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Abstract
For each n ≥ 5, we give an Sn-equivariant basis for H4(M0,n,Q), as well as for
H2(n−5)(M0,n,Q). Such a basis exists for H2(M0,n,Q) and for H2(n−4)(M0,n,Q), but
it is not known whether one exists for H2k(M0,n,Q) when 3 ≤ k ≤ n − 6.

1 Introduction

Themoduli spaceM0,n is an (n−3)-dimensional smooth projective variety that parametrizes
stable n-marked genus-zero curves. M0,n admits a stratification whose intricate combina-
torics are reflected in the structure of its homology groups. These groups have been described,
in terms of generators and relations, first by Keel [10] and then by Kontsevich and Manin
[12]. The groups were described further by Kapranov [9], Fulton-MacPherson [7], Manin
[13], Getzler [8], Yuzvinsky [18] and others.

M0,n carries a natural Sn-action; this induces Sn-actions on the homology groups of
M0,n . Indeed, for n ≥ 5, Sn is the full automorphism group of M0,n [3, 5]. Getzler [8]
gave an algorithm for computing the character of H2k(M0,n,Q) as an Sn-representation, and
Bergström and Minabe [2] later gave a recursive formula for the character using spaces of
weighted stable curves.

Recall that a finite-dimensional representation V of a finite groupG is called a permutation
representation if V has a permutation basis; that is, a basis B of V such that the action of G
on V restricts to an action on B. We ask:

Question 1 Is H2k(M0,n,Q) a permutation representation of Sn for all n ≥ 3 and k ≥ 0?

Farkas and Gibney [6] gave an affirmative answer if k = n − 4 by producing a per-
mutation basis of divisors. Since Poincaré duality induces Sn-equivariant isomorphisms
H2k(M0,n,Q) → H2(n−3−k)(M0,n,Q), this also implies an affirmative answer if k = 1.
The first author found [15] a permutation basis for H2(M0,n,Q) that is not Poincaré dual to
the basis of Farkas and Gibney—interestingly, the two bases are not isomorphic as Sn-sets
for even n.
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We give an affirmative answer in the case k = 2 (and therefore also k = n − 5):
Theorem 2.8. Let P1

2,n denote the Sn-set of all subsets A ⊆ {1, . . . , n} such that 5 ≤ |A| ≤ n

and |A| is odd. Let P2
2,n denote the Sn-set of unordered pairs {P1, P2}, where P1 and P2 are

disjoint subsets of {1, . . . , n} of cardinality at least 3. Then H4(M0,n,Q) is a permutation
representation of Sn , with a permutation basis in equivariant bijection with P1

2,n � P2
2,n , for

all n ≥ 3.
For general k, Question 1 appears to be open. The known bases of H2k(M0,n,Q) are

constructed via recursion on n, which involves treating the n-th marked point as special. For
example, Kapranov [9] and Yuzvinsky [18] described bases (recursively and in closed form,
respectively) for H2k(M0,n,Q) that are permutation bases with respect to the Sn−1 action
induced by permuting all but the nth point. In contrast, a permutation basis for H2k(M0,n,Q),
if it exists, would treat the n marked points symmetrically.

Very recent work of Castravet and Tevelev [4] on the derived category of M0,n implies
that H∗(M0,n,Q) = ⊕n−3

k=0 H2k(M0,n,Q) is a permutation representation; however, this
does not answer Question 1, as the permutation basis given for H∗(M0,n,Q) consists of
classes not of pure degree. (They are Chern characters of certain vector bundles.)

1.1 An Sn-equivariant filtration of H2k(M0,n) and the proof of Theorem 2.8

Theorem 2.8 follows from the stronger Theorem 2.7, which we now explain. In [15], the first
author defined (see Definition 4) an Sn-equivariant decomposition

H2k(M0,n,Q) ∼=
min{k,n−2−k}⊕

r=1

Qr
k,n . (1)

The first author also showed (Theorem 2.3) that for all k ≥ 0 and n ≥ 3, Q1
k,n has a

permutation basis, in equivariant bijection with the Sn-set P1
k,n defined in Theorem 2.3. We

prove:
Theorem 2.7. For all k ≥ 0 and n ≥ 3, Q2

k,n has a permutation basis, in equivariant

bijection with the Sn-set P2
k,n defined in Definition 2.5.

Corollary 2.9. The Sn-permutation representation Q(P1
k,n � P2

k,n) is a subrepresentation of

H2k(M0,n,Q) for all k and n.
By (1), H2(M0,n,Q) = Q1

1,n and H4(M0,n,Q) ∼= Q1
2,n ⊕ Q2

2,n . Thus Theorems 2.3
and 2.7 imply Theorem 2.8. Note also that by Poincaré duality, for n ≤ 8, these express
H2k(M0,n,Q) as a permutation representation for all k.

1.2 Experimental evidence towards Question 1

Let V be a finite-dimensional permutation representation of G with permutation basis B.
Then B is a disjoint union of G-orbits, i.e. transitive G-sets. It is important to note that if B1

and B2 are two permutation bases for V , they need not be isomorphic as G-sets. However,
the number of orbits of B1 is equal to the dimension of the G-fixed subspace of V , thus equal
to the number of orbits of B2. Recall that every transitive G-set is equivariantly isomorphic
to the G-set of left cosets of some subgroup of G. This gives a computational strategy for
checking whether a given G-representation W is a permutation representation — namely,
one enumerates the subgroups of G and the associated characters, then does an exhaustive
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Two-dimensional cycle classes onM0,n 3715

search for the character ofW as a non-negative integer combination of those characters. This
is doable in the GAP computer algebra system for n ≤ 10.

