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Abstract
We discuss proofs of local cohomology theorems for topological modular forms, based
on Mahowald–Rezk duality and on Gorenstein duality, and then make the associated local
cohomology spectral sequences explicit, including their differential patterns and hidden
extensions.

Mathematics Subject Classification Primary 55M05 · 55N34 · 55T99; Secondary 13D45 ·
13H10 · 55P42 · 55P43

1 Introduction

Several interesting ring spectra satisfy duality theorems relating local cohomology to Ander-
sonorBrown–Comenetz duals. The algebraic precursor of these results is due toGrothendieck
[29], and is a local analogue of Serre’s projective duality theorem. In each case there is a
covariant local cohomology spectral sequence converging to the homotopy of the local coho-
mology spectrum, and a contravariant Ext spectral sequence computing the homotopy of a
functionally dual spectrum. As a consequence of self-dualities intrinsic to the ring spectra
in question, the results of the two calculations agree up to a shift in grading, in spite of their
opposite variances. It is the purpose of this paper to make these self-dualities explicit for
the connective topological modular forms spectrum. Figures 3 and 11 depict the 2- and 3-
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130 R. Bruner, J. Greenlees and J. Rognes

complete dualities, respectively. A reader wondering if this paper is of interest might glance
at these figures; they do require explanation (given below), but the structural patterns are
immediately and strikingly apparent in the pictures. A reader new to tmf might prefer to
start with the simpler charts for p = 3, as preparation for the case of p = 2. We also treat
the much simpler case of the connective real K -theory spectrum.

We work at one prime p at a time, write ko = ko∧
p and ku = ku∧

p for the p-completed
real and complex connective topological K -theory spectra, and write tmf = tmf ∧

p for the
p-completed connective topological modular forms spectrum.We also consider a 2-complete
spectrum tmf1(3) = tmf1(3)∧2 and a 3-complete spectrum tmf0(2) = tmf0(2)∧3 related to
elliptic curves with �1(3) and �0(2) level structures, respectively. These are all commutative
Sp-algebras, where Sp = S∧

p denotes the p-completed sphere spectrum. See [20] and [15] for
theoretical and computational background regarding topological modular forms. For p = 2
there are Bott and Mahowald classes B ∈ π8(tmf ) and M ∈ π192(tmf ) detected by the
modular forms c4 and �8, respectively. The homotopy groups π∗(tmf ) for 0 ≤ ∗ ≤ 192 are
shown in Fig. 4. The red dots indicate B-power torsion classes, and the entire picture repeats
M-periodically.

For any commutative Sp-algebra R and a choice of finitely generated ideal J =
(x1, . . . , xd) ⊂ π∗(R), the local cohomology spectrum �J R encapsulates the J -power tor-
sion of π∗(R), together with its right derived functors. There is a local cohomology spectral
sequence

Es,t
2 = Hs

J (π∗(R))t �⇒s πt−s(�J R)

(in Adams grading), which can be used to compute its homotopy. For R = tmf at p = 2
and J = (B, M) the spectral sequence collapses to a short exact sequence

0 → H2
(B,M)(π∗(tmf ))n+2 −→ πn(�(B,M)tmf ) −→ H1

(B,M)(π∗(tmf ))n+1 → 0

in each topological degree n, cf. Figs. 5 and 6, while for J = (2, B, M) its E2-term is
concentrated in filtration degrees 1 ≤ s ≤ 3 and contains nonzero d2-differentials, cf. Figs. 7,
8, 9 and 10.

The Sp-module Anderson and Brown–Comenetz duals IZp R and I R are defined as func-
tion spectra FSp (R, IZp ) and FSp (R, I ), where IZp and I are so designed that the associated
homotopy spectral sequences collapse to a short exact sequence

0 → ExtZp (πm−1(R),Zp) −→ π−m(IZp R) −→ HomZp (πm(R),Zp) → 0

and an isomorphism π−m(I R) ∼= HomZp (πm(R),Qp/Zp), respectively. The local coho-
mology duality theorems for tmf at p = 2 establish equivalences

�(B,M)tmf � �−22 IZ2(tmf ) (1.1)

�(2,B,M)tmf � �−23 I (tmf ), (1.2)

which in particular imply that the covariantly defined πn(�(B,M)tmf ) and the contravariantly
defined π−m(IZ2 tmf ) are isomorphic for n+m = −22, and similarly that πn(�(2,B,M)tmf )
and HomZ2(πm(tmf ),Q2/Z2) are isomorphic for n + m = −23.

Figure 3 illustratesπ∗(tmf ),π∗(�(B,M)tmf ),π∗(IZ2(tmf )) and the duality isomorphism,
up to a degree shift, between the latter two graded abelian groups. More precisely, π∗(tmf )
is isomorphic to the ‘basic block’ π∗(N ) shown in the first part of the figure, tensored with
Z[M]. The local cohomology π∗(�(B,M)tmf ) and the Anderson dual π∗(IZ2 tmf ) are iso-
morphic toπ∗(�BN ) andπ∗(IZ2N ) tensoredwithZ[M]/M∞, respectively, up to appropriate
degree shifts. The second part of the figure shows the covariantly defined π∗(�BN ), while
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The local cohomology spectral sequence for topological modular forms 131

the third part shows the contravariantly defined π∗(�171 IZ2N ). The nearly mirror symmetric
isomorphism between the latter two graded abelian groups thus exhibits the duality isomor-
phism (1.1), in its ‘basic block’ form �BN � �171 IZ2N . The same structure is presented in
greater detail in Figs. 4, 5 and 6, where the additive generators are named and the module
action by η, ν (and B) is shown by lines increasing the topological degree by 1, 3 (and 8),
respectively. However, the distinctive symmetry implied by the duality theorem ismost easily
seen in the first figure.

Several different approaches lead to proofs of such local cohomology duality theorems.
For fp-spectra X , i.e., bounded below and p-complete spectra whose mod p cohomology is
finitely presented as amodule over the Steenrod algebra,Mahowald andRezk [38] determined
the cohomology of the Brown–Comenetz dual of the finite E(n)-acyclisation C f

n X . In many
cases C f

n R is a local cohomology spectrum, and we show in Theorem 4.8 how this leads
to duality theorems for R = ko at all primes, and for R = tmf at p = 2 and p = 3. This
strategy ties nicely in with chromatic homotopy theory.

Next, Dwyer, Greenlees and Iyengar [21] showed that for augmented ring spectra R → k
such that π∗(R) → k is algebraically Gorenstein, the k-cellularisation Cellk R is often
equivalent to a suspension of I R or IZp R, for k = Fp or k = Zp , respectively.We use descent
methods to extend this to ring spectra with a goodmap to an augmented ring spectrum T → k
satisfying the algebraic Gorenstein property, e.g., with π∗(T ) = k[x1, . . . , xd ] polynomial
over k. Moreover, Cellk R is in many cases a local cohomology spectrum, and we show in
Theorem 5.19 how this leads to duality theorems for R = ko and R = tmf , at all primes p.
This strategy emphasises commutative algebra inspired by algebraic geometry.

There is a growing list [8–10, 13, 14, 21, 23–25, 27, 28] of examples known to enjoy
Gorenstein duality. Many of them are of equivariant origin, or have R = C∗(X) for a man-
ifold X , or arise from Serre duality in derived algebraic geometry. For instance, Stojanoska
[43, 44] used Galois descent and homotopy fixed point spectral sequences to deduce Ander-
son self-duality for Tmf from its covers Tmf (2) (at p = 3) and Tmf (3) (at p = 2). More
recently, Bruner and Rognes [15] used a variant of the descent arguments above to directly
deduce local cohomology duality theorems for tmf at p = 2 and p = 3 from similar the-
orems for tmf1(3) and tmf0(2), respectively. We summarise these results in Theorems 6.1
and 6.2.

The main goal of this paper is to draw on the Hopkins–Mahowald calculation of π∗(tmf ),
as presented in [15], to make the local cohomology spectral sequences for R = tmf at
p = 2 and at p = 3, with J = (B, M) and J = (p, B, M), completely explicit. In order to
determine the differential patterns and some of the hidden (filtration-shifting) multiplicative
extensions in these spectral sequences, we rely on the local cohomology duality theorems to
identify the abutments with shifts of the Anderson and Brown–Comenetz duals of tmf . This
is carried out in Sects. 8.1 and 8.2 for p = 2, and in Sects. 8.3 and 8.4 for p = 3. See also
the explanations in Sect. 8.5 of the graphical conventions used in the charts. As a warm-up
we first go through the corresponding, but far simpler, calculations for R = ko at p = 2 in
Sect. 7.
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132 R. Bruner, J. Greenlees and J. Rognes

2 Colocalisations

2.1 Small and proxy-small

The stable homotopy category of spectra and, more generally, the homotopy category of
R-modules for any fixed S-algebra R, are prototypical triangulated categories. We keep the
terminology from [21, 3.15, 4.6]: A full subcategory of a triangulated category is thick if it
is closed under equivalences, integer suspensions, cofibres and retracts, and it is localising
if it is furthermore closed under coproducts. An object A finitely builds an object X if X
lies in the thick subcategory generated by A, and more generally A builds X if X lies in the
localising subcategory generated by A. An R-module A is small if it is finitely built from R,
and more generally it is proxy-small if there is a small R-module K that both builds A and
is finitely built by A.

2.2 Acyclisation

We recall three related colocalisations. First, for any spectrum X and integer n ≥ 0 let
C f
n X → X denote its finite E(n)-acycl(ic)isation, defined as the homotopy fiber of the finite

E(n)-localization X → L f
n X introduced by Miller [41, §2]. Here E(n) denotes the n-th p-

local Johnson–Wilson spectrum, with coefficient ring π∗E(n) = Z(p)[v1, . . . , vn−1, v
±1
n ].

The map F(A,C f
n X) → F(A, X) is an equivalence for each finite E(n)-acyclic A, and

C f
n X is built from finite E(n)-acyclic spectra. The finite localization is smashing, so there is

a natural equivalenceC f
n X � X∧C f

n S, and for any R-module M the spectrumC f
n M admits

a natural R-module structure. A p-local finite spectrum has type n+1 if it is E(n)-acyclic but
not E(n + 1)-acyclic. If X is p-local, then by Hopkins–Smith [33, Thm. 7] any one choice
of a finite spectrum A of type n+1 suffices to buildC f

n X . Inductively for each n ≥ 0, Hovey
and Strickland [35, Prop. 4.22] build a cofinal tower of generalised Moore spectra S/I of
type n + 1, for suitable ideals I = (pa0 , va11 , . . . , v

an−1
n−1 , v

an
n ), such that there are homotopy

cofibre sequences

�2(pn−1)an S/I ′ v
an
n−→ S/I ′ −→ S/I

with I ′ = (pa0 , va11 , . . . , v
an−1
n−1 ). Here S/() = S and v0 = p. By [35, Prop. 7.10(a)] there is

a natural equivalence hocolim I F(S/I , X) � C f
n X , where S/I ranges over this tower.

2.3 Cellularisation

Second, let k and M be R-modules. The k-cellularisation of M is the R-module map
Cellk M → M such that FR(k,Cellk M) → FR(k, M) is an equivalence, and such that
Cellk M is built from k in R-modules. It can be realised as the cofibrant replacement in a
right Bousfield localisation of the stable model structure on R-modules in symmetric spectra,
cf. [31, §5.1, §4.1], hence always exists.

Lemma 2.1 If two R-modules k and � mutually build one another, then Cellk M � Cell� M
for all R-modules M. Conversely, if Cellk M � Cell� M for all M, then k and � mutually
build one another.

123



The local cohomology spectral sequence for topological modular forms 133

Proof If k builds �, then FR(�,Cellk M) → FR(�, M) is an equivalence. If � builds k, then
Cellk M is built from �. If both conditions hold, then M → Cellk M is the �-cellularisation
of M .

If Cellk � � Cell� � = �, then k builds �, and if k = Cellk k � Cell� k then � builds k, so
if both hold then k and � build one another. ��
Lemma 2.2 If A is a p-local finite spectrum of type n + 1, and M is a p-local R-module,
then C f

n M � CellR∧A M as R-modules.

Proof We know that R builds M in R-modules, and A buildsC f
n S(p) in S-modules, so R∧ A

builds M ∧C f
n S(p) � C f

n M in R-modules. Moreover, FR(R∧ A,C f
n M) → FR(R∧ A, M)

is an equivalence, since this the same map as F(A,C f
n M) → F(A, M). Hence C f

n M is the
R ∧ A-cellularisation of M . ��

Let E = FR(k, k) be the endomorphism S-algebra of the R-module k. An R-module M
is effectively constructible from k if the natural map

FR(k, M) ∧E k −→ M

is an equivalence. It is proved in [21, Thm. 4.10] that, if k is proxy-small, then this map
always realises the k-cellularisation of M . Hence Cellk M is determined by the right E-
module structure on FR(k, M), for proxy-small k.

2.4 Local cohomology

Third, suppose that R is a commutative S-algebra, and let J = (x1, . . . , xd) be a finitely
generated ideal in the graded ring π∗(R). For each x ∈ π∗(R) define the x-power torsion
spectrum �x R by the homotopy (co-)fibre sequence

�−1R

[
1

x

]
α−→ �x R

β−→ R
γ−→ R

[
1

x

]
.

For any R-module M let

�J M = �x1 R ∧R · · · ∧R �xd R ∧R M

be the local cohomology spectrum. By [26, §1, §3], this R-module only depends on the
radical

√
J of the ideal J . The convolution product of the short filtrations α : �−1R[1/xi ] →

�xi R for 1 ≤ i ≤ d leads to a length d decreasing filtration of �J M , with subquotients

Fs/Fs+1 �
∨

1≤i1<···<is≤d

�−1R

[
1

xi1

]
∧R · · · ∧R �−1R[ 1

xis
] ∧R M .

In Adams indexing, the associated spectral sequence has E1-term

Es,t
1 = πt−s(F

s/Fs+1) ∼=
⊕

1≤i1<···<is≤d

πt

(
M

[
1

xi1 · . . . · xis

])

for 0 ≤ s ≤ d , with differentials dr : Es,t
r → Es+r ,t+r−1. The d1-differentials are induced

by the various localisation maps γ : R → R[1/xi ], and the cohomology of (E1, d1) defines
the local cohomology groups of the π∗(R)-module π∗(M), in the sense of Grothendieck [29].
This construction defines the local cohomology spectral sequence

Es,t
2 = Hs

J (π∗(M))t �⇒s πt−s(�J M), (2.1)
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134 R. Bruner, J. Greenlees and J. Rognes

which is a strongly convergent π∗(R)-module spectral sequence, cf. [26, (3.2)]. As in the
topological case, the local cohomology groups H∗

J (π∗(M)) only depend on J through its
radical in π∗(R), not on the explicit generators x1, . . . , xd . We emphasise that the local
cohomology spectrum �J M , and the associated spectral sequence, are covariantly functorial
in M .

Definition 2.3 Given a finite sequence J = (x1, . . . , xd) of elements in π∗(R), we let

R/J = R/x1 ∧R · · · ∧R R/xd ,

where each R/x is defined by a homotopy cofibre sequence

�|x |R x−→ R −→ R/x −→ �|x |+1R.

