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Abstract
In a recent work, Chen and Ouhabaz proved a p-specific L p-spectral multiplier theorem for
the Grushin operator acting on Rd1 × R

d2 which is given by

L = −
d1∑

j=1

∂2x j −
( d1∑

j=1

|x j |2
) d2∑

k=1

∂2yk .

Their approach yields an L p-spectral multiplier theorem within the range 1 < p ≤
min{2d1/(d1+2), 2(d2+1)/(d2+3)} under a regularity condition on the multiplier which is
sharp onlywhen d1 ≥ d2. In this paper, we improve on this result by proving L p-boundedness
under the expected sharp regularity condition s > (d1+d2)(1/p−1/2). Our approach avoids
the usage of weighted restriction type estimates which played a key role in the work of Chen
and Ouhabaz, and is rather based on a careful analysis of the underlying sub-Riemannian
geometry and restriction type estimates where the multiplier is truncated along the spectrum
of the Laplacian on Rd2 .

Keywords Grushin operator · Spectral multiplier · Mikhlin–Hörmander multiplier ·
Bochner–Riesz mean · Restriction type estimate

Mathematics Subject Classification Primary 43A85 · 42B15; Secondary 47F05

1 Introduction

Let L be a positive self-adjoint linear differential operator on L2(M), where M is a smooth
d-dimensionalmanifold endowedwith a smooth positivemeasureμ. If E denotes the spectral
measure of L , we can define for every Borel measurable function F : R → C the (possibly
unbounded) operator

F(L) =
∫ ∞

0
F(λ) dE(λ).
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By the spectral theorem, F(L) is a bounded operator on L2(M) if and only if the spectral
multiplier F is E-essentially bounded. The L p-spectral multiplier problem asks for identi-
fying multipliers F for which F(L) extends from L2(M) ∩ L p(M) to a bounded operator
F(L) : L p(M) → L p(M).

For instance, in the case of the Laplacian L = −� on R
d , the celebrated Mikhlin–

Hörmander multiplier theorem [12] provides the following sufficient condition for the
question of L p-boundedness: The operator F(−�) is bounded on L p(Rd) for any 1 <

p < ∞ whenever F : R → C satisfies the regularity condition

‖F‖sloc,s := sup
t>0

‖ηF(t · )‖L2
s (R) < ∞ for some s > d/2.

Here η : R → C shall denote some generic nonzero bump function supported in (0,∞),
while L2

s (R) ⊆ L2(R) is the Sobolev space of (fractional) order s ∈ R. In the case p = 1,
the operator F(−�) is of weak type (1, 1), i.e., bounded as an operator between L1(Rd)

and the Lorentz space L1,∞(Rd). The threshold d/2 of the order s is optimal and cannot be
decreased.

A lot of attention has been paid to the questionwhether an analogous result of theMikhlin–
Hörmandermultiplier theoremholds true formore general classes of (sub)-elliptic differential
operators, most notably sub-Laplacians. For left-invariant sub-Laplacians on Carnot groups,
Christ [7], and Mauceri and Meda [23] showed that F(L) extends to a bounded operator on
all L p-spaces for 1 < p < ∞ and is of weak type (1, 1) whenever

‖F‖sloc,s < ∞ for some s > Q/2,

where Q is the so-called homogeneous dimension of the underlying Carnot group. It came
therefore as a surprise when Müller and Stein [28], and independently Hebisch [11], dis-
covered in the early nineties that in the case of Heisenberg (-type) groups the threshold
s > Q/2 can be even pushed down to s > d/2, with d being the topological dimension of
the underlying group. The question whether this holds true for any sub-Laplacian L is still
open, although there has been extensive research on this problem and many partial results
are available, including, e.g., sub-Laplacians on all 2-step stratified Lie groups of dimension
≤ 7 [20], certain classes of 2-step stratified Lie groups of higher dimension [18], Grushin
operators [19], as well as various classes of compact sub-Riemannian manifolds [1, 4, 8, 9].
So far a counterexample requiring the threshold to be larger than d/2 is not known.

