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Abstract
The following short article first arose as anAppendix to the paperCounting points of bounded
height in monoid orbits, byWade Hindes, which appears just above in this journal. Subse-
quently, due to the general nature of the underlying problem, we thought that the result could
have further applications, and could be easily overlooked if it appeared as an appendix. So,
with the welcome kind help of the Editors, we decided to publish the result separately.

1 Introduction

The general issue treated here concerns the values attained more than once by a polynomial
f over a given ring. This issue may be translated into the equation f (X) = f (Y ), to be
solved with X , Y over the ring in question, and where we prescribe that X , Y should be in
fact distinct. In turn, this corresponds to seeking the points, defined over the said ring, of the
plane curve defined by the polynomial

F(X , Y ) = f (X) − f (Y )

X − Y
. (1)

A very natural case arises when f has coefficients in Q and the ring is Z or a ring of
S-integers in a number field.1 But let us proceed more generally, restricting merely to zero
characteristic.

So, let f ∈ C[X ] be a complex polynomial of degree d ≥ 2 and let O be a finitely
generated subring of C. We seek conditions for the curve defined by F(X , Y ) = 0 to have
infinitely many points with X , Y ∈ O.

Before stating the results, recall that the cyclic polynomial of degree n is simply Xn ,
whereas the Chebyshev polynomial of degree n is the unique polynomial Tn satisfying the
identity Tn(Z+Z−1) = Zn+Z−n . One can check that it has integer coefficients (for instance
by induction).

These polynomials are quite remarkable, in particular in the theory of composition of
rational functions (see e.g., A. Schinzel’s book [7]). For instance, if Sn is either the cyclic

1 Recall that the S-integers of a number field K are those elements of K whose denominator is divisible only
by prime ideals in the set S, usually assumed to be finite.
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or the Chebyshev polynomial of degree n, then for integers n,m ≥ 0 we have the identities
Snm(x) = (Sn ◦ Sm)(x) =: Sn(Sm(x)).

A purpose of the present note is to prove, in particular, the following

Theorem 1.1 Assume that the plane curve defined by F(X , Y ) has infinitely many points in
O2. Then there are an integer n > 1 and polynomials g, l ∈ C[X ], with deg l = 1, such that
f = g ◦ Sn ◦ l, where Sn is either the cyclic or the Chebyshev polynomial of degree n.
Belowwe shall givemore precise results, in particular about the identities in the statement,

which allow a full description of the solutions (for instance as in (iii) of next subsection).

1.1 Some converse results

In this short subsection we shall very briefly discuss some conclusions in the converse direc-
tion. Indeed, the theorem has an easy converse, at any rate as soon aswe allow a bit of freedom
on O, as we are going to illustrate. Note that some conditions on O are indeed necessary for
the infinitude of integral points arising from a general decompositions as in the statement.
For instance, we shall see in Remark 1.2 that in the most natural case O = Z it turns out
(moreover with a simple argument) that in the theorem we can limit to n ≤ 2 and that all but
finitely many solutions lie on a fixed line X + Y = c.

Let us briefly see what can happen in general, where we assume, on applying first l−1,
that the linear polynomial l is the identity.

(i) Cyclic case. When we may take Sn(X) = Xn in the theorem, we obtain factors
(after applying l−1) X − ζY (ζ n = 1, ζ �= 1) for our polynomial F(X , Y ), i.e. compo-
nents of the curve which are lines through the origin, defined over Q(ζ ). Therefore we
obtain infinitely many points in O2 corresponding to that factor if and only if the field
of quotients of O contains ζ .

(ii) Chebyshev case. In the case Sn = Tn , from the defining property of Tn we easily
obtain the complete factorisation of (Tn(X)−Tn(Y ))/(X−Y ) given by the (well-known)
factors X2 − (ζ + ζ−1)XY + Y 2 + (ζ − ζ−1)2, for ζ �= ±1 an n-th root of unity.

If the equation corresponding to such factor has infinitely many solutions in O, then the
field of quotients of O must contain σ := ζ + ζ−1, and then it contains automatically
(ζ − ζ−1)2 = σ 2 − 4 =: �. Note that if e.g. O is integrally closed then actually O must
contain σ . Let us then assume that O itself contains σ .

We may write the equation in the Pell shape (2X − σY )2 − �Y 2 = −4�. We are going
to show that this has infinitely many solutions in O as soon as O contains σ .