We shall also write R/J for this R-module in contexts where J is interpreted as the ideal
in π∗(R) generated by the given sequence of elements. This is, however, an abuse of notation,
since R/J depends upon the chosen generators for the ideal, not just on the ideal J itself. We
may refer to R/J and�J R as theKoszul complex and the stable Koszul complex, respectively.

Lemma 2.4 If J = (x1, . . . , xd) is a finitely generated ideal in π∗(R), and M is any R-
module, then CellR/J M � �J M as R-modules.

Proof We show that �J M is the R/J -cellularisation of M . An inductive argument, as in the
proof of [21, Prop. 9.3], shows that R/J finitely builds R/xm1 ∧R · · ·∧R R/xmd for eachm ≥ 1.
Passing to the colimit over m, it follows that R/J builds �J R. Since R builds M , it also
follows that R/J builds �J M . Finally, FR(R/J , �J M) → FR(R/J , M) is an equivalence,
because FR(R/J , N [1/xi ]) � ∗ for each R-module N and any 1 ≤ i ≤ d . ��

With notation as above, if R ∧ A and R/J mutually build one another, then C f
n M �

CellR∧A M � CellR/J M � �J M by Lemmas 2.2, 2.1 and 2.4. Under slightly different
hypotheses we can close the cycle and obtain this conclusion directly.

Lemma 2.5 Let I = (pa0 , . . . , vann ) and J = (x1, . . . , xd). If

(1) each xi acts nilpotently on each π∗F(S/I , R), and
(2) v

as
s acts nilpotently on π∗F(S/(pa0 , . . . , vas−1

s−1 ), R/J ) for each 0 ≤ s ≤ n,

then C f
n M � �J M as R-modules.

Proof Item (1) ensures that F(S/I , �J R) � �J F(S/I , R) is equivalent to F(S/I , R) for
each I in the cofinal system, and passage to homotopy colimits implies that

C f
n �J R

�−→ C f
n R

is an equivalence. Item (2) ensures that C f
n R/J � hocolim I F(S/I , R/J ) is equivalent to

R/J , which implies that

C f
n �J R

�−→ �J R

is an equivalence, since R/J builds �J R. Hence C
f
n R � �J R, and more generally C f

n M =
C f
n R ∧R M � �J R ∧R M = �J M . ��
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The local cohomology spectral sequence for topological modular forms 135

2.5 A composite functor spectral sequence

Let I , J ⊂ R∗ be finitely generated ideals in a graded commutative ring, and let M∗ be an
R∗-module. If I = (x) we write �x M∗ = H0

I (M∗) and M∗/x∞ = H1
I (M∗) for the kernel

and the cokernel of the localisation homomorphism γ below.

0 → �x M∗ −→ M∗
γ−→ M∗[1/x] −→ M∗/x∞ → 0.

More generally, let �I M∗ = H0
I (M∗) denote the I -power torsion submodule of M∗. The

identity �I (�J M∗) = �I+J M∗ leads to a composite functor spectral sequence

Ei, j
2 = Hi

I (H
j
J (M∗)) �⇒i H

i+ j
I+J (M∗).

This is a case of the double complex spectral sequence of [17, §XV.6]. When I = (x) and
J = (y), it arises by horizontally filtering the condensation of the central commutative square
below, leading to an E1-term given by the inner modules in the upper and lower rows, and
an E2-term given by the modules at the four corners.

�x (M∗/y∞) M∗/y∞ M∗[1/x]/y∞ (M∗/y∞)/x∞

M∗[1/y] γ
M∗[1/xy]

M∗
γ

γ

M∗[1/x]
γ

�x (�yM∗) �yM∗ �yM∗[1/x] (�yM∗)/x∞

For bidegree reasons, the spectral sequence collapses at this stage, so that

Ei, j
2 = Ei, j∞ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�x (�yM∗) for (i, j) = (0, 0),

(�yM∗)/x∞ for (i, j) = (1, 0),

�x (M∗/y∞) for (i, j) = (0, 1),

(M∗/y∞)/x∞ for (i, j) = (1, 1).

It follows that we have identities

�x (�yM∗) = �(x,y)M∗ = H0
(x,y)(M∗)

(M∗/y∞)/x∞ = M∗/(x∞, y∞) = H2
(x,y)(M∗),

and a natural short exact sequence

0 → (�yM∗)/x∞ −→ H1
(x,y)(M∗) −→ �x (M∗/y∞) → 0.

If �yM∗ ⊂ �x M∗, so that the y-power torsion is entirely x-power torsion, then
(�yM∗)/x∞ = 0 and H1

(x,y)(M∗) ∼= �x (M∗/y∞).

123
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3 Dualities

3.1 Artinian and Noetherian Sp-modules

Let Sp denote the p-completed sphere spectrum. The category of Sp-modules contains a
subcategory of p-power torsion modules satisfying �pM � M , and a subcategory of p-
complete modules for which M � M∧

p . The (covariant) functors �p and (−)∧p give mutually
inverse equivalences between these full subcategories, cf. [34, Thm. 3.3.5].

We say that a p-power torsion module M is Artinian if each homotopy group πt (M) is
an Artinian Zp-module, i.e., a finite direct sum of modules of the form Qp/Zp or Z/pa for
a ≥ 1. Dually, we say that a p-complete module M is Noetherian if each homotopy group
πt (M) is a NoetherianZp-module, i.e., a finite direct sum ofmodules of the formZp orZ/pa

for a ≥ 1. The latter are the same as the finitely generated Zp-modules. The simultaneously
Artinian and Noetherian Sp-modules M are those for which each πt (M) is finite.

3.2 Brown–Comenetz duality

We recall two related dualities. First, working in Sp-modules, the Brown–Comenetz duality
spectrum I represents the cohomology theory

I t (M) = HomZp (πt (M),Qp/Zp),

cf. [12]. This makes sense because Qp/Zp is an injective Zp-module. Letting I M =
FSp (M, I )we obtain a contravariant endofunctor I of Sp-modules, with π−t (I M) = I t (M).
It maps p-power torsion modules to p-complete modules, and restricts to a functor from
Artinian Sp-modules to Noetherian Sp-modules, since

HomZp (Qp/Zp,Qp/Zp) ∼= Zp and HomZp (Z/pa,Qp/Zp) ∼= Z/pa .

In general, it does not map p-complete modules to p-power torsion modules, but it does
restrict to a functor from Noetherian Sp-modules to Artinian Sp-modules. Moreover, the
natural map

ρ : M −→ I (I M)

is an equivalence for M that are Artinian or Noetherian. Hence the two restrictions of I are
mutually inverse contravariant equivalences between Artinian Sp-modules and Noetherian
Sp-modules. If the Sp-module action on M extends to a (left or right) R-module structure,
then I M is naturally a (right or left) R-module.

3.3 Anderson duality

Second, the Eilenberg–MacLane spectrum IQp = HQp represents the ordinary rational
cohomology theory

I t
Qp

(M) = HomZp (πt (M),Qp)

in Sp-modules. The canonical surjection Qp → Qp/Zp induces a map of cohomology
theories, and a map IQp → I of representing spectra, whose homotopy fibre defines the
Anderson duality spectrum IZp , cf. [2] and [36]. Letting IZp M = FSp (M, IZp ) and IQp M =
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The local cohomology spectral sequence for topological modular forms 137

FSp (M, IQp ), we obtain a natural homotopy fibre sequence

�−1 I M −→ IZp M −→ IQp M −→ I M,

which lifts the (short) injective resolution 0 → Zp → Qp → Qp/Zp → 0. The associated
long exact sequence in homotopy splits into short exact sequences

0 → ExtZp (πt−1(M),Zp) −→ π−t (IZp M) −→ HomZp (πt (M),Zp) → 0. (3.1)

If the Sp-module action on M extends to a (left or right) R-module structure, then IZp M
is naturally a (right or left) R-module, and the short exact sequence above is one of π∗(R)-
modules.

The contravariant endofunctor IZp on Sp-modules is equivalent to �−1 I on the subcate-
gory of p-power torsion modules, since IQp is trivial on these objects. More relevant to us is
the fact that it maps Noetherian Sp-modules to Noetherian Sp-modules, since

ExtZp (Zp,Zp) = 0 HomZp (Zp,Zp) ∼= Zp

ExtZp (Z/pa,Zp) ∼= Z/pa HomZp (Z/pa,Zp) = 0.

Moreover, the natural map

ρ : M −→ IZp (IZp M) (3.2)

is an equivalence forNoetherianM , cf. [46, Thm. 2] and [37, Cor. 2.8].Hence IZp restricts to a
contravariant self-equivalence of Noetherian Sp-modules, being its own inverse equivalence.

We emphasise that the Brown–Comenetz and Anderson dual spectra, I M and IZp M , and
the algebraic expressions for their homotopy groups, are contravariantly functorial in the Sp-
or R-module M .

Lemma 3.1 There are natural equivalences

I (�pM) � (I M)∧p � �(IZp M)∧p

Proof For Sp-modules M and N we have �pS ∧Sp M = �pM and FSp (�pS, N ) � N∧
p ,

since �pS � hocolimν S−1/pν . The first equivalence then follows from the adjunction
FSp (�pS ∧Sp M, I ) � FSp (�pS, FSp (M, I )). The second equivalence follows from the
homotopy fibre sequence defining the Anderson dual, since (IQp M)∧p is trivial. If the Sp-
module structure on M extends to an R-module structure, then this is respected by all of
these equivalences. ��

4 Mahowald–Rezk duality

4.1 Spectra with finitely presented cohomology

Let A denote the mod p Steenrod algebra, where p is a prime. We write H∗(X) for the
mod p cohomology of a spectrum X , with its natural left A-module structure. For n ≥ 0
let A(n) be the finite sub (Hopf) algebra of A that is generated by Sq1, Sq2, . . . , Sq2

n
for

p = 2, and by β, P1, . . . , P pn−1
for p odd. Also let E(n) be the exterior sub (Hopf) algebra

of A(n) generated by Q0, Q1, . . . , Qn , where Q0 = Sq1 and Qi = [Sq2i , Qi−1] for i ≥ 1
and p = 2, and Q0 = β and Qi+1 = [P pi , Qi ] for i ≥ 0 and p odd.
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Let X be a spectrum that is p-complete andboundedbelow. FollowingMahowald andRezk
[38, §3] we say that X is an fp-spectrum if H∗(X) is finitely presented as an A-module. This
is equivalent to asking that H∗(X) ∼= A⊗A(n) M is induced up from a finite A(n)-module M ,
for some n.We say that a graded abelian groupπ∗ is finite if the direct sum

⊕
t πt is finite. The

class of p-local finite spectra V such that π∗(V ∧ X) is finite generates a thick subcategory
of the stable homotopy category, and is therefore equal to the class of p-local finite spectra
of type ≥ m + 1 for some well-defined integer m ≥ 0. We then say that X has fp-type equal
to m. In each case n ≥ m, sometimes with strict inequality, cf. [16, Prop. 3.9].

Theorem 4.1 [38, Prop. 4.10, Thm. 8.2] Let X be p-complete and bounded below, with
H∗(X) ∼= A ⊗A(n) M for some finite A(n)-module M. Then IC f

n X is p-complete and

bounded below, with H∗(IC f
n X) ∼= A ⊗A(n) HomFp (M, �a(n)

Fp), where a(n) is the top
degree of a nonzero class in A(n).

Recall that we write ko = ko∧
p and tmf = tmf ∧

p for the p-completed connective real K -
theory and topological modular forms spectra, respectively, and that these are commutative
S-algebras.

Proposition 4.2 [38, Cor. 9.3] There is an equivalence of ko-modules

�6ko � IC f
1 ko

(at all primes p), and an equivalence of tmf -modules

�23tmf � IC f
2 tmf

(at p = 2 and at p = 3). The underlying Sp-modules are Noetherian and bounded below.

Proof For X = ko completed at p = 2 we have H∗(ko) ∼= A//A(1) = A⊗A(1) F2 by Stong
[45], so

H∗(IC f
1 ko)

∼= A ⊗A(1) �6
F2 = �6A//A(1),

since a(1) = 6. Choosing a map S6 → IC f
1 ko generating the lowest homotopy (and homol-

ogy) group, and using the natural ko-module structure on the target, we obtain a ko-module
map φ : �6ko → IC f

1 ko. The induced A-module homomorphism φ∗ : H∗(IC f
1 ko) →

H∗(�6ko) has the form �6A//A(1) → �6A//A(1), and is an isomorphism in degree 6,
hence is an isomorphism in all degrees. It follows that φ is an equivalence of 2-complete
ko-modules.

For X = � = BP〈1〉 completed at any prime p we have H∗(�) ∼= A//E(1), essentially
by [42], so H∗(IC f

1 �) ∼= �2p A//E(1) and IC f
1 � � �2p�. For p odd this implies the claim

for ko � ∨(p−3)/2
i=0 �4i�.

For X = tmf completed at p = 2 we have H∗(tmf ) ∼= A//A(2) = A ⊗A(2) F2 by
Hopkins–Mahowald [32, Thm. 4.5], cf. Mathew [40, Thm. 1.1]. Hence

H∗(IC f
2 tmf ) ∼= A ⊗A(2) �23

F2 = �23A//A(2),

since a(2) = 23. Choosing a map S23 → IC f
2 tmf generating the lowest homotopy group,

and using the natural tmf -module structure on the target, we obtain a tmf -module map
φ : �23tmf → IC f

2 tmf . The induced A-module homomorphism φ∗ : H∗(IC f
2 tmf ) →

H∗(�23tmf )has the form�23A//A(2) → �23A//A(2), and is an isomorphism indegree 23,
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hence is an isomorphism in all degrees. It follows that φ is an equivalence of 2-complete
tmf -modules.

For X = tmf completed at p = 3 we have H∗(tmf ) ∼= A ⊗A(2) M for a finite A(2)-
module M with HomF3(M,F3) ∼= �−64M , by Proposition 4.3 below. It follows that

H∗(IC f
2 tmf ) ∼= A ⊗A(2) �23M ∼= �23H∗(tmf )

as A-modules, since a(2) = 87 and 87−64 = 23. Choosing a map S23 → IC f
2 tmf generat-

ing the lowest homotopy group, and using the natural tmf -module structure on the target, we
obtain a tmf -module map φ : �23tmf → IC f

2 tmf . The induced A-module homomorphism

φ∗ : H∗(IC f
2 tmf ) → H∗(�23tmf ) has the form �23A⊗A(2) M → �23A⊗A(2) M , and is

an isomorphism in degree 23. It follows from the relation P3g0 = P1g8 that φ∗ is also an
isomorphism in degree 23 + 8 = 31, hence in all degrees, and that φ is an equivalence of
3-complete tmf -modules. ��
Proposition 4.3 At p = 3 there is an isomorphism H∗(tmf ) ∼= A ⊗A(2) M of A-modules,
where

M = A(2)//E(2){g0, g8}
(P1g0, P3g0 = P1g8)

is a finite A(2)-module of dimension 18 satisfying HomF3(M,F3) ∼= �−64M.