A refinement of asking for boundedness on all L p-spaces for 1 < p < ∞ simultaneously
is the questionwhich order of differentiability s is needed if p is given (p-specific L p-spectral
multiplier estimates). Again in the case of the Laplacian L = −�, it is by now well-known
(see [17, Theorem 1.4] for instance) that if 1 < p ≤ 2(d + 1)/(d + 3) and if F : R → C is
a bounded Borel function satisfying

‖F‖sloc,s < ∞ for some s > max{d |1/p − 1/2| , 1/2},
then the operator F(−�) is bounded on L p(Rd). The condition on the range of p derives
from the celebrated Stein–Tomas Fourier restriction theorem [34] which is used for the proof
of this result. It is an open problem (the famous Bochner–Riesz conjecture, cf. [2, 3, 10,
30, 32]) in the case of Bochner–Riesz means (where F = (1 − | · |)δ+, δ > 0) whether the
operators (1 + �)δ+ are bounded on L p(Rd) whenever δ > max{d |1/p − 1/2| − 1/2, 0}.

Regarding p-specific L p-spectral multiplier theorems for sub-Laplacians in more general
settings, much fewer results featuring the topological dimension d are available so far. How-
ever, in [21], Martini et al. showed for a large class of smooth second-order real differential
operators associated to a sub-Riemannian structure on smooth d-dimensional manifolds that
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Spectral multipliers for Grushin operators 4155

regularity of order s ≥ d |1/p − 1/2| is necessary for having L p-spectral multiplier esti-
mates. In particular, this result applies to all sub-Laplacians on Carnot groups, and Grushin
operators, which are the subject of the present paper.

Quite recently, Chen and Ouhabaz [5] proved a partial result for a p-specific L p-spectral
multiplier estimate in the case of the Grushin operator L acting onRd = R

d1 ×R
d2 , d1, d2 ≥

1, given by

L = −
d1∑

j=1

∂2x j −
( d1∑

j=1

|x j |2
) d2∑

k=1

∂2yk = −�x − |x |2�y .

Here x ∈ R
d1 , y ∈ R

d2 shall denote the two layers of a given point inRd , while�x ,�y are the
corresponding partial Laplacians, and |x | is the Euclidean norm of x . The Grushin operator
is positive, self-adjoint, and hypoelliptic according to a celebrated theorem by Hörmander
[13], but not elliptic on the plane x = 0. In [5], it is proved that F(L) extends to a bounded
operator on L p(Rd) whenever

‖F‖sloc,s < ∞ for some s > D(1/p − 1/2),

where D := max{d1 + d2, 2d2} and 1 < p ≤ pd1,d2 , with

pd1,d2 := min
{ 2d1
d1 + 2

,
2(d2 + 1)

d2 + 3

}
. (1.1)

As suspected by Chen and Ouhabaz in [5], one might expect that this result holds true with
D being replaced by the topological dimension d = d1 + d2. However, their result yields the
optimal threshold at least if d1 ≥ d2.

A similar phenomenon as in [5] had already occurred earlier in [22], where Martini and
Sikora proved a Mikhlin–Hörmander type result for the Grushin operator L with threshold
s > D/2, which was later improved in [19] byMartini andMüller to hold for the topological
dimension d in place of D. The approaches of [22] and [19] rely both on weighted Plancherel
estimates for the integral kernels of F(L), which are derived by pointwise estimates for
Hermite functions. In [22], the employed weights are given by wγ (x, y) = |x |γ , γ > 0. In
principle, the arguments work out for γ < d2/2, but unfortunately, it is necessary to take
an integral over the weight |x |γ at some point, which forces γ < d1/2, which in turn yields
s > D/2 in place of s > d/2 as a threshold. In [19], Martini and Müller employ the weights
wγ (x, y) = |y|γ in the second layer y, together with a rescaling factor in the first layer.
Using the weights |y|γ does only force γ < d2/2 when taking the integral over the weight,
whence this approach provides the optimal threshold s > d/2. However, the weights |y|γ
are harder to handle since a sub-elliptic estimate, which goes back to Hebisch [11], is not
applicable for these weights.