For this, we also use the Chebyshev polynomials of the second kind Un defined by the
identity Un(Z + Z−1) = Zn−Z−n

Z−Z−1 . Like the Tn , they have integer coefficients.
Let tn, un be defined formally by

tn ± un
√

�

2
=

(
σ ± √

�

2

)n

, n = 1, 2, . . . .

(This corresponds to working in the algebra O[X ]/(X2 − �), even if � is a square in O.)
Then, on setting Z = (σ + √

�)/2 in the defining identities for Tn,Un and noting that
Z−1 = (σ − √

�)/2, we find that

t2n − �u2n = 4, tn = Tn(σ ), un = Un(σ ).
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The last two equations imply that tn, un ∈ O. The first equation yields, after multiplication
by−�, (�un)2−�t2n = −4�. Wemay now put Yn := tn , 2Xn := σYn+�un = σ tn+�un
and obtain a solution of the original equation X2 − (ζ + ζ−1)XY + Y 2 + (ζ − ζ−1)2 = 0.

We have still to check that Xn ∈ O. For this, observe that the definition yields 2Xn+4un =
σ(tn + σun) = σ(Tn(σ ) + σUn(σ )). However the defining identities easily give

Tn(X) + XUn(X) = 2Un+1(X).

Hence we eventually find Xn = σUn+1(σ ) − 2un = σun+1 − 2un , which indeed lies in O.
This yields an infinity of solutions in Z[σ ], hence in O.

Similarly , we also obtain quadratic factors of Tn(X) + Tn(Y ), which are relevant when
g(X) = h(X2) is even. These factors divide also T2n(X) − T2n(Y ), since T2n = T2 ◦ Tn =
T 2
n − 2. We omit the corresponding discussion of the integer solutions, which is similar to

the former.
This analysis does not take the polynomial g into consideration. However, if n is maximal

for the conclusion of the theorem, all but finitely many solutions may arise only from the
factors that we have taken into account; see also next point (iii). In any case, we do not expand
the analysis here, we consider the above discussion as sufficient for our purposes.

(iii) Full description of solutions. In the next version of the result, i.e. Theo-
rem 1.3 below, we shall add a further conclusion which implies that all but finitely many
integral points arise in this way, i.e. from some decomposition as in Theorem 1.1. More
precisely, saying that an integral point (u, v) (such that f (u) = f (v)) ‘comes’ from a
decomposition F = g ◦ Sn ◦ l, we mean that Sn(l(u)) = Sn(l(v)), so in turn the point
(l(u), l(v)) is a zero of an irreducible factor of Sn(X) − Sn(Y ).

We also note that, since the factors which arise from the various components appear as factors
of F(X , Y ), it follows that these decompositions are finite in number. In a sense, this allows
to answer completely the question of the infinitude of the integral points, once the ring is
given, in view of the factorisations and the analysis given in (i) and (ii).

1.2 Integral points on curves

Let us now comment on the nature of Theorem 1.1.We recall at once that in virtue of Siegel’s
Theorem (extended suitably to finitely generated subrings) an irreducible affine curve can
have can have infinitely many (integral) points defined over O only if

(i) it has genus 0
and
(ii) it has at most two points at infinity.
Here by points at infinity we mean the missing points with respect to the closure of the

curve in some projective space. This number may increase by passing to a smooth model,
but the theorem applies to any model.

The original version by C.L. Siegel was over Z, and was extended later by K. Mahler
to the rings of S-integers in a number field. See any of the books [2], [5], or [8] for proofs
of this result, which is of deep nature. See also the paper [3] for a proof by P. Corvaja and
the author, depending on the Schmidt’s Subspace Theorem. See further the booklet [9] for
Siegel’s original 1929 article and a translation of it in English, together with a commentary
by C. Fuchs and the present author.

In general, the deep result of Siegel reduces our problem to investigate when the (pos-
sibly reducible) curve defined by F(X , Y ) has a component satisfying the above ‘Siegel
conditions’ (i) and (ii) (which cannot generally be avoided or improved).
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Remark 1.2 We pause to note that in the natural case when f has coefficients in Q and the
ring O is Z, there is an easy argument for our main problem, avoiding completely Siegel’s
theorem and leading to a simple conclusion for our basic question. For completeness we give
this self-contained argument here.

