[T], and hence it lies in Rp since Rp is integrally closed.

Thus, the claim is proved. ]

3 Proof of the result

We shall prove here Theorem 9. It follows directly from the three lemmas below.

Lemma 29 Assume that D is a positive squarefree integer and f: C—Cisa quadratic
rational map that has no superattracting or multiple fixed point and whose multiplier at each
cycle with period less than or equal to 5 lies in Rp. Then f is either a power map or a Lattes
map.
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960 V. Huguin

Proof Denote by A1, A2, A3 the multipliers of f at its fixed points, which belong to Rp\{0, 1}
by hypothesis. Then 1 — A; lies in Rp\{0, 1} for all j € {1, 2, 3} and we have

1 N 1 N 1
1—a 1—=x 1—=2a3

If w1, pa, s are elements of Rp\{0, 1} that satisfy

1 1 1 1 1 (1
—+—+—=1and R|{— ) <R|(— ) =<nR(—),
H1o M2 M3 123 M2 M3

then we have

1 1 1 1 1 1 1 1 1
fR(—)==, w(—)=z=(1-9%(—))=- and —=1-— — —
U3 3 M2 2 3 4 1 M2 U3

as N (%) < % for all z € Rp\{0, 1} by Claim 30. Moreover, there are only finitely many
z € Rp\{0} such that i (%) > % since these are precisely the elements of Rp\{0} contained
in the disk with center 2 and radius 2 and Rp forms a discrete subset of C. Therefore,
if w1, p2, n3 are elements of Rp\{0, 1} as above, there are only finitely many possible
values for ©, and p3 and these completely determine 1. Thus, there are only finitely many
unordered triples w1, 2, u3 of elements of Rp\{0, 1} such that i + i + % =1, and

we can find them by listing all the elements z € Rp\{0, 1} that satlsfy ‘R ( ) > % More

precisely, choosing such a triple is equwalent to choosing elements w2, (13 € R p\{0, 1} such

that R (—) > L and 9t (—) > 7 and checking whether p; = 1 — L _ L 5 zero or not
2 4 U3 3 2 U3

and, if not, whether | = ﬁ lies in Rp by computing its coordinates in the basis (1, yp) of

Q (i D) over Q. If D = 1, then there are exactly 23 such unordered triples (see Fig. 1); if
D = 2, then there are 9; if D = 3, then there are 27 (see Fig. 2); if D = 7, then there are 14;
if D = 11, then there are 3; if D = 15, then there are 5 (see Table 2). In the other cases, 2, 3
and 4 are the only elements z € Rp\{0, 1} such that R (1 ) = 1 by Claim 31, and it follows
that the only triples (i1, p2, n3) of elements of Rp\{0, 1} that sat1sfy m + —2 + /7 =1
are (2,3,6), (2,4,4) and (3, 3, 3) up to permutation (see Figs. 3 and 4). Thus, there are
only finitely many possible values for the triple (11, A2, A3) of multipliers of f at its fixed
points, and these are (-5, —2, —1), (=3, —3, —1) and (—2, —2, —2) up to permutation if D
is different from 1, 2, 3, 7, 11 and 15. Suppose that A1, A2, A3 equal —5, —2, —1. Then we
have

M] () =23 — 15922 4 74191 — 84221,

which is irreducible over Q since it is a monic polynomial of degree 3 with integer coefficients
that has no integer root. Therefore, its roots all have degree 3 over Q, and hence do not lie

in Q (i~/ D ), which is a field extension of QQ of degree 2. In particular, the polynomial M, 4f

does not split into linear factors in Rp[A]. Similarly, if A1, X2, A3 equal —3, —3, —1, then we
have

ML () = (A% + 26727 + 20871 + 414157)°

which does not split into linear factors in Rp[A] either since it is the square of an irreducible
polynomial over Q of degree 3 and Rp is contained in a field extension of QQ of degree 2.
Therefore, since the polynomials M,{ , with n € {3, 4, 5}, split into linear factors in Rp[A]
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7
A7 . . . . . .
=312
* 37 e ) . . . .
. [ 2
.2 G D D G S S— . .
- i 4 » ° . . . .
b
T ™ L) T T T T
] d p P L y
-1 v/ 2x3\4 5 6 1
o—7 e . Q . . . X
25 . . . . . . ~ -
. .
37 A . . . . . .
247 A . . . . . .
—7