J. Bergström and S. Minabe shared with us the characters of H2k(M0,n,Q) for n ≤ 20.
We now give some observations inferred from their data, from Theorem 2.7, and from a GAP
analysis as above. The smallest example where Theorems 2.3 and 2.7 do not answer Question
1 is H6(M0,9,Q).

• Q3
3,9 is not a permutation representation. We computed the character of Q3

3,9 by sub-

tracting those of Q1
3,9 and Q2

3,9 (from Theorems 2.3 and 2.7) from that of H6(M0,9,Q)

(from Bergström and Minabe’s data). We then used the strategy outlined in the above
paragraph to show that Q3

3,9 is not a permutation representation.

• Despite the previous point, H6(M0,9,Q) is a permutation representation. We showed
this by again applying the strategy of the previous paragraph; in fact, GAP produced two
inequivalent decompositions of H6(M0,9,Q) into transitive permutation representations.
It follows that in these twodecompositions, the twopermutation subrepresentationsQP1

3,9

and QP2
3,9 cannot both appear.

• H2k(M0,10,Q) is a permutation representation for all k, by the same exhaustive computer
search.

1.3 Outline of the paper

In Sect. 2, we recall fundamental results about the homology groups of M0,n , and define
Qr

k,n , P
1
k,n , and P2

k,n . In Sect. 3.1 we outline the proof of Theorem 2.7, and the complete
proof is in Sect. 3.2. In Sect. 4, we state a conjectural formula for the dimension of Qr

k,n in
general.

We would like to thank J. Bergström and S. Minabe for generously sharing data they
had generated (based on their recursive formula) of the characters of H2k(M0,n,Q) for
n ≤ 20— this was crucial in allowing us to formulate and check conjectures. We are grateful
to Bernd Sturmfels, Renzo Cavalieri, Maria Monks Gillespie and Melody Chan for useful
conversations, and to the two anonymous referees for their thoughtful comments.

The first author was supported by NSF grants DMS-0943832 and DMS-1703308, and
by a postdoctoral position at Brown University. The second author was supported by NSF
grants DMS-0602191 and DMS-1645877, and by a postdoctoral position at Northeastern
University.

2 Background and notation

Definition 2.1 Let Sk,n denote the set of stable trees with n−2− k vertices, n−3− k edges,
and n marked half-edges (labeled by the set {1, . . . , n}). (A tree is stable if each vertex
has valence at least 3.) Sk,n is in canonical bijection with the set of (closed) k-dimensional
boundary strata in M0,n .

We will abuse notation, and refer to an element of Sk,n interchangeably as a marked tree, as
a closed k-dimensional subvariety of M0,n , and as a cycle class in H2k(M0,n) or various
quotients thereof. For example, it is a well-known result of Keel [10] that H2k(M0,n,Q) is
spanned by Sk,n . Kontsevich and Manin [12] gave a spanning set for the kernel of the map
QSk,n → H2k(M0,n,Q). Let σ ∈ Sk+1,n, let v be a vertex of σ with valence at least 4, and
let A, B,C, D be four edges or half-edges incident to v. Let T denote the set of edges and
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3716 R. Ramadas, R. Silversmith

half-edges incident to v, other than A, B,C, D. We define a relation

R = R(σ, v, A, B,C, D) =
∑

U1�U2=T

(ABU1|CDU2) −
∑

U1�U2=T

(ACU1|BDU2) ∈ QSk,n .

(2)

We now explain this notation, which we will continue to use. Here (ABU1|CDU2) ∈ Sk,n is
the tree obtained from σ by replacing v with two vertices v′, v′′ connected by an edge e′, with
the edges or half-edges {A, B} ∪ U1 incident to v′ and the edges or half-edges {C, D} ∪ U2

incident to v′′. Note that contracting e′ yields σ again. Kontsevich and Manin showed that
the relations obtained this way (varying over all choices of σ , v, A, B,C, D) span the kernel
of the map QSk,n → H2k(M0,n,Q).

Note that for any σ ∈ Sk,n, we have
∑

v

(val(v) − 3) = k, (3)

where the sum is over vertices of σ . Thus to any σ ∈ Sk,n wemay associate a partition λσ of k,
namely the set of nonzero summands on the right-hand side of (3). Since |V (σ )| = n−2−k,
λσ has at most n − 2 − k parts. (As a partition of k, λσ also has at most k parts.)

Definition 2.2 [16] For r ∈ {1, . . . ,min{k, n−2−k}}, letS≥r
k,n ⊆ Sk,n be the subset consisting

of those σ ∈ Sk,n such that λσ has at least r parts. This defines an Sn-invariant filtration

Sk,n = S≥1
k,n ⊇ S≥2

k,n ⊇ · · · ⊇ S≥k
k,n .

Since H2k(M0,n,Q) is spanned by Sk,n, this also defines an Sn-invariant filtration

H2k(M0,n,Q) = Q≥1
k,n ⊇ Q≥2

k,n ⊇ · · · ⊇ Q≥k
k,n, (4)

where

Q≥r
k,n = Span(S≥r

k,n) ⊆ H2k(M0,n,Q).

