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Abstract
On bounded B-regular domains, we study envelopes of plurisubharmonic functions bounded
from above by a function φ which is continuous in the extended reals on the closure of the
domain. Forφ satisfying certain additional criteria limiting its behavior at the singularities,we
establish a set where the Perron–Bremermann envelope Pφ is guaranteed to be continuous.
This result is a generalization of a classic result in pluripotential theory due to J. B. Walsh.
As an application, we show that the complex Monge–Ampère equation

(ddcu)n = μ

being uniquely solvable for continuous boundary data implies that it is also uniquely solvable
for a class of boundary values continuous in the extended reals and unbounded from above.

1 Introduction

We say that a plurisubharmonic function u is quasibounded if there exists an increasing
sequence {un} of upper bounded, plurisubharmonic functions such that un ↗ u. If the con-
vergence only holds outside a pluripolar set, we say that u is quasibounded quasi-everywhere.
It was established in [11] that a sufficient condition for the latter is that u has a tamemajorant,
i.e. a non-negative function f ≥ u for which there exists a functionψ : [0,+∞] → [0,+∞]
such that ψ(+∞) = +∞,

lim
t→+∞

ψ(t)

t
= +∞,

and ψ ◦ f admits a non-trivial plurisuperharmonic majorant. One may equivalently define
tame functions in a less straightforward way by first considering the set

M := {
f : � → [0,+∞] ; ∃u ∈ −PSH(�), f ≤ u

}
,
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3960 M. Nilsson

i.e. the set of non-negative functions on a bounded domain � ⊂ C
n admitting a plurisuper-

harmonic majorant. On M, one may define a family of operators Sλ : M → −PSH(�)

by

(Sλ f )(z) :=
(
inf

{
v(z) ; v ∈ −PSH(�), v ≥ ( f − λ)+

})

∗,

and it was proven in [11] that S( f ) := (limλ→∞ Sλ( f ))∗ ≡ 0 if and only if f is tame in the
above sense. The analogous characterization in the harmonic case was established by Arsove
and Leutwiler [1]. In Sect. 2, we establish a third characterization of tameness, and use this
to establish a continuity set for envelopes of the form

Pφ(z) = sup
{
u(z) ; u ∈ PSH(�), u∗ ≤ φ

}
,

where φ is a lower bounded function with φ∗ = φ∗ on �̄, such that the positive part of φ is
tame. Recall that

φ∗(z) := lim sup
�w→z

φ(w) φ∗(z) := lim inf
�w→z

φ(w)

for all z ∈ �̄. In particular, u∗ is upper semicontinuous on �̄ for any upper bounded plurisub-
harmonic function u defined on �. As shown in [11], such envelopes may be used to show
that the Dirichlet problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u ∈ PSH(�) ∩ L∞
loc(�)

(ddcu)n = 0

u∗ ≤ φ

lim�ζ→z0∈∂� u(ζ ) = φ(z0)

is uniquely solvable when � is B-regular and φ is a tame harmonic function satisfying
φ∗ = φ∗. Using similar techniques, we show in Sect. 3 that a large class of corresponding
inhomogeneous Monge–Ampère equations also have unique solutions. Uniqueness results
such as these are generally not easily obtained when allowing for singularities on the bound-
ary, as the comparison principle is not readily applicable. Previous results in this direction
include the works of Ivarsson [7, 8], who in particular proved that the Dirichlet problem

{
det( ∂2u

∂z j ∂ z̄k
(z)) = f (z, u(z))

lim�ζ→z0∈∂� u(ζ ) = +∞
admits a unique plurisubharmonic solution for f satisfying a certain set of criteria.

Since harmonicity is preserved whenmultiplying by−1, the original theory of Arsove and
Leutwilermay almost verbatim be adapted to negative functions. The corresponding notion of
tameness in pluripotential theory, equivalent to the definition above up to sign, has recently
been used by Rashkovskii [12] in the study of singularities of negative plurisubharmonic
functions, motivated by the problem of determining when two plurisubharmonic functions
may be connected by a geodesic. In the final section of the paper, we therefore investigate
the envelope Pφ when φ is allowed to have negative poles as well. Using the machinery of
Jensen measures and a generalization of Edwards’ theorem, it is again possible to establish
a set where the envelope is continuous. More explicitly, we are able to show that Pφ is
continuous on the set

{z ∈ �̄ ; v∗(z) �= −∞} ∩ {z ∈ �̄ ; w∗(z) �= +∞},
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Continuity of envelopes of unbounded plurisubharmonic functions 3961

where v,−w ∈ PSH(�) ∩ USC(�̄) and the combined singularities of v,w in a precise
sense surpass those of φ.

