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Abstract
In this article, we prove that every quadratic rational map whose multipliers all lie in the
ring of integers of a given imaginary quadratic field is a power map, a Chebyshev map or a
Lattès map. In particular, this provides some evidence in support of a conjecture by Milnor
concerning rational maps that have an integer multiplier at each cycle.

Mathematics Subject Classification Primary 37P05 · 37P35; Secondary 37F10 · 37F44

1 Introduction

Given a rational map f : ̂C → ̂C and a point z0 ∈ ̂C, we study the sequence ( f ◦n (z0))n≥0
of iterates of f at z0. The set { f ◦n (z0) : n ≥ 0} is called the forward orbit of z0 under f .

The point z0 is said to be periodic for f if there exists an integer n ≥ 1 such that
f ◦n (z0) = z0; the least such integer n is called the period of z0. Then the forward orbit of
z0, which has cardinality n, is said to be a cycle for f . The multiplier of f at z0 is the unique
eigenvalue of the differential of f ◦n at z0. The map f has the same multiplier at each point
of the cycle.

The multiplier is invariant under conjugacy: if f and g are rational maps, φ is a Möbius
transformation such that φ ◦ f = g ◦ φ and z0 is a periodic point for f , then φ (z0) is a
periodic point for g with the same period and the same multiplier.

We wish to examine here the rational maps that have only integer multipliers.

Definition 1 A rational map f : ̂C → ̂C of degree d ≥ 2 is said to be a power map if it is
Möbius conjugate to z �→ z±d .

For every d ≥ 2, there exists a unique polynomial Td ∈ C[z] such that
Td

(

z + z−1) = zd + z−d .

The polynomial Td is monic of degree d and is called the dth Chebyshev polynomial.
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950 V. Huguin

Definition 2 A rational map f : ̂C → ̂C of degree d ≥ 2 is said to be a Chebyshev map if it
is Möbius conjugate to ±Td .

Remark 3 For every d ≥ 2, the rational maps −Td and Td are Möbius conjugate if and only
if d is even.

These rational maps share the following well-known property:

Proposition 4 [5, Corollary 3.9] Suppose that f : ̂C → ̂C is a power map or a Chebyshev
map. Then f has only integer multipliers.

In fact, there exist also other rational maps that satisfy this special condition.

Definition 5 A rational map f : ̂C → ̂C of degree d ≥ 2 is said to be a Lattès map if
there exist a torus T = C/�, with � a lattice in C, a holomorphic map L : T → T and a
nonconstant holomorphic map p : T → ̂C that make the following diagram commute:

T T

̂C ̂C

L

f

p p

Remark 6 Suppose that � is a lattice in C and T = C/�. Then the holomorphic maps
L : T → T are precisely the maps of the form

L�
a,b : z + � �→ az + b + �, with a, b ∈ C, a� ⊂ � .

Moreover, for all a, b ∈ C such that a� ⊂ �, the map L�
a,b : T → T has degree |a|2.

We distinguish two types of Lattès maps. A rational map f : ̂C → ̂C of degree d ≥ 2 is
said to be a flexible Lattès map if there exist a torus T = C/�, with � a lattice in C, a ∈ Z,
b ∈ C and a holomorphic map p : T → ̂C of degree 2 such that

f ◦ p = p ◦ L�
a,b , where L�

a,b : z + � �→ az + b + � .

A non-flexible Lattès map is said to be rigid. We refer the reader to [5] or [8, Chapter 6] for
further information about Lattès maps.

Remark 7 The degree of a flexible Lattès map is the square of an integer.

Given a positive squarefree integer D, we denote by RD the ring of integers of the imag-

inary quadratic field Q
(

i
√

D
)

.

Lattès maps have the following remarkable property:

Proposition 8 [5, Corollary 3.9 and Lemma 5.6] Suppose that f : ̂C → ̂C is a Lattès map.
Then there exists a positive squarefree integer D such that the multipliers of f all lie in RD.
Furthermore, the multipliers of f are all integers if and only if f is flexible.
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Quadratic rational maps with integer multipliers 951

In this paper, we are interested in the converse of Propositions 4 and 8. In [5], Milnor
conjectured that power maps, Chebyshev maps and flexible Lattès maps are the only rational
maps whose multipliers are all integers. More generally, we may wonder whether power
maps, Chebyshev maps and Lattès maps are the only rational maps whose multipliers all lie
in the ring of integers of a given imaginary quadratic field. We answer this question in the
case of quadratic rational maps.

Theorem 9 Assume that D is a positive squarefree integer and f : ̂C → ̂C is a quadratic
rational map whose multiplier at each cycle with period less than or equal to 5 lies in RD.
Then f is a power map, a Chebyshev map or a Lattès map.

In particular, together with Remark 7 and Proposition 8, this proves Milnor’s conjecture
for quadratic rational maps.

Corollary 10 Assume that f : ̂C → ̂C is a quadratic rational map that has only integer
multipliers. Then f is either a power map or a Chebyshev map.

We may even extend Milnor’s question as follows:

Question 11 Assume that K is a number field, OK is its ring of integers and f : ̂C → ̂C is
a rational map of degree d ≥ 2 whose multipliers all lie in OK—or K . Is f necessarily a
power map, a Chebyshev map or a Lattès map?

In [3], the author answered this question for certain polynomial maps. More precisely,
he proved that every unicritical polynomial map of degree d ≥ 2 that has only rational
multipliers is either a power map or a Chebyshev map. He also proved that every cubic
polynomial map with symmetries that has only integer multipliers is either a power map or
a Chebyshev map.

In [1], Eremenko and van Strien studied the rational maps of degree d ≥ 2 that have only
real multipliers: they proved that, if f : ̂C → ̂C is such a map, then either f is a Lattès map
or its Julia set J f is contained in a circle; they also gave a description of these maps.

In Sect. 2, we provide some background about the multiplier polynomials of a rational
map, the moduli space of quadratic rational maps and the ring of integers of an imaginary
quadratic field.

In Sect. 3, we prove Theorem 9. More precisely, we determine the quadratic rational maps
whose multiplier polynomials all split into linear factors over RD , with D a given positive
squarefree integer. Using the holomorphic fixed-point formula, we are reduced to studying
two one-parameter families of rational maps and finitely many other cases. We then examine
the multiplier polynomials associated to these two families and to the remaining cases in
order to conclude.

2 Some preliminaries

We shall review here some necessary material for our proof of Theorem 9.

2.1 Dynatomic polynomials andmultiplier polynomials

First, we present the dynatomic polynomials and the multiplier polynomials associated to
a rational map, which are related to its periodic points and its multipliers. In particular, we
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952 V. Huguin

provide a formula to compute the multiplier polynomials of a rational map, which will be
very useful in our proof of Theorem 9. For further information about these polynomials, we
refer the reader to [6, 7] and [8, Chapter 4].