The proof of Chen and Ouhabaz relies on weighted restriction type estimates using |x |γ
as a weight. Similar to [22], they employ Hebisch’s sub-elliptic estimate and have to take
an integral over the weight |x |γ which forces γ < d1(1/p − 1/2), and in turn yields s >

D(1/p − 1/2) in place of s > d(1/p − 1/2) as a threshold.
In this paper, we improve the result of [5] and prove a p-specific spectral multiplier

estimate with optimal threshold for s. Similar as in [5], we also prove a corresponding result
for Bochner–Riesz multipliers. Note that Theorem 1.1 only provides results if d1 ≥ 3 and
d2 ≥ 2, and Theorem 1.2 if d1 ≥ 2 and d2 ≥ 1.
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4156 L. Niedorf

Theorem 1.1 Let 1 < p ≤ pd1,d2 . Suppose that F : R → C is a bounded Borel function
such that

‖F‖sloc,s < ∞ for some s > (d1 + d2)(1/p − 1/2).

Then the operator F(L) is bounded on L p(Rd), and

‖F(L)‖L p→L p ≤ Cp,s‖F‖sloc,s .
Theorem 1.2 Let 1 ≤ p ≤ pd1,d2 . Suppose that δ > (d1 + d2)(1/p − 1/2) − 1/2. Then the
Bochner–Riesz means (1 − t L)δ+ are bounded on L p(Rd) uniformly in t ∈ [0,∞).

Our strategy when reaching for the optimal threshold s > d(1/p − 1/2) is to follow the
approach by Chen and Ouhabaz, but instead of showing weighted restriction type estimates,
we prove restriction type estimates where the operator F(L) is additionally truncated along
the spectrum of the Laplacian on R

d2 . On a heuristic level, this key idea may be illustrated
as follows: Via Fourier transform in the second component, the study of the operator L
translates into studying the family of operators −�x + |x |2|η|2, η ∈ R

d2 , on L2(Rd1). For
fixed η ∈ R

d2 , this operator is a rescaled version of the Hermite operator, and has discrete
spectrum consisting of the eigenvalues [k]|η|, where [k] = 2k+d1 and k ∈ N. Moreover, the
operator T := (−�y)

1/2 translates into the multiplication operator |η| via Fourier transform
in the second component. The operators L and T admit a joint functional calculus, and since
[k]|η|/|η| = [k], multiplication with the operator χk(L/T ) (where χk : R → C shall denote
the indicator function of {2k + d1}) corresponds to picking the k-th eigenvalue on L2(Rd1)

for every η ∈ R
d2 simultaneously. This is an observation that has been already been exploited

earlier, for instance in [19, Lemma 11], and in [26, 27]. Since r ∼ [k]−1 on the support of
a joint multiplier F(λ)χk(λ/r) whenever F is compactly supported away from the origin,
the multiplication of an operator F(L) by χk(L/T ) is referred to as a truncation along the
spectrum of T in the following. The benefit of this truncation is as follows: Since L and T
admit a joint functional calculus, we have

F(L)χk(L/T ) = F([k]T )χk(L/T ).

Thus for every k ∈ N, we may replace the operator L by the Laplacian in the second layer
y ∈ R

d2 , whence one might hope that on each “eigenspace” associated to k the underlying
sub-Riemannian geometry behaves Euclidean up to a scaling by k in the second layer. In the
proofs of Theorem 1.1 and Theorem 1.2, we will take advantage of this perspective in the
case where k ∈ N is small.

This article is organized as follows: in Sect. 2, we recall the main facts concerning the
sub-Riemannian geometry that is naturally associated to the Grushin operator L . In Sect. 3,
we recall the essentials of the joint functional calculus of L and T and prove the trun-
cated restriction type estimates mentioned above. Section 4 is devoted to the proofs of
Theorem 1.1 and Theorem 1.2, where also a closer analysis of the underlying sub-
Riemannian geometry takes place.