Finally, let Srk,n = S≥r
k,n \ S≥r+1

k,n and Qr
k,n = Q≥r

k,n/Q
≥r+1
k,n . Note that Srk,n spans Qr

k,n .
Note also that the Sn-invariant filtration (4), together with Maschke’s Theorem, induces an
isomorphism of Sn-representations

H2k(M0,n,Q) ∼=
min{k,n−2−k}⊕

r=1

Qr
k,n .

In [16], it is shown that the filtration (4) is preserved by pushforwards along forgetful mor-
phisms of moduli spaces as well as along “Hurwitz correspondences”, which are algebraic
correspondences that generalize forgetful maps. In [17], Q1

k,n is described explicitly as a per-
mutation representation. We briefly recall the relevant results here. Recall that Mumford [14]
and Arbarello-Cornalba [1] defined, for every k, a codimension-k class κk ∈ H2k(M0,n,Q).
Given a subset T ⊂ {1, . . . , n} with |T | ≥ 3, let πT : M0,n → M0,|T | be the forgetful map
remembering only the marked points in T , and set κT

k := π∗
T (κk) ∈ H2k(M0,n,Q). Let

Kk = Span{κT
k | T ⊂ {1, . . . , n}} ⊂ H2k(M0,n,Q).

Theorem 2.3 ([17])
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Two-dimensional cycle classes onM0,n 3717

1. The subspace Kk ⊂ H2k(M0,n,Q) is the annihilator, under the intersection pairing,
of the subspace Q≥2

k,n ⊂ H2k(M0,n,Q), and there is therefore a natural Sn-equivariant

isomorphism Kk ∼= (Q1
k,n)

∨.
2. The set {κT

k | T ⊂ {1, . . . , n}, |T | ≥ 3, |T | ≡ (k+3) mod 2} is a permutation basis for
Kk .

Let P1
k,n := {T ⊆ {1, . . . , n} : k + 3 ≤ |T | ≤ n, |T | ≡ k + 3 mod 2}. Since every

finite-dimensional Sn representation is isomorphic to its dual, we obtain that Q1
k,n

∼= QP1
k,n

as Sn-representations. Since Q≥2
1,n ⊆ H2(M0,n,Q) is zero by definition, this implies:

Corollary 2.4 ([17]) For n ≥ 3, there are isomorphisms of Sn-representations

H2(M0,n,Q) ∼= Q1
1,n

∼= QP1
1,n

∼= Q{T ⊆ {1, . . . , n} : 4 ≤ |T | ≤ n, |T | even}.

Definition 2.5 Let P2
k,n denote the set of unordered pairs {(P1, α1), (P2, α2)}, where:

• P1 and P2 are disjoint subsets of {1, . . . , n}, and
• α1 and α2 are positive integers whose sum is k, and
• Pi ≥ αi + 2 for i ∈ {1, 2}.

Observe that Definition 2.5 is consistent with the notation P2
2,n from Theorem 2.8.

Definition 2.6 We define an Sn-equivariant mapWn : S2k,n → P2
k,n as follows. For σ ∈ S2k,n ,

let v1 and v2 be the two vertices of σ with valence at least 4. There is a unique edge e1
incident to v1 that is contained in any path from v1 to v2, and similarly an edge e2 incident
to v2. Cutting the two edges e1 and e2 (into unmarked half-edges) yields three connected
components σ1, σ ′, and σ2. (Note: the graphs σ1 and σ2 have a single “central” vertex, with
trivalent subtrees incident to it. The graph σ ′ is itself a trivalent subtree.)

Let α1 = val(v1) − 3, and let P1 ⊆ {1, . . . , n} be the set of marked half-edges in σ1.

Similarly let α2 = val(v2) − 3, and let P2 ⊆ {1, . . . , n} be the set of marked half-edges in
σ2.

Then we define Wn(σ ) := {(P1, α1), (P2, α2)}. Observe that Wn(σ ) ∈ P2
k,n, since:

• P1 and P2 are disjoint (by definition),
• α1 + α2 = k (this follows from the fact that σ is k-dimensional), and
• |Pi | ≥ αi + 2 for i ∈ {1, 2}. (This is equivalent to |Pi | ≥ val(vi ) − 1, which follows

from the fact that by stability, every edge incident to vi , except e1, is on a nonrepeating
path from vi to at least one marked half-edge in σ1.)

Theorem 2.7 For any n > 3 and 2 ≤ k ≤ n − 4, Q2
k,n is isomorphic (as an Sn-module) to

QP2
k,n.

Together with Theorem 2.3 and the fact that H4(M0,n,Q) consists of the two graded pieces
Q1

2,n and Q2
2,n, Theorem 2.7 implies:

Theorem 2.8 For n ≥ 3, H4(M0,n,Q) ∼= QP1
2,n ⊕ QP2

2,n as Sn-representations.

Corollary 2.9 For n ≥ 3 and k ≥ 0,QP1
k,n ⊕QP2

k,n is a subrepresentation of H2k(M0,n,Q).
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3 Proof of Theorem 2.7

3.1 Outline of Proof

We now introduce further filtrations

S2k,n = (S2k,n)
≥0 ⊇ (S2k,n)

≥1 ⊇ · · · ⊇ (S2k,n)
≥n−k−4

P2
k,n = (P2

k,n)
≥0 ⊇ (P2

k,n)
≥1 ⊇ · · · ⊇ (P2

k,n)
≥n−k−4

Q2
k,n = (Q2

k,n)
≥0 ⊇ (Q2

k,n)
≥1 ⊇ · · · ⊇ (Q2

k,n)
≥n−k−4,

defined as follows.