2 Envelopes bounded from below

We begin with the following definition, which we will refer to throughout the paper.

Definition 1 For a given pair of functions f : �̄ → [−∞,+∞], v ∈ −PSH(�)∩LSC(�̄),
we say that v is a strong majorant to f if

f (z0) = +∞ �⇒ v(z0) = +∞,

v(z)

f (z)
→ ∞ as f (z) → ∞.

We say that a function w is a strong minorant to f if −w is a strong majorant to − f .

It turns out that for a positive function f , having a non-trivial strong majorant is equivalent
to being tame, i.e. S( f ) = 0. This result extends Theorem 3.2 in [11]. For the proof, we
remind the reader of the following basic properties of the operator S : M → −PSH(�):

• For α ≥ 0, S(α f ) = αS( f ).
• S( f + g) ≤ S( f ) + S(g).
• If f ≤ g quasi-everwhere, then S( f ) ≤ S(g).
• If g is tame, then S( f + g) = S( f ).

Lemma 2.1 Let f : �̄ → [0,+∞]. Then the following are equivalent:

1. S( f ) = 0.
2. There exists a function ψ : [0,+∞] → [0,+∞] such that ψ(+∞) = +∞,

lim
t→+∞

ψ(t)

t
= +∞,

and ψ ◦ f admits a non-trivial plurisuperharmonic majorant.
3. f has a non-trivial strong majorant.

Proof (3) �⇒ (1): Let v be a strong majorant to f . Then vε := εv are strong majorants to
f as well, for all ε > 0. Define C = {z ; vε(z) < f (z)}, and note that f is bounded from
above by some constant k > 0 on C , since otherwise we could find a sequence zn ∈ C such
that f (zn) → ∞, reaching a contradiction. It follows that f ≤ vε + k, and thus

S( f ) ≤ εS(v).

Letting ε → 0, we get S( f ) = 0.
(1) ⇐⇒ (2) �⇒ (3): Let v be a plurisuperharmonic majorant to ψ ◦ f , and let k > 0

be such that ψ(t) + k > t . Clearly v + k is a strong majorant to f , and as (1) ⇐⇒ (2) was
proven in [11], the lemma follows.

Working with condition (3) instead of condition (2), the proof of Theorem 4.4 in [11] may
be adapted to establish the following statement.

Proposition 2.2 Let� be a bounded B-regular domain, and let φ be a function bounded from
below such that φ∗ = φ∗ on �̄. If φ has a non-trivial strong majorant v, then the envelope

Pφ(z) = sup{u(z) ; u ∈ PSH(�), u∗ ≤ φ}
is continuous on {z ∈ �̄ ; v∗(z) �= +∞}.
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Proof Avoiding a vacuous truth, we may assume that {z ∈ �̄ ; v∗(z) �= +∞} is non-
empty. Since φ is bounded from below, we may further assume that v ≥ φ > 0. Now fix
u ∈ PSH(�) satisfying u∗ ≤ φ. As Lemma 2.1 implies that S(φ) = 0, it follows that
S(u) = 0, and thus u is quasibounded quasi-everywhere. On the other hand, the sequence of
harmonic functions {hn} obtained by solving the classical Dirichlet problem for the continu-
ous boundary data min{φ, n}|∂� is also majorized by v, therefore converging to a harmonic
function h by Harnack’s theorem. Clearly u ≤ h, and it follows from the Brelot–Cartan
theorem that Pφ is upper semicontinuous and plurisubharmonic on �.