Proof Let all spectra be implicitly completed at p = 3. Let� = S∪ν e4∪ν e8, where ν = α1

is detected by P1. According to [40, Thm. 4.16], there is an equivalence tmf ∧� � tmf0(2)
of tmf -module spectra, where π∗(tmf0(2)) = Zp[a2, a4] with |a2| = 4 and |a4| = 8. We
take as known that H∗(tmf0(2)) ∼= A//E(2){g0, g8}, where |g0| = 0 and |g8| = 8. The
homotopy cofibre sequences

S −→ � −→ �4Cν

�4Cν −→ �4� −→ S12

induce homotopy cofibre sequences

tmf −→ tmf0(2) −→ �4tmf ∧ Cν

�4tmf ∧ Cν −→ �4tmf0(2) −→ �12tmf

of tmf -modules. Passing to cohomology we get two short exact sequences, which we splice
together to an exact complex

0 → �12H∗(tmf ) → �4A//E(2){g0, g8} ∂−→ A//E(2){g0, g8} → H∗(tmf ) → 0

of A-modules. Here ∂(�4g0) ∈ F3{P1g0} and ∂(�4g8) ∈ F3{P3g0, P1g8}. Hence this
complex is induced up from an exact complex

0 → �12M → �4A(2)//E(2){g0, g8} ∂−→ A(2)//E(2){g0, g8} → M → 0

of A(2)-modules, where the rank of ∂ is twice the dimension of M . The dimension of
A(2)//E(2) is 27, so the dimension of M is 18. By exactness, ∂(�4g0) and ∂(�4g8) are
nonzero. From [18, Cor. 6.7] it follows that we can choose the signs of the generators so that
∂(�4g0) = P1g0 and ∂(�4g8) = P3g0 − P1g8. This gives the stated presentation of M .

Applying D = HomF3(−,F3)we find that D(A(2)//E(2)) ∼= �−64A(2)//E(2), and can
calculate that D∂ has the same form as ∂ , so that the dual of the exact A(2)-module complex
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above presents D(�12M) = �−12DM as �−76M , which implies that M is concentrated in
degrees 0 ≤ ∗ ≤ 64, and is self-dual. ��

4.2 Local cohomology theorems byMahowald–Rezk duality

Notation 4.4 The graded ring structure of π∗(ko) is well known [11]. We use the notation

π∗(ko) = Zp[η, A, B]/(2η, η3, ηA, A2 = 4B)

where |η| = 1, |A| = 4 and |B| = 8, cf. [15, Ex. 2.30]. If p is odd this simplifies to
π∗(ko) = Zp[A]. We call B the Bott element.

Notation 4.5 The graded ring structure of π∗(tmf ) is also known [3, 32], [20, Ch. 13], [15],
apart from a couple of finer points.

For p = 2, using the naming scheme of [15, Ch. 9], the graded commutative Z2-algebra
π∗(tmf ) is generated by forty classes xk , where

x ∈ {η, ν, ε, κ, κ̄, B,C, D, M}
and 0 ≤ k ≤ 7. The indices k that occur are shown in Table 1. We abbreviate x0 to x , and
note that |xk | = |x |+24k is positive in each case. We call B ∈ π8(tmf ) and M ∈ π192(tmf )
the Bott element and the Mahowald element, respectively. See Fig. 4 for the mod 2 Adams
E∞-term for tmf in the range 0 ≤ t − s ≤ 192.

In [20, Ch. 13] these homotopy elements are instead labelled by their detecting classes in
the elliptic (or Adams–Novikov) spectral sequence E∞-term. The ‘E∞’ column lists these
classes, which, however, only characterise the xk modulo higher filtrations. For example,
the cosets detected by ν�k for k even and 2ν�k for k ∈ {1, 5} have indeterminacy Z/2
generated by an η- or η1-multiple, the cosets detected by c4�k have indeterminacy Z/2{εk}
for k ∈ {0, 1, 4, 5}, the coset detected by 2c6�2 has indeterminacy Z/4{κ̄3}, and the coset
detected by 2c6�6 has indeterminacy Z/2{ην6ε}. The edge homomorphism π∗(tmf ) →
Z[c4, c6,�]/(c34 − c26 = 1728�) sends multiples of c4, c6 and � to the corresponding
integral modular forms. The notation q = ε� is also in common usage.

For p = 3, using the naming scheme of [15, Ch. 13], the graded commutative Z3-algebra
π∗(tmf ) is generated by twelve classes xk , where

x ∈ {ν, β, B,C, D, H}
and 0 ≤ k ≤ 2. The values of k that occur are shown in Table 2. We again abbreviate
x0 to x , and note that |xk | = |x | + 24k is positive in each case. We call B ∈ π8(tmf )
and H ∈ π72(tmf ) the Bott element and the Hopkins–Miller element, respectively. In [20,
Ch. 13] these homotopy elements are labelled by their detecting classes in the elliptic spectral
sequence, as listed in the ‘E∞’ column. See Fig. 12 for the mod 3 (tmf -module) Adams
E∞-term for tmf in the range 0 ≤ t − s ≤ 72.

To avoid repetitive case distinctions we will sometimes write Zp[B, M], (p, B, M)

or (B, M), both for p = 2 and for p = 3, in spite of the fact that the notations just introduced
for p = 3 would be Z3[B, H ], (3, B, H) or (B, H). In effect, the element ‘M’ should be
read as ‘H ’ for p = 3.

Definition 4.6 For any p-complete connective S-algebra R with π0(R) = Zp let

n0 = ker(π∗(R) → Zp)
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Table 1 Algebra generators xk
for π∗(tmf ) at p = 2

x k |x | E∞

η 0, 1, 4 1 η�k

ν 0, 1, 2, 4, 5, 6 3

{
ν�k k even
2ν�k k odd

ε 0, 1, 4, 5 8 ε�k

κ 0, 4 14 κ�k

κ̄ 0 20 κ̄

B 0, 1, 2, 3, 4, 5, 6, 7 8 c4 �k

C 0, 1, 2, 3, 4, 5, 6, 7 12 2 c6 �k

D 1, 2, 3, 4, 5, 6, 7 0

⎧⎪⎨
⎪⎩
8�k k odd
4�k k ∈ {2, 6}
2�k k = 4

M 0 192 �8

Table 2 Algebra generators xk
for π∗(tmf ) at p = 3

x k |x | E∞

ν 0, 1 3 α�k

β 0 10 β

B 0, 1, 2 8 c4�
k

C 0, 1, 2 12 c6�
k

D 1, 2 0 3�k

H 0 72 �3

denote the ideal in π∗(R) given by the classes in positive degrees, and let

np = ker(π∗(R) → Fp)

denote the maximal ideal generated by n0 and p.

We shall review the precise structure of π∗(tmf ) as a Zp[B, M]-module in Sect. 8, but
for now we will only need the following, more qualitative, consequences of that structure.
Their analogues for ko are straightforward.

Lemma 4.7 The following hold for p = 2 and for p = 3.

(1) The graded group π∗(tmf ) is finitely generated as a Zp[B, M]-module.
(2) The radical of (B, M) ⊂ π∗(tmf ) is n0, and the radical of (p, B, M) is np.
(3) The graded group π∗(tmf /(p, B, M)) is finite.
(4) Each πt (�(B,M)tmf ) is a finitely generated Zp-module.

Proof We use the notation and results of Sects. 8.1 and 8.3, so the careful reader will have to
refer forward to those results now, or come back to this proof later. In particular, N = tmf /M ,
with N∗ ∼= π∗(N ), by Theorems 8.2 and 8.14.

(1) Sinceπ∗(tmf ) ∼= N∗⊗Z[M], it suffices to check that N∗ is finitely generated as aZp[B]-
module, which is clear from the explicit expressions given in Theorems 8.4 and 8.15.
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(2) Because π∗(tmf )/(B, M) is finitely generated over Zp , each positive degree class is
nilpotent, and therefore each class in n0 lies in the radical of (B, M). The other conclu-
sions follow.

(3) Since �BN∗ is finite, each ko[k] is B-torsion free, and each ko[k]/B is a finitely gen-
erated Zp-module, it follows that π∗(N/B) is a finitely generated Zp-module. Hence
π∗(N/(p, B)) ∼= π∗(tmf /(p, B, M)) is finite.

(4) Likewise, since �BN∗ is finite and each ko[k]/B∞ is bounded above and finitely gen-
erated over Zp in each degree, it follows that π∗(�BN ) is bounded above and finitely
generated over Zp in each degree. Hence π∗(�(B,M)tmf ) ∼= π∗(�B N ) ⊗ Z[M]/M∞ is
also bounded above and finitely generated over Zp in each degree.

��
Theorem 4.8 There are equivalences of ko-modules

�(p,B)ko = �np ko � C f
1 ko � �−6 I (ko)

(at all primes p), and equivalences of tmf -modules

�(p,B,M)tmf = �np tmf � C f
2 tmf � �−23 I (tmf )

(at p = 2 and at p = 3). The underlying Sp-modules are Artinian and bounded above.

Proof For any Sp-module M the natural homomorphism

ρ : πt (M) −→ HomZp (HomZp (πt (M),Qp/Zp),Qp/Zp)

is injective. Hence, if π−t (I M) = HomZp (πt (M),Qp/Zp) is a Noetherian (= finitely gen-
erated) Zp-module, then ρ exhibits πt (M) as a submodule of an Artinian Zp-module, which

must itself be Artinian. This applies with M = C f
1 ko, since we know from Proposition 4.2

that I M � �6ko, and ko is a Noetherian Sp-module. It also applies with M = C f
2 tmf ,

since I M � �23tmf and tmf is a Noetherian Sp-module by Lemma 4.7(1). Hence
ρ : M → I (I M) is in fact an equivalence in these cases, so that

C f
1 ko � I (IC f

1 ko) � I (�6ko) � �−6 I (ko)

C f
2 tmf � I (IC f

2 tmf ) � I (�23tmf ) � �−23 I (tmf ).

We use Lemma 2.5 with n = 1, R = M = ko and J = (p, B) to see that

C f
1 ko � �(p,B)ko. (4.1)

The finite spectra S/I with I = (pa0 , va11 ), and their Spanier–Whitehead duals, have type 2,
so π∗F(S/I , ko) is finite, since ko has fp-type 1. Hence both p and B act nilpotently on
this graded Zp-module. This confirms the first condition. For the second condition, note that
R/J = ko/(p, B) and F(S/pa0 , R/J ) have finite graded homotopy groups, hence pa0 acts
nilpotently on the former and v

a1
1 acts nilpotently on the latter. The radical in π∗(ko) of

J = (p, B) equals
√
J = np , and as reviewed in Sect. 2.4 this implies the equivalence

�(p,B)ko � �np ko.

Similarly, we use Lemma 2.5 with n = 2, R = M = tmf and J = (p, B, M) to see that

C f
2 tmf � �(p,B,M)tmf . (4.2)
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The finite spectra S/I with I = (pa0 , va11 , v
a2
2 ), and their Spanier–Whitehead duals, have

type 3, soπ∗F(S/I , tmf ) is finite, since tmf has fp-type 2. Hence p, B andM act nilpotently
on this graded Zp-module. Next, note that R/J = tmf /(p, B, M), F(S/pa0 , R/J ) and
F(S/(pa0 , va11 ), R/J ) have finite homotopy, by Lemma 4.7(3), so that pa0 acts nilpotently
on the first, v

a1
1 acts nilpotently on the second, and v

a2
2 acts nilpotently on the third. The

radical in π∗(tmf ) of J = (p, B, M) equals
√
J = np , by Lemma 4.7(2), which implies the

equivalence

�(p,B,M)tmf � �np tmf .

��
Remark 4.9 As an alternative to Lemma 2.5, we could use Lemmas 2.2 and 2.4 to estab-
lish (4.1). For p = 2 theAdams complex A = S/(2, v41) from [1, §12] has type 2 and satisfies

ko ∧ S/(2, v41) � ko/(2, B). Hence C f
1 ko � Cellko∧A ko � Cellko/(2,B) ko � �(2,B)ko.

For p odd the complex S/(p, v1) has type 2 and ko ∧ S/(p, v1) � ko/(p, Am) with
m = (p − 1)/2. Hence C f

1 ko � �(p,Am )ko � �(p,B)ko, since (p, Am) and (p, B) have
the same radical.

Likewise, we could use the existence [5] of a 2-local finite complex A = S/(2, v41, v
32
2 )

of type 3 satisfying tmf ∧ A � tmf /(2, B, M) to deduce that C f
2 tmf � Celltmf ∧A �

Celltmf /(2,B,M) tmf � �(2,B,M)tmf . Similar remarks apply at p = 3, using the type 3
complex A = S/(3, v1, v92) constructed in [7]. In these cases the argument for (4.2) using
Lemma 2.5 is dramatically simpler, as is to be expected, since asking for R ∧ A and R/J to
be equivalent is a much more restrictive condition than asking that they build one another.

Theorem 4.10 There are equivalences of ko-modules

�Bko = �n0ko � �−5 IZp (ko)

(at all primes p), and equivalences of tmf -modules

�(B,M)tmf = �n0 tmf � �−22 IZp (tmf )

(at p = 2 and at p = 3). The underlying Sp-modules are Noetherian and bounded above.

Proof Proposition 4.2, equivalence (4.1), and Lemma 3.1 applied to the ko-module M =
�Bko, give equivalences

�6ko � IC f
1 ko � I (�(p,B)ko) � �(IZp�Bko)

∧
p .

Here �Bko is a Noetherian Sp-module, which implies that IZp�Bko is also Noetherian and
(in particular) p-complete. Hence �5ko � IZp�Bko, which implies that

�Bko � IZp (IZp�Bko) � IZp (�
5ko) � �−5 IZp (ko).

Furthermore, �Bko = �n0ko, since the radical of (B) in π∗(ko) equals n0.
Similarly, Proposition 4.2, equivalence (4.2), and Lemma 3.1 applied to the tmf -module

M = �(B,M)tmf , give equivalences

�23tmf � IC f
2 tmf � I (�(p,B,M)tmf ) � �(IZp�(B,M)tmf )∧p .

Part (4) of Lemma 4.7 asserts that �(B,M)tmf is a Noetherian Sp-module, which implies that
IZp�(B,M)tmf is also Noetherian and p-complete. Hence �22tmf � IZp�(B,M)tmf , which
implies that

�(B,M)tmf � IZp (IZp�(B,M)tmf ) � IZp (�
22tmf ) � �−22 IZp (tmf ).
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Finally, �(B,M)tmf = �n0 tmf , since the radical of (B, M) in π∗(tmf ) equals n0 by
Lemma 4.7(2). ��

5 Gorenstein duality

5.1 Gorensteinmaps of S-algebras

The original version [21, Def. 8.1] of the following definition was slightly more restrictive,
but by [21, Prop. 8.4] there is no difference when k is proxy-small as an R-module.

Definition 5.1 Let R → k be a map of S-algebras. We say that R → k is Gorenstein of
shift a if there is an equivalence of left k-modules

FR(k, R) � �ak.

Our next aim is to prove Proposition 5.3. We write Fp and Zp for the mod p and p-
adic integral Eilenberg–MacLane spectra, respectively, with their unique (commutative) Sp-
algebra structures.