We are interested in the infinitude of the solutions m �= n in Z of the equation f (m) =
f (n), where f ∈ Q[X ]. By a translation in Q we may assume that f has vanishing second
coefficient, at the cost of allowing m, n to be rationals with a bounded denominator. Under
this normalisation (performed also in the proof below), the equation immediately leads to
the estimate |md − nd | = O(max(|m|, |n|)d−2), where d := deg f . On the other hand, on
factoring the left-hand side as

∏
ζ d=1 |m − ζn|, we see that it is � |m ± n|max(|m|, |n|)d−1

for some choice of the sign (where the minus sign may occur only if d is even). For large
enough max(|m|, |n|) this implies that m = ±n, so, since we assume m �= n, we have
eventually m = −n and an identity f (X) = f (−X), i.e. f is even. Taking into account
that we have performed a translation, we see that all but finitely many solutions are given by
m + n = −2b/(ad), where a, b are the first two coefficients of f .

1.3 Irreducible factors of F(X, Y)

In the general case, in turn, the issue of the components of the curve F(X , Y ) = 0 leads
in the first place to the need to establish when the defining polynomial F can be reducible,
which itself is an interesting and subtle problem. If f is indecomposable (i.e. not of the
shape g ◦ h for polynomials g, h of degree > 1) then the correct condition was found byM.
Fried [4]: namely, F is irreducible unless f (X) is either a cyclic or a Chebyshev polynomial
up to a linear change of variable, which of course corresponds to our conclusion. (See also
Schinzel’s book [7], especially 1.5, where fields of definitions are considered as well, which
instead we disregard here.) An application of Fried’s result would then directly yield the
present theorem in the indecomposable cases.

However, if f is decomposable, say f = g◦h, then certainly F(X , Y ) is anyway reducible
(with a factor (h(X) − h(Y ))/(X − Y )), and the issue leads to more delicate problems
concerning the nature of all the irreducible factors. In the paper [1] of R. Avanzi with the
present author, a laborious classification is obtained for all the cases when there is a factor
defining a curve of genus 0. The results of [1] depend on some finite-group theory, which
is used to an even much heavier extent in P. Mueller’s paper [6], which again obtains
certain complete and even more laborious classifications relevant for suitable applications of
Siegel’s theorem.

Now, an application of the paper [1] would suffice for the present purposes of proving
Theorem 1.1, even using only Siegel’s condition (i) and forgetting about (ii). But in fact it
turns out that looking at such condition (ii) not only makes the former (i) automatic, but also
leads to a much simpler and self-contained elementary proof, which can be hopefully useful
for some readers and for other applications. Moreover the resulting proof yields with little
effort a slightly more precise conclusion, as in the last phrase of the statement below (which
allows to describe all but finitely many integral points).

To present such a proof is the main scope of this note.
Summing up, by the foregoing discussion, all but finitely many integral points of the

(possibly reducible) curve F(X , Y ) = 0 correspond to a component of such curve with at
most two points at infinity, defined by a corresponding factor of F . In particular, for Theorem
1.1 it will suffice to prove the following result (even disregarding the last conclusion):
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Theorem 1.3 Assume that the polynomial F(X , Y ) has an irreducible factor � defining a
curve with at most two points at infinity (in a closure in P2). Then deg� ≤ 2 and there are
an integer n > 1 and polynomials g, l ∈ C[X ], with deg l = 1, such that f = g ◦ Sn ◦ l,
where Sn is the cyclic (if deg� = 1) or the Chebyshev (if deg� = 2) polynomial of degree
n.

Further, if deg� = 1, then � divides l(X)n − l(Y )n. If deg� = 2, then � is symmetric
and either it divides Sn(l(X)) − Sn(l(Y )), or g is even and � divides Sn(l(X)) + Sn(l(Y )).

2 Proofs

Wehave already remarked in the discussion above that, in viewofSiegel’s theorem, Theorem
1.1 follows from Theorem 1.3. Therefore it suffices to prove the latter.

Proof of Theorem 1.3 To start with, we normalise f by assuming, after multiplication by a
nonzero constant and a translation on X , that it ismonic andwith vanishing second coefficient:
f (X) = Xd + f2Xd−2 + . . . + fd , fi ∈ C. This does not affect the results on taking into
account the linear polynomial l(X) in the statement.

Remark 2.1 We stress that this normalisation is very helpful in simplifying calculations. We
also note that it holds for a (composite) polynomial f of the shape g ◦ h where deg h > 1,
if and only if holds for the polynomial h, as is very easy to check. In turn, this entails that if
f has been likewise normalised, then the polynomial l(X) of degree 1 in the statements will
have no constant term, which further simplifies the relevant shapes.