Definition 3.1 For σ ∈ S2k,n , let σ1, σ2, and σ ′ be as in Definition 2.6. Then for 0 ≤ b ≤
n − k − 4, we let (S2k,n)

≥b denote the subset consisting of those trees σ such that σ ′ has at
least b marked half-edges. Let

(Q2
k,n)

≥b = Span((S2k,n)
≥b) ⊆ Q2

k,n and (P2
k,n)

≥b = Wn((S2k,n)
≥b) ⊆ P2

k,n .

We also define the graded pieces

(S2k,n)
b = (S2k,n)

≥b \ (S2k,n)
≥b+1

(Q2
k,n)

b = (Q2
k,n)

≥b/(Q2
k,n)

≥b+1

(P2
k,n)

b = (P2
k,n)

≥b \ (P2
k,n)

≥b+1.

We write ρn,b for the natural surjective linear map Q(S2k,n)
b → (Q2

k,n)
b. Observe that Wn

restricts to a surjection Wn,b : (S2k,n)
b → (P2

k,n)
b. In other words, we have

Q(S2k,n)
b

(Q2
k,n)

b Q(P2
k,n)

b

ρn,b Wn,b

where we abuse notation and useWn,b to refer to the map induced on freeQ-vector spaces by
Wn,b. We will show (Lemma 3.2) that Wn,b factors equivariantly through ρn,b, and (Lemma
3.7) thatρn,b factors equivariantly throughWn,b; the two resultingmaps (Q2

k,n)
b → Q(P2

k,n)
b

and Q(P2
k,n)

b → (Q2
k,n)

b are therefore inverses, by a straightforward diagram chase.

3.2 Proofs of Lemmas 3.2 and 3.7

We now prove:

Lemma 3.2 Fix nonnegative integers n ≥ 4, k ≤ n − 3, and b ≤ n − k − 4. The map
Wn,b : Q(S2k,n)

b → Q(P2
k,n)

b descends equivariantly to an Sn-equivariant map Wn,b :
(Q2

k,n)
b → Q(P2

k,n)
b.

The proof is by induction on b. The base case b = 0 (for all n) is Proposition 3.3. The
inductive step is Proposition 3.5.

Proposition 3.3 Wn,0 : Q(S2k,n)
0 → Q(P2

k,n)
0 descends equivariantly to an Sn-equivariant

map Wn,0 : (Q2
k,n)

0 → Q(P2
k,n)

0.
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Two-dimensional cycle classes onM0,n 3719

The proof is complicated, so we first give a discussion. Note that

(Q2
k,n)

0 = QS≥2
k,n

R≥2 + QS≥3
k,n + Q(S2k,n)

≥1
.

Here R≥2 := R ∩ QS≥2
k,n ⊆ QS≥2

k,n , where R ⊆ QSk,n is the kernel of the map QSk,n →
H2k(M0,n,Q). It is difficult to work directly with R≥2, due to the fact that the filtration
(S≥2

k,n)
• does not interact in a predictable way with the Kontsevich-Manin relations (2). Our

strategy is as follows. We will find a map W̃n : QSk,n → QP2
k,n such that:

(i) The restriction of W̃n to Q(S2k,n)
0 is Wn,0,

(ii) The image of the restriction of W̃n to Q(S2k,n)
≥1 lies in Q(P2

k,n)
≥1,

(iii) The restriction of W̃n to QS≥3
k,n is zero, and

(iv) For any Kontsevich-Manin relation R ∈ QSk,n, W̃n(R) ∈ Q(P2
k,n)

≥1.

Conditions 3.2, 3.2, and 3.2 imply that W̃n descends to a map

QSk,n
R + QS≥3

k,n + Q(S2k,n)
≥1

→ Q(P2
k,n)

0.

Restricting to QS≥2
k,n ⊆ QSk,n , Condition 3.2 gives a map Wn,0 : (Q2

k,n)
0 → Q(P2

k,n)
0

descended from Wn,0.

Remark 3.4 The existence of a map satisfying conditions 3.2–3.2 is quite mysterious to us;
we found W̃n by computer experimentation. The fact that the definition of W̃n (see (5) below)
is quite complicated makes us wonder if there is some simpler, more conceptual description
that might simplfy the following proof.

Proof of Proposition 3.3 Let σ ∈ S1k,n , and let v be the unique vertex of σ with valence ≥ 4.
Then val(v) = k + 3. We define a set partition � � {1, . . . , n} induced by σ , where i1 and
i2 are in the same part if and only if the corresponding marked half-edges are in the same
connected component of the complement of v in σ. Note that � has k + 3 parts.

Suppose 	 = {(P1, α1), (P2, α2)} ∈ (P2
k,n)

0 is such that P1 is a union of s1 parts of �

(so necessarily P2 is a union of the remaining s2 := k + 3 − s1 parts of �). Let e�(	) =
min{s1 − α1, s2 − α2}. We define:

W̃n(σ ) :=
∑

	∈(P2
k,n)

0

	={(P1,α1),(P2,α2)}
P1 is a union of parts of �.