Throughout this subsection, we fix an integer d ≥ 2, which will denote the degree of a
rational map. In order to properly take the point ∞ into account, we identify the Riemann
sphere ̂C with the complex projective line P1(C)—defined as the quotient of C2\ {

0C2
}

by
the relation of collinearity—by the usual biholomorphism ι : ̂C → P

1(C) and its inverse
given by

ι(z) =
{

[z : 1] if z ∈ C

[1 : 0] if z = ∞ and ι−1 ([x : y]) =
{

x
y if y ∈ C

∗

∞ if y = 0
.

Suppose that f : P1(C) → P
1(C) is a rational map of degree d . Then there exists a

homogeneous polynomial map F : C2 → C
2 that does not vanish on C

2\ {

0C2
}

and makes
the diagram below commute, where π denotes the canonical projection. The map F is unique
up to multiplication by an element of C∗, is homogeneous of degree d and is said to be a
homogeneous polynomial lift of f .

C
2 \ {

0C2
}

C
2 \ {

0C2
}

P
1(C) P

1(C)

F

f

π π

Given a homogeneous polynomial map F : C2 → C
2 of degree d and an integer n ≥ 0,

we denote by G F
n and H F

n the polynomials in C[x, y] defined by

F◦n(x, y) =
(

G F
n (x, y), H F

n (x, y)
)

,

which are homogeneous of degree dn .
Suppose that f : P1(C) → P

1(C) is a rational map of degree d and F : C2 → C
2 is

a homogeneous polynomial lift of f . Then, for every n ≥ 1, the roots in P
1(C) of the

homogeneous polynomial

yG F
n (x, y) − x H F

n (x, y) ∈ C[x, y]
are precisely the periodic points for f with period dividing n. Thus, it is natural to try to
factor these polynomials in order to separate their roots according to their periods, and the
following holds.

We denote by μ : Z≥1 → {−1, 0, 1} the Möbius function, which is given by

μ(n) =
{

(−1)r if n is the product of r distinct primes

0 if n has a square factor
.

For n ≥ 1, we define

νd(n) =
∑

k|n
μ

(n

k

)

dk .
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Quadratic rational maps with integer multipliers 953

Proposition 12 [6, Proposition 3.2] Suppose that F : C2 → C
2 is a homogeneous polyno-

mial map of degree d that does not vanish on C
2\ {

0C2
}

. Then there exists a unique sequence
(

�F
n

)

n≥1 of elements of C[x, y] such that, for every n ≥ 1, we have

yG F
n (x, y) − x H F

n (x, y) =
∏

k|n
�F

k (x, y) .

Furthermore, for every n ≥ 1, the polynomial �F
n is nonzero and homogeneous and we have

deg�F
n =

{

d + 1 if n = 1

νd(n) if n ≥ 2
.

Definition 13 Suppose that F : C2 → C
2 is a homogeneous polynomial map of degree d

that does not vanish onC2\ {

0C2
}

. For n ≥ 1, the polynomial�F
n is called the nth dynatomic

polynomial of F .

Remark 14 If F : C2 → C
2 is a homogeneous polynomial map of degree d that does not

vanish on C
2\ {

0C2
}

, then we have

�F
n (x, y) =

∏

k|n

(

yG F
k (x, y) − x H F

k (x, y)
)μ( n

k )

for all n ≥ 1 by the Möbius inversion formula.

The following gives the relation between the periodic points for a rational map and the
dynatomic polynomials of its homogeneous polynomial lifts.

Proposition 15 [6, Proposition 3.2] Assume that f : P1(C) → P
1(C) is a rational map of

degree d, F : C2 → C
2 is a homogeneous polynomial lift of f and n ≥ 1. Then z0 ∈ P

1(C)

is a root of the polynomial �F
n if and only if z0 is either a periodic point for f with period n

or a periodic point for f with period a proper divisor k of n and multiplier a primitive n
k th

root of unity.

Let us nowpresent themultiplier polynomials of a rationalmap. Suppose that f : P1(C) →
P
1(C) is a rationalmapof degreed andn ≥ 1. Informally,wewant to compute the polynomial

r
∏

j=1

(

λ − λ j
) ∈ C[λ] ,

where λ1, . . . , λr denote the multipliers of f at its periodic points with period n. In fact,
since f has the same multiplier at each point of a cycle, we want to obtain the nth root of this
polynomial. Assume that z0 ∈ P

1(C) is a periodic point for f with period n and multiplier
λ0 and F : C2 → C

2 is a homogeneous polynomial lift of f . Then there exists a periodic
point (x0, y0) ∈ z0 for F with period n, and the eigenvalues of the differential of F◦n at
(x0, y0) are precisely dn and λ0. Therefore, considering the trace of the differential of F◦n

at (x0, y0), we have

λ0 + dn = T F
n (x0, y0) ,

where

T F
n = ∂G F

n

∂x
+ ∂ H F

n

∂ y
∈ C[x, y] .

This discussion leads us to the result below (see [2, Chapitre 3]).
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Proposition 16 Suppose that f : P1(C) → P
1(C) is a rational map of degree d, F : C2 →

C
2 is a homogeneous polynomial lift of f and n ≥ 1. Then there exists a unique monic

polynomial M f
n ∈ C[λ] such that, for every homogeneous polynomial P ∈ C[x, y] of degree

1, we have

res
(

�F
n , P ◦ F◦n

)

M f
n (λ)n = res

(

�F
n ,

(

λ + dn)

P ◦ F◦n − PT F
n

)

,

where res denotes the homogeneous resultant. Furthermore, M f
n does not depend on the

homogeneous polynomial lift F of f and we have

deg M f
n =

{

d + 1 if n = 1
νd (n)

n if n ≥ 2
.

Definition 17 Suppose that f : P1(C) → P
1(C) is a rational map of degree d . For n ≥ 1,

the polynomial M f
n is called the nth multiplier polynomial of f .

Remark 18 If F : C2 → C
2 is a homogeneous polynomial map of degree d that does not

vanish onC2\ {

0C2
}

, n ≥ 1 and P ∈ C[x, y] is a homogeneous polynomial of degree e ≥ 0,
then we have

res
(

�F
n , P ◦ F◦n

)

= ε
(e)
d,n res

(

�F
n , P

)

res(F)
eνd (n)(dn−1)

d(d−1) ,

where ε
(e)
d,n ∈ {−1, 1} equals −1 if and only if n = 1, d is even and e is odd.

Note that, given a rational map f : P1(C) → P
1(C) of degree d , a homogeneous polyno-

mial lift F : C2 → C
2 of f and n ≥ 1, the formula in Proposition 16 enables us to compute

the polynomial M f
n by considering a nonzero homogeneous polynomial P ∈ C[x, y] of

degree 1 that does not divide �F
n .