Suppose that R is an Sp-algebra and that k = Fp . There are then equivalences

k � I k = FSp (k, I ) ∼= FR(k, FSp (R, I )) = FR(k, I R)

of left k-modules, where I k and I R are the Brown–Comenetz duals of k and R, and where k
acts from the right on the domains of the twomapping spectra. Hence, if R → k is Gorenstein
of shift a, then there is a k-module equivalence

FR(k, R) � �ak � FR(k, �a I R).

Recall the notation E = FR(k, k) from Sect. 2.3. Restriction along R → k defines an S-
algebra map kop → E , and the left E-action on k induces right E-actions on FR(k, R) and
FR(k, �a I R). If R is connective with π0(R) = Zp , then E is coconnective with π0(E) ∼= kop

a field. According to [21, Prop. 3.9] the k-module equivalence above then extends to an E-
module equivalence, so that

FR(k, R) ∧E k � FR(k, �a I R) ∧E k.

Moreover, if k is proxy-small, so that k-cellularisation is effectively constructible by [21,
Thm. 4.10], then we can rewrite this as an equivalence

Cellk R � Cellk(�
a I R).

Finally, if π∗(I R) is p-power torsion, then k builds I R as the homotopy colimit of a refined
Whitehead tower in R-modules, so that Cellk(�a I R) � �a I R. Hence these hypotheses
ensure that R → k has Gorenstein duality of shift a, in the following sense.

Definition 5.2 A map R → k = Fp of Sp-algebras has Gorenstein duality of shift a if there
is an equivalence

Cellk R � �a I R.

Similarly, a map R → k = Zp of Sp-algebras has Gorenstein duality of shift a if there is an
equivalence

Cellk R � �a IZp R.
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Proposition 5.3 Let k = Fp or Zp, let R → k be a map of connective Sp-algebras with
π0(R) = Zp, and let E = FR(k, k). Suppose that

(1) R → k is Gorenstein of shift a, and
(2) k is proxy-small as an R-module.

For k = Fp also assume that

(3) HomZp (π∗(R),Qp/Zp) is p-power torsion.

Then R → k has Gorenstein duality of shift a.

Proof The case k = Fp was discussed above. When k = Zp , we have an equivalence

k � FSp (k, IZp )
∼= FR(k, IZp R)

of k-modules, where IZp R = FSp (R, IZp ) is the Anderson dual of R. Hence, if R → k is
Gorenstein of shift a then there is a k-module equivalence

FR(k, R) � �ak � FR(k, �a IZp R).

Since R is connective with π0(R) = Zp , it follows that E is coconnective with π0(E) ∼= kop

and π−1(E) = 0. We prove in Proposition 5.4 below that this implies that the k-module
equivalence above extends to an E-module equivalence, so that

FR(k, R) ∧E k � FR(k, �a IZp R) ∧E k.

If k is proxy-small, then we can rewrite this as

Cellk R � Cellk(�
a IZp R).

Since π∗(IZp R) is a bounded above graded Zp-module, it follows that IZp R is built from k,
so that Cellk R � �a IZp R. ��

5.2 Uniqueness of E-module structures

We continue to write E = FR(k, k) for the R-module endomorphism ring spectrum of k.

Proposition 5.4 Let k = Fp or Zp, and let kop → E be a map of coconnective S-algebras
inducing an isomorphism on π0. For k = Zp also assume that π−1(E) = 0. Then any two
right E-module structures on k are equivalent.

Proof When k = Fp , this is a special case of [21, Prop. 3.9]. When k = Zp , we refine
the proof of that proposition. Let k1 and k2 be right E-modules whose restricted k-module
structures are given by the usual left action on k. Let M = E as an E-module, with the
usual right action, and choose E-module maps f1 : M → k1 and f2 : M → k2 inducing
isomorphisms on π0. We shall extend M to a cellular E-module N such that f1 extends
to an E-module equivalence g1 : N → k1, and such that f2 extends to an E-module map
g2 : N → k2. It will then follow that g2 is also an equivalence, and k1 and k2 are equivalent
as E-modules.

M

f1

f2

M ′ N
g1

g2

k1

k2
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Note that π−1(M) = 0. As a first approximation to N we build a cellular E-module M ′ by
attaching E-cells of dimension ≤ 0 to M , so that π−1(M ′) = 0 and πt (M) → πt (M ′) is
trivial for each t ≤ −2. More precisely, for each t ≤ −2 choose an E-module map

∨
α

�tE φt−→
∨
β

�tE

such that

0 →
⊕

α

Zp
πt (φt )−→

⊕
β

Zp −→ πt (M) → 0

is a free Zp-resolution of πt (M). There is then a map Cφt → M from the homotopy cofibre
of φt , inducing an isomorphism on πt . The composite Cφt → M → k1 is null-homotopic,
since Cφt has cells in dimensions t and t + 1 ≤ −1 only, while k1 is connective. Let M ′ be
the mapping cone of the sum over t of the maps Cφt → M , and let f ′

1 : M ′ → k1 extend f1.
Then M ′ has the stated properties.

Iterating the process infinitely often, and letting N be the (homotopy) colimit of the
sequence M ⊂ M ′ ⊂ . . . , we calculate that πt (N ) = 0 for t �= 0, while g1 : N → k1 is a
π0-isomorphism, and therefore an equivalence.

We obtained N from M by attaching cells of dimensions ≤ 0, so the obstructions to
extending f2 : M → k2 lie in the negative homotopy groups of k2, which are trivial. Hence
an extension g2 : N → k2 exists. It must be a π0-isomorphism, since f1, f2 and g1 have this
property, and is therefore an equivalence, as claimed. ��
Remark 5.5 The hypothesis on π−1(E) can in general not be omitted; see [21, Rem. 3.11].

5.3 Gorenstein descent

Suppose that we are given maps R → T → k of S-algebras, and that T is somehow easier
to work with than R. A descent theorem for a property P gives hypotheses under which P
for T → k implies P for R → k. We first apply this idea in the case of the Gorenstein
property.

Lemma 5.6 Let T → k be a map of S-algebras, and suppose that the homomorphism
of coefficient rings π∗(T ) → π∗(k) is (algebraically) Gorenstein in the sense that
Ext∗,∗

π∗(T )(π∗(k), π∗(T )) is a free π∗(k)-module of rank 1, on a generator in bidegree (s, t).
Then T → k is Gorenstein of shift a = t − s.

Grothendieck’s definition given in [29, p. 63] ismore restrictive, but this condition suffices
for our purposes.

Proof The conditionally convergent Ext spectral sequence

Es,t
2 = Exts,tπ∗(T )(π∗(k), π∗(T )) �⇒s πt−s FT (k, T )

of [22, Thm. IV.4.1] is a π∗(k)-module spectral sequence that collapses at the E2-term,
hence is strongly convergent. It follows that π∗FT (k, T ) ∼= �aπ∗(k) as π∗(k)-modules, so
that FT (k, T ) � �ak as k-modules. ��
Example 5.7 Zp → Fp is Gorenstein of algebraic shift (s, t) = (1, 0) and of topological
shift a = −1.
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Lemma 5.8 Let R → T → k be maps of S-algebras, and suppose that R → T is Gorenstein
of shift b. Then T → k is Gorenstein of shift a if and only if R → k is Gorenstein of shift a+b.

Proof By hypothesis, FR(T , R) � �bT as left T -modules. It follows that

FR(k, R) ∼= FT (k, FR(T , R)) � FT (k, �bT ) ∼= �bFT (k, T )

as left k-modules. Hence FT (k, T ) � �ak if and only if FR(k, R) � �a+bk. ��

Example 5.9 If π∗(T ) ∼= Zp[y1, . . . , yd ] is polynomial on finitely many generators, and
k = Zp , then the ring homomorphism π∗(T ) → Zp is Gorenstein of shift (s, t) =
(d,−∑d

i=1 |yi |). Hence the S-algebra map T → Zp is Gorenstein of shift

a = −d −
d∑

i=1

|yi | = −
d∑

i=1

(|yi | + 1).

Moreover,π∗(T ) → Fp isGorenstein of shift (d+1,−∑d
i=1 |yi |) andT → Fp isGorenstein

of shift −d − 1 − ∑d
i=1 |yi |.

Proposition 5.10 The S-algebra maps

ko −→ ku −→ Zp −→ Fp

are Gorenstein of shift −2, −3 and −1, respectively. Hence ko → Zp is Gorenstein of
shift −5 and ko → Fp is Gorenstein of shift −6.

At p = 2 the S-algebra maps

tmf −→ tmf1(3) −→ Z2 −→ F2

are Gorenstein of shift −12, −10 and −1, respectively. At p = 3 the S-algebra maps

tmf −→ tmf0(2) −→ Z3 −→ F3

are Gorenstein of shift −8, −14 and −1, respectively. At p ≥ 5 the S-algebra maps

tmf −→ Zp −→ Fp

are Gorenstein of shift −22 and −1, respectively. Hence tmf → Zp is Gorenstein of
shift −22, and tmf → Fp is Gorenstein of shift −23, uniformly at all primes.

Proof The homotopy rings

π∗(ku) ∼= Zp[u]
π∗(tmf1(3)) ∼= Z2[a1, a3]
π∗(tmf0(2)) ∼= Z3[a2, a4]

π∗(tmf ) ∼= Zp[c4, c6],
(5.1)

where p ≥ 5 in the last case, are all polynomial, with |u| = 2, |ai | = 2i and |ci | = 2i . See
[11], [39, Prop. 3.2], [4, §1.3], [19, Prop. 6.1] or [15, §9.3, Thm. 13.4]. This accounts for
the Gorenstein shifts by −3, −10, −14 and −22, as in Example 5.9.

The shifts by −1 are covered by Example 5.7.
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By Wood’s theorem [14, Lem. 4.1.2], and its parallels [40, Thm. 4.12, Thm. 4.15] for
topological modular forms, there are equivalences

ko ∧ Cη � ku

tmf ∧ � � tmf1(3)

tmf ∧ � � tmf0(2)

(5.2)

of ko- or tmf -modules, according to the case. Here Cη = S ∪η e2 is a 2-cell, 2-dimensional
Spanier–Whitehead self-dual spectrum, � is an 8-cell, 12-dimensional Spanier–Whitehead
self-dual 2-local spectrum [15, Lem. 1.42]withmod 2 cohomology H∗(�) ∼= A(2)//E(2) ∼=
�A(1) realising the double of A(1), and� = S∪ν e4∪ν e8 is a 3-cell 8-dimensional Spanier–
Whitehead self-dual 3-local spectrum [15, Def. 13.3] with mod 3 cohomology H∗(�) ∼=
P(0) = 〈P1〉. The duality equivalences D(Cη) � �−2Cη, D� � �−12� and D� �
�−8� account for the Gorenstein shifts by −2, −12 and −8, respectively. For example, in
the case of tmf at p = 2 we have equivalences

Ftmf (tmf1(3), tmf ) � Ftmf (tmf ∧ �, tmf ) � F(�, tmf )

� tmf ∧ D� � tmf ∧ �−12� � �−12tmf1(3)

of tmf -modules. ��

5.4 Small descent

We can use descent to verify that k is a (proxy-)small R-module in the cases relevant for
Sects. 7 and 8.

Lemma 5.11 Let R → T → k be maps of S-algebras, such that T is small as an R-module
and k is small as a T -module. Then k is small as an R-module.

Proof Since T finitely builds k as a T -module, this remains true as R-modules. Hence R
finitely builds k. ��
Lemma 5.12 Let T be a commutative S-algebra with π∗(T ) ∼= Zp[y1, . . . , yd ]. Then Zp

and Fp are small as T -modules.

Proof T /y1 ∧T · · · ∧T T /yd � Zp and Zp/p � Fp are finitely built from T . ��
Remark 5.13 More generally, if π∗(k) is a perfect π∗(T )-module, meaning that it admits a
finite length resolution by finitely generated projective π∗(T )-modules, then k is small as a
T -module.

Corollary 5.14 Zp and Fp are small as ko-modules and as tmf -modules, at all primes p.

Proof Lemma 5.12 applies to the commutative Sp-algebras ko for p ≥ 3, ku for all p,
tmf1(3) for p = 2, tmf0(2) for p = 3, and tmf for p ≥ 5. Lemma 5.11 then covers the
cases of ko at p = 2, and tmf at p ∈ {2, 3}, in view of (5.2). ��

5.5 Descent of algebraic cellularisation

Definition 5.15 Let R be a commutative S-algebra and k an R-module. We say that R has
algebraic k-cellularisation by J if J = (x1, . . . , xd) ⊂ π∗(R) is a finitely generated ideal
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with

Cellk M � �J M

for all R-modules M .

This condition only depends on the radical
√
J of J , and by Lemmas 2.1 and 2.4 it is

equivalent to asking that the R-modules k and R/J mutually build one another.

Lemma 5.16 Let T be a commutative S-algebra with π∗(T ) ∼= Zp[y1, . . . , yd ]. Then
T has algebraic Zp-cellularisation by (y1, . . . , yd), and algebraic Fp-cellularisation by
(p, y1, . . . , yd).

Proof Letting J ′ = (y1, . . . , yd) or J ′ = (p, y1, . . . , yd) we have T /J ′ � k = Zp or
T /J ′ � k = Fp , according to the case. Hence Cellk M � CellT /J ′ M � �J ′M . ��
Lemma 5.17 Let φ : R → T be a map of commutative S-algebras, where R is connective
with π0(R) = Zp. Let J = (x1, . . . , xd) ⊂ π∗(R) be such that π∗(R/J ) is bounded above,
and suppose that T has algebraic Zp-cellularisation by

J ′ = (φ(x1), . . . , φ(xd)) ⊂ π∗(T ).

Then R has algebraic Zp-cellularisation by J .
Similarly, if π∗(R/J ) is p-power torsion and bounded above, and T has algebraic Fp-

cellularisation by J ′, then R has algebraic Fp-cellularisation by J .

Proof In the case k = Zp , the R-module Zp builds R/J since π∗(R/J ) is bounded above.
Conversely, R builds T so R/J builds T ∧R R/J = T /J ′. By hypothesis, T /J ′ builds Zp

in T -modules, hence also in R-modules. Thus R/J builds Zp in R-modules.
Similarly, for k = Fp the R-module Fp builds R/J since π∗(R/J ) is p-power torsion

and bounded above. Conversely, R/J builds T /J ′ as before. By hypothesis, T /J ′ builds Fp

in T -modules, hence also in R-modules. Thus R/J builds Fp in R-modules. ��
Recall from Notation 4.5 that B ∈ π8(tmf ) (together with B + ε) is detected by the

modular form c4, while we write M for M ∈ π192(tmf ) detected by �8 when p = 2, and
for H ∈ π72(tmf ) detected by �3 when p = 3. For uniformity of notation, let us also write
M for the class in π24(tmf ) detected by � when p ≥ 5.

Proposition 5.18 The commutative Sp-algebra ko has algebraic Zp-cellularisation by (B),
and algebraic Fp-cellularisation by (p, B), for all primes p.

CellZp ko � �Bko

CellFp ko � �(p,B)ko

Likewise, tmf has algebraicZp-cellularisation by (B, M), and algebraic Fp-cellularisation
by (p, B, M), for all primes p.