Fig. 1 Left: the lattice Ry and 3 of the 23 unordered triples w1, 2, u3 of elements of Rq\{0, 1} such that

Ly /%2 + % = 1. Right: the inversion of Ry and of these triples. If /¢, 2, p3 is such a triple, then, up to

n1
relabeling, we have ) (%) > %, N <I%2) > % and % is the centroid of the triangle with vertices ;711’ %, ;%3
by Corollary 20 according to our hypothesis, we have
{(_47_1 _la_1+l)7 (_27 _25 _2)5 .
if D=1

(=1 —i,—1—,20), (=1 4i, =141, —2i)
{2 -2.-2), (2. -iv2,iv2) ] itD =2
[(_2, —2,-2), (fSEiﬁ’ 7372if77 7121'«/7),

(A1, A2, 43) €
(—3+iﬁ —3+iv7 —1—iﬁ> <—1—iﬁ —1-iv/7 1+iﬁ) D=7
2 T2 T2 ) > 2 2 ) =
(—1+iﬁ NG 1—iﬁ>]
2 T2 2
{(=2,-2,-2)} otherwise

up to permutation (see Tables 3, 4 and 5, which rule out the other triples (A1, A2, A3) of
elements of Rp\{0, 1} such that 1—]72»1 + 1—1A2 + 1—172»3 = 1). If A1, A2, Az equal —2, —2, =2,

then f is Mobius conjugate to z +— Ziz; in the other cases, f is a Latteés map by Corollary 27.

Thus, the lemma is proved. ]

The following two facts are used in our proof of Lemma 29.

Claim 30 Suppose that D is a positive squarefree integer. Then 9 (%) < % for all z €
Rp\{0, 1}.
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20
V3
22“7@ E 3 . . . . . R X
Z"‘?/g i 4 i e o L j ¢
. ]
. ° 2 . . . .
T T T T T T T T
-1 2 /3 /4 6 y 1 1
. . 4 . . . . 2
93 A L S S S . \
=2¢ |
V3

Fig. 2 Left: the lattice R3 and 2 of the 27 unordered triples w1, o, u3 of elements of R3\{0, 1} such that
= 1. Right: the inversion of R3 and of these triples

23!

et =

M2

Table2 All the triples (i1, 2, #3) of elements of Rp\{0, 1} other than (2, 3, 6), (2, 4, 4) and (3, 3, 3) such
that l%l —+ i +; = 1—up to permutation and complex conjugation

D Triples (1. t2. 113) of elements of Rp\{0. 1) such that ;- + L 4 L =1
1 (=26 141,2), (=i L +i 14, (=30 1 +i.2 =), (1—2i, 1+i,3— i)
(=20 240, 240), (1=, 242,24+ 20), 2 — 40, 2,2+ 1), (2 — 2,2, 2+ 2i),
Q=i 2405, Q=i 3+i.3+410),Q2.3—1i.4+20)
2 (1-iv21+iv2.3), (1-iv22+iv2,2+1V2), (2-2iV2.2.24iV2),
(2-iv2.2+iv23)
3 (8,850 (45, 5,40, (45,5
(SR8 1+iva1+iv3 )(1—zf1+zf)
(1-iv3 208 51 03), (33008, 3438 3) (3448 0443, 243,
(358, 3408 342i43), (32,3 +iV3.3+1V3),
(2-iv3, 5“Vﬁ Y (2,358 44 013) (23— V3.3 +i45)
7 (1 i 1+z 2), ("§¢7,3*§¢7,3*§¢7),(1 _i\/i’iiglj’z)’
( —iv7 3t ’4>’(37§J7,5+é¢7,5+g¢7>’(2,57é¢7’3_kivﬁ)’
(2’ zf T+i 7)
15 ( —i/I5 3+1 2) (2 5— zvﬁ’ 5+1vf7)
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—t SN S—
—1 12 3 4 5 6 Iy 1
3 2
_ ’l:‘\?/g 4 3 . . . . .