Let us now describe precisely the relation between the multiplier polynomials of a rational
map and its multipliers. Given a rational map f : P1(C) → P

1(C) of degree d , a homoge-
neous polynomial lift F : C2 → C

2 of f and n ≥ 1, we have

M f
n (λ)n =

deg�F
n

∏

j=1

(

λ − λ j
)

,

where λ1, . . . , λdeg�F
n
are the multipliers of f ◦n at the roots of the polynomial �F

n repeated
according to their multiplicities. Therefore, we have the following, which follows immedi-
ately from Proposition 15:

Proposition 19 Assume that f : P1(C) → P
1(C) is a rational map of degree d and n ≥ 1.

Then λ0 ∈ C is a root of the polynomial M f
n if and only if

• λ0 is the multiplier of f at a cycle with period n,
• or λ0 equals 1 and f has a cycle with period a proper divisor k of n and multiplier a

primitive n
k th root of unity.

A direct consequence of Proposition 19 is the following, which plays a key role in our
proof of Theorem 9. It states that our problem comes down to determining the quadratic
rational maps whose multiplier polynomials all split into linear factors in RD[λ], with D a
given positive squarefree integer.

123



Quadratic rational maps with integer multipliers 955

Corollary 20 Assume that R is a subring of C, f : P1(C) → P
1(C) is a rational map of

degree d and n ≥ 1. Then the multipliers of f at its cycles with period n all lie in R if and
only if the polynomial M f

n splits into linear factors in R[λ].

2.2 Themoduli space of quadratic rational maps

We now recall certain facts about the Möbius conjugacy classes of quadratic rational maps.
Suppose that f : ̂C → ̂C is a quadratic rational map, and denote by λ1, λ2, λ3 its multi-

pliers at its fixed points repeated according to their multiplicities. If f has only simple fixed
points or, equivalently, if λ j �= 1 for all j ∈ {1, 2, 3}, then we have

1

1 − λ1
+ 1

1 − λ2
+ 1

1 − λ3
= 1 .

In particular, note that λ1λ2 = 1 if and only if λ1 = λ2 = 1 since it follows that

(1 − λ1) (1 − λ2) = (λ1λ2 − 1) (1 − λ3) ,

which holds even if f has a multiple fixed point.
Given a quadratic rational map f : ̂C → ̂C, we define

σ
f
1 = λ1 + λ2 + λ3 , σ

f
2 = λ1λ2 + λ1λ3 + λ2λ3 , σ

f
3 = λ1λ2λ3

to be the elementary symmetric functions of the multipliers λ1, λ2, λ3 of f at its fixed points,
so that

M f
1 (λ) = λ3 − σ

f
1 λ2 + σ

f
2 λ − σ

f
3 .

By the formula above that relates themultipliers of a quadratic rational map at its fixed points,
for every quadratic rational map f : ̂C → ̂C, we have

σ
f
3 = σ

f
1 − 2 .

In fact, we will see that this relation uniquely determines the Möbius conjugacy classes of
quadratic rational maps.

We now give normal forms for the Möbius conjugacy classes of quadratic rational maps.
For a, b ∈ C such that ab �= 1, define

ga,b : z �→ z(z + a)

bz + 1
,

which fixes 0 with multiplier a and fixes ∞ with multiplier b. Define

h : z �→ z + 1

z
,

which has ∞ as its unique fixed point. The following holds.

Proposition 21 [4, Lemma 3.1] Suppose that f : ̂C → ̂C is a quadratic rational map. If f
has two distinct fixed points with multipliers a, b ∈ C, then we have ab �= 1 and f is Möbius
conjugate to ga,b. If f has a unique fixed point, then f is Möbius conjugate to h.

We will also use another normal form. For c ∈ C, define

fc : z �→ z2 + c .
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956 V. Huguin

For every c ∈ C, themap fc has∞ as a superattractingfixed point. Furthermore, if f : ̂C → ̂C

is a quadratic rational map that has a superattracting fixed point, then there exists a unique
parameter c ∈ C such that f is Möbius conjugate to fc. Note that, for every c ∈ C, the map
fc is a power map if and only if c = 0 and is a Chebyshev map if and only if c = −2.
Let M2(C) be the set of Möbius conjugacy classes of quadratic rational maps. Given

a quadratic rational map f : ̂C → ̂C, denote by [ f ] ∈ M2(C) its conjugacy class. The
following is a direct consequence of Proposition 21.

Corollary 22 [4, Lemma 3.1] The map Mult(1)2 : M2(C) → C
2 given by

Mult(1)2 ([ f ]) =
(

σ
f
1 , σ

f
2

)

is well defined and bijective. In particular, a quadratic rational map f : ̂C → ̂C is charac-
terized by its multipliers λ1, λ2, λ3 at its fixed points up to Möbius conjugacy.

By Corollary 22 and the invariance of the multiplier under Möbius conjugacy, the multi-
plier polynomials of f , with f : ̂C → ̂C a quadratic rational map, depend only on σ

f
1 and

σ
f
2 . More precisely, the following holds.

Proposition 23 [7, Corollary 5.2] Assume that n ≥ 1. Then the coefficients of the polynomial
M f

n , with f : ̂C → ̂C a quadratic rational map, are polynomials in σ
f
1 and σ

f
2 with integer

coefficients—which are independent of f .

Remark 24 If f and g are quadratic rational maps with multipliers λ1, λ2, λ3 and λ1, λ2, λ3

at their fixed points, then Mg
n = M f

n for all n ≥ 1 by Proposition 23—where z denotes the
complex conjugate of z for z ∈ C and P denotes the polynomial whose coefficients are the
complex conjugates of those of P for P ∈ C[λ].

Using the software SageMath, we can compute the first multiplier polynomials of ga,b,
with a, b ∈ C such that ab �= 1. Thus, we can express the first multiplier polynomials of a
quadratic rational map f : ̂C → ̂C in terms of σ

f
1 and σ

f
2 .

Example 25 Suppose that f : ̂C → ̂C is a quadratic rational map. For simplicity, set σ1 = σ
f
1

and σ2 = σ
f
2 , so that

M f
1 (λ) = λ3 − σ1λ

2 + σ2λ − (σ1 − 2) .

For n ≥ 1, write

M f
n (λ) = λdeg M f

n +
deg M f

n
∑

j=1

(−1) jσ
(n)
j λdeg M f

n − j .

Then we have

σ
(2)
1 =2σ1 + σ2 ,

σ
(3)
1 =σ1 (2σ1 + σ2) + 3σ1 + 2 ,

σ
(3)
2 = (2σ1 + σ2) (σ1 + σ2)

2 − σ1 (σ1 + 2σ2) + 12σ1 + 28 ,

σ
(4)
1 = (2σ1 + σ2) σ 2

1 + (σ1 − σ2) (3σ1 + σ2) + 10σ1 ,
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σ
(4)
2 = (2σ1 + σ2) σ 2

1 (σ1 + σ2)
2 + (σ1 − σ2)

(

7σ 3
1 + 9σ 2

1 σ2 + 5σ1σ
2
2 + σ 3

2

)

+ (26σ1 − σ2) σ 2
1 + 4σ1 (16σ1 − 5σ2) + 4 (10σ1 − 13σ2) + 48 ,

σ
(4)
3 =σ 2

2 (σ1 + σ2)
2 (2σ1 + σ2)

2 + σ1 (2σ1 + σ2)
(

σ 3
1 − 2σ 2

1 σ2 − σ1σ
2
2 − 2σ 3

2

)

+ σ1
(

27σ 3
1 + 30σ 2

1 σ2 + 68σ1σ
2
2 + 28σ 3

2

) + 4
(

26σ 3
1 + σ 2

1 σ2 + 32σ1σ
2
2 + 15σ 3

2

)

+ 8
(

37σ 2
1 − 19σ1σ2 − 6σ 2

2

) + 32 (20σ1 + 3σ2) + 304 .