In order to establish continuity at all points z where v∗(z) �= +∞, we will now show that

Pφ(z) = sup{u(z) ; u ∈ PSH(�) ∩ C(�̄), u ≤ φ}
for all such z. Continuity will then follow as {z ∈ �̄ ; v∗(z) �= +∞} is open, and the
pointwise supremum of a family of lower semicontinuous functions on a open set is lower
semicontinuous. By Wikström [14, Corollary 4.3],

sup{u(z) ; u ∈ PSH(�) ∩ C(�̄), u ≤ φ}
= sup{u(z) ; u ∈ PSH(�) ∩ USC(�̄), u ≤ φ}

and thus it is enough to find a sequence of upper bounded plurisubharmonic functions approx-
imating Pφ frombelow.As in the proof ofLemma2.1, pick k > 0 such that εv+k > φ ≥ Pφ.
Then uε := Pφ − εv yields such a sequence as ε → 0, since

Pφ − εv = Pφ − εS0(v) = Pφ − Sk(εv + k)

≤ max{Pφ, 0} − Sk(max{Pφ, 0}) ≤ k < ∞. ��

Remark 1 Using different methods, it is possible to prove a similar statement without the
requirement that φ is bounded from below. We will return to this question in Sect. 4.

3 A Dirichlet problemwith unbounded boundary data

We now turn our attention to the inhomogeneous Dirichlet problem for which the boundary
data corresponds to a function on �̄ of the same flavor as in Proposition 2.2. We will restrict
our analysis to measures for which the complex Monge–Ampère equation is solvable when
considering continuous boundary data.

Definition 2 We say that a measure μ is compliant if
⎧
⎪⎨

⎪⎩

u ∈ PSH(�) ∩ L∞(�)

(ddcu)n = μ

lim�ζ→z0∈∂� u(ζ ) = φ(z0)

has a unique solution for all φ ∈ C(∂�). If every such solution is continuous, we say that μ
is continuously compliant.

Remark 2 Kołodziej [10] proved in particular that the measure | f | dV is continuously com-
pliant if f ∈ L p(�), where p > 1 and � is strictly pseudoconvex. Additional compliant
measures can be obtained by applying Kołodziej’s subsolution theorem [9]. Note that the
existence of continuously compliant measures implies that � is B-regular.
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It should be mentioned that the proof of the homogeneous case addressed in [11] only
needs minor modifications to encompass boundary values corresponding to a tame harmonic
function φ, bounded from below such that φ∗ = φ∗ on �̄. Proposition 2.2 then implies that
the solution is continuous off the singularity set of any strong majorant of φ. To prove the
inhomogeneous case, we will make use of the following result due to Demailly [5].

Lemma 3.1 Let � be a domain in C
n, u, v ∈ PSH(�) ∩ L∞

loc(�). Then

(ddc max{u, v})n ≥ χ{u≥v}(ddcu)n + χ{u<v}(ddcv)n .

We are now ready to prove the main theorem of this section.

Theorem 3.2 Let � ⊂ C
n be a bounded hyperconvex domain, μ be a compliant measure,

and let φ be a harmonic function bounded from below such that φ∗ = φ∗ on �̄, φ has a
non-trival strong majorant ψ . Then the Dirichlet problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u ∈ PSH(�) ∩ L∞
loc(�)

(ddcu)n = μ

u∗ ≤ φ

lim�ζ→z0∈∂� u(ζ ) = φ(z0)

has a unique solution. If μ is continuously compliant, then the solution is continuous outside
the set {z ; ψ∗(z) = +∞}.
Proof A candidate for a solution is the envelope

U = sup
{
u ; u ∈ PSH(�) ∩ L∞

loc(�), (ddcu)n ≥ μ, u ≤ φ
}
.

Note that the defining family for U is non-empty, since it contains functions vk satisfying
⎧
⎪⎨

⎪⎩

vk ∈ PSH(�) ∩ L∞(�)

(ddcvk)n = μ

lim�ζ→z0∈∂� vk(ζ ) = min{φ(z0), k}.
by the compliance of μ and the fact that φ is harmonic. Choquet’s lemma then implies
U∗ = (supk Uk)

∗ for some countable family {Uk}. Since Ũk := max{U1, ...,Uk} increases
to U∗ outside a pluripolar set, we conclude that (ddcU∗)n ≥ μ, and so U∗ = U . Without
loss of generality, assume that U ≥ 0.