CellZp tmf � �(B,M)tmf

CellFp tmf � �(p,B,M)tmf

Proof For ko, we apply Lemma 5.17 to the complexification map φ : ko → ku with J =
(B), where φ(B) = u4. Then π∗(ko/B) ∼= Zp{1, η, η2, A}/(2η, 2η2) is finitely generated
over Zp . Moreover, J ′ = (u4) has radical (u) ⊂ π∗(ku). According to Lemma 5.16, ku has
algebraic Zp-cellularisation by (u), hence it also has algebraic Zp-cellularisation by J ′.
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Similarly, with J = (p, B) we see that π∗(ko/(p, B)) is finite and J ′ = (p, u4) has
radical (p, u) ⊂ π∗(ku), so ku has algebraic Fp-cellularisation by (p, u) and by J ′.

For tmf at p = 2we apply Lemma 5.17 to themap φ : tmf → tmf1(3)with J = (B, M),
cf. (5.1), where

φ(B) = c4 c4 = a1(a
3
1 − 24a3)

φ(M) = �8 � = a33(a
3
1 − 27a3),

according to the formulas for �1(3)-modular forms. See [15, §9.3] and the more detailed
references therein. It is clear from Theorem 8.4 that π∗(tmf /(B, M)) ∼= π∗(N/B) is finitely
generated over Z2. Moreover, J ′ = (c4,�8) has radical (a1, a3) ⊂ π∗(tmf1(3)), so tmf1(3)
has algebraic Z2-cellularisation by (a1, a3) according to Lemma 5.16, hence also by J ′.

Similarly, with J = (2, B, M) we see that π∗(tmf /(2, B, M)) ∼= π∗(N/(2, B)) is finite
and J ′ = (2, c4,�8) has radical (2, a1, a3), so tmf has algebraic F2-cellularisation by
(2, a1, a3) and by J ′.

For tmf at p = 3we apply Lemma 5.17 to themap φ : tmf → tmf0(2)with J = (B, H),
cf. (5.1), where

φ(B) = c4 c4 = 16(a22 − 3a4)

φ(H) = �3 � = 16a24(a
2
2 − 4a4)

according to the formulas for �0(2)-modular forms. See [15, §13.1] and the more detailed
references therein. It is clear fromTheorem8.15 thatπ∗(tmf /(B, H)) ∼= π∗(N/B) is finitely
generated over Z3. Moreover, J ′ = (c4,�3) has radical (a2, a4) ⊂ π∗(tmf0(2)), so tmf0(2)
has algebraic Z3-cellularisation by (a2, a4) according to Lemma 5.16, hence also by J ′.

Similarly, with J = (3, B, H) we see that π∗(tmf /(3, B, H)) ∼= π∗(N/(3, B)) is finite
and J ′ = (3, c4,�3) has radical (3, a2, a4), so tmf has algebraic F3-cellularisation by
(3, a2, a4) and by J ′.

For tmf at p ≥ 5, the ideal J ′ = (B, M) = (c4,�), with � = (c34 − c26)/1728, has
radical (c4, c6). Hence tmf has algebraic Zp-cellularisation by (c4, c6) and by J ′.

Similarly, the ideal J ′ = (p, B, M) = (p, c4,�) has radical (p, c4, c6), so tmf has
algebraic Fp-cellularisation by (p, c4, c6) and by J ′. ��

5.6 Local cohomology theorems by Gorenstein duality

Theorem 5.19 There are equivalences of ko-modules

�Bko = �n0ko � �−5 IZp (ko)

and equivalences of tmf -modules

�(B,M)tmf = �n0 tmf � �−22 IZp (tmf )

at all primes p.

Proof We apply Proposition 5.3 to R → k with R = ko or R = tmf and k = Zp . Then
R → k is Gorenstein of shift a = −5 or a = −22 by Proposition 5.10, and k is small,
hence proxy-small, as an R-module by Corollary 5.14. Hence Cellk R � �a IZp R in each
case. Moreover, Cellk R � �J R for J = (B) ⊂ π∗(ko) or J = (B, M) ⊂ π∗(tmf ), by
Proposition 5.18. Finally,�J R � �n0 R since J has radical n0 in each case, cf. Lemma 4.7(2).

��
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Theorem 5.20 There are equivalences of ko-modules

�(p,B)ko = �np ko � �−6 I (ko)

and equivalences of tmf -modules

�(p,B,M)tmf = �np tmf � �−23 I (tmf )

at all primes p.

Proof We apply Proposition 5.3 to R → k with R = ko or R = tmf and k = Fp .
Then R → k is Gorenstein of shift a = −6 or a = −23 by Proposition 5.10, and k
is small, hence proxy-small, as an R-module by Corollary 5.14. Furthermore, πt (R) is a
finitely generated Zp-module for each t , as is clear from Theorems 8.2 and 8.4 below, so
HomZp (π∗(R),Qp/Zp) is p-power torsion in each degree. Hence Cellk R � �a I R in each
case.Moreover, Cellk R � �J R for J = (p, B) ⊂ π∗(ko) or J = (p, B, M) ⊂ π∗(tmf ), by
Proposition 5.18. Finally,�J R � �np R since J has radicalnp in each case, cf. Lemma4.7(2).

��

5.7 ko- and tmf-module Steenrod algebras

For completeness, we record the structure of π∗(E) in our main cases of interest, where
E = FR(k, k), R = ko or tmf , and k = Fp .

Proposition 5.21 [15, 20, 30] For p = 2 there are algebra isomorphisms

π∗Fko(F2,F2) ∼= A(1)

π∗Ftmf (F2,F2) ∼= A(2).

For p = 3 there is a square-zero quadratic extension

π∗Ftmf (F3,F3) = Atmf −→ A(1),

where Atmf is generated by classes β and P1 in cohomological degrees 1 and 4, subject to
β2 = 0, β(P1)2β = (βP1)2 + (P1β)2 and (P1)3 = 0. In each case, classes in homotopical
degree −m correspond to classes in cohomological degree m.

Proof Restriction along S → tmf induces an S-algebra map

E = Ftmf (F2,F2) −→ FS(F2,F2)

and an algebra homomorphism π∗(E) → A to the mod 2 Steenrod algebra. Base change
along S → F2 lets us rewrite the S-algebra map as

E ∼= FF2∧tmf (F2 ∧ F2,F2) −→ FF2(F2 ∧ F2,F2).

Since the dual Steenrod algebra A∗ = π∗(F2 ∧ F2) is free as an H∗(tmf ) = π∗(F2 ∧ tmf )-
module, the Ext spectral sequences for these two function spectra collapse, and let us rewrite
the algebra homomorphism as the monomorphism

π∗(E) ∼= HomH∗(tmf )(A∗,F2) −→ HomF2(A∗,F2) ∼= A.

By duality, this identifies π∗(E) with the H∗(tmf ) = A//A(2)-comodule primitives in A,
which is precisely the subalgebra A(2).

The proof for ko is the same, replacing A(2) with A(1).
The result for p = 3 is due to Henriques and Hill [30, Thm. 2.2], [20, §13.3], except for

the comment that the extension is square-zero, which appears in [15, §13.1]. ��
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6 Thera duality

A third line of proof is discussed in [15, §10.3, §10.4, §13.5], yielding the following theorems.

Theorem 6.1 [15, Thm. 10.6, Prop. 10.12] There are equivalences of 2-complete tmf -
modules

�23tmf � I (�(2,B,M)tmf )

�22tmf � IZ2(�(B,M)tmf ).

Theorem 6.2 [15, Thm. 13.20, Prop. 13.21] There are equivalences of 3-complete tmf -
modules

�23tmf � I (�(3,B,H)tmf )

�22tmf � IZ3(�(B,H)tmf ).

This approach combines descent with a strengthening of the Cohen–Macaulay property,
equivalent to the Gorenstein property. Recall (5.1). One first observes that

�11tmf1(3) � I (�(2,a1,a3)tmf1(3)),

because the local cohomology of π∗(tmf1(3)) = Z2[a1, a3] at the maximal ideal n2 =
(2, a1, a3) is concentrated in a single cohomological degree, and, moreover, its Z2-module
Pontryagin dual is a free π∗(tmf1(3))-module on one generator. The conclusion for tmf
follows by faithful descent along tmf → tmf1(3) � tmf ∧�, since� is Spanier–Whitehead
self-dual.

7 Topological K -theory

As awarm-up to Sect. 8,we spell out the structure of the local cohomology spectral sequences

Es,t
2 = Hs

(B)(π∗(ko))t �⇒s πt−s(�Bko) ∼= πt−s(�
−5 IZ2(ko))

and

Es,t
2 = Hs

(2,B)(π∗(ko))t �⇒s πt−s(�(2,B)ko) ∼= πt−s(�
−6 I (ko)).

Multiplication by B acts injectively on the depth 1 graded commutative ring

π∗(ko) = Z2[η, A, B]/(2η, η3, ηA, A2 − 4B)

and we let N∗ denote a basic block for this action.

Definition 7.1 In this section only, let N∗ ⊂ π∗(ko) be the Z2-submodule of classes in
degrees 0 ≤ ∗ < 8, and let N = ko/B.

Lemma 7.2 The composite N∗⊗Z[B] → π∗(ko)⊗Z[B] ·→ π∗(ko) is an isomorphism. As a
Z2-module, N∗ = Z2{1, η, η2, A}/(2η, 2η2) is a split extension by the 2-torsion submodule
�2N∗ = Z/2{η, η2} of the 2-torsion free quotient N∗/�2N∗ = Z2{1, A}.
Lemma 7.3 H0

(B)(π∗(ko)) = 0 and H1
(B)(π∗(ko)) ∼= N∗ ⊗ Z[B]/B∞.
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Fig. 1 Es,t
2 = Hs

(B)
(π∗(ko))t �⇒s πt−s (�Bko)

Proof These are the cohomology groups of the complex

0 → π∗(ko)
γ−→ π∗(ko)[1/B] → 0,

which we may rewrite as 0 → N∗ ⊗ Z[B] γ−→ N∗ ⊗ Z[B±1] → 0. ��

Proposition 7.4 The local cohomology spectral sequence

Es,t
2 = Hs

(B)(π∗(ko))t �⇒s πt−s(�Bko) ∼= πt−s(�
−5 IZ2ko)

has E2-term concentrated on the s = 1 line, with E1,∗
2 = N∗ ⊗Z[B]/B∞. There is no room

for differentials or hidden extensions, so E2 = E∞. Hence there are isomorphisms

�−1
Z2{1, A} ⊗ Z[B]/B∞ ∼= �−5 HomZ2(Z2{1, A} ⊗ Z[B],Z2)

and

�−1
Z/2{η, η2} ⊗ Z[B]/B∞ ∼= �−6 ExtZ2(Z/2{η, η2} ⊗ Z[B],Z2).

Proof Recall the short exact sequence (3.1) and see Fig. 1, where the vertical and slope 1
solid lines show multiplications by 2 and η, respectively, while the roughly horizontal dotted
paths show multiplications by B. ��
Lemma 7.5 Hs

(2,B)(π∗(ko)) ∼= Hs−1
(2) (N∗) ⊗ Z[B]/B∞ where

H0
(2)(N∗) = Z/2{η, η2}

H1
(2)(N∗) = Q2/Z2{1, A}.

Proof See Lemma 8.6 for the proof of the first isomorphism. The H∗
(2)(N∗) are the cohomol-

ogy groups of the complex

0 → N∗
γ−→ N∗[1/2] → 0.

��
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Fig. 2 Es,t
2 = Hs

(2,B)
(π∗(ko))t �⇒s πt−s (�(2,B)ko)

Proposition 7.6 The local cohomology spectral sequence

Es,t
2 = Hs

(2,B)(π∗(ko))t �⇒s πt−s(�(2,B)ko) ∼= πt−s(�
−6 I (ko))

has E2-term

Es,t
2

∼= Hs−1
(2) (N∗) ⊗ Z[B]/B∞.

There is no room for differentials, so E2 = E∞. Hence there are isomorphisms

�−2
Q2/Z2{1, A} ⊗ Z[B]/B∞ ∼= �−6 HomZ2(Z2{1, A} ⊗ Z[B],Q2/Z2)

and

�−1
Z/2{η, η2} ⊗ Z[B]/B∞ ∼= �−6 HomZ2(Z/2{η, η2} ⊗ Z[B],Q2/Z2).

Moreover, there are hidden η-extensions as shown by sloping dashed red lines.

Proof See Fig. 2. The hidden η-extensions are deduced from the known π∗(ko)-module
structure of the abutment. ��
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8 Topological modular forms

We can now work out the structure of the local cohomology spectral sequences

Es,t
2 = Hs

(B,M)(π∗(tmf ))t

�⇒s πt−s(�(B,M)tmf ) ∼= πt−s(�
−22 IZp (tmf ))

and

Es,t
2 = Hs

(p,B,M)(π∗(tmf ))t

�⇒s πt−s(�(p,B,M)tmf ) ∼= πt−s(�
−23 I (tmf ))

for p = 2 and for p = 3. Recall the algebra generators for π∗(tmf ) listed in Table 1 for
p = 2 and in Table 2 for p = 3. In each case multiplication by M acts injectively on the
depth 1 graded commutative ring π∗(tmf ), and we let N∗ denote a basic block for this action.
(The notation BB is used for a similar object in [27].) To begin, we review the Zp[B, M]-
module structure on π∗(tmf ) and the Zp[B]-module structure on N∗, in the notation from
[15, Ch. 9].

8.1 (B,M)-local cohomology of tmf

Let p = 2 in this subsection and the next. See Fig. 4 for the mod 2 Adams E∞-term for tmf
in the range 0 ≤ t − s ≤ 192, with all hidden 2-, η- and ν-extensions shown. There are no
hidden B- or M-extensions in this spectral sequence.

Definition 8.1 Let N∗ ⊂ π∗(tmf ) be the Z2[B]-submodule generated by all classes in
degrees 0 ≤ ∗ < 192, and let N = tmf /M .

Theorem 8.2 [15, Thm. 9.27] The composite homomorphisms

N∗ ⊗ Z[M] −→ π∗(tmf ) ⊗ π∗(tmf )
·−→ π∗(tmf )

N∗ ⊂ π∗(tmf ) −→ π∗(N )

are isomorphisms. Hence π∗(tmf ) is a (split) extension of Z2[B, M]-modules

0 → �BN∗ ⊗ Z[M] −→ π∗(tmf ) −→ N∗
�BN∗

⊗ Z[M] → 0.

Definition 8.3 Let ν3 = η31 and ν7 = 0, and set dk = 8/ gcd(k, 8), so that d0 = 1, d4 = 2,
d2 = d6 = 4, d1 = d3 = d5 = d7 = 8 and d7−kνk = 0 for 0 ≤ k ≤ 7.

Theorem 8.4 [15, Thm. 9.26] As a Z2[B]-module, N∗ is a split extension

0 → �BN∗ −→ N∗ −→ N∗
�BN∗

→ 0.