We do not give the expressions for the terms σ
(5)
j , with j ∈ {1, . . . , 6}, because they are very

long.

Finally, let us describe the Möbius conjugacy classes of Lattès maps of degree 2. Suppose
that � is a lattice inC, and set T = C/�. Recall that the Weierstrass’s function ℘� : T → ̂C

given by

℘�(z + �) = 1

z2
+

∑

w∈�\{0}

(

1

(z − w)2
− 1

w2

)

is well defined, even and holomorphic of degree 2. Therefore, for all a, b ∈ C such that
a� ⊂ � and 2b ∈ �, there exists a unique rational map Lat�,2

a,b : ̂C → ̂C of degree |a|2 such
that

Lat�,2
a,b ◦℘� = ℘� ◦ L�

a,b , where L�
a,b : z + � �→ az + b + �,

since L�
a,b commutes with the multiplication by −1 in T.

Note that certain lattices inC are invariant by rotations about the origin other than z �→ ±z,
which gives rise to additional Lattès maps. Suppose that � = Z[i] and T = C/�. Then, for
every z ∈ C, we have

℘�(i z + �) = −℘�(z + �) .

Therefore, for all a, b ∈ C such that a ∈ � and (1 + i)b ∈ �, there exists a unique rational
map Lat�,4

a,b : ̂C → ̂C of degree |a|2 such that

Lat�,4
a,b ◦℘2

� = ℘2
� ◦ L�

a,b

since L�
a,b commutes with the multiplication by i in T.

The following lists the Lattès maps of degree 2 up to Möbius conjugacy.

Proposition 26 [5, Subsection 8.1] Assume that f : ̂C → ̂C is a Lattès map of degree 2.
Then f is Möbius conjugate to either LatZ[i],4

1+i,0 or Lat�,2
a,b , with

� ∈
{

Z[i],Z
[

i
√
2
]

,Z

[

1 + i
√
7

2

]}
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Table 1 Multipliers λ1, λ2, λ3 of
Lat�,r

a,b at its fixed points
� r a b λ1, λ2, λ3

Z[i] 2 1 − i 0 − 1 + i, − 1 + i, − 2 i

Z[i] 2 1 + i 0 − 1 − i, − 1 − i, 2 i

Z[i] 4 1 + i 0 − 4, − 1 − i, − 1 + i

Z

[

i
√
2
]

2 i
√
2 0 − 2, − i

√
2, i

√
2

Z

[

1+i
√
7

2

]

2 1−i
√
7

2 0 −3−i
√
7

2 , −3−i
√
7

2 , −1+i
√
7

2

Z

[

1+i
√
7

2

]

2 1−i
√
7

2
1
2

−1+i
√
7

2 , −1+i
√
7

2 , 1−i
√
7

2

Z

[

1+i
√
7

2

]

2 1+i
√
7

2 0 −3+i
√
7

2 , −3+i
√
7

2 , −1−i
√
7

2

Z

[

1+i
√
7

2

]

2 1+i
√
7

2
1
2

−1−i
√
7

2 , −1−i
√
7

2 , 1+i
√
7

2

and

(a, b) ∈

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

{(1 − i, 0), (1 + i, 0)} if � = Z[i]
{(

i
√
2, 0

)}

if � = Z

[

i
√
2
]

{(

1−i
√
7

2 , 0
)

,
(

1−i
√
7

2 , 1
2

)

,
(

1+i
√
7

2 , 0
)

,
(

1+i
√
7

2 , 1
2

)}

if � = Z

[

1+i
√
7

2

]

.

We can compute the multipliers of the Lattès maps appearing in Proposition 26 at their
fixed points (see Table 1). Thus, we immediately have the following from Corollary 22 and
Proposition 26, which gives a characterization of the Lattès maps of degree 2.

Corollary 27 Assume that f : ̂C → ̂C is a quadratic rational map. Then f is a Lattès map if
and only if its multipliers at its fixed points are

• either −4, −1 − i and −1 + i ,

• or −1 − i , −1 − i and 2i ,

• or −1 + i , −1 + i and −2i ,

• or −2, −i
√
2 and i

√
2,

• or −3−i
√
7

2 , −3−i
√
7

2 and −1+i
√
7

2 ,

• or −3+i
√
7

2 , −3+i
√
7

2 and −1−i
√
7

2 ,

• or −1−i
√
7

2 , −1−i
√
7

2 and 1+i
√
7

2 ,

• or −1+i
√
7

2 , −1+i
√
7

2 and 1−i
√
7

2 .

2.3 The ring of integers of an imaginary quadratic field

Finally, we recall here some properties of the ring of integers RD of the imaginary quadratic

field Q

(

i
√

D
)

, with D a positive squarefree integer.

Assume that D is a positive squarefree integer. Then we have

RD = Z
[

γD
]

, where γD =
{

i
√

D if D ≡ 1, 2 (mod 4)
1+i

√
D

2 if D ≡ 3 (mod 4)
.
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Thus, the elements of RD form a lattice in C. Let us describe the intersections of RD

with the Euclidean disks centered at the origin. We denote by N : C → R≥0 the map given
by N (z) = |z|2, which is multiplicative and agrees with the norm of the field extension

Q

(

i
√

D
)

/Q.

Suppose first that D ≡ 1, 2 (mod 4). For all x, y ∈ Z, we have

N (x + yγD) = x2 + Dy2 ∈ Z≥0 .

Therefore, for every B ≥ 0, we have

{z ∈ RD : N (z) ≤ B} ⊂
{

x + yγD : x, y ∈ Z, |x | ≤ √
B, |y| ≤

√

B

D

}

,

and in particular

{z ∈ RD : N (z) ≤ B} ⊂ Z if B < D .

Suppose next that D ≡ 3 (mod 4). For all x, y ∈ Z, we have

N (x + yγD) =
(

x + 1

2
y

)2

+ D

4
y2 = x2 + xy + D + 1

4
y2 ∈ Z≥0 .

Therefore, for every B ≥ 0, we have

{z ∈ RD : N (z) ≤ B} ⊂
{

x + yγD : x, y ∈ Z, |x | ≤ √
B +

√

B

D
, |y| ≤ 2

√

B

D

}

,

and in particular

{z ∈ RD : N (z) ≤ B} ⊂ Z if 4B < D .