Fig. 3 Left: the lattice R5 and 1 of the 3 unordered triples w1, (2, 13 of elements of R5\{0, 1} such that

Mi] + I%z + % = 1. Right: the inversion of R5 and of this triple. The only elements z € R5\{0, 1} such that

9(1) = fare23and4

+——F—t—9+—¢ 7 t +- —r——+
-1 1 2 3 4 6 a % 1
SV T+ i P S G S SH— S— it

2 | V19

Fig. 4 Left: the lattice Ryg and 1 of the 3 unordered triples 1¢1, (2, ;3 of elements of R19\{0, 1} such that
l%l + i + % = 1. Right: the inversion of Rj9 and of this triple

Proof Assume that z € Rp\{0} satisfies R (%) > %, and let us prove that z = 1. Recall that
N(2) = |z|?. We have

2i(z) =20 <é> N(z) > N(z),
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Table 3 Decomposition of M3f into irreducible factors in Rp[A] for all the unordered triples A1, A2, A3 of
elements of C\{0, 1}—up to complex conjugation—such that M If and sz split into linear factors in Rp[A]

but M‘3f does not

D Al X2, A3 Factorization of M3f in Rp[A]

1 —3—2i,—2+i,—1 A2 4 (22 4 4 + 121 + 40i

1 —1—4i,—1,—1+i A2+ (104 12i)A + 5 + 48i

1 —1-1,-3i,i A2 4 (124 2i)r + 15 — 28i

1 —1,—i1+2i A2 4 (=2 —4i)r+25+38i

2 —1-2i2,—-1,-1+iv2 /\2+(10+4if2)x+33+16iﬁ
3 —3-2iy3 S3HY8 32+ (204 6iv/3) 5+ 79+ 54iV/3
3 —2—i3,24iv/3, -1 22 + 181 + 89

3 —1,-1+/3,i/3 A2 421425

7 ST ST 22 +221 4125

7 —2—iv7, BT 32+ (164 2iV7) 3.+ 67 + 147
7 -1, =57 g W2+ (4-20V7) 41927
15 SIS 3HVIS g 22 + 144 + 61

15 ,1’—1+\/E’M 22 4+ 61 +29

which yields 29i(z) > N(z) + 1 since 20 (z) and N (z) are integers, and hence
discr (T —2) (T —2)) = QR(2)* —4N() = (N(z) — D* > 0,

where discr denotes the discriminant with respect to 7. Therefore, we have z € R, which
yields z € Z\{0} since Rp N R = Z, and hence z = 1 since % > % Thus, the claim is
proved. O

Claim 31 Suppose that D is a positive squarefree integer different from 1,2, 3,7, 11 and 15
and z € Rp\{0} satisfies 9 (1) > 4. Then z € {1,2,3,4).

Proof There exists (x, y) € Z?\ {Ozz} such that z = x + yyp, recalling that

B ivD ifD=1,2 (mod4)
TN D=3 (modd)

IfD=1,2 (mod 4) and z € Rp\Z, then D > 5 and |y| > 1, and hence

% 1 x - t 1 1
N-)=5<max5—7=—=<—,

Z x24+Dy? T iR 245 25 4
which contradicts our second hypothesis. If D = 3 (mod 4) and z € Rp\Z, then D > 19
and |y| > 1, and hence

1 x+ 4 t 1 1
9{(,)2—22)}5111“ == <7
Z ( + £ 4
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Table 4 Decomposition of MA( into irreducible factors in Rp[A] for all the unordered triples A1, A2, A3 of
elements of C\{0, 1} other than —5, —2, —1—up to complex conjugation—such that M,{ splits into linear
factors in Rp[A], with n € {1, 2, 3}, but M{ does not

D Al A2, A3 Factorization of M;( in Rp[A]
1 —2-i,—2ii (x—1)(x2+(6+12i)x+41+60i)
1 C1—2i -1, —1+42i (=11 (32 + 122 4211)
2 —2,—1-iv2,~1+iV2 (xfl)(x2+2x+37)
+1H9590/3) 4 4267 4 768i/3
3 —2-2iy3 S5 S1HY3 (n+ =52)
(2 oo
3 —2-iv3 B3 (»+8+5iv3)
( ( 19—zf)x 62+651f)
3 — o, =13 143 23 4 270352
26119035 4 449 — 302i/3
3 —1, =58 1403 A3+(33—12i\/§)/\2
n (—297 - 132iﬁ) o+ 103 + 1392i4/3
3 %”ﬁ,”’if,l—i«/? A3+27+227i~/§)‘2
+ A0V, 4 883 4 624i/3
7 —3, =T i 23 42522 + 1870 + 587
7 — 1, T 1T 234225 —413

which also contradicts our second hypothesis. Therefore, we have z € Z\{0}, and hence
z € {1, 2, 3,4} since % > %. Thus, the claim is proved. O

By Lemma 29, we are reduced to studying the quadratic rational maps that have a super-
attracting or multiple fixed point.