The B-power torsion submodule �BN∗ is given in Table 3. It is concentrated in degrees
3 ≤ ∗ ≤ 164, and is finite in each degree. The action of B is as indicated in the table,
together with B · ε1 = 2κ̄2, B · ην2 = 2κ̄3 and B · ε5κ = 4νν6.

The B-torsion free quotient of N∗ is the direct sum

N∗
�BN∗

=
7⊕

k=0

ko[k]
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Table 3 B-power torsion in N∗ at
p = 2

n �B Nn Generator n �B Nn Generator

3 Z/8 ν 85 Z/2 η1κ̄
3

6 Z/2 ν2 90 Z/2 η21 κ̄
2

8 Z/2 ε 99 Z/8 ν4

9 Z/2 ηε 100 Z/2 ην4

14 Z/2 κ 102 Z/2 νν4

15 Z/2 ηκ 104 Z/2 ε4

17 Z/2 νκ 105 (Z/2)2 ηε4

20 Z/8 κ̄ – – η1κ̄
4

21 Z/2 ηκ̄ 110 Z/4 κ4

22 Z/2 η2κ̄ = B · κ 111 Z/2 ηκ4

27 Z/4 ν1 113 Z/2 νκ4

28 Z/2 ην1 = B · κ̄ 116 Z/4 κ̄D4

32 Z/2 ε1 117 Z/2 η4κ̄

33 Z/2 ηε1 118 Z/2 ηη4κ̄ = B · κ4

34 Z/2 κκ̄ 123 Z/4 ν5

35 Z/2 ηκκ̄ = B · ν1 124 Z/2 ην5

39 Z/2 η1κ 125 Z/2 η2ν5 = B · η4κ̄

40 Z/4 κ̄2 128 Z/2 ε5

41 Z/2 ηκ̄2 129 Z/2 ηε5

42 Z/2 η2κ̄2 = B · κκ̄ 130 Z/4 κ4κ̄

45 Z/2 η1κ̄ 131 Z/2 ηκ4κ̄ = B · ν5

46 Z/2 ηη1κ̄ 135 Z/2 η1κ4

51 Z/8 ν2 136 Z/2 ηη1κ4 = B · ε5

52 Z/2 ην2 137 Z/2 ν5κ

53 Z/2 η2ν2 = B · η1κ̄ 138 Z/2 ην5κ = B · κ4κ̄

54 Z/4 νν2 142 Z/2 ε5κ

57 Z/2 ν2ν2 147 Z/8 ν6

59 Z/2 Bν2 148 Z/2 ην6

60 Z/4 κ̄3 149 Z/2 η2ν6

65 (Z/2)2 η1κ̄
2 150 Z/8 νν6

– – ν2κ 153 Z/2 ν2ν6

66 Z/2 ην2κ 155 Z/2 Bν6

68 Z/2 νν2κ 156 Z/2 Bην6

70 Z/2 η21 κ̄ 161 Z/2 ν6κ

75 Z/2 η31 162 Z/2 ην6κ

80 Z/2 κ̄4 164 Z/2 νν6κ
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of the following eight Z2[B]-modules, with ko[k] concentrated in degrees ∗ ≥ 24k:

ko[0] = Z2[B]{1,C} ⊕ Z/2[B]{η, η2}
ko[1] = Z2{D1} ⊕ Z2[B]{B1,C1} ⊕ Z/2[B]{η1, ηη1}
ko[2] = Z2{D2} ⊕ Z2[B]{B2,C2} ⊕ Z/2[B]{ηB2, η

2
1}

ko[3] = Z2{D3} ⊕ Z2[B]{B3,C3} ⊕ Z/2[B]{ηB3, η
2B3}

ko[4] = Z2{D4} ⊕ Z2[B]{B4,C4} ⊕ Z/2[B]{η4, ηη4}
ko[5] = Z2{D5} ⊕ Z2[B]{B5,C5} ⊕ Z/2[B]{ηB5, η1η4}
ko[6] = Z2{D6} ⊕ Z2[B]{B6,C6} ⊕ Z/2[B]{ηB6, η

2B6}
ko[7] = Z2{D7} ⊕ Z2[B]{B7,C7} ⊕ Z/2[B]{ηB7, η

2B7}.
The Z2[B]-module structures are specified by B · Dk = dk Bk for each 1 ≤ k ≤ 7.

Remark 8.5 The submodule N∗ ⊂ π∗(tmf ) is preserved by the action of η, ν, ε, κ and κ̄ . To
check this, note that the B2-torsion classes κC7, κ̄B7 and κ̄C7 are zero. It follows that the
isomorphism N∗ ⊗ Z[M] ∼= π∗(tmf ) also respects the action by these elements.

Lemma 8.6

Hs
(B,M)(π∗(tmf )) ∼= Hs−1

(B) (N∗) ⊗ Z[M]/M∞.

Proof The spectral sequence

Ei, j
2 = Hi

(B)(H
j

(M)(N∗ ⊗ Z[M])) �⇒i H
i+ j
(B,M)(N∗ ⊗ Z[M])

collapses at the j = 1 line, where H1
(M)(Z[M]) = Z[M]/M∞ = Z[M−1]{1/M}. ��

Lemma 8.7

H0
(B)(N∗) = �BN∗

and

H1
(B)(N∗) = N∗/B∞ =

7⊕
k=0

ko[k]/B∞

is the direct sum of the following eight Z2[B]-modules, with ko[k]/B∞ concentrated in
degrees ∗ ≤ 24k + 4:

ko[0]/B∞ = Z2[B]/B∞{1,C} ⊕ Z/2[B]/B∞{η, η2}
ko[1]/B∞ = Z2[B]/B∞{B1,C1}/(8B1/B) ⊕ Z/2[B]/B∞{η1, ηη1}
ko[2]/B∞ = Z2[B]/B∞{B2,C2}/(4B2/B) ⊕ Z/2[B]/B∞{ηB2, η

2
1}

ko[3]/B∞ = Z2[B]/B∞{B3,C3}/(8B3/B) ⊕ Z/2[B]/B∞{ηB3, η
2B3}

ko[4]/B∞ = Z2[B]/B∞{B4,C4}/(2B4/B) ⊕ Z/2[B]/B∞{η4, ηη4}
ko[5]/B∞ = Z2[B]/B∞{B5,C5}/(8B5/B) ⊕ Z/2[B]/B∞{ηB5, η1η4}
ko[6]/B∞ = Z2[B]/B∞{B6,C6}/(4B6/B) ⊕ Z/2[B]/B∞{ηB6, η

2B6}
ko[7]/B∞ = Z2[B]/B∞{B7,C7}/(8B7/B) ⊕ Z/2[B]/B∞{ηB7, η

2B7}.
Here Z2[B]/B∞ = Z2[B−1]{1/B} and Z/2[B]/B∞ = Z/2[B−1]{1/B}.
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Proof The relations B · ηk = ηBk from [15, Def. 7.22(7)] ensure that

ko[k][1/B] = Z2[B±1]{Bk,Ck} ⊕ Z/2[B±1]{ηBk, η
2Bk}

for each 0 ≤ k ≤ 7, from which the formulas for ko[k]/B∞ follow. Note that B ·Dk = dk Bk

in ko[k] implies the relation dk · Bk/B = 0 in ko[k]/B∞. ��

Theorem 8.8 At p = 2, the local cohomology spectral sequence

Es,t
2 = Hs

(B,M)(π∗(tmf ))t �⇒s πt−s(�(B,M)tmf ) ∼= πt−s(�
−22 IZ2(tmf ))

has E2-term

Hs
(B,M)(π∗(tmf ))∗ ∼= Hs−1

(B) (N∗) ⊗ Z[M]/M∞

where H∗
(B)(N∗) is displayed in Figs. 5 and 6. There is no room for differentials, so E2 = E∞.

There are hidden additive extensions

d7−k · νk
.= Ck/B

(multiplied by all negative powers of M) for 0 ≤ k ≤ 6, indicated by vertical dashed red lines
in the figures. Moreover, there are hidden η- and ν-extensions as shown by sloping dashed
and dotted red lines in these figures.

Proof See [15, §9.2] for the η- and ν-multiplications in �BN∗ that are not evident from the
notation. We note in particular the relation ν2ν4 = ηε4 + η1κ̄

4 in degree 105. The dotted
black lines show B-multiplications. The homotopy cofibre (and fibre) sequences

�192�(B,M)tmf
M−→ �(B,M)tmf −→ �BN

IZ2N −→ IZ2(tmf )
M−→ IZ2(�

192tmf )

and the equivalence �(B,M)tmf � �−22 IZ2(tmf ) imply an equivalence

�BN � �171 IZ2N

of tmf -modules. For each 0 ≤ k ≤ 6 the group π24k+3(�BN ) ∼= π−24(7−k)(IZ2N ) sits in a
short exact sequence

0 → ExtZ2(π24(7−k)−1(N ),Z2) −→ π−24(7−k)(IZ2N )

−→ HomZ2(π24(7−k)(N ),Z2) → 0,

cf. (3.1). Here π24(7−k)−1(N ) = 0 and

π24(7−k)(N ) ∼= Z2{B3(7−k), . . . , B3D6−k, D7−k} ∼= Z
8−k
2 ,

so π24k+3(�BN ) ∼= Z
8−k
2 is 2-torsion free. In each case this implies that νk , which generates

a cyclic group 〈νk〉 of order d7−k in �BN∗, lifts to a class of infinite order in π24k+3(�BN ).
Since νk is (B- or) B2-torsion in �BN∗, its lift must also be (B- or) B2-torsion, and the only
possibility is that d7−k times the lift of νk is a 2-adic unit times the image ofCk/B ∈ N∗/B∞.
Hence there is a hidden 2-extension from 1

2d7−kνk inAdams bidegree (t−s, s) = (24k+3, 0)
to Ck/B in bidegree (t − s, s) = (24k + 3, 1), in the local cohomology spectral sequence
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Es,t
2 = Hs

(B)(N∗)t �⇒s πt−s(�BN ) ∼= πt−s(�
171 IZ2N ).

This translates to a hidden 2-extension from 1
2d7−kνk/M in bidegree (t − s, s) = (24k −

190, 1) to Ck/BM in bidegree (t − s, s) = (24k − 190, 2) in the local cohomology spectral
sequence for �(B,M)tmf , together with its multiples by all negative powers of M .

There is no room for further hidden 2-extensions, by elementary η-, ν- and B-linearity con-
siderations. The hidden η- and ν-extensions are present in π∗(IZ2N ), hence also in π∗(�BN )

and in π∗(�(B,M)tmf ), with the appropriate degree shifts. ��

8.2 (2, B,M)-local cohomology of tmf

Lemma 8.9

Hs
(2,B,M)(π∗(tmf )) ∼= Hs−1

(2,B)(N∗) ⊗ Z[M]/M∞.

Proof Replace (B) by (2, B) in the proof of Lemma 8.6. ��

Proposition 8.10 All B-power torsion in N∗ is 2-power torsion, so

H0
(2,B)(N∗) = �BN∗

H1
(2,B)(N∗) = �2(N∗/B∞)

H2
(2,B)(N∗) = N∗/(2∞, B∞)

with a short exact sequence

0 → (�2N∗)/B∞ −→ �2(N∗/B∞) −→ �B(N∗/2∞) → 0.

Here

(�2N∗)/B∞ = Z/2[B]/B∞{η, η2, η1, ηη1, ηB2, η
2
1, ηB3, η

2B3,

η4, ηη4, ηB5, η1η4, ηB6, η
2B6, ηB7, η

2B7},
and

�B(N∗/2∞) =
7⊕

k=1

Z/dk{Bk/B},

while

N∗/(2∞, B∞) =
7⊕

k=0

Z2[B]/(2∞, B∞){Bk/B,Ck},

where Z2[B]/(2∞, B∞) = Q2/Z2[B−1]{1/B}.

Proof This follows from the composite functor spectral sequence of Sect. 2.5 with R∗ =
π∗(tmf )/M , first applied with x = B and y = 2, and thereafter with x = 2 and y = B.
The formulas for (�2N∗)/B∞ and N∗/(2∞, B∞) follow from the expressions for N∗ and
N∗/B∞ in Theorem 8.4 and Lemma 8.7. Only the summands Z2[Dk]⊕Z2[B]{Bk} ⊂ ko[k]
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of N∗ contribute to �B(N∗/2∞), where B · Dk = dk Bk . The B-power torsion in ko[k]/2∞
equals Z/dk{Dk/dk} ⊂ Q2/Z2{Dk}, which we can rewrite as Z/dk{Bk/B}. ��

Theorem 8.11 The local cohomology spectral sequence

Es,t
2 = Hs

(2,B,M)(π∗(tmf ))t �⇒s πt−s(�(2,B,M)tmf ) ∼= πt−s(�
−23 I (tmf ))

has E2-term

Hs
(2,B,M)(π∗(tmf ))∗ ∼= Hs−1

(2,B)(N∗) ⊗ Z[M]/M∞

where H∗
(2,B)(N∗) is displayed in Figs. 7, 8, 9, 10. There are d2-differentials

d2(νk)
.= Ck/d7−k B

(multiplied by all negative powers of M) for 0 ≤ k ≤ 6, indicated by the green zigzag arrows
increasing the filtration by 2. There are no hidden additive extensions, but several hidden η-
and ν-extensions, as shown by sloping dashed and dotted red lines in these figures.

Proof The homotopy (co-)fibre sequences

�192�(2,B,M)tmf
M−→ �(2,B,M)tmf −→ �(2,B)N

I N −→ I (tmf )
M−→ I (�192tmf )

and the equivalence �(2,B,M)tmf � �−23 I (tmf ) imply an equivalence

�(2,B)N � �170 I N

of tmf -modules. For each 0 ≤ k ≤ 6 the group

π24k+3(�(2,B)N ) ∼= π−24(7−k)+1(I N ) ∼= HomZ2(π24(7−k)−1(N ),Q2/Z2)

is trivial, since π24(7−k)−1(N ) = 0. Hence the group 〈νk〉 = Z/d7−k{νk} in degree 24k + 3
of �(2,B)N∗ = �BN∗ cannot survive to E∞ in the local cohomology spectral sequence

Es,t
2 = Hs

(2,B)(N∗)t �⇒s πt−s(�(2,B)N ) ∼= πt−s(�
170 I N ).

This means that d2 must act injectively on 〈νk〉. Since νk is (B- or) B2-torsion, the only
possible target in bidegree (t − s, s) = (24k +2, 2) isQ2/Z2{Ck/B}, and therefore d2 maps
〈νk〉 isomorphically to the subgroup of this target that is generated by Ck/d7−k B.

This translates to a d2-differential in the local cohomology spectral sequence for
�(2,B,M)tmf from νk/M in bidegree (t − s, s) = (24k−190, 1) to Ck/d7−k BM in bidegree
(t − s, s) = (24k−191, 3), together with its multiples by all negative powers of M . The pre-
viously known 2-, η- and ν-extensions in π∗(N ) and π∗(I N ) are also present in π∗(�(2,B)N )

and in π∗(�(2,B,M)tmf ), with the appropriate degree shifts, and those that increase the local
cohomology filtration degree are displayed with red lines. ��

Remark 8.12 Let �N∗ ⊂ �BN∗ be the part of the B-power torsion in N∗ that is not in
degrees ∗ ≡ 3 mod 24, omitting the subgroups 〈νk〉 for 0 ≤ k ≤ 6 from Table 3. This
equals the kernel of the d2-differential in the (2, B)-local cohomology spectral sequence,
which is also the image of the edge homomorphism π∗(�(2,B)N ) → �BN∗. Furthermore,
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let �π∗(tmf ) be the part of �Bπ∗(tmf ) that is not in degrees ∗ ≡ 3 mod 24, which equals
the image of the edge homomorphism π∗(�(2,B)tmf ) → �Bπ∗(tmf ).