Thus, the set of all imaginary quadratic integers is a discrete subset of C and, for every
B ≥ 0, we can determine the pairs (D, z) ∈ Z × C such that D is a positive squarefree
integer, z ∈ RD and N (z) ≤ B.

Finally, the ring RD is an integrally closed domain for each positive squarefree integer D.
In particular, we have the result below, which will be useful in our proof of Theorem 9.

Claim 28 Suppose that D is a positive squarefree integer and a, b ∈ RD are such that ab2 is
a square in RD . Then a is a square in RD or b is zero.

Proof Assume that b is nonzero, and let us prove that a is a square in RD . There exists
c ∈ RD such that ab2 = c2 by hypothesis, and we have a = ( c

b

)2. Therefore, c
b is a root

of the polynomial T 2 − a ∈ RD[T ], and hence it lies in RD since RD is integrally closed.
Thus, the claim is proved. ��

3 Proof of the result

We shall prove here Theorem 9. It follows directly from the three lemmas below.

Lemma 29 Assume that D is a positive squarefree integer and f : ̂C → ̂C is a quadratic
rational map that has no superattracting or multiple fixed point and whose multiplier at each
cycle with period less than or equal to 5 lies in RD. Then f is either a power map or a Lattès
map.
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960 V. Huguin

Proof Denote by λ1, λ2, λ3 the multipliers of f at its fixed points, which belong to RD\{0, 1}
by hypothesis. Then 1 − λ j lies in RD\{0, 1} for all j ∈ {1, 2, 3} and we have

1

1 − λ1
+ 1

1 − λ2
+ 1

1 − λ3
= 1 .

If μ1, μ2, μ3 are elements of RD\{0, 1} that satisfy
1

μ1
+ 1

μ2
+ 1

μ3
= 1 and �

(

1

μ1

)

≤ �
(

1

μ2

)

≤ �
(

1

μ3

)

,

then we have

�
(

1

μ3

)

≥ 1

3
, �

(

1

μ2

)

≥ 1

2

(

1 − �
(

1

μ3

))

≥ 1

4
and

1

μ1
= 1 − 1

μ2
− 1

μ3

as � ( 1
z

) ≤ 1
2 for all z ∈ RD\{0, 1} by Claim 30. Moreover, there are only finitely many

z ∈ RD\{0} such that � ( 1
z

) ≥ 1
4 since these are precisely the elements of RD\{0} contained

in the disk with center 2 and radius 2 and RD forms a discrete subset of C. Therefore,
if μ1, μ2, μ3 are elements of RD\{0, 1} as above, there are only finitely many possible
values for μ2 and μ3 and these completely determine μ1. Thus, there are only finitely many
unordered triples μ1, μ2, μ3 of elements of RD\{0, 1} such that 1

μ1
+ 1

μ2
+ 1

μ3
= 1, and

we can find them by listing all the elements z ∈ RD\{0, 1} that satisfy � ( 1
z

) ≥ 1
4 . More

precisely, choosing such a triple is equivalent to choosing elementsμ2, μ3 ∈ RD\{0, 1} such
that �

(

1
μ2

)

≥ 1
4 and �

(

1
μ3

)

≥ 1
3 and checking whether ρ1 = 1 − 1

μ2
− 1

μ3
is zero or not

and, if not, whether μ1 = 1
ρ1

lies in RD by computing its coordinates in the basis (1, γD) of

Q

(

i
√

D
)

over Q. If D = 1, then there are exactly 23 such unordered triples (see Fig. 1); if

D = 2, then there are 9; if D = 3, then there are 27 (see Fig. 2); if D = 7, then there are 14;
if D = 11, then there are 3; if D = 15, then there are 5 (see Table 2). In the other cases, 2, 3
and 4 are the only elements z ∈ RD\{0, 1} such that � ( 1

z

) ≥ 1
4 by Claim 31, and it follows

that the only triples (μ1, μ2, μ3) of elements of RD\{0, 1} that satisfy 1
μ1

+ 1
μ2

+ 1
μ3

= 1
are (2, 3, 6), (2, 4, 4) and (3, 3, 3) up to permutation (see Figs. 3 and 4). Thus, there are
only finitely many possible values for the triple (λ1, λ2, λ3) of multipliers of f at its fixed
points, and these are (−5,−2,−1), (−3,−3,−1) and (−2,−2,−2) up to permutation if D
is different from 1, 2, 3, 7, 11 and 15. Suppose that λ1, λ2, λ3 equal −5,−2,−1. Then we
have

M f
4 (λ) = λ3 − 159λ2 + 7419λ − 84221 ,

which is irreducible overQ since it is amonic polynomial of degree 3with integer coefficients
that has no integer root. Therefore, its roots all have degree 3 over Q, and hence do not lie

in Q

(

i
√

D
)

, which is a field extension of Q of degree 2. In particular, the polynomial M f
4

does not split into linear factors in RD[λ]. Similarly, if λ1, λ2, λ3 equal −3,−3,−1, then we
have

M f
5 (λ) = (

λ3 + 267λ2 + 20871λ + 414157
)2

,

which does not split into linear factors in RD[λ] either since it is the square of an irreducible
polynomial over Q of degree 3 and RD is contained in a field extension of Q of degree 2.
Therefore, since the polynomials M f

n , with n ∈ {3, 4, 5}, split into linear factors in RD[λ]
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Quadratic rational maps with integer multipliers 961

Fig. 1 Left: the lattice R1 and 3 of the 23 unordered triples μ1, μ2, μ3 of elements of R1\{0, 1} such that
1

μ1
+ 1

μ2
+ 1

μ3
= 1. Right: the inversion of R1 and of these triples. If μ1, μ2, μ3 is such a triple, then, up to

relabeling, we have�
(

1
μ3

)

≥ 1
3 ,�

(

1
μ2

)

≥ 1
4 and 1

3 is the centroid of the triangle with vertices 1
μ1

, 1
μ2

, 1
μ3

by Corollary 20 according to our hypothesis, we have

(λ1, λ2, λ3) ∈

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{(−4,−1 − i,−1 + i), (−2,−2,−2),

(−1 − i,−1 − i, 2i), (−1 + i,−1 + i,−2i)} if D = 1
{

(−2,−2,−2),
(

−2,−i
√
2, i

√
2
)}

if D = 2
{

(−2,−2,−2),
(−3−i

√
7

2 , −3−i
√
7

2 , −1+i
√
7

2

)

,
(−3+i

√
7

2 , −3+i
√
7

2 , −1−i
√
7

2

)

,
(−1−i

√
7

2 , −1−i
√
7

2 , 1+i
√
7

2

)

,
(−1+i

√
7

2 , −1+i
√
7

2 , 1−i
√
7

2

)}

if D = 7

{(−2,−2,−2)} otherwise

up to permutation (see Tables 3, 4 and 5, which rule out the other triples (λ1, λ2, λ3) of
elements of RD\{0, 1} such that 1

1−λ1
+ 1

1−λ2
+ 1

1−λ3
= 1). If λ1, λ2, λ3 equal −2,−2,−2,

then f is Möbius conjugate to z �→ 1
z2
; in the other cases, f is a Lattès map by Corollary 27.