(−1)e�(	)

2
	. (5)

This defines W̃n on S1k,n . We also define

W̃n(σ ) =
{
Wn(σ ) σ ∈ S2k,n
0 σ ∈ S≥3

k,n .
(6)

Extending by linearity, these collectively define a map W̃n : QSk,n → QP2
k,n, which clearly

satisfies conditions 3.2, 3.2, and 3.2 above.
LetR = R(σ, v, A, B,C, D) ∈ QSk,n be a Kontsevich-Manin relation as in (2).Wemust

show W̃n(R) ∈ Q(P2
k,n)

≥1. There are several cases, which we treat separately – Case VI is
the hardest by far:
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3720 R. Ramadas, R. Silversmith

I σ has ≥ 4 vertices with valence ≥ 4.
II σ has 3 vertices v, v′, v′′ with valence ≥ 4, and val(v) ≥ 5.
III σ has 3 vertices v, v′, v′′ with valence ≥ 4, and val(v) = 4.
IV σ has exactly 2 vertices v, v′ with valence ≥ 4, and val(v) > 4.
V σ has exactly 2 vertices v, v′ with valence ≥ 4, and val(v) = 4.
VI v is the unique vertex of σ with val(v) ≥ 4.

Case I. In this case, every term of R is in S≥3
k,n , so W̃n(R) = 0.

Case II. Again, every term of R is in S≥3
k,n , so W̃n(R) = 0.

Case III.
In this case, R has exactly two terms, with opposite signs. These two trees (which both

have exactly two vertices with valence ≥ 4) differ only in the rearrangement of trivalent
subtrees. Thus W̃n does not distinguish between them, i.e. W̃n(R) = 0.
Case IV. All but four terms of R are in S≥3

k,n, so we may ignore them. If v and v′ are not

adjacent, then these four terms are all in (S2k,n)
≥1, hence W̃n(R) ∈ (P2

k,n)
≥1. If v and v′ are

adjacent, connected by an edge e, there are two subcases:

(1) One of A, B,C, D is e (without loss of generality, D = e), or
(2) None of A, B,C, D is e.

In Sect. 3.2, let T be the set of edges or half-edges incident to v other than A, B,C, D. In
the notation of Sect. 2, the four remaining terms of R are:

(ABT|Ce) + (AB|CeT) − (ACT|Be) − (AC |BeT).

Note that by definition W̃n(AB|CeT) = W̃n(AC |BeT). The first and third terms are sent
to (P2

k,n)
≥1. Thus W̃n(R) ∈ (P2

k,n)
≥1.

In Sect. 3.2, let T be the set of edges or half-edges incident to v other than A, B,C, D, e.
The four remaining terms of R are:

(ABeT|CD) + (AB|CDeT) − (ACeT|BD) − (AC |BDeT).

Observe that

W̃n(ABeT|CD) = W̃n(AB|CDeT) = W̃n(ACeT|BD) = W̃n(AC |BDeT).

Thus W̃n(R) = 0.
Case V. R has two terms with opposite sign, each of which is a tree with exactly one vertex
with valence ≥ 4. They induce the same partition � � {1, . . . , n} (as in (5)), hence they
cancel after applying W̃n .
Case VI. We have val(v) = k + 4. We write T for the set of edges and half-edges incident
to v other than A, B,C, D. Note that |T| = k.

Recall that

R =
∑

U1�U2=T

(ABU1|CDU2) −
∑

U1�U2=T

(ACU1|BDU2) ∈ QSk,n .

Note that terms where U1 = ∅ or U = ∅ are in S1k,n , and terms where U1,U2 �= ∅ are in

S2k,n . We will apply (5) or (6) accordingly.
We also introduce an abuse of notation that will now be convenient. By definition,

A, B,C, D, and the elements of T denote edges or half-edges of σ incident to v. We use the
same symbols to refer to subsets of {1, . . . , n}, where e.g. A is the set of all i ∈ {1, . . . , n}
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Two-dimensional cycle classes onM0,n 3721

such that the path from v to the i th marked half-edge contains the edge A. (If A is itself the
i th marked half-edge, then we write A = {i}.)

Let 	 = {(P1, α1), (P2, α2)} ∈ (P2
k,n)

0. Note that by definition of (P2
k,n)

0, we have

P1 ∪ P2 = {1, . . . , n}. We need to show that the coefficient of 	 in W̃n(R) is zero. We do
this argument in cases again; 	 must be of one of the following types:
Type 0. At least one of the sets A, B,C, D ⊆ {1, . . . , n}, or a part of T, has nonempty
intersection with both P1 and P2.
Type 1. Two of A, B,C, D are subsets of P1, and the other two are subsets of P2, and no part
of T has nonempty intersection with both P1 and P2.

Type 1.1 A, B ⊆ P1 and C, D ⊆ P2, and no part of T has nonempty intersection with
both P1 and P2.

Type 1.2. A,C ⊆ P1 and B, D ⊆ P2, and no part of T has nonempty intersection with
both P1 and P2.

Type 1.3. A, D ⊆ P1 and B,C ⊆ P2, and no part of T has nonempty intersection with
both P1 and P2.
Type 2. Three of A, B,C, D are subsets of P1, and the remaining one is a subset of P2, and
no part of T has nonempty intersection with both P1 and P2.

Type 2.1 A, B,C ⊆ P1 and D ⊆ P2, and no part of T has nonempty intersection with
both P1 and P2.

Type 2.2. A,C, D ⊆ P1 and B ⊆ P2, and no part of T has nonempty intersection with
both P1 and P2.

Type 2.3. A, B, D ⊆ P1 and C ⊆ P2, and no part of T has nonempty intersection with
both P1 and P2.