The image of the 2-complete tmf -Hurewicz homomorphism π∗(S) → π∗(tmf ) is the
direct sum of Z in degree 0, the 8-periodic groups Z/2{ηBk} and Z/2{η2Bk} for k ≥ 0, the
groupZ/8{ν} in degree 3, and the 192-periodic groups�π∗(tmf ) ∼= �N∗ ⊗Z[M]. This was
conjectured byMahowald, was proved for degrees n ≤ 101 and n = 125 in [15, Thm. 11.89],
and has now been proved in all degrees byBehrens,Mahowald andQuigley [6]. The three first
summands of the tmf -Hurewicz image are also detected by the Adams d- and e-invariants
[1]. To see that the fourth summand is contained in the image from π∗(�(2,B)tmf ), one can
use the commutative diagram

C f
1 S S

C f
1 tmf tmf

and the equivalence C f
1 tmf � �(2,B)tmf from Lemmas 2.2 and 2.4.

8.3 (B,H)-local cohomology of tmf

Let p = 3 in this subsection and the next. See Fig. 12 for the mod 3 (tmf -module) Adams
E∞-term for tmf in the range 0 ≤ t − s ≤ 72, with all hidden ν-extensions shown. There
are no hidden B- or H -extensions in this spectral sequence.

Definition 8.13 Let N∗ ⊂ π∗(tmf ) be the Z3[B]-submodule generated by all classes in
degrees 0 ≤ ∗ < 72, and let N = tmf /H .

Theorem 8.14 [15, Lem. 13.16] The composite homomorphisms

N∗ ⊗ Z[H ] −→ π∗(tmf ) ⊗ π∗(tmf )
·−→ π∗(tmf )

N∗ ⊂ π∗(tmf ) −→ π∗(N )

are isomorphisms. Hence π∗(tmf ) is a (split) extension of Z3[B, H ]-modules

0 → �BN∗ ⊗ Z[H ] −→ π∗(tmf ) −→ N∗
�BN∗

⊗ Z[H ] → 0.

Theorem 8.15 [15, Thm. 13.18] As a Z3[B]-module, N∗ is a split extension

0 → �BN∗ −→ N∗ −→ N∗
�BN∗

→ 0.

The B-power torsion submodule �BN∗ is given in Table 4. It is concentrated in degrees
3 ≤ ∗ ≤ 40, and is annihilated by (3, B).
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Table 4 B-power torsion in N∗ at
p = 3

n �B Nn Generator

3 Z/3 ν

10 Z/3 β

13 Z/3 νβ

20 Z/3 β2

27 Z/3 ν1

30 Z/3 β3

37 Z/3 ν1β

40 Z/3 β4

The B-torsion free quotient of N∗ is the direct sum

N∗
�BN∗

=
2⊕

k=0

ko[k]

of the following three Z3[B]-modules, with ko[k] concentrated in degrees ∗ ≥ 24k:

ko[0] = Z3[B]{1,C}
ko[1] = Z3{D1} ⊕ Z3[B]{B1,C1}
ko[2] = Z3{D2} ⊕ Z3[B]{B2,C2}.

The Z3[B]-module structures are specified by B · D1 = 3B1 and B · D2 = 3B2.

Lemma 8.16

Hs
(B,H)(π∗(tmf )) ∼= Hs−1

(B) (N∗) ⊗ Z[H ]/H∞.

Proof Replace M by H in the proof of Lemma 8.6. ��

Lemma 8.17

H0
(B)(N∗) = �BN∗

and

H1
(B)(N∗) = N∗/B∞ =

2⊕
k=0

ko[k]/B∞

is the direct sum of the following three Z3[B]-modules, with ko[k]/B∞ concentrated in
degrees ∗ ≤ 24k + 4:

ko[0]/B∞ = Z3[B]/B∞{1,C}
ko[1]/B∞ = Z3[B]/B∞{B1,C1}/(3B1/B)

ko[2]/B∞ = Z3[B]/B∞{B2,C2}/(3B2/B).
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Proof For k ∈ {1, 2}, the relation B · Dk = 3Bk in ko[k] implies the relation 3 · Bk/B = 0
in ko[k]/B∞. ��
Theorem 8.18 At p = 3, the local cohomology spectral sequence

Es,t
2 = Hs

(B,H)(π∗(tmf ))t �⇒s πt−s(�(B,H)tmf ) ∼= πt−s(�
−22 IZ3(tmf ))

has E2-term

Hs
(B,H)(π∗(tmf ))∗ ∼= Hs−1

(B) (N∗) ⊗ Z[H ]/H∞

where H∗
(B)(N∗) is displayed in Fig. 13. There is no room for differentials, so E2 = E∞.

There are hidden additive extensions

3 · ν
.= C/B and 3 · ν1

.= C1/B

(multiplied by all negative powers of H ), indicated by vertical dashed red lines in the figure.
Moreover, there is a hidden ν-extension from β2 to B1/B, shown by a sloping dotted red line.

Proof We refer to [15, Prop. 13.14] for the relation νν1
.= β3. The equivalence�(B,H)tmf �

�−22 IZ3(tmf ) implies an equivalence �BN � �51 IZ3N of tmf -modules. For k ∈ {0, 1}
the group π24k+3(�BN ) ∼= π−24(2−k)(IZ3N ) sits in an extension

0 → ExtZ3(π24(2−k)−1(N ),Z3) → π−24(2−k)(IZ3N ) → HomZ3(π24(2−k)(N ),Z3) → 0.

Here π24(2−k)−1(N ) = 0 and

π24(2−k)(N ) ∼= Z3{B3(2−k), . . . , D2−k} ∼= Z
3−k
3 ,

soπ24k+3(�BN ) ∼= Z
3−k
3 . Since νk is B-torsion, theremust be a 3-extension inπ24k+3(�BN )

from νk to a 3-adic unit times Ck/B. The ν-extension from ν1 to β3 in π∗(N ) appears in dual
form in π∗(IZ3N ), π∗(�BN ) and π∗(�(B,H)tmf ), and appears as a hidden ν-extension from
β2 to B1/B in the second of these. ��

8.4 (3, B,H)-local cohomology of tmf

Lemma 8.19

Hs
(3,B,H)(π∗(tmf )) ∼= Hs−1

(3,B)(N∗) ⊗ Z[H ]/H∞.

Proof Replace (B) by (3, B) in the proof of Lemma 8.16. ��
Proposition 8.20

H0
(3,B)(N∗) = �BN∗ = Z/3{ν, β, νβ, β2, ν1, β

3, ν1β, β4}
H1

(3,B)(N∗) = �3(N∗/B∞) = �B(N∗/3∞) = Z/3{B1/B, B2/B}

H2
(3,B)(N∗) = N∗/(3∞, B∞) =

2⊕
k=0

Z3[B]/(3∞, B∞){Bk/B,Ck}.

Proof This follows from the composite functor spectral sequence of Sect. 2.5 with R∗ =
π∗(tmf )/H , first applied with x = 3 and y = B, and thereafter with x = B and y = 3. The
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groups (�B N∗)/3∞ and (�3N∗)/B∞ vanish. The 3-power torsion in ko[k]/B∞ is trivial for
k = 0, and equals Z/3{Bk/B} for k ∈ {1, 2}. ��

Theorem 8.21 The local cohomology spectral sequence

Es,t
2 = Hs

(3,B,H)(π∗(tmf ))t �⇒s πt−s(�(3,B,H)tmf ) ∼= πt−s(�
−23 I (tmf ))

has E2-term

Hs
(3,B,H)(π∗(tmf ))∗ ∼= Hs−1

(3,B)(N∗) ⊗ Z[H ]/H∞

where H∗
(3,B)(N∗) is displayed in Fig. 14. There are d2-differentials

d2(νk)
.= Ck/3B

(multiplied by all negative powers of M) for k ∈ {0, 1}, indicated by the green zigzag arrows
increasing the filtration by 2. There are no hidden additive extensions, but hidden ν-extensions
from β2 to B1/B and from B2/B to C2/3B, as shown by sloping dashed red lines in this
figure.

Proof The equivalence �(3,B,M)tmf � �−23 I (tmf ) implies an equivalence

�(3,B)N � �50 I N

of tmf -modules. For each k ∈ {0, 1} the group
π24k+3(�(3,B)N ) ∼= π−24(2−k)+1(I N ) ∼= HomZ3(π24(2−k)−1(N ),Q3/Z3)

is trivial, since π24(2−k)−1(N ) = 0. Hence the group 〈νk〉 ∼= Z/3 in degree 24k + 3 of
�(3,B)N∗ = �BN∗ cannot survive to E∞ in the local cohomology spectral sequence

Es,t
2 = Hs

(3,B)(N∗)t �⇒s πt−s(�(3,B)N ) ∼= πt−s(�
50 I N ).

Since νk is B-torsion, it follows that d2 maps 〈νk〉 isomorphically to the subgroup of
Q3/Z3{Ck/B} that is generated by Ck/3B. This translates to a d2-differential in the local
cohomology spectral sequence for �(3,B,H)tmf from νk/H in bidegree (t − s, s) =
(24k − 70, 1) to Ck/3BH in bidegree (t − s, s) = (24k − 71, 3), together with its multiples
by all negative powers of H . The previously known ν-extensions in π∗(N ) and π∗(I N ) are
also present in π∗(�(3,B)N ) and in π∗(�(3,B,H)tmf ), with the appropriate degree shifts, and
those that increase the local cohomology filtration degree are displayed in red. ��

Remark 8.22 Let �N∗ ⊂ �BN∗ be the part of the B-power torsion in N∗ that is not in
degrees ∗ ≡ 3 mod 24, omittingZ/3{ν} andZ/3{ν1} from Table 4. Likewise, let�π∗(tmf )
be the part of �Bπ∗(tmf ) that is not in degrees ∗ ≡ 3 mod 24, which equals the image
of the (3, B)-local cohomology spectral sequence edge homomorphism π∗(�(3,B)tmf ) →
�Bπ∗(tmf ).

Mahowald conjectured that the image of the 3-complete tmf -Hurewicz homomorphism
π∗(S) → π∗(tmf ) is the direct sum of Z in degree 0, the group Z/3{ν} in degree 3, and the
72-periodic groups �π∗(tmf ) ∼= �N∗ ⊗ Z[H ]. This was proved for degrees n < 154 in
[15, Prop. 13.29].
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8.5 Charts

Figure 3 shows N∗ ∼= π∗(N ), π∗(�BN ) and π∗(�171 IZ2N ) in the range −9 ≤ ∗ ≤ 192,
visible as three horizontal wedges. The vertical direction has no intrinsic meaning. Circled
numbers represent finite cyclic groups of that order, squares represent infinite cyclic groups,
and each ellipse containing ‘22’ represents a Klein Vierergruppe. Horizontal dashed lines
show multiplication by B, which extends indefinitely to the right in the upper wedge, and
indefinitely to the left in the middle and lower wedges. Thick vertical lines indicate addi-
tive extensions, by which a square and a circle combine to an infinite cyclic group. The
passage from the upper to the middle wedge is given by taking the homotopy fibre of the
localisation map γ : N → N [1/B], leaving the B-power torsion (shown in red) in place and
replacing copies of Z[B] or Z/2[B] (shown in blue) by desuspended copies of Z[B]/B∞ or
Z/2[B]/B∞ (shown in green), respectively. The passage from the upper to the lower wedge
takes the torsion-free part of π∗(N ) to its linear dual in degree 171−∗, and takes the torsion
in π∗(N ) to its Pontryagin dual in degree 170 − ∗. The local cohomology theorem asserts
that the middle and lower wedges are isomorphic. Note in particular how this is achieved in
degrees ∗ ≡ −1, 3 mod 24.

Figure 4 shows the E∞-term of the mod 2 Adams spectral sequence

Es,t
2 = Exts,tA(2)(F2,F2) �⇒s πt−s(tmf )

for 0 ≤ t−s ≤ 192, togetherwith all hidden 2-,η- and ν-extensions in this range. There is also
a more subtle multiplicative relation in degree 105, cf. the proof of Theorem 8.8. The vertical
coordinate gives the Adams filtration s. The B-power torsion classes are shown in red, and
selectedproduct factorisations in termsof the algebra indecomposables inπ∗(tmf ) are shown.
The B-periodic classes are shown in black, and usually only the Z[B]-module generators are
labelled. The Z[B]-submodule generated by the classes in degrees 0 ≤ ∗ < 192 defines the
basic block N∗, which repeats M-periodically, so that π∗(tmf ) ∼= N∗ ⊗Z[M]. Note how the
additive structure of N∗ also appears in the upper wedge of Fig. 3.

Figures 5 and 6 show the collapsing local cohomology spectral sequence for �BN , in the
range −20 ≤ t − s ≤ 172, broken into four sections. In each section the lower row shows
H0

(B)(N∗) = �BN∗, while the upper row shows H1
(B)(N∗) = N∗/B∞ shifted one unit to the

left. Multiplication by 2, η, ν and B is shown by lines increasing the topological degree by
0, 1, 3 and 8, respectively. The dotted arrows coming from the left indicate classes that are
infinitely divisible by B. Multiplications that connect the lower and upper rows increase the
local cohomology filtration, hence are hidden, and are shown in red. The additive extensions
in degrees ∗ ≡ 3 mod 24 are also carried over to the central wedge of Fig. 3.

Itmaybe easiest to study these charts by starting in highdegrees anddescending from there.
The top terms in N∗ that are not B-divisible are Z2{C7}, Z/2{η2B7}, Z/2{ηB7} and Z/8{B7}
in degrees 180 and 178 to 176, while the topmost B-power torsion in N∗ is Z/2{νν6κ} in
degree 164. These contribute Z2{C7/B}, Z/2{η2B7/B}, Z/2{ηB7/B} and Z/8{B7/B} to
N∗/B∞ in internal degrees 172 and 170 to 168, shifted to topological degrees 171 and 169
to 167 in π∗(�BN ), together with Z/2{νν6κ} in degree 164 of �BN∗ and π∗(�BN ). In the
Anderson dual, the bottom term Z2{1} of π∗(N ) contributes a copy of Z2 in degree 171 of
π∗(�171 IZ2N ), while the termsZ/2{η},Z/2{η2},Z/8{ν} andZ/2{ν2} contribute the groups
Z/2, Z/2, Z/8 and Z/2 in degrees 169 to 167 and 164. The duality theorem matches these
groups isomorphically.