By Lemma 2.1, S(U ) = 0. As in the proof of [11, Theorem 3.1], we set

wk := U − Sk(U ),

and note that wk is plurisubharmonic, bounded from above by k and wk ↗ U quasi-
everywhere. Albeit the Monge–Ampère measure (ddcwk)

n might not exist in the sense of
Bedford–Taylor, the functions

uk := max{vk, wk}
have well defined Monge–Ampère measures, since uk ∈ PSH(�) ∩ L∞(�). We claim that
for z0 ∈ � and for r small enough,

(ddcuk)
n |B(z0,r) ≥ μ|B(z0,r).

If wk(z0) − vk(z0) < 0, this is clear since

{z ∈ � ; 0 > wk(z) − vk(z0)}
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is open, so we may choose r such that uk |B(z0,r) = vk |B(z0,r). On the other hand, if wk(z0)−
vk(z0) ≥ 0, pick r ,m > 0 such that

B(z0, r) ∩ {z ∈ � ; 0 > wk(z) − vk(z0) + m} = ∅.

It follows fromregularization andMinkowski’s determinant inequality that (ddcwk)
n |B(z0,r) ≥

μ|B(z0,r), and since wk is bounded from below on B(z0, r),

(ddcuk)
n |B(z0,r) ≥ χ{vk≥wk }(ddcvk)n |B(z0,r) + χ{vk<wk }(ddcwk)

n |B(z0,r)

≥ μ|B(z0,r)

by Lemma 3.1. By balayage, (ddcuk)n ≥ μ, and since uk is bounded, we may by the
domination principle deduce that uk = vk , and thus vk ↗ U quasi-everywhere. We conclude
that (ddcU )n = μ.

In order to show that the boundary values are attained, fix z0 ∈ ∂�, and note that

min{φ(z0), k} = vk(z0) = lim inf
�ζ→z0

vk(ζ ) ≤ lim inf
�ζ→z0

U (ζ )

≤ lim sup
�ζ→z0

U (ζ ) ≤ lim sup
�ζ→z0

φ(ζ ) = φ(z0).

By letting k → ∞, the above chain of inequalities readily implies that

lim
�ζ→z0

U (ζ ) = φ(z0).

The proof of uniqueness is essentially the same as in the proof of Theorem 4.2 in [11], but
we will include it here for completeness. Suppose that ũ is another solution to the Dirichlet
problem. Note that ũ ≤ U , as ũ lies in the defining family for U , with ũ < U on some set
that is not pluripolar. It follows that we may find uk and a constant C > 0 such that the set

E = {z ∈ � ; ũ + C < uk(z)}
is non-empty as well, and the boundary values of ũ guarantees that E � �. Thus we may
find an open set �̃ such that E � �̃ � � and ũ + C ≥ uk on ∂�̃. Since

(ddcũ)n = μ = (ddcuk)
n,

the comparison principle implies that E is empty.
Lastly, assume that μ is continuously compliant. Since the Monge–Ampère operator is

continuous with regards to increasing sequences andU is the unique solution, we may write

U = (
lim
k→∞ vk

)∗
,

and it follows from the Brelot–Cartan theorem thatU coincides with a lower semicontinuous
function outside of a pluripolar set, i.e. continuous outside a pluripolar set P . We claim
that P ⊂ {z ; ψ(z) = +∞}. Pick k > 0 such that εψ + k > φ ≥ U , and define
ũk = max

{
U − εψ, vk

}
. Since

εψ ≥ max{φ − k, 0} ≥ max{U − k, 0},
we have that εψ ≥ Sk(U ), and thus ũk ≤ wk ≤ uk = vk . It follows that vk ↗ U outside
{z ; ψ(z) = +∞}, and that U is continuous on {z ; ψ∗(z) �= +∞}. ��
Remark 3 In the general case when φ is not necessarily tame, the uniqueness argument above
shows that any solution must be larger or equal to (supk vk)

∗.
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Continuity of envelopes of unbounded plurisubharmonic functions 3965

We stress that having a strong majorant is only a sufficient condition. When μ = 0, it was
shown in [11] that uniqueness is equivalent to the envelope above being quasibounded quasi-
everywhere. Indeed, tame plurisubharmonic functions are characterized by the following,
possibly stronger property:

Theorem 3.3 Let 0 ≤ u ∈ PSH(�). Then u is tame if and only if there exists an increasing
sequence of upper bounded plurisubharmonic functions un ≤ u such that (un − u)∗ is
plurisubharmonic and un − u ↗ 0 quasi-everywhere.