Finally, we briefly fix our notation. For us, zero shall be contained in the set of all natural
numbers N. The space of (equivalence classes of) integrable simple functions on Rn will be
denoted by D(Rn), while S(Rn) shall denote the space of Schwartz functions on R

n . The
indicator function of a subset A ⊆ R

n will be denoted by χA. For a function f ∈ L1(Rn),
the Fourier transform f̂ is given by

f̂ (ξ) =
∫

Rn
f (x)e−iξ x dx, ξ ∈ R

n,
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Spectral multipliers for Grushin operators 4157

while the inverse Fourier transform f̌ is given by

f̌ (x) = (2π)−n
∫

Rn
f (ξ)eixξ dξ, x ∈ R

n .

Constants may vary from line to line, but they will be occasionally denoted by the same
letter. We write A � B if A ≤ CB for a constant C . If A � B and B � A, we write
A ∼ B. Moreover, we fix the following dyadic decomposition throughout this article. Let
χ : R → [0, 1] be an even bump function supported in [−2,−1/2] ∪ [1/2, 2] such that

∑

j∈Z
χ j (λ) = 1 for λ �= 0,

where χ j is given by

χ j (λ) := χ(λ/2 j ) for j ∈ Z. (1.2)

With this setup, we have in particular |λ| ∼ 2 j for all λ ∈ suppχ j .

2 The sub-Riemannian geometry of the Grushin operator

Let � denote the Carnot–Carathéodory distance associated to the Grushin operator L , i.e., for
z, w ∈ R

d , the distance �(z, w) is given by the infimum over all lengths of horizontal curves
γ : [0, 1] → R

d joining z with w (cf. Section III.4 of [35]). Due to the Chow–Rashevkii
theorem (cf. Proposition III.4.1 in [35]), � is indeed a metric on R

d , which induces the
Euclidean topology on R

d . In our setting, the Carnot–Carathéodory distance possesses the
following characterization (cf. Proposition 3.1 in [14]): If z, w ∈ R

d , then

�(z, w) = sup
ψ∈

(ψ(z) − ψ(w)), (2.1)

where  denotes the set of all locally Lipschitz continuous functions ψ : Rd → R such that

|∇xψ(x, y)|2 + |x |2|∇yψ(x, y)|2 ≤ 1 for a.e. (x, y) ∈ R
d1 × R

d2 . (2.2)

In the following, let B�

R(a, b) denote the ball of radius R ≥ 0 centered at (a, b) ∈ R
d1 ×R

d2

with respect to the distance �. The following statement summarizes the main properties of
the sub-Riemannian geometry associated to L that we need later.

Proposition 2.1 The following statements hold:

(1) For all (x, y), (a, b) ∈ R
d1 × R

d2 ,

�((x, y), (a, b)) ∼ |x − a| +
{ |y−b|

|x |+|a| if |y − b|1/2 < |x | + |a|,
|y − b|1/2 if |y − b|1/2 ≥ |x | + |a|.

(2) For all (a, b) ∈ R
d1 × R

d2 and R > 0,

|B�

R(a, b)| ∼ Rd1+d2 max{R, |a|}d2 .
(3) There is a constant C > 0 such that for all (a, b) ∈ R

d1 × R
d2 ,

B�

R(a, b) ⊆ B| · |
R (a) × B| · |

CR2(b) whenever R ≥ |a|/4.
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4158 L. Niedorf

(4) Let δt (x, y) := (t x, t2y) for (x, y) ∈ R
d1 × R

d2 . Then

�(δt (x, y), δt (a, b)) = t�((x, y), (a, b)).

(5) L possesses the finite propagation speed property with respect to �, i.e., whenever f , g ∈
L2(Rd) are supported in open subsets U , V ⊆ R

d and |t | < �(U , V ), then

(cos(t
√
L) f , g) = 0.

Proof The estimates in (1) and (2) are part of Proposition 5.1 in [29]. The inclusion in (3) is
a consequence of (1): Since the function ψ defined by ψ(x, y) := |x − a| satisfies (2.2), the
characterization (2.1) yields

|x − a| ≤ �((x, y), (a, b)).