Figures 7, 8, 9 and 10 show the local cohomology spectral sequence for �(2,B)N , in the
range −20 ≤ t − s ≤ 172. In each figure the lower row shows H0

(2,B)(N∗) = �BN∗, the
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Fig. 3 Homotopy of the basic block N of tmf at p = 2, of its B-local cohomology, and of its shifted Anderson
dual
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Fig. 4 π∗(tmf ) at p = 2 for 0 ≤ ∗ ≤ 192
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Fig. 5 Es,t
2 = Hs

(B)
(N∗)t �⇒s πt−s (�B N ) at p = 2
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Fig. 6 Es,t
2 = Hs

(B)
(N∗)t �⇒s πt−s (�B N ) at p = 2
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Fig. 7 Es,t
2 = Hs

(2,B)
(N∗)t �⇒s πt−s (�(2,B)N )
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Fig. 8 Es,t
2 = Hs

(2,B)
(N∗)t �⇒s πt−s (�(2,B)N )
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Fig. 9 Es,t
2 = Hs

(2,B)
(N∗)t �⇒s πt−s (�(2,B)N )
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Fig. 10 Es,t
2 = Hs

(2,B)
(N∗)t �⇒s πt−s (�(2,B)N )
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Fig. 11 Homotopy of the basic block N of tmf at p = 3, of its B-local cohomology, and of its shifted
Anderson dual

123



The local cohomology spectral sequence for topological modular forms 175

Fig. 12 π∗(tmf ) at p = 3 for 0 ≤ ∗ ≤ 72
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Fig. 13 Es,t
2 = Hs

(B)
(N∗)t �⇒s πt−s (�B N ) at p = 3
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Fig. 14 Es,t
2 = Hs

(3,B)
(N∗)t �⇒s πt−s (�(3,B)N )
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middle row shows H1
(2,B)(N∗) = �2(N∗/B∞) shifted one unit to the left, and the upper

row shows H2
(2,B)(N∗) = N∗/(2∞, B∞) shifted two units to the left. There are nonzero d2-

differentials from topological degrees ∗ ≡ 3 mod 24, leaving E3 = E∞. Multiplications
by 2, η, ν and B, infinitely B-divisible towers, and hidden extensions, are shown as in the
previous figures. Note how the abutment π∗(�(2,B)N ) is Pontryagin dual to π170−∗(N ).

The charts for p = 3 follow the same conventions as for p = 2.

Acknowledgements The authors gratefully thank the anonymous referee for an amiable and edifying report.

Funding Open access funding provided by University of Oslo (incl Oslo University Hospital).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adams, J.F.: On the groups J(X). IV. Topology 5, 21–71 (1966). https://doi.org/10.1016/0040-
9383(66)90004-8

2. Anderson, D.W.: Universal coefficient theorems for K-theory. Mimeographed notes (1969)
3. Bauer, T.: Computation of the homotopy of the spectrum tmf, Groups, homotopy and configuration spaces,

Geom. Topol.Monogr., vol. 13, Geom. Topol. Publ., Coventry, pp. 11–40 (2008). https://doi.org/10.2140/
gtm.2008.13.11

4. Behrens, M.: A modular description of the K(2)-local sphere at the prime 3. Topology 45(2), 343–402
(2006). https://doi.org/10.1016/j.top.2005.08.005

5. Behrens, M., Hill, M., Hopkins, M.J., Mahowald, M.: On the existence of a v322 -self map on M(1, 4) at
the prime 2. Homol. Homotopy Appl. 10(3), 45–84 (2008)

6. Behrens, M., Mahowald, M., Quigley, J.D.: The 2-primary Hurewicz image of tmf. arXiv:2011.08956
7. Behrens, M., Pemmaraju, S.: On the existence of the self map v92 on the Smith-Toda complex V (1)

at the prime 3, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic
K -theory, Contemp. Math., vol. 346. Amer. Math. Soc., Providence, pp. 9–49 (2004). https://doi.org/10.
1090/conm/346/06284

8. Benson, D.J., Greenlees, J.P.C.: Commutative algebra for cohomology rings of virtual duality groups. J.
Algebra 192(2), 678–700 (1997). https://doi.org/10.1006/jabr.1996.6944

9. Benson, D.J., Greenlees, J.P.C.: Commutative algebra for cohomology rings of classifying spaces of
compact Lie groups. J. Pure Appl. Algebra 122(1–2), 41–53 (1997). https://doi.org/10.1016/S0022-
4049(96)00078-3

10. Benson, D.J., Greenlees, J.P.C.: Localization and duality in topology and modular representation theory.
J. Pure Appl. Algebra 212(7), 1716–1743 (2008). https://doi.org/10.1016/j.jpaa.2007.12.001

11. Bott, R.: The stable homotopy of the classical groups. Ann. Math. (2) 70, 313–337 (1959). https://doi.
org/10.2307/1970106

12. Brown, E.H., Jr., Comenetz, M.: Pontrjagin duality for generalized homology and cohomology theories.
Am. J. Math. 98(1), 1–27 (1976). https://doi.org/10.2307/2373610

13. Bruner, R.R., Greenlees, J.P.C.: The connective K -theory of finite groups. Mem. Amer. Math. Soc.
165(785), viii+127 (2003). https://doi.org/10.1090/memo/0785

14. Bruner, R.R., Greenlees, J.P.C.: Connective real K -theory of finite groups, Mathematical Surveys and
Monographs, vol. 169. American Mathematical Society, Providence (2010)

15. Bruner, R.R., Rognes, J.: The Adams spectral sequence for topological modular forms, Mathematical
Surveys and Monographs, vol. 253. American Mathematical Society, Providence (2021)

16. Bruner, R.R., Rognes, J.: The Adams spectral sequence for the image-of-J spectrum. Trans. Am. Math.
Soc. https://doi.org/10.1090/tran/8680

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0040-9383(66)90004-8
https://doi.org/10.1016/0040-9383(66)90004-8
https://doi.org/10.2140/gtm.2008.13.11
https://doi.org/10.2140/gtm.2008.13.11
https://doi.org/10.1016/j.top.2005.08.005
http://arxiv.org/abs/2011.08956
https://doi.org/10.1090/conm/346/06284
https://doi.org/10.1090/conm/346/06284
https://doi.org/10.1006/jabr.1996.6944
https://doi.org/10.1016/S0022-4049(96)00078-3
https://doi.org/10.1016/S0022-4049(96)00078-3
https://doi.org/10.1016/j.jpaa.2007.12.001
https://doi.org/10.2307/1970106
https://doi.org/10.2307/1970106
https://doi.org/10.2307/2373610
https://doi.org/10.1090/memo/0785
https://doi.org/10.1090/tran/8680


The local cohomology spectral sequence for topological modular forms 179

17. Cartan, H., Eilenberg, S.: Homological Algebra. Princeton University Press, Princeton (1956)
18. Culver, D.: The Adams spectral sequence for 3-local tmf. J. Homotopy Relat. Struct. 16(1), 1–40 (2021).

https://doi.org/10.1007/s40062-020-00271-3
19. Deligne, P.: Courbes elliptiques: formulaire d’après J. Tate, Modular functions of one variable, IV (Proc.

Internat. Summer School, Univ. Antwerp, Antwerp, 1972). Springer, Berlin, pp. 53–73 (1975). Lecture
Notes in Math., Vol. 476 (French)

20. Douglas, C.L., Francis, J., Henriques, A.G., Hill, M.A. (eds.): Topological Modular Forms, Mathematical
Surveys and Monographs, vol. 201. American Mathematical Society, Providence (2014)

21. Dwyer,W.G., Greenlees, J.P.C., Iyengar, S.: Duality in algebra and topology. Adv.Math. 200(2), 357–402
(2006). https://doi.org/10.1016/j.aim.2005.11.004

22. Elmendorf, A.D., Kriz, I., Mandell, M.A., May, J.P.: Rings, modules, and algebras in stable homotopy
theory, Mathematical Surveys and Monographs, vol. 47. American Mathematical Society, Providence
(1997). With an appendix by M. Cole

23. Greenlees, J.P.C.: K-homology of universal spaces and local cohomology of the representation ring.
Topology 32(2), 295–308 (1993). https://doi.org/10.1016/0040-9383(93)90021-M

24. Greenlees, J.P.C.: Commutative algebra in group cohomology. J. Pure Appl. Algebra 98(2), 151–162
(1995). https://doi.org/10.1016/0022-4049(94)00040-P

25. Greenlees, J.P.C.: Ausoni–Bökstedt duality for topological Hochschild homology. J. Pure Appl. Algebra
220(4), 1382–1402 (2016). https://doi.org/10.1016/j.jpaa.2015.09.007

26. Greenlees, J.P.C., May, J.P.: Completions in algebra and topology, Handbook of algebraic topology.
North-Holland, Amsterdam, pp. 255–276 (1995). https://doi.org/10.1016/B978-044481779-2/50008-0

27. Greenlees, J.P.C., Meier, L.: Gorenstein duality for real spectra. Algebr. Geom. Topol. 17(6), 3547–3619
(2017). https://doi.org/10.2140/agt.2017.17.3547

28. Greenlees, J.P.C., Stojanoska, V.: Anderson and Gorenstein duality, Geometric and topological aspects
of the representation theory of finite groups, Springer Proc. Math. Stat., vol. 242. Springer, Cham, pp.
105–130 (2018)

29. Hartshorne, R.: Local cohomology, Lecture Notes in Mathematics, No. 41. Springer, Berlin (1967). A
seminar given by A. Grothendieck, Harvard University, Fall, 1961

30. Hill, M.A.: The 3-local tmf-homology of B�3. Proc. Am.Math. Soc. 135(12), 4075–4086 (2007). https://
doi.org/10.1090/S0002-9939-07-08937-X

31. Hirschhorn, P.S.: Model Categories and Their Localizations, Mathematical Surveys and Monographs,
vol. 99. American Mathematical Society, Providence (2003)

32. Hopkins, M.J., Mahowald, M.: From elliptic curves to homotopy theory, Topological modular forms,
Math. Surveys Monogr., vol. 201. Amer. Math. Soc., Providence, pp. 261–285 (2014). https://doi.org/10.
1090/surv/201/15

33. Hopkins, M.J., Smith, J.H.: Nilpotence and stable homotopy theory. II. Ann. Math. (2) 148(1), 1–49
(1998). https://doi.org/10.2307/120991

34. Hovey, M., Palmieri, J.H., Strickland, N.P.: Axiomatic stable homotopy theory. Mem. Am. Math. Soc.
128(610), x+114 (1997). https://doi.org/10.1090/memo/0610

35. Hovey, M., Strickland, N.P.: Morava K-theories and localisation. Mem. Am. Math. Soc. 139(666),
viii+100 (1999). https://doi.org/10.1090/memo/0666

36. Kainen, P.C.: Universal coefficient theorems for generalized homology and stable cohomotopy. Pac. J.
Math. 37, 397–407 (1971)

37. Knapp, K.: Anderson duality in K-theory and Im(J )-theory. K-Theory 18(2), 137–159 (1999). https://
doi.org/10.1023/A:1007763715735

38. Mahowald, M., Rezk, C.: Brown–Comenetz duality and the Adams spectral sequence. Am. J. Math.
121(6), 1153–1177 (1999)

39. Mahowald, M., Rezk, C.: Topological modular forms of level 3. Pure Appl. Math. Q. 5(2), 853–872
(2009). https://doi.org/10.4310/PAMQ.2009.v5.n2.a9. Special Issue: In honor of Friedrich Hirzebruch

40. Mathew, A.: The homology of tmf. Homol. Homotopy Appl. 18(2), 1–29 (2016). https://doi.org/10.4310/
HHA.2016.v18.n2.a1

41. Miller, H.: Finite localizations. Bol. Soc. Mat. Mexicana (2) 37(1–2), 383–389 (1992). Papers in honor
of José Adem (Spanish)

42. Singer,W.M.: Connective fiberings over BU andU. Topology 7, 271–303 (1968). https://doi.org/10.1016/
0040-9383(68)90006-2

43. Stojanoska, V.: Duality for topological modular forms. Doc. Math. 17, 271–311 (2012)
44. Stojanoska, V.: Calculating descent for 2-primary topological modular forms, An alpine expedition

through algebraic topology, Contemp. Math., vol. 617. Amer. Math. Soc., Providence, pp. 241–258
(2014). https://doi.org/10.1090/conm/617/12286

123

https://doi.org/10.1007/s40062-020-00271-3
https://doi.org/10.1016/j.aim.2005.11.004
https://doi.org/10.1016/0040-9383(93)90021-M
https://doi.org/10.1016/0022-4049(94)00040-P
https://doi.org/10.1016/j.jpaa.2015.09.007
https://doi.org/10.1016/B978-044481779-2/50008-0
https://doi.org/10.2140/agt.2017.17.3547
https://doi.org/10.1090/S0002-9939-07-08937-X
https://doi.org/10.1090/S0002-9939-07-08937-X
https://doi.org/10.1090/surv/201/15
https://doi.org/10.1090/surv/201/15
https://doi.org/10.2307/120991
https://doi.org/10.1090/memo/0610
https://doi.org/10.1090/memo/0666
https://doi.org/10.1023/A:1007763715735
https://doi.org/10.1023/A:1007763715735
https://doi.org/10.4310/PAMQ.2009.v5.n2.a9
https://doi.org/10.4310/HHA.2016.v18.n2.a1
https://doi.org/10.4310/HHA.2016.v18.n2.a1
https://doi.org/10.1016/0040-9383(68)90006-2
https://doi.org/10.1016/0040-9383(68)90006-2
https://doi.org/10.1090/conm/617/12286


180 R. Bruner, J. Greenlees and J. Rognes

45. Stong, R.E.: Determination of H∗(BO(k, . . . ,∞), Z2) and H∗(BU(k, . . . , ∞), Z2). Trans. Am. Math.
Soc. 107, 526–544 (1963). https://doi.org/10.2307/1993817

46. Yosimura, Z.: Universal coefficient sequences for cohomology theories of CW-spectra. Osaka Math. J.
12(2), 305–323 (1975)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.2307/1993817

	The local cohomology spectral sequence for topological modular forms
	Abstract
	1 Introduction
	2 Colocalisations
	2.1 Small and proxy-small
	2.2 Acyclisation
	2.3 Cellularisation
	2.4 Local cohomology
	2.5 A composite functor spectral sequence

	3 Dualities
	3.1 Artinian and Noetherian Sp-modules
	3.2 Brown–Comenetz duality
	3.3 Anderson duality

	4 Mahowald–Rezk duality
	4.1 Spectra with finitely presented cohomology
	4.2 Local cohomology theorems by Mahowald–Rezk duality

	5 Gorenstein duality
	5.1 Gorenstein maps of S-algebras
	5.2 Uniqueness of mathcalE-module structures
	5.3 Gorenstein descent
	5.4 Small descent
	5.5 Descent of algebraic cellularisation
	5.6 Local cohomology theorems by Gorenstein duality
	5.7 ko- and tmf-module Steenrod algebras

	6 Thera duality
	7 Topological K-theory
	8 Topological modular forms
	8.1 (B, M)-local cohomology of tmf
	8.2 (2, B, M)-local cohomology of tmf
	8.3 (B, H)-local cohomology of tmf
	8.4 (3, B, H)-local cohomology of tmf
	8.5 Charts

	Acknowledgements
	References