Proof If u is tame, then such a sequence exists by [11, Theorem 3.1]. For the other direction,
let Kn ≥ 0 be constants such that un ≤ Kn . Then (u − u0)∗ + K0 is a plurisuperharmonic
majorant to u, so u ∈ M. Using the properties of S established in [11],

S(u) = S(u − Kn) ≤ S(u − un) ≤ u − un → 0

outside a pluripolar set, and it follows that u is tame. ��
In a recent paper, Rashkovskii [12] established sufficient conditions for φ to be tame,

yielding more examples than one may extract from Lemma 2.1. Specifically, he introduced
the notion of the Green–Poisson residual function gφ for φ ∈ PSH−(�), defined as

gφ(z) := lim sup
x→z

sup{v(x) ; v ∈ PSH−(�), v ≤ φ + Cv}.

This construction is very similar to the construction of the operator S, and in fact, for φ ∈
M ∩ −PSH(�),

S(φ) = −g−φ.

To see this, note that

(Sλφ)(z) = (
inf

{
v(z) ; v ∈ −PSH(�), v ≥ (φ − λ)+

})
∗

= (
inf

{
v(z) ; v ∈ M ∩ −PSH(�), v ≥ (φ − λ)+

})
∗

= −(
sup

{
v(z) ; v ∈ PSH−(�), v ≤ min{−φ + λ, 0}})∗

= −(
sup

{
v(z) ; v ∈ PSH−(�), v ≤ −φ + λ

})∗
.

Letting λ → ∞, we encompass all negative plurisubharmonic functions v for which there
exists a constant Cv with v ≤ −φ + Cv . Using Lemma 2.1, we immediately obtain the
following corollary in this setting.

Corollary 3.4 Let � be a bounded domain, and let φ ∈ PSH−(�). Then gφ = 0 if and only
if φ has a non-trivial strong minorant.

Conversely, Corollary 6.10 in [12] translates into the following result in our setting.

Corollary 3.5 Let �,�′ be two hyperconvex domains such that � � �′. Then every function
having a plurisuperharmonic majorant φ with −φ ∈ E(�′) ∩ Ea(�) is tame.

Here, Ea(�) denotes the subset of functions in the Cegrell class E(�) whose Monge–
Ampère measure does not charge pluripolar sets. The class E(�) may be defined as all
negative plurisubharmonic functions u such that for each z0 ∈ �, there exists a neighborhood
Uz0 and decreasing sequence of bounded functions h j such that limz→ζ0∈∂� h j (z) = 0,

sup
j

∫
(ddch j )

n < ∞,
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and h j ↘ u on Uz0 . In a certain sense, E(�) constitutes the largest domain of functions
for which the Monge–Ampère operator is well-behaved, but requires hyperconvexity of the
domain � not to be empty. See Cegrell’s paper [4] for details.

Assuming that 0 ≤ φ ∈ −PSH(�), one could ask whether S(φ) = 0 (i.e. φ is tame)
implies that −φ ∈ E(�), and vice versa. As the following examples show, this is not case.

Example 1 Let � = B be the unit ball in C
2 and let φ(z, w) = (− log|z|)α , where 1/2 ≤

α < 1. Then φ is tame by [11, Corollary 3.2], but −φ /∈ E(�) by Cegrell [4, Example 5.9].

Example 2 Let � = B be the unit ball in C
2. Define

φ(z, w) = 1 − |z|2
|1 − z|2 .

By [11], φ is not quasibounded, and in particular not tame. On the other hand, −φ ∈ E(�)

by Błocki [2, Theorem 4.1].