Thus, the lemma is proved. ��

The following two facts are used in our proof of Lemma 29.

Claim 30 Suppose that D is a positive squarefree integer. Then � ( 1
z

) ≤ 1
2 for all z ∈

RD\{0, 1}.
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962 V. Huguin

Fig. 2 Left: the lattice R3 and 2 of the 27 unordered triples μ1, μ2, μ3 of elements of R3\{0, 1} such that
1

μ1
+ 1

μ2
+ 1

μ3
= 1. Right: the inversion of R3 and of these triples

Table 2 All the triples (μ1, μ2, μ3) of elements of RD\{0, 1} other than (2, 3, 6), (2, 4, 4) and (3, 3, 3) such
that 1

μ1
+ 1

μ2
+ 1

μ3
= 1—up to permutation and complex conjugation

D Triples (μ1, μ2, μ3) of elements of RD\{0, 1} such that 1
μ1

+ 1
μ2

+ 1
μ3

= 1

1 (−2i, 1 + i, 2), (−i, 1 + i, 1 + i), (1 − 3i, 1 + i, 2 − i), (1 − 2i, 1 + i, 3 − i),

(1 − 2i, 2 + i, 2 + i), (1 − i, 2 + 2i, 2 + 2i), (2 − 4i, 2, 2 + i), (2 − 2i, 2, 2 + 2i),

(2 − i, 2 + i, 5), (2 − i, 3 + i, 3 + i), (2, 3 − i, 4 + 2i)

2
(

1 − i
√
2, 1 + i

√
2, 3

)

,
(

1 − i
√
2, 2 + i

√
2, 2 + i

√
2
)

,
(

2 − 2i
√
2, 2, 2 + i

√
2
)

,
(

2 − i
√
2, 2 + i

√
2, 3

)

3
(

−2i
√
3, 3+i

√
3

2 , 2
)

,
(

−i
√
3, 1+i

√
3

2 , 3−i
√
3

2

)

,
(

−i
√
3, 3+i

√
3

2 , 3+i
√
3

2

)

,

(

1−i
√
3

2 , 1 + i
√
3, 1 + i

√
3
)

,
(

1 − i
√
3, 1 + i

√
3, 2

)

,

(

1 − i
√
3, 3+i

√
3

2 , 3 + i
√
3
)

,
(

3−3i
√
3

2 , 3+i
√
3

2 , 3
)

,
(

3−i
√
3

2 , 2 + i
√
3, 9+i

√
3

2

)

,

(

3−i
√
3

2 , 5+i
√
3

2 , 3 + 2i
√
3
)

,
(

3−i
√
3

2 , 3 + i
√
3, 3 + i

√
3
)

,

(

2 − i
√
3, 5+i

√
3

2 , 5+i
√
3

2

)

,
(

2, 5−i
√
3

2 , 4 + 2i
√
3
)

,
(

2, 3 − i
√
3, 3 + i

√
3
)

7
(

1−i
√
7

2 , 1+i
√
7

2 , 2
)

,
(

1−i
√
7

2 , 3+i
√
7

2 , 3+i
√
7

2

)

,
(

1 − i
√
7, 3+i

√
7

2 , 2
)

,

(

3−i
√
7

2 , 3+i
√
7

2 , 4
)

,
(

3−i
√
7

2 , 5+i
√
7

2 , 5+i
√
7

2

)

,
(

2, 5−i
√
7

2 , 3 + i
√
7
)

,

(

2, 7−i
√
7

2 , 7+i
√
7

2

)

15
(

3−i
√
15

2 , 3+i
√
15

2 , 2
)

,
(

2, 5−i
√
15

2 , 5+i
√
15

2

)
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Fig. 3 Left: the lattice R5 and 1 of the 3 unordered triples μ1, μ2, μ3 of elements of R5\{0, 1} such that
1

μ1
+ 1

μ2
+ 1

μ3
= 1. Right: the inversion of R5 and of this triple. The only elements z ∈ R5\{0, 1} such that

�
(

1
z

)

≥ 1
4 are 2, 3 and 4

Fig. 4 Left: the lattice R19 and 1 of the 3 unordered triples μ1, μ2, μ3 of elements of R19\{0, 1} such that
1

μ1
+ 1

μ2
+ 1

μ3
= 1. Right: the inversion of R19 and of this triple

Proof Assume that z ∈ RD\{0} satisfies � ( 1
z

)

> 1
2 , and let us prove that z = 1. Recall that

N (z) = |z|2. We have

2�(z) = 2�
(

1

z

)

N (z) > N (z) ,
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Table 3 Decomposition of M f
3 into irreducible factors in RD[λ] for all the unordered triples λ1, λ2, λ3 of

elements of C\{0, 1}—up to complex conjugation—such that M f
1 and M f

2 split into linear factors in RD[λ]
but M f

3 does not

D λ1, λ2, λ3 Factorization of M f
3 in RD[λ]

1 − 3 − 2 i, − 2 + i, − 1 λ2 + (22 + 4i)λ + 121 + 40i

1 − 1 − 4 i, − 1, − 1 + i λ2 + (10 + 12i)λ + 5 + 48i

1 − 1 − i, − 3 i, i λ2 + (12 + 2i)λ + 15 − 28i

1 − 1, − i, 1 + 2 i λ2 + (−2 − 4i)λ + 25 + 8i

2 − 1 − 2 i
√
2, −1,−1 + i

√
2 λ2 +

(

10 + 4i
√
2
)

λ + 33 + 16i
√
2

3 − 3 − 2 i
√
3, −3+i

√
3

2 , − 1 λ2 +
(

20 + 6i
√
3
)

λ + 79 + 54i
√
3

3 − 2 − i
√
3,-2 + i

√
3, − 1 λ2 + 18λ + 89

3 − 1, − i
√
3, i

√
3 λ2 + 2λ + 25

7 −5−i
√
7

2 , −5+i
√
7

2 , −1 λ2 + 22λ + 125

7 − 2 − i
√
7, −3+i

√
7

2 , −1 λ2 +
(

16 + 2i
√
7
)

λ + 67 + 14i
√
7

7 − 1, −1−i
√
7

2 , i
√
7 λ2 +

(

4 − 2i
√
7
)

λ + 19 − 2i
√
7

15 −3−i
√
15

2 , −3+i
√
15

2 , − 1 λ2 + 14λ + 61

15 − 1, −1−i
√
15

2 , −1+i
√
15

2 λ2 + 6λ + 29

which yields 2�(z) ≥ N (z) + 1 since 2�(z) and N (z) are integers, and hence

discT ((T − z) (T − z)) = (2�(z))2 − 4N (z) ≥ (N (z) − 1)2 ≥ 0 ,

where discT denotes the discriminant with respect to T . Therefore, we have z ∈ R, which
yields z ∈ Z\{0} since RD ∩ R = Z, and hence z = 1 since 1

z > 1
2 . Thus, the claim is

proved. ��
Claim 31 Suppose that D is a positive squarefree integer different from 1, 2, 3, 7, 11 and 15
and z ∈ RD\{0} satisfies � ( 1

z

) ≥ 1
4 . Then z ∈ {1, 2, 3, 4}.