Type 2.4. B,C, D ⊆ P1 and A ⊆ P2, and no part of T has nonempty intersection with
both P1 and P2.
Type 3. A, B,C, D ⊆ P1, and no part of T has nonempty intersection with both P1 and P2.
Caution. It is tempting to use the S4-action that permutes A, B,C, D, but one must be very
careful in doing so. The sets A, B,C, D have been fixed, andmay have different cardinalities;
we may only invoke symmetry if our arguments do not refer to any specific properties of
A, B,C, D.
If 	 is of type 0, the coefficient of 	 in W̃n(R) is zero. By (5) and (6), no terms of R
contribute a term of type 0 to W̃n(R).
If 	 is of type 1.1, the coefficient of 	 in W̃n(R) is zero. Let 	 be of type 1.1, so we may
write

	 = {(
A ∪ B ∪ ⋃

S∈T1
S, α1

)
,
(
C ∪ D ∪ ⋃

S∈T2
S, α2

)}

for some partition T1 � T2 = T, and for some α1, α2. Note that α1 + α2 = k = |T| =
|T1| + |T2| . Let


 = α1 − |T1| = |T2| − α2.

Claim: If 
 = 0, the coefficient of 	 in W̃n(R) is zero.

Proof of claim First, note that in this case |T1| = α1 ≥ 1, i.e. T1 �= ∅. Similarly T2 �= ∅.

By definition, every term ofR is of the form (ABU1|CDU2) or −(ACU1|BDU2), for some
partition U1 �U2 = T. In terms of the latter form, 	 appears with coefficient zero by (5) and
(6).
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In a term (ABU1|CDU2) with U1,U2 �= ∅ andU1 �= T1, 	 also appears with coefficient
zero by (6). Thus the only terms of R that contribute to the coefficient of 	 in W̃n(R) are:

(ABT1|CDT2), (AB|CDT), and (ABT|CD). (7)

By definition,

W̃n((ABT1|CDT2)) = 1 · 	.

The boundary stratum (AB|CDT) has a single vertex with valence≥ 4,with correspond-
ing set partition � = {A ∪ B,C, D} ∪ T � {1, . . . , n}. Using the notation in the paragraph
preceding (5) (with respect to our fixed 	 ∈ (P2

k,n)
0), we have s1 = 1 + |T1| = 1 + α1,

so s1 − α1 = 1. Thus s2 − α2 = 2, so e�(	) = s1 − α1 = 1. The coefficient of 	 in
W̃n((AB|CDT)) is thus −1/2.

The set partition associated to (ABT|CD) is � = {A, B,C ∪ D} ∪ T. In this case we
have s1 = 2 + |T1| = 2 + α1, so s1 − α1 = 2. Thus s1 − α1 = 1, so e�(	) = s2 − α2 = 1.
The coefficient of 	 in W̃n((ABT|CD)) is thus −1/2.

In total, the coefficient is 1 − 1/2 − 1/2 = 0, proving the claim.

Claim: If 
 �= 0, the coefficient of 	 in W̃n(R) is zero.

Proof of claim Note that α1, α2 ≥ 1 imply − |T1| + 1 ≤ 
 ≤ k − |T2| − 1.
By the same argument as the one preceding (7), the only terms ofR that contribute to the

coefficient of 	 in W̃n(R) are

(ABT|CD) and (AB|CDT).

(Note that (ABT1|CDT2) does not contribute because the values of α1, α2 in W̃n((ABT1|
CDT2)) do not match those in 	.

As above, (AB|CDT) induces set partition�1 = {A∪B,C, D}∪T.Using the notation in
the paragraph preceding (5) (with respect to our fixed 	 ∈ (P2

k,n)
0), we have s1 = 1+|T1| =

1 + α1 − 
, so s1 − α1 = 1 − 
 (and s2 − α2 = 2 + 
). Thus e�1(	) = min{1 − 
, 2 + 
}.
On the other hand, (ABT|CD) induces set partition �2 = {A, B,C ∪ D} ∪ T. In this

case s1 = 2 + |T1| = 2 + α1 − 
, so s1 − α1 = 2 − 
 ≤ 1 (and s2 − α2 = 1+ 
 ≥ 2). Thus
e�2(	) = min{1 + 
, 2 − 
}.

If 
 > 0, the coefficient of 	 in W̃n(R) is (−1)1−
/2 + (−1)2−
/2 = 0. If 
 < 0, the
coefficient of 	 in W̃n(R) is (−1)2+
/2 + (−1)1+
/2 = 0. This proves the claim.

We conclude that the coefficient of 	 in W̃n(R) is zero.
If 	 is of type 1.2, the coefficient of 	 in W̃n(R) is zero. The argument for the type 1.1
case did not refer to any properties of the sets A, B,C, D, so this case follows by symmetry.
If 	 is of type 1.3, the coefficient of 	 in W̃n(R) is zero. No terms of R contribute a term
of type 1.3 to W̃n(R).
If 	 is of type 2.1, the coefficient of 	 in W̃n(R) is zero. The only terms ofR that contribute
to the coefficient of 	 in W̃n(R) are:

(AB|CDT) and −(AC |BDT).

The corresponding set partitions are �1 = {A∪ B,C, D}∪T and �1 = {A∪C, B, D}∪T.
By definition, e�1(	) = e�2(	), so the coefficients of 	 in W̃n((AB|CDT)) and
W̃n(−(AC |BDT)) cancel.
If 	 is of type 2.2, 2.3, or 2.4, the coefficient of 	 in W̃n(R) is zero. The argument for type
2.1 did not refer to any properties of the sets A, B,C, D, so these cases follow by symmetry.