4 Unbounded envelopes

As Lemma 2.1 and Corollary 3.4 shows, the language of strong majorants and minorants is
appropriate when limiting the behavior of positive and negative singularities all at once, for
a function φ : �̄ → [−∞,+∞]. In this section, we expand our study to functions of this
sort. We begin by establishing a preliminary result of independent interest.

Let X be a compact metric space, and let F be a cone of upper bounded, upper semicon-
tinuous functions on X , not necessarily containing zero. For each x ∈ X , we associate a set
of positive measures

MF
x = {

μ ; u(x) ≤
∫

u dμ for all u ∈ F}
.

Further, for a measurable function g on X , we define

Sx (g) =
{
sup{u(x) ; u ∈ F, u ≤ g}, if ∃u ∈ F ; u ≤ g,

−∞, otherwise,

Ix (g) = inf
{ ∫

g dμ ; μ ∈ MF
x

}
.

It is clear that Sx (g) ≤ Ix (g), since for all u in the defining envelope of Sx (g), and all μ in
the defining envelope of Ix (g), we have

u(x) ≤
∫

u dμ ≤
∫

g dμ.

Edwards’ theorem [6] states the following:

Theorem 4.1 (Edwards’ Theorem) If F contains all constants and g is bounded and lower
semicontinuous, then Sg = Ig.

It is possible to modify Edwards’ proof to obtain a more general statement, valid for cones
not containing constants and for g not bounded from above. To this end, we consider the set
of measures

CF
x := {

μ ; μ(X) ≤ −Sx (−�)
} ∩ MF

x ,
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where −1(x) ≡ −1. It follows from the Banach–Alaoglu theorem and the fact that upper
semicontinuous functions may be approximated from above by continuous functions that
CF
x is weak∗-compact for all x ∈ X such that Sx (−1) > −∞. Letting these sets carry

the compactness argument of the original proof, we obtain the following reformulation of
Edwards’ theorem.

Theorem 4.2 Let g be lower semicontinuous and bounded from below. For all x ∈ X such
that Sx (−1) > −∞, we have Sx (g) = Ix (g). It is enough to take the infinum over measures
in CF

x .

Proof Step 1. We first consider the case when g ∈ C(X). Since g is bounded from below
by say −K , we have

∞ > g(x) ≥ Sx (g) ≥ K · Sx (−1) > −∞.

In other words, the map Sx defined on measurable functions by g �→ Sx (g) maps C(X) into
R. Furthermore, −Sx is sublinear:

i) − Sx (αg) = −αSx (g), α ≥ 0,

i i) − Sx (g1 + g2) ≤ −Sx (g1) − Sx (g2).

On the subspace of C(X) generated by g, we now define the linear function −Hx (kg) :=
−kSx (g), where k ∈ R. Now note that for k ≥ 0,

−Sx (kg) = −Hx (kg),

and using i i), we have

0 = −Sx (kg − kg) ≤ −Sx (kg) − Sx (−kg) = Hx (−kg) − Sx (−kg),

implying−Hx (−kg) ≤ −Sx (−kg). It follows that−Hx ≤ −Sx on the whole span generated
by g, and by the Hahn-Banach theorem, we may extend −Hx to a linear map −H̃x on C(X),
dominated by −Sx .

We will now show that Sx (−1) > −∞ implies that H̃x is a positive linear functional. For
all ε > 0 and for all h ∈ C(X), h ≥ 0, we have

H̃x (h) ≥ Sx (h) > εSx (−1) > −∞,

and letting ε → 0, H̃x (h) ≥ 0. The Riesz representation theorem yields a measure repre-
sentation of H̃x , which we denote by μg . Clearly μg ∈ CF

x ⊂ MF
x , so Sx (g) and Ix (g) do

indeed coincide.
Step 2. If g is merely lower semicontinuous and bounded from below, note that Sx (g) =

Ix (g) if Sx (g) = ∞, so assume Sx (g) < ∞. Now, let gi ∈ C(X) be an increasing sequence
such that gi ↗ g. Further, associate to each gi a measure μgi as above and extract a subse-
quence {μgin } converging to μg in the weak∗-topology. Fixing k ∈ N, we have

Sx (g) ≥ lim
n→∞ Sx (gin ) = lim

n→∞ Ix (gin ) = lim
n→∞

∫
gin dμgin

≥ lim
n→∞

∫
gk dμgin =

∫
gk dμg.