Thus, if we suppose (x, y) ∈ B�

R(a, b) for R ≥ |a|/4, then the inequality above implies

x ∈ B|·|
R (a), and |x | ≤ |x − a| + |a| < 5R. Moreover, if |y − b|1/2 < |x | + |a|, then (1)

yields

|y − b| � (|x | + |a|)�((x, y), (a, b)) < 9R2,

and if |y − b|1/2 ≥ |x | + |a|, then |y − b| � �((x, y), (a, b))2 < R2, which proves (3). The
scaling invariance in (4) is an immediate consequence of the characterization (2.1). For the
finite propagation speed property, see Proposition 4.1 of [29], or alternatively the approach
of Melrose in [24, Proposition 3.4]. ��

The finite propagation speed property will be of fundamental importance in the proofs
of Theorem 1.1 and Theorem 1.2. Moreover, note that the volume estimate in part (2) of
Proposition 2.1 yields in particular that themetricmeasure space (Rd , �, |·|) (with |·| denoting
the Lebesgue measure) is a space of homogeneous type with homogeneous dimension Q =
d1 + 2d2.

3 Truncated restriction type estimates

In this section, we prove restriction type estimates where the multiplier is additionally trun-
cated along the spectrum of the Laplacian on R

d2 . As in [5], the idea is to apply a discrete
restriction estimate in the variable x ∈ R

d1 and the classical Stein–Tomas restriction estimate
in y ∈ R

d2 . Due to the conditions 1 ≤ p ≤ 2d1/(d1 + 2) and 1 ≤ p ≤ 2(d2 + 1)/(d2 + 3)
in the corresponding restriction (type) estimates, we have to assume 1 ≤ p ≤ pd1,d2 in
Theorem 3.4 (with pd1,d2 being defined as in (1.1)).

We first discuss the spectral decomposition of theGrushin operator L . LetF2 : L2(Rd) →
L2(Rd) denote the Fourier transform in the second component, i.e.,

F2 f (x, η) =
∫

R
d2

f (x, y)e−iηy dy, f ∈ S(Rd).

We will also write f η(x) = F2 f (x, η) in the following. Then

(L f )η = (−�x + |x |2|η|2) f η.

For fixed η ∈ R
d2 \ {0} , the operator

Lη := −�x + |x |2|η|2 on L2(Rd1)
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Spectral multipliers for Grushin operators 4159

is a rescaled version of the Hermite operator H = −� + |x |2 on R
d1 . It is well-known [33,

Section 1.1] that H has discrete spectrum consisting of the eigenvalues

[k] := 2k + d1, k ∈ N.

For a multiindex ν ∈ N
d1 , let �ν denote the ν-th Hermite function on Rd1 , i.e.,

�ν(x) :=
d1∏

j=1

hν j (x j ), x ∈ R
d1 ,

where, for � ∈ N, h� shall denote the �-th Hermite function on R, i.e.,

h�(u) := (−1)�(2��!√π)−1/2eu
2/2

( d

du

)�

(e−u2), u ∈ R.

The Hermite functions �ν form an orthonormal basis of L2(Rd1) and are eigenfunctions of
the Hermite operator H since H�ν = (2|ν|1 + d1)�ν , where |ν|1 = ν1 + . . . + νd1 denotes
the length of the multiindex ν ∈ N

d1 .
Furthermore, for η ∈ R

d2 \ {0}, let �η
ν be given by

�η
ν(x) := |η|d1/4�ν(|η|1/2x), x ∈ R

d1 .

Then the functions �
η
ν form an orthonormal basis of L2(Rd1) and are eigenfunctions of the

operator Lη since Lη�
η
ν = (2|ν|1 + d1)|η|�η

ν . Thus the projection Pη
k onto the eigenspace

associated to the eigenvalue [k]|η| of Lη is given by

Pη
k g =

∑

|ν|1=k

(g,�η
ν)�

η
ν, g ∈ L2(Rd1).