Lemma 32 Assume that D is a positive squarefree integer and f : C—Cisa quadratic
rational map that has a superattracting fixed point and whose multiplier at each cycle with
period less than or equal to 4 lies in Rp. Then f is either a power map or a Chebyshev map.

Proof There is a parameter ¢ € C such that f is Mobius conjugate to f.: z — z> + c. Let
us prove that ¢ € {—2, 0}. By Corollary 20, the multiplier polynomials

M) =23 =222 +4ch and M () = 2% + (=8¢ — 16)% + 64c> + 128¢% + 64¢ + 64
split into linear factors in Rp[A], and hence 4c lies in Rp and the discriminants

disc M{* = —22(4c — 1)(4¢)> and disc M{* = —2%(4c + 7)(4¢)*
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Table 5 Decomposition of Mf into irreducible factors in Rp[A] for all the unordered triples A1, Ay, A3 of

elements of C\{0, 1} other than —3, —3, —1—up to complex conjugation—such that Mnf splits into linear

factors in Rp[A], withn € {1, ..., 4}, but Mf does not
D A, A2, A3 Factorization of M{ in Rp[1]
1 —2—i,—2—i,— l+i (A3 + (10 +230)22

+(33 + 188i)% + 758 + 17037)?
1 —1=2i,—1-2ii (A3 + (=5 +320)22

+(—633 — 640i)2. + 605 — 115847)?
1 —i, =i, 1+i (A3 + @ +310)22

(=171 = 176i)% — 700 + 1699i)*
2 —1—iVZ-1-iV2iV2 (3 + (3+3iv2) 2

+(-27 - 42i2) 343 - 343iv2)°
3 —2— i3 2 i3, 3 (3 + (~12-21iv3) 22

+ (=573 + 3617/3) 1 — 8380 + 2709/3)°
3 —3—21‘[ _3— zf 143 ()ﬁ n M/\Z

+=B1=16903 5 _ 350 709i¢§)2
3 =i S35 33 4 3=31Y3,2

2
+ =S, 577 7201 3)
3 — i3, —iy3, B 3+ (42— 29iv3) 32
+ (1320 - 232/3) 1 — 7742 + 4897i/3)°

are squares in Rp. Therefore, we have ¢ = 0 or there exist o, 8 € Rp such that
—(4c—1)=0a® and — dc+7) =p>
by Claim 28. In the latter case, we have (¢ — B)(« + 8) = 8, which yields

_ (@—pB)>+8 R m{52+8

2@ — B T 8 € Rp and N(§) divides 64} ,

and hence we obtain

{(—3,-2,-i,i,2,3} itD=1
{=3,0,3) ifD=2
@€ {—3, AP e 3*@*/5,3} if D=3
{-3,-1,1, 3} ifD=7
{—3,3} otherwise
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Table 6 Decomposition of M /¢ into irreducible factors in R plA] for the values of D and c appearing in our
proof of Lemma 32

D c Factorization of M fein R pIAl

1 % A3 — 3922 4+ 9395 — 5221

1 3 A3 — 4422 4 784). — 8896

2 1 23 — 4722 + 779 — 4861

3 71751'«/? PERS 7109;3:'«/5)\2 + 1177+215if3k 2983 — 1218i/3
3 =L3i3 33 4 =1093i3 50 4 MTTISIV, 9983 1 1218i4/3

by listing all the elements § € Rp with norm N (§) dividing 64. Therefore, in the latter case,
we have

(-2, 3.1} ifD=1
{- 2,%} if D=2
e 1= e {2 =18 =) ifp =3 |
{-2,0} if D=7
{—2} otherwise

and hence ¢ € {—2, 0} since the polynomial M, ‘{" splits into linear factors in Rp[A] by Corol-
lary 20 according to our hypothesis (see Table 6, which rules out all the other possibilities).
Thus, the lemma is proved. ]

By Lemmas 29 and 32, it remains to examine the quadratic rational maps that have a
multiple fixed point and whose multipliers all lie in the ring of integers of a given imaginary
quadratic field. We prove that there is no such map.