Proof There exists (x, y) ∈ Z
2\ {

0Z2
}

such that z = x + yγD , recalling that

γD =
{

i
√

D if D ≡ 1, 2 (mod 4)
1+i

√
D

2 if D ≡ 3 (mod 4)
.

If D ≡ 1, 2 (mod 4) and z ∈ RD\Z, then D ≥ 5 and |y| ≥ 1, and hence

�
(

1

z

)

= x

x2 + Dy2
≤ max

t∈R
t

t2 + 5
= 1

2
√
5

<
1

4
,

which contradicts our second hypothesis. If D ≡ 3 (mod 4) and z ∈ RD\Z, then D ≥ 19
and |y| ≥ 1, and hence

�
(

1

z

)

= x + 1
2 y

(

x + 1
2 y

)2 + D
4 y2

≤ max
t∈R

t

t2 + 19
4

= 1√
19

<
1

4
,
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Table 4 Decomposition of M f
4 into irreducible factors in RD[λ] for all the unordered triples λ1, λ2, λ3 of

elements of C\{0, 1} other than −5,−2, −1—up to complex conjugation—such that M f
n splits into linear

factors in RD[λ], with n ∈ {1, 2, 3}, but M f
4 does not

D λ1, λ2, λ3 Factorization of M f
4 in RD[λ]

1 − 2 − i, − 2 i, i (λ − 1)
(

λ2 + (6 + 12i)λ + 41 + 60i
)

1 − 1 − 2 i, − 1, − 1 + 2 i (λ − 11)
(

λ2 + 12λ + 211
)

2 − 2, − 1 − i
√
2, −1 + i

√
2 (λ − 1)

(

λ2 + 2λ + 37
)

3 −7−i
√
3

2 ,−1 − i
√
3, −1+i

√
3

2 λ3 + 99−3i
√
3

2 λ2

+ 1449+9i
√
3

2 λ + 4267 + 768i
√
3

3 − 2 − 2 i
√
3, −3−i

√
3

2 , −1+i
√
3

2

(

λ + 1+7i
√
3

2

)

(

λ2 +
(

5 − i
√
3
)

λ + 95−17i
√
3

2

)

3 − 2 − i
√
3, −1−i

√
3

2 , i
√
3

(

λ + 8 + 5i
√
3
)

(

λ2 +
(

−19 − i
√
3
)

λ − 62 + 65i
√
3
)

3 − 2, −1−3i
√
3

2 , −1+i
√
3

2 λ3 + 39−7i
√
3

2 λ2

+ 261−19i
√
3

2 λ + 449 − 302i
√
3

3 − 1, −1−i
√
3

2 , 1 + 2i
√
3 λ3 +

(

33 − 12i
√
3
)

λ2

+
(

−297 − 132i
√
3
)

λ + 103 + 1392i
√
3

3 −1−i
√
3

2 , 1+i
√
3

2 , 1 − i
√
3 λ3 + 27+27i

√
3

2 λ2

+−423+39i
√
3

2 λ + 883 + 624i
√
3

7 − 3, −1−i
√
7

2 , −1+i
√
7

2 λ3 + 25λ2 + 187λ + 587

7 − 1, 1−i
√
7

2 , 1+i
√
7

2 λ3 + λ2 − 5λ − 413

which also contradicts our second hypothesis. Therefore, we have z ∈ Z\{0}, and hence
z ∈ {1, 2, 3, 4} since 1

z ≥ 1
4 . Thus, the claim is proved. ��

By Lemma 29, we are reduced to studying the quadratic rational maps that have a super-
attracting or multiple fixed point.

Lemma 32 Assume that D is a positive squarefree integer and f : ̂C → ̂C is a quadratic
rational map that has a superattracting fixed point and whose multiplier at each cycle with
period less than or equal to 4 lies in RD. Then f is either a power map or a Chebyshev map.

Proof There is a parameter c ∈ C such that f is Möbius conjugate to fc : z �→ z2 + c. Let
us prove that c ∈ {−2, 0}. By Corollary 20, the multiplier polynomials

M fc
1 (λ) = λ3 − 2λ2 + 4cλ and M fc

3 (λ) = λ2 + (−8c − 16)λ + 64c3 + 128c2 + 64c + 64

split into linear factors in RD[λ], and hence 4c lies in RD and the discriminants

disc M fc
1 = −22(4c − 1)(4c)2 and disc M fc

3 = −22(4c + 7)(4c)2

123



966 V. Huguin

Table 5 Decomposition of M f
5 into irreducible factors in RD[λ] for all the unordered triples λ1, λ2, λ3 of

elements of C\{0, 1} other than −3,−3,−1—up to complex conjugation—such that M f
n splits into linear

factors in RD[λ], with n ∈ {1, . . . , 4}, but M f
5 does not

D λ1, λ2, λ3 Factorization of M f
5 in RD[λ]

1 − 2 − i, − 2 − i, − 1 + i
(

λ3 + (10 + 23i)λ2

+(33 + 188i)λ + 758 + 1703i
)2

1 − 1 − 2 i, − 1 − 2 i, i
(

λ3 + (−5 + 32i)λ2

+(−633 − 640i)λ + 605 − 11584i
)2

1 − i, − i, 1 + i
(

λ3 + (4 + 31i)λ2

+(−171 − 176i)λ − 700 + 1699i
)2

2 − 1 − i
√
2,−1 − i

√
2, i

√
2

(

λ3 +
(

3 + 3i
√
2
)

λ2

+
(

−27 − 42i
√
2
)

λ + 3 − 343i
√
2
)2

3 − 2 − i
√
3, −2 − i

√
3, −1+i

√
3

2
(

λ3 +
(

−12 − 21i
√
3
)

λ2

+
(

−573 + 36i
√
3
)

λ − 8380 + 2709i
√
3
)2

3 −3−i
√
3

2 , −3−i
√
3

2 , −1 + i
√
3

(

λ3 + 15−5i
√
3

2 λ2

+−87−169i
√
3

2 λ − 320 − 709i
√
3
)2

3 −1−i
√
3

2 , −1−i
√
3

2 , 1 + i
√
3

(

λ3 + 3−3i
√
3

2 λ2

+−147+45i
√
3

2 λ − 577 − 720i
√
3
)2

3 − i
√
3, −i

√
3, 1+i

√
3

2
(

λ3 +
(

42 − 29i
√
3
)

λ2

+
(

−1329 − 232i
√
3
)