In particular, the projection Pη
k possesses an integral kernel Kη

k which is given by

Kη
k (x, a) =

∑

|ν|1=k

�η
ν(x)�

η
ν(a), x, a ∈ R

d1 . (3.1)

Moreover, let L j and Tk be the differential operators given by

L j = (−i∂x j )
2 + |x j |2

d2∑

k=1

(−i∂yk )
2, Tk = −i∂yk .

Then the Grushin operator L is equal to the sum L1 + · · · + Ld1 . As shown in [22], the
operators L1, . . . , Ld1 , T1, . . . , Td2 have a joint functional calculus which can be explicitly
written down in terms of the Fourier transform and Hermite function expansion. In particular,
the operators L and T = (|T1|2+· · ·+|Td2 |2)1/2 = (−�y)

1/2 have a joint functional calculus,
so we can define the operators G(L, T ) for every Borel function G : R × R → C.

Lemma 3.1 For all bounded Borel functions G : R × R → C,

(G(L, T ) f )η(x) = G(Lη, |η|) f η(x)

for all f ∈ L2(Rd) and almost all (x, η) ∈ R
d1 × R

d2 . Moreover, if G is additionally
compactly supported in R × (R\{0}), the operator G(L, T ) possesses an integral kernel
KG(L,T ), which is given by

KG(L,T )((x, y), (a, b)) = (2π)−d2

∫

R
d2

∞∑

k=0

G
([k]|η|, |η|)Kη

k (x, a)ei(y−b)η dη

for almost all (x, y), (a, b) ∈ R
d1 × R

d2 .
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4160 L. Niedorf

Proof See Proposition 5 of [22], and its proof. ��
The proof of the truncated restriction type estimates for the Grushin operator relies on the

following restriction type estimate for Lη.

Proposition 3.2 Let 1 ≤ p ≤ 2d1/(d1 + 2). Then, for all g ∈ D(Rd1) and η ∈ R
d2 \ {0},

‖Pη
k g‖2 ≤ Cp|η| d12 (1/p−1/2)[k] d1

2 (1/p−1/2)−1/2‖g‖p.

Proof Via substitution, the proof of the estimate can be reduced to the case where |η| = 1
(cf. Proposition 3.2 of [5]). For the case |η| = 1, see Corollary 3.2 of [16]. Alternatively, for
1 ≤ p < 2d1/(d1+2), this result can also be found in [15,Theorem3] and [6, Proposition II.8]
(in conjunction with Mehler’s formula). ��

Another ingredient for the proof of the restriction type estimates are pointwise estimates
for Hermite functions. In the following, we let

Hη
k (x) := Kη

k (x, x), x ∈ R
d1 . (3.2)

Lemma 3.3 If d1 ≥ 2, then, for all k ∈ N and η ∈ R
d2 \ {0},

Hη
k (x) ≤

{
C |η|d1/2[k]d1/2−1 for all x ∈ R

d1 ,

C |η|d1/2 exp(−c|η||x |2∞) when |η||x |2∞ ≥ 2[k].
Proof See [22, Lemma 8] and the references therein. ��

Now we state the restriction type estimates of the Grushin operator L . The new feature in
comparison to [5] is the truncation along the spectrum of T instead of employing weights in
the restriction type estimates. Let� denote again theCarnot–Carathéodorydistance associated
to L .

Theorem 3.4 Let 1 ≤ p ≤ pd1,d2 . Suppose that F : R → C is a bounded Borel function
supported in [1/8, 8]. For � ∈ N, let G� : R × R → C be given by

G�(λ, r) = F(
√

λ)χ�(λ/r) for λ ≥ 0, r �= 0

and G�(λ, r) = 0 else, where χ� is defined via (1.2). Then

‖G�(L, T )‖p→2 ≤ Cp2
−�d2(1/p−1/2)‖F‖2. (3.3)

In particular, for ι ∈ N,
∥∥∥∥

∑

�>ι

G�(L, T )

∥∥∥∥
p→2

≤ Cp2
−ιd2(1/p−1/2)‖F‖2. (3.4)

Moreover, for (a, b) ∈ R
d1 × R

d2 and 0 < R < |a|/4,
‖F(

√
L)χB�

R(a,b)‖p→2 ≤ Cp|a|−d2(1/p−1/2)‖F‖2. (3.5)

Remark 3.5 By Lemma 3.1, we have

(G�(L, T ) f )η =
∞∑

k=0

F(
√[k]|η|)χ�([k])Pη

k f η
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Spectral multipliers for Grushin operators 4161

for almost all η ∈ R
d2 . Note that d1 ≥ 2 due to the assumption on the range of p. Thus

χ j ([k]) = 0 for all j ≤ 0 and k ∈ N, whence

∞∑

�=1

G�(L, T ) f = F(
√
L) f .