123



Two-dimensional cycle classes onM0,n 3723

If 	 is of type 3, the coefficient of 	 in W̃n(R) is zero. The only terms ofR that contribute
to the coefficient of 	 in W̃n(R) are:

(AB|CDT), (ABT|CD), −(AC |BDT), and −(ACT|BD).

The corresponding set partitions are �1 = {A ∪ B,C, D} ∪ T, �2 = {A, B,C ∪ D} ∪
T, �3 = {A ∪ C, B, D} ∪ T, and �1 = {A,C, B ∪ D} ∪ T. By definition, e�1(	) =
e�2(	) = e�3(	) = e�4(	), so the coefficients of	 in W̃n((AB|CDT)), W̃n((ABT|CD)),

W̃n(−(AC |BDT)), and W̃n(−(ACT|BD)) cancel.
Altogether, we conclude that W̃n(R) = 0. This completes Case VI and the proof of the

base case.
Next we prove the inductive step.

Proposition 3.5 Suppose Wn,b : Q(S2k,n)
b → Q(P2

k,n)
b descends Sn-equivariantly to

(Q2
k,n)

b for a fixed b and n. Then Wn,b+1 : Q(S2k,n+1)
b+1 → Q(P2

k,n+1)
b+1 descends

Sn+1-equivariantly to (Q2
k,n+1)

b+1. In particular, if Lemma 3.2 holds for (b, n) for all n (and
fixed b), then it holds for (b + 1, n) for all n.

Proof SupposeWn,b : Q(S2k,n)
b → Q(P2

k,n)
b descends equivariantly to (Q2

k,n)
b. Letπn+1 be

the forgetful map that forgets the last point. Note that (πn+1)∗((Q2
k,n+1)

≥b+1) ⊆ (Q2
k,n)

≥b.

(This holds because for any tree in (S2k,n+1)
≥b+1, the corresponding boundary stratum is

either contracted in dimension by πn+1, or maps isomorphically to a boundary stratum in
(S2k,n)

≥b.) Thus there is an induced map on quotients

(πn+1)∗ : (Q2
k,n+1)

b+1 → (Q2
k,n)

b.

By the inductive hypothesis, there is a map

Wn,b : (Q2
k,n)

b → (P2
k,n)

b,

such that the lower-right triangle commutes in the following diagram:

Q(S2k,n+1)
b+1

(Q2
k,n+1)

b+1 Q(P2
k,n+1)

b+1

Q(S2k,n)
b

(Q2
k,n)

b Q(P2
k,n)

b

ρn+1,b+1
Wn+1,b+1

πn+1,b+1

(πn+1)∗
πn+1,b+1

ρn,b
Wn,b

Wn,b

Here the map πn+1,b+1 : Q(S2k,n+1)
b+1 → Q(S2k,n)

b sends a tree σ to the tree obtained by
contracting the (n + 1)-st marked half-edge and stabilizing (see e.g. [11]) if the (n + 1)-
st marked half-edge is on σ ′ (using notation from Definition 2.6), and to zero otherwise.
The map πn+1,b+1 : Q(P2

k,n+1)
b+1 → Q(P2

k,n)
b sends a pair {(P1, α1), (P2, α2)} to itself

if n + 1 ∈ (P1 ∪ P2)C , and to zero otherwise. The entire diagram is easily checked to
commute, essentially using the fact that if σ ∈ (S2k,n+1)

b+1 is such that n + 1 ∈ σ1, then
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(πn+1)∗(ρn+1,b+1(σ )) ∈ (Q2
k,n)

≥b+1. We are trying to prove the existence of the dashed
arrow.

Let r ∈ Q(S2k,n+1)
b+1 be such that ρn+1,b+1(r) = 0. Then certainly

Wn,b((πn+1)∗(ρn+1,b+1(r))) = 0,

so by commutativity, Wn+1,b+1(r) lies in

ker(πn+1,b+1) = Span{{(P1, α1), (P2, α2)} ∈ (P2
k,n+1)

b+1 : n + 1 ∈ P1 ∪ P2}.
Then by Sn+1-symmetry, Wn+1,b+1(r) actually lies in the smaller subspace

Span{{(P1, α1), (P2, α2)} ∈ (P2
k,n+1)

b+1 : P1 ∪ P2 = {1, . . . , n + 1}}.
Since b+ 1 > 0, this subspace is trivial, so Wn+1,b+1(r) = 0. Thus Wn+1,b+1 descends to a
(clearly Sn+1-equivariant) map Wn+1,b+1 : (Q2

k,n+1)
b+1 → Q(P2

k,n+1)
b+1. This completes

the proof, and we conclude Lemma 3.2.

We have just shown that Wn,b descends to (Q2
k,n)

b. Next we must prove that ρn,b descends

to (P2
k,n)

b. We will use the following well-known fact.

Proposition 3.6 Let σ ∈ Sk,n, and suppose σ ′ can be obtained from σ by rearranging a
trivalent subtree. (That is, suppose there exist trivalent subtrees of σ and σ ′ whose comple-
ments are isomorphic as marked trees, and such that the two subtrees have the same marking
set.) Then σ and σ ′ have the same class in H2k(M0,n).

Sketch of proof Contracting the relevant trivalent subtrees, σ and σ ′ can both be written
as the pushforward from the same product M0,n0 × M0,n1 × · · · × M0,nm , of the class
[pt] × 1 × · · · × 1, for different choices of pt ∈ M0,n0 , the factor corresponding to the
contracted subtrees.