λ − 7742 + 4897i
√
3
)2

are squares in RD . Therefore, we have c = 0 or there exist α, β ∈ RD such that

−(4c − 1) = α2 and − (4c + 7) = β2

by Claim 28. In the latter case, we have (α − β)(α + β) = 8, which yields

α = (α − β)2 + 8

2(α − β)
∈ RD ∩

{

δ2 + 8

2δ
: δ ∈ RD and N (δ) divides 64

}

,

and hence we obtain

α ∈

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{−3,−2,−i, i, 2, 3} if D = 1

{−3, 0, 3} if D = 2
{

−3, −3−i
√
3

2 , −3+i
√
3

2 , 3−i
√
3

2 , 3+i
√
3

2 , 3
}

if D = 3

{−3,−1, 1, 3} if D = 7

{−3, 3} otherwise
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Table 6 Decomposition of M fc
4 into irreducible factors in RD[λ] for the values of D and c appearing in our

proof of Lemma 32

D c Factorization of M fc
4 in RD[λ]

1 −3
4 λ3 − 39λ2 + 939λ − 5221

1 1
2 λ3 − 44λ2 + 784λ − 8896

2 1
4 λ3 − 47λ2 + 779λ − 4861

3 −1−3i
√
3

8 λ3 + −109+3i
√
3

2 λ2 + 1177+15i
√
3

2 λ − 2983 − 1218i
√
3

3 −1+3i
√
3

8 λ3 + −109−3i
√
3

2 λ2 + 1177−15i
√
3

2 λ − 2983 + 1218i
√
3

by listing all the elements δ ∈ RD with norm N (δ) dividing 64. Therefore, in the latter case,
we have

c = 1 − α2

4
∈

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{−2, −3
4 , 1

2

}

if D = 1
{−2, 1

4

}

if D = 2
{

−2, −1−3i
√
3

8 , −1+3i
√
3

8

}

if D = 3

{−2, 0} if D = 7

{−2} otherwise

,

and hence c ∈ {−2, 0} since the polynomial M fc
4 splits into linear factors in RD[λ] by Corol-

lary 20 according to our hypothesis (see Table 6, which rules out all the other possibilities).
Thus, the lemma is proved. ��

By Lemmas 29 and 32, it remains to examine the quadratic rational maps that have a
multiple fixed point and whose multipliers all lie in the ring of integers of a given imaginary
quadratic field. We prove that there is no such map.

Lemma 33 Assume that D is a positive squarefree integer and f : ̂C → ̂C is a quadratic
rational map whose multiplier at each cycle with period less than or equal to 5 lies in RD.
Then the fixed points for f are all simple.

Proof To obtain a contradiction, suppose that f has a multiple fixed point. If f has a unique
fixed point, then f is Möbius conjugate to h by Proposition 21, and hence

Mh
5 (λ) = (

λ3 − 309λ2 + 27399λ − 696691
)2

splits into linear factors in RD[λ] by Corollary 20, which is impossible since it is the square
of an irreducible polynomial over Q of degree 3 and RD is contained in an extension of Q
of degree 2. Thus, f has exactly two fixed points, and it follows that f is Möbius conjugate
to ga,1 by Proposition 21, where a ∈ RD\{1} is the multiplier of f at its simple fixed point.
By Corollary 20, the polynomial

M
ga,1
3 (λ) = λ2 + (−4a2 − 16a − 18

)

λ + 36a3 + 112a2 + 124a + 89

splits into linear factors in RD[λ], and hence its discriminant

disc M
ga,1
3 = 24(a + 2)(a − 1)3
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968 V. Huguin

Table 7 Decomposition of M
ga,1
4 into irreducible factors in RD[λ] for the values of D and a appearing in our

proof of Lemma 33

D a Factorization of M
ga,1
4 in RD[λ]

2 − 1 λ3 − 15λ2 + 255λ − 1457

2 0 λ3 − 47λ2 + 779λ − 4861

3 −1−i
√
3

2 λ3 +
(

−21 + 14i
√
3
)

λ2 +
(

99 − 124i
√
3
)

λ − 1279 + 542i
√
3

3 −1+i
√
3

2 λ3 +
(

−21 − 14i
√
3
)

λ2 +
(

99 + 124i
√
3
)

λ − 1279 − 542i
√
3

is a square in RD . It follows that there exists β ∈ RD such that (a − 1)(a + 2) = β2 by
Claim 28, and we have

(2a − 2β + 1)(2a + 2β + 1) = 9 .

Therefore, we have

a = (2a − 2β + 1)2 − 2(2a − 2β + 1) + 9

4(2a − 2β + 1)
,

which yields

a ∈ (RD\{1}) ∩
{

δ2 − 2δ + 9

4δ
: δ ∈ RD and N (δ) divides 81

}

,

and hence we obtain

a ∈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{−3,−2,−1, 0, 2} if D = 2
{

−3,−2, −1−i
√
3

2 , −1+i
√
3

2 , 2
}

if D = 3

{−3,−2, 2} otherwise

by listing all the elements δ ∈ RD with norm N (δ) dividing 81. The polynomial

M
g−3,1
4 (λ) = (λ − 31)

(

λ2 + 80λ + 1231
)

does not split into linear factors in RD[λ] since it has two non-integer real roots. Moreover,
the polynomials

M
g−2,1
4 (λ) = λ3 + 9λ2 + 123λ + 1307 and M

g2,1
4 (λ) = λ3 − 231λ2 + 17211λ − 407861

do not split into linear factors in RD[λ] either since they are irreducible over Q of degree 3
and RD is contained in an extension of Q of degree 2. This contradicts the fact that M

ga,1
4

splits into linear factors in RD[λ] by Corollary 20 according to our hypothesis (see Table 7,
which rules out all the other possibilities). Thus, the lemma is proved. ��

Finally, we have proved Theorem 9, which follows immediately from Lemmas 29, 32
and 33.

Remark 34 The decompositions into irreducible factors given in Tables 3, 4, 5, 6 and 7 were
obtained by using the software SageMath. In principle, we can easily checkwhether the given
factors are irreducible as they are all monic of degree at most 3. Assume that D is a positive
squarefree integer. Every monic polynomial of degree 1 in RD[λ] is irreducible. Moreover, a
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Quadratic rational maps with integer multipliers 969

monic polynomial of degree 2 or 3 in RD[λ] is irreducible if and only if it has no root in RD .
Suppose that P ∈ RD[λ] is monic with constant coefficient c0 ∈ RD . Note that, if λ0 ∈ RD

is a root of P , then it divides c0 in RD , and hence N (λ0) divides N (c0) in Z. If c0 is zero,
then 0 is a root of P . If c0 is nonzero, then there are only finitely many elements λ0 ∈ RD

with norm N (λ0) dividing N (c0), and we can list all of them and check whether they are
roots of P . Thus, we can check whether a monic polynomial in RD[λ] has a root in RD , and
hence check whether a polynomial of degree 2 or 3 in RD[λ] is irreducible.
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