Our affine (possibly reducible) curve CF : F(X , Y ) = 0 has degree d − 1. Note that the
points at infinity in P2 of (the closure of) this curve are given in homogenous coordinates
(x : y : z) by z = 0, xd = yd , x �= y, so they form a set of d − 1 pairwise distinct points.2

Let�(X , Y ) ∈ C[X , Y ] be an irreducible factor of F(X , Y ), defining an irreducible curve
C� with at most two points at infinity. The homogeneous part of� of highest degree must be
a factor of (Xd − Yd)/(X − Y ), and the points at infinity correspond to linear factors of this
homogeneous part. Since this has no multiple factors, we deduce that C� has deg� points
at infinity. Hence, if C� satisfies Siegel’s condition (ii), we must have deg� ≤ 2.

From these considerations it also follows that, on multiplying by a nonzero constant, we
may assume that � is monic in Y .

We have two cases, leading to the corresponding pair of conclusions.

Case A. Suppose first that deg� = 1, so �(X , Y ) = Y − aX − b; hence we must have
f (aX + b) = f (X) identically. Since however f has vanishing second coefficient, this
entails b = 0, hence f (aX) = f (X). This implies, as by the way we already knew, that a is
a d-th root of unity, a �= 1.

If n is the exact order of a, then n > 1 divides d and f must be a polynomial in Xn , i.e.
f (X) = g(Xn) and we fall into one of the cases of the conclusion.
Note thatY−aX divides indeed Xn−Yn so the last assertion holds aswell. This completes

the first (simpler) half of the verification.

Case B. Suppose now that deg� = 2. The two points at infinity of C� correspond to two
Puiseux expansions Y = P±(X) := a±X + b0± + b1±X−1 + . . . in descending powers of

2 They are smooth points, which simplifies things as we do not need to refer to smooth models.
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X , where bi± are complex numbers and a± are two distinct d-th roots of 1, both different
from 1.

We have �(X , P±(X)) = 0 hence F(X , P±(X)) = 0, so f (X) = f (P±(X)) identically.
As before, since f has vanishing second coefficient this yields b0± = 0. We may write

�(X , Y ) = (Y − a+X)(Y − a−X) + L(X , Y ) − k,

where L is linear homogeneous and k ∈ C. We have that P±(X) − a±X = O(X−1),
in the sense that it is a Puiseux series where no non-negative power of X appears. Since
�(X , P±(X)) = 0 we get that L(X , P±(X)) = O(1) for both choices of the sign. But then,
since a± are distinct this implies L = 0, and since � is irreducible we have k �= 0. Hence,
setting s := a+ + a−, p := a+a−, we have pk �= 0 and

�(X , Y ) = (Y − a+X)(Y − a−X) − k = Y 2 − sXY + pX2 − k.

Let now x be a variable over C and let y be a solution of �(x, y) = 0 in an extension of
C(x), so F := C(x, y) is the function field of C�. Note that F is a quadratic extension of
both C(x) and C(y); looking at the equation we find that the Galois groups of F over these
two fields are generated respectively by the automorphisms σ, τ of F (of order 2) given by

σ(x) = x, σ (y) = sx − y, τ (x) = (
s

p
)y − x, τ (y) = y.

It will be notationally convenient to have another expression for F. Define the linear forms
Z± := Y − a±X , so � = Z+Z− − k. Letting z± = y − a±x we thus have z+z− = k and

x = z+ − z−
a− − a+

= γ (z+ − z−), y = γ (a−z+ − a+z−),

where we have put γ := (a− − a+)−1. So in particular we have F = C(z+) and by an easy
computation one finds that the above automorphisms are expressed by

σ(z+) = −z− = α

z+
, τ (z+) = −a+

a−
z− = β

z+
, (2)

where α = −k, β = −ka+/a−.
Now, since �(x, y) = 0 we have F(x, y) = 0 whence f (x) = f (y), so the field K :=

C(x)∩C(y) containsC( f (x)) and thus the degree [F : K ] is finite. The field K is left fixed by
both σ, τ , and thus by the group G that they generate inside Aut(F/C) = PGL2(C). By basic
Galois theory actually the fixed field of G is precisely the intersection C(x) ∩ C(y) = K .

We have σ(τ(z+)) = (β/α)z+, hence β/α = a+/a− is a root of unity of a certain order
n: actually, we already knew that a+, a− are d-th roots of unity, and they are distinct, so
n > 1 is a divisor of d .

The group G is generated by σ and ξ := στ . On looking at the action on z+ it is now
easily seen that σ−1ξσ = ξ−1, so G is a dihedral group of order 2n.