Now take a constant K such that gk + K > 0 for all k, and write
∫

gk dμg =
∫

(gk + K ) dμg −
∫

K dμg
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and apply the monotone convergence theorem to the sequence {gk + K } in order to conclude
Sx (g) ≥ Ix (g), and thus Sx (g) = Ix (g). ��

Corollary 4.3 IfF contains negative constants and g is lower semicontinuous, then Sg = Ig.

Remark. Note that Sx (g) > −∞ for all g ∈ C(X) if and only if Sx (−1) > −∞, so the
assumptions of the theorem cannot be weakened whilst still using the proof idea of Edwards
(viewing Sx as a supralinear operator on C(X)).

Now, Theorem 4.2 does not say anything if Sx (−1) = −∞ for all x ∈ X . In certain situ-
ations, this may be mended by embedding the cone into a larger cone on which Theorem 4.2
may be applied.

Proposition 4.4 Let g be lower semicontinuous, and suppose that F is a cone such that for
all K > 0,

u ∈ F �⇒ max{u − K , 0} ∈ F .

If g ≥ 0, then S(g) = I (g).

Proof Define the coneF∗, generated byF and−1, and denote the corresponding operators by
S∗, I ∗. This way, we get more functions and fewer measures, i.e. F ⊂ F∗ and MF∗

x ⊂ MF
x ,

and thus we have

Sx (g) ≤ Ix (g) ≤ I ∗
x (g) = S∗

x (g),

since F∗ satisfies the assumptions of Theorem 4.2 at all points x ∈ X . Hence it is enough
to show that Sx (g) = S∗

x (g). However, any element in the defining envelope for S∗g may be
written u − K ≤ g, where u ∈ F and K > 0. As u − K ≤ max{u − K , 0} ∈ F , indeed
Sx (g) = S∗

x (g) for g ≥ 0. ��

Proposition 4.5 Let g ≤ 0 be lower semicontinuous, and suppose that F is a cone of non-
positive functions such that for all K > 0,

u ∈ F �⇒ max{u,−K } ∈ F .

If g has a minorant in F , then S(g) = I (g).

Proof Again, S(g) and S∗(g) coincide, since

u − K ≤ u + max{s,−K } ≤ g

where u − K belongs to the envelope of S∗(g) and s belongs to the envelope of S(g). ��

Theorem 4.2 will be our main tool in proving the following lemma.

Lemma 4.6 Let � be a bounded B-regular domain, and let φ be a function bounded from
above such that φ∗ = φ∗ on �̄. Further assume that φ has a strong minorant v, and that
there exists an open set Uv ⊂ � where v is continuous. Then the envelope

Pφ(z) = sup
{
u(z) ; u ∈ PSH(�), u∗ ≤ φ

}

is continuous on Uv as well.
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Proof The argument will consist of showing that for z ∈ Uv ,

sup
{
u(z) ; u ∈ PSH(�), u∗ ≤ φ

} = sup
{
u(z) ; u ∈ PSH(�) ∩ C(Uv), u

∗ ≤ φ
}
.

Since φ is bounded from above, we may without loss of generality assume that φ < 0, and it
is enough to consider the set PSH−(�) of negative plurisubharmonic functions. Define the
cones

F =
{( u

|φ|
)∗ ; u ∈ PSH−(�) ∩ USC(�̄)

}

Fv =
{( u

|φ|
)∗ ; u ∈ PSH−(�) ∩ USC(�̄) ∩ C(Uv)

}
,

and denote the corresponding operators by Sz, Iz, Sv
z , I

v
z , and the corresponding set of Jensen

measures by Jz ⊂ J v
z . Since φ is continuous on Uv , it follows that all elements in Fv are

continuous on Uv as well. As in the proof of Theorem 2.1, we may assume that v < φ, and
thus both cones contains the element

( v

|φ|
)∗ ≤ −1.