Lemma 3.7 Fix nonnegative integers n ≥ 4, k ≤ n − 3, and b ≤ n − k − 4. The map
ρn,b : Q(S2k,n)

b → (Q2
k,n)

b descends equivariantly to a map ρn,b : Q(P2
k,n)

b → (Q2
k,n)

b.

Proof We must check that ρn,b(ker(Wn,b)) = 0. Note that as an induced map on free vector
spaces, Wn,b has kernel spanned by

{σ − σ ′ : σ, σ ′ ∈ (S2k,n)
b,Wn,b(σ ) = Wn,b(σ

′)}.
Thus it suffices to show that if σ, σ ′ ∈ (S2k,n)

b and Wn,b(σ ) = Wn,b(σ
′), then ρn,b(σ ) =

ρn,b(σ
′). We consider two cases: b = n − k − 4 and b < n − k − 4.

First, suppose b = n − k − 4. Then for any σ ∈ (S2k,n)
≥b, the two vertices v1 and v2

are leaves, and Wn,b(σ ) determines σ up to rearrangement of the trivalent subtree obtained
by deleting v1 and v2. Thus ρn,b descends to (P2

k,n)
b by Proposition 3.6. Next, suppose

b < n − k − 4. Let τ ∈ (S2k,n)
b. We will next define an algorithm ((8) below) for producing

trees τ ′ ∈ (S2k,n)
b such that ρn,b(τ

′) = ρn,b(τ ). Note that Proposition 3.6 is another such

algorithm. We will then prove that if σ, σ ′ ∈ (S2k,n)
b and Wn,b(σ ) = Wn,b(σ

′), then σ ′ can
be obtained from σ via these two algorithms.

Let τ ∈ (S2k,n)
≥b. Since b < n − k − 4, at least one of v1 and v2 is not a leaf. Suppose

without loss of generality that v1 is not a leaf. Let e1 be the edge incident to v1 that is
on the path from v1 to v2. Fix an edge e �= e1, and write e = {v1, v′}. Let τ be the tree
obtained by contracting e to a vertex v1 = v′. We consider Kontsevich-Manin relations
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R = R(τ , v1 = v′, A, B,C, e1), where A, B �= e are incident to v′ in τ , and C �= e is
incident to v1 in τ . All but four terms of R are in S≥3

k,n . The remaining terms are:

(ABT|Ce1) + (AB|Ce1T) − (ACT|Be1) + (AC |Be1T)

where T is the set of edges and half-edges incident to v1 = v′ other than A, B,C, e1. Note
that the first and third terms are in (S2k,n)

≥b+1, hence are zero in (Q2
k,n)

b. We are left with
the relation

(AB|Ce1T) = (AC |Be1T). (8)

The left side is τ , and the right side is another element of (S2k,n)
b.

Fix P = {(P1, α1), (P2, α2)} ∈ (P2
k,n)

b. Wemust now show that if σ, σ ′ ∈ (Wn,b)
−1(P),

then σ ′ can be obtained from σ via the two algorithms (8) and Proposition 3.6.Wewill instead
show that any σ ∈ (Wn,b)

−1(P) can be manipulated via (8) into a standard form. That is,
we will find σ0 ∈ (Wn,b)

−1(P) such that for any σ ∈ (Wn,b)
−1(P), σ0 can be obtained

from σ via the two algorithms. Let σ0 be as follows: On v1, the first α1 + 1 elements of P1
(in increasing order) are half-edges incident to v1, and the remaining elements of P1 form
a trivalent subtree incident to v1. Similarly for v2, and the remaining points (P1 ∪ P2)C of
course form a trivalent subtree connecting v1 and v2. This defines σ0 up to rearrangement of
trivalent subtrees; this is sufficient in light of Proposition 3.6.

Fix σ ∈ (Wn,b)
−1(P). If the first α1 + 1 marked half-edges of P1 are incident to v,

then v1 is already in the desired form. If not, let e, �= e1 be incident to v1 such that subtree
corresponding to e = {v1, v′} contains (at least) one of the first α1 + 1 marked half-edges.
Using Proposition 3.6, rearrange the subtree so that this half-edge is incident to v′, then apply
(8), where B is the chosen half-edge, and C is any edge or half-edge incident to v1 that is
not equal to e, nor to any of the first α1 + 1 marked half-edges. (Such a flag must exist, since
there are α1 + 1 edges and half-edges other than e and e1, and we have assumed that one
of the first α1 + 1 marked half-edges is on the subtree corresponding to e.) In the resulting
tree, the number of the first α1 + 1 marked half-edges incident to v1 has increased by 1. We
repeat until this number is α1 + 1, then apply the same argument to v2. The result is σ0; this
completes the proof.

4 A conjectural dimension formula

We end with a conjectural formula for the dimension of Qr
k,n .

Conjecture 4.1 The dimension of Qr
k,n is

∑

α1,...,αr≥1
α1+···+αr=k

∑

p1,...,pr ,b≥0
p1+···+pr+b=n+r−2

pi≥αi+2

1

r !
(

n + r − 2

p1, . . . , pr , b

)

.

The case r = 1 appears in [15]. The case r = 2 follows from Theorem 2.7, since the
formula gives the cardinality of P2

k,n . Summing over r ∈ {1, . . . ,min{k, n − 2− k}} gives a
conjectural closed formula for the dimension of H2k(M0,n,Q). This formula agrees with the
actual dimension for n ≤ 20 and all k, but we have not been able to find it in the literature.
(It is not obvious to us whether or not the formula is recoverable from e.g. [18].)
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