Now, the rational function of z+ given by w := zn+ + αnz−n+ of degree 2n is plainly
invariant by both σ and ξ , hence by G. Again by simple Galois theory, we have C(w) = K .
Therefore f (x), which lies in K , is a rational function of w, f (x) = g(w). (On comparing
degrees we find deg g = d/n.)

Recall that x = γ (z+ − z−) = γ (z+ + (−k)z−1+ ) = γ (z+ +αz−1+ ). Hence x has only the
poles z+ = 0,∞, and the same holds for f (x) (as functions of z+). It follows at once that g
must be a polynomial, of degree d/n.

123



Integral points on curves f (X)−f (Y)
X−Y 3615

The proof is now easily completed by a simple change of variables. We have w ∈ K ⊂
C(x), so we may write w = S(x) with S a rational function of degree n, which as above
must be a polynomial.

Set z = δz+ where δ2α = 1. Hence x = γ δ−1(z+z−1). Also,w = δ−n(zn+z−n). Hence
δn S(γ δ−1(z + z−1)) = zn + z−n , and by uniqueness it follows that δn S(γ δ−1X) = Tn(X)

is the Chebyshev polynomial of degree n. Hence in conclusion we find

f (X) = g(δ−nTn(γ
−1δX)),

as required.
To check the last assertion of Theorem 1.3, for notational simplificationwe slightly change

conventions and replace g(δ−n X) with g(X) and f (X) with f (γ δ−1X), so as to suppose
f (X) = g(Tn(X)).
With these substitutions, in the above notation x then becomes z + z−1 and y = a−z +

a+z−1. (Note that these substitutions leave unchanged the set {a+, a−}.)
Also, let μ2 = a+/a−, so μ2n = 1 and μn =: ε ∈ {±1}.
We have y = μa−((z/μ)+(z/μ)−1), so Tn((μa−)−1y) = ε(zn+z−n) = εTn(x). Hence,

setting ν := (μa−)−1, we have

Tn(νy) = εTn(x), g(Tn(y)) = f (y) = f (x) = g(Tn(x)) = g(εTn(νy)).

Denoting b := deg g = d/n, we then deduce that deg(Tn(y)b − (εTn(νy))b) ≤ (b− 1)n.
But on factoring the left side and noting that all factors but at most one have degree ≥ n, this
implies that in fact one of the factors is constant, hence

Tn(y) = θεTn(νy) + c, g(θX + c) = g(X), (3)

for some b-th root of unity θ , where we note that this argument is fairly standard in this type
of theory. Note that all of these equalities hold identically.

Now, the Chebyshev polynomial Tn(X) starts with Xn − nXn−2 + . . ., whence the first
of the equations gives θενn = ν2 = 1. Also, if n is odd then Tn(0) = 0 whence c = 0; if n
is even then νn = 1 so θε = 1 and again setting y = 0 we find c = 0 anyway. Conversely, if
these equalities hold it is easy to check that the equation holds, since Tn has the same parity
of n.

So we may suppose in the sequel that θενn = ν2 = 1 and that g(θX) = g(X).
Now, consider again the equation Tn(νy) = εTn(x), i.e. νnTn(y) = εTn(x).
If νn = ε we have Tn(x) = Tn(y) so �(X , Y ) divides (Tn(X) − Tn(Y ))/(X − Y ), and

we are in the first case of the conclusion.
If νn �= ε, then Tn(x) = −Tn(y) hence �(X , Y ) divides Tn(X) + Tn(Y ). Also, we have

already observed that θ = ενn which in this case equals −1 so g is an even polynomial by
the second equation in (3) (since c = 0), again as in the sough conclusion.

Finally, from the above equations we derive p = a+a− = (a+/a−)(a−)2 = (μa−)2 =
ν−2 = 1, hence �(X , Y ) is symmetric.

This concludes the proof of Theorem 1.3. �

Remark 2.2 We note that the last conclusion could have been stated as follows: if nis maximal
such that the decomposition holds, then the quadratic factor anyway divides Sn(l(X)) −
Sn(l(Y )). Indeed, if g is even, then since T2(X) = X2 − 2, g can be written as h ◦ T2 and
now we use that T2 ◦ Tn = T2n (a special case of the formulae recalled above).

Also, the sameproof-arguments (especially on usingRemark 2.1) show that if n ismaximal
such that a decomposition holds as in the conclusion, then all the factors � of F of degree
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1 or 2 arise from that decomposition. We omit a complete verification, which would lead us
too far from the main purpose of the article.
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