Furthermore, by Definition 1, we necessarily have

( v

|φ|
)∗∣∣∣

P
= −∞,

where P := {z ; φ(z) = −∞}. Now fix z0 ∈ Uv and pick any measure μ ∈ J v
z0 . Since

∫

P

( v

|φ|
)∗

dμ ≥
∫

�̄

( v

|φ|
)∗

dμ ≥ v(z0)

|φ(z0)| > −∞,

we conclude that μ(P) = 0. On the other hand, for all u ∈ PSH−(�),

( u

|φ|
)∗ = u

|φ|
on the set �̄ \ P . For a specific such

( u
|φ|

)∗ ∈ F , we may by Wikström’s approximation

theorem [14] find a sequence vk ∈ PSH−(�) ∩ C(�̄) such that vk ↘ u on �̄. By previous
considerations,

( vn

|φ|
)∗ ↘

( u

|φ|
)∗

on �̄ \ P , and thus
∫

�̄

( u

|φ|
)∗

dμ =
∫

�̄\P

( u

|φ|
)∗

dμ = lim
k→∞

∫

�̄\P

( vk

|φ|
)∗

dμ

≥ lim
k→∞

( vk(z0)

|φ(z0)|
)∗ =

( u(z0)

|φ(z0)|
)∗

.

We conclude that Jz0 = J v
z0 . Theorem 4.2 implies that

Sz0(−1) = Iz0(−1) = I v
z0(−1) = Sv

z0(−1).
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The lemma now follows from the fact that

Pφ(z0) = sup
{
u(z0) ; u ∈ PSH(�), u∗ ≤ φ

}

= sup
{
u(z0) ; u ∈ PSH−(�) ∩ USC(�̄),

( u

|φ|
)∗ ≤ −1

}

= |φ(z0)|Sz0(−1),

and similarly for the envelope over plurisubharmonic functions continuous on Uv . ��
Remark 4 A similar argument was recently used by Bracci et al. [3] concerning the continuity
of the pluricomplex Poisson kernel.

It is straightforward to extend this result to all points where v∗ �= −∞.

Lemma 4.7 Let v be a nontrivial strong minorant to φ, and let z0 ∈ � be such that v∗(z0) �=
−∞. Then φ has a nontrivial strong minorant ṽ which is continuous in a neighborhood of
z0.

Proof Fix a closed ball B̄ := B̄(z0, ε1) ⊂ {z ; v∗(z0) �= −∞}. By adding K |z − z0|,
where K > 0 is sufficiently large, we may assume that v|∂B > v(z0) + ε2. Since v is
upper semicontinuous at z0, we may further find an open neighborhood Uz0 ⊂ B such that
v|Uz0

< v(z0) + ε2. By the standard gluing lemma,

ṽ =
{
max{v(z), v(z0) + ε2}, if z ∈ B̄,

v(z), otherwise,

is plurisubharmonic, continuous on Uz0 and clearly a nontrivial minorant to φ. ��
We are now ready to formulate our main theorem.

Theorem 4.8 Let � be a bounded B-regular domain, and let φ be a function having a strong
minorant v and a strong majorant w such that φ∗ = φ∗ on �̄. Then the envelope

Pφ(z) = sup
{
u(z) ; u ∈ PSH(�), u∗ ≤ φ

}

is continuous on {z ∈ �̄ ; v∗(z) �= −∞} ∩ {z ∈ �̄ ; w∗(z) �= +∞}.
Proof Assume without loss of generality that v ≤ Pφ ≤ w, and that the set

{z ∈ � ; v∗(z) �= −∞} ∩ {z ∈ � ; w∗(z) �= +∞}
contains an element z0. By the proof of Proposition 2.2, Pφ is upper semicontinuous on �,
and

Pφ(z) = sup
{
u(z) ; u ∈ PSH(�) ∩ USC(�̄), u ≤ φ

}

for z such that w(z) �= +∞. As all functions in this envelope are bounded, Lemma 4.6
and Lemma 4.7 implies that it is enough to take the pointwise supremum over functions
continuous on some neighborhoodUz0 of z0. In particular, these functions are continuous on
Uz0 ∩ {z ∈ �̄ ; w∗(z) �= +∞}, and it follows that Pφ is lower semicontinuous at z0. ��
Remark 5 This theorem is a direct generalization of a classic result in pluripotential theory
due to J. B. Walsh [13].
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