Lemma 33 Assume that D is a positive squarefree integer and f : C—Cisa quadratic
rational map whose multiplier at each cycle with period less than or equal to 5 lies in Rp.
Then the fixed points for f are all simple.

Proof To obtain a contradiction, suppose that f has a multiple fixed point. If f has a unique
fixed point, then f is Mobius conjugate to 4 by Proposition 21, and hence

M" () = (33 = 30922 + 273992 — 696691)°

splits into linear factors in Rp[A] by Corollary 20, which is impossible since it is the square
of an irreducible polynomial over Q of degree 3 and Rp is contained in an extension of Q
of degree 2. Thus, f has exactly two fixed points, and it follows that f is Mobius conjugate
to g4,1 by Proposition 21, where a € Rp\{1} is the multiplier of f at its simple fixed point.
By Corollary 20, the polynomial

M3 () = A2 + (—4a* — 16a — 18) A + 36a> + 112a* + 124a + 89
splits into linear factors in Rp[A], and hence its discriminant

dise M5*" = 2%(a +2)(a - 1)°
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Table 7 Decomposition of Mf“’l into irreducible factors in R p[A] for the values of D and a appearing in our
proof of Lemma 33

8a,l

D a Factorization of M;™" in Rp[A]

2 -1 A3 — 1502 +255) — 1457

2 0 A3 — 4702 + 7795 — 4861

3 =li/3 33 (<214 14iv/3) 22 + (99 = 124iV3) 3 — 1279 + 54213
3 =133 334 (<21 = 14iv/3) 22 + (99 + 1241 V3) 3. — 1279 — 54213

is a square in Rp. It follows that there exists 8 € Rp such that (a — 1)(a + 2) = B2 by
Claim 28, and we have

Qa—2B8+1)2a+28+1)=9.

Therefore, we have

. Qa—-28+1)%2—-2Qa—-28+1)+9

)

4Q2a -2 +1)
which yields
a € (Rp\{1h N {82_42;4—9 : 8 € Rp and N (8) divides 81} ,
and hence we obtain
{-3,-2,-1,0,2} iftD=2
aef-3 -2 =155 =55 o) ifp =3
{—3,-2,2} otherwise

by listing all the elements § € Rp with norm N (§) dividing 81. The polynomial
M (00 = (00— 31) (A% + 80 + 1231)

does not split into linear factors in Rp[A] since it has two non-integer real roots. Moreover,
the polynomials

M 00 =22 + 922 + 1234 + 1307 and MJ>' (1) = A3 — 23127 + 172115 — 407861

do not split into linear factors in Rp[A] either since they are irreducible over QQ of degree 3
and Rp is contained in an extension of QQ of degree 2. This contradicts the fact that Mf"’l
splits into linear factors in Rp[A] by Corollary 20 according to our hypothesis (see Table 7,
which rules out all the other possibilities). Thus, the lemma is proved. O

Finally, we have proved Theorem 9, which follows immediately from Lemmas 29, 32
and 33.

Remark 34 The decompositions into irreducible factors given in Tables 3, 4, 5, 6 and 7 were
obtained by using the software SageMath. In principle, we can easily check whether the given
factors are irreducible as they are all monic of degree at most 3. Assume that D is a positive
squarefree integer. Every monic polynomial of degree 1 in Rp[A] is irreducible. Moreover, a
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monic polynomial of degree 2 or 3 in Rp[A] is irreducible if and only if it has no rootin Rp.
Suppose that P € Rp[A] is monic with constant coefficient ¢y € Rp. Note that, if 1o € Rp
is a root of P, then it divides cg in Rp, and hence N (1¢) divides N (cg) in Z. If ¢ is zero,
then O is a root of P. If ¢ is nonzero, then there are only finitely many elements Ao € Rp
with norm N (o) dividing N (cp), and we can list all of them and check whether they are
roots of P. Thus, we can check whether a monic polynomial in Rp[A] has a rootin Rp, and
hence check whether a polynomial of degree 2 or 3 in Rp[A] is irreducible.
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