Proof We first prove (3.3). Note that (3.4) is a direct consequence of (3.3) since
∥∥∥∥

∑

�>ι

G�(L, T )

∥∥∥∥
p→2

≤
∑

�>ι

‖G�(L, T )‖p→2.

Let f ∈ S(Rd). In the following, let gη
k := F(

√[k]|η|) f η for η ∈ R
d2 and k ∈ N. Using

Plancherel’s theorem, Lemma 3.1, and orthogonality in L2(Rd1), we obtain

‖G�(L, T ) f ‖2L2(Rd )
∼ ‖G�(L

η, |η|) f η‖2
L2(Rd1×R

d2
η )

=
∥∥∥∥

∞∑

k=0

F(
√[k]|η|)χ�([k])Pη

k f η

∥∥∥∥
2

L2(Rd1×R
d2
η )

=
∞∑

k=0

χ�([k])2‖Pη
k g

η
k ‖2L2(Rd1×R

d2
η )

. (3.6)

The restriction type estimate of Proposition 3.2 provides the estimate

‖Pη
k g

η
k ‖L2(Rd1 ) � |η| d12 (1/p−1/2)[k] d1

2 (1/p−1/2)−1/2‖gη
k ‖L p(Rd1 )

∼ [k]−1/2‖gη
k ‖L p(Rd1 ) (3.7)

since [k]|η| ∼ 1 whenever [k]|η| ∈ supp F . Moreover, Minkowski’s integral inequality
yields

‖‖gη
k ‖L p(Rd1 )‖L2(R

d2
η )

≤ ‖‖gη
k (x)‖L2(R

d2
η )

‖
L p(R

d1
x )

. (3.8)

Let fx := f (x, ·) and ·̂ denote the Fourier transform on R
d2 . Using polar coordinates and

applying the classical Stein–Tomas restriction estimate [34] yields

‖gη
k (x)‖2L2(R

d2
η )

=
∫ ∞

0

∫

Sd2−1
|F(

√[k]r) f̂x (rω)|2rd2−1 dσ(ω) dr

=
∫ ∞

0
|F(

√[k]r)|2r−d2−1
∫

Sd2−1

∣∣( fx (r−1 · ))∧
(ω)

∣∣2 dσ(ω) dr

�
∫ ∞

0
|F(

√[k]r)|2r−d2−1‖ fx (r
−1 · )‖2

L p(Rd2 )
dr

=
∫ ∞

0
|F(

√[k]r)|2r2d2(1/p−1/2)−1 dr ‖ fx‖2L p(Rd2 )

∼ [k]−2d2(1/p−1/2)
∫ ∞

0
|F(

√
r)|2 dr ‖ fx‖2L p(Rd2 )

.

Substituting r �→ r2, we obtain, together with (3.8),

‖‖gη
k ‖L p(Rd1 )‖L2(R

d2
η )

� [k]−d2(1/p−1/2)‖F‖2‖ f ‖p. (3.9)
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Together with (3.7), we get

‖Pη
k g

η
k ‖L2(Rd1×R

d2
η )

� [k]−d2(1/p−1/2)−1/2‖F‖2‖ f ‖p. (3.10)

Hence, in conjunction with (3.6), we finally get

‖G�(L, T ) f ‖2L2(Rd )
�

∑

[k]∼2�

[k]−2d2(1/p−1/2)−1‖F‖22‖ f ‖2p

� 2−2�d2(1/p−1/2)‖F‖22‖ f ‖2p.
This proves (3.3).

Now we prove (3.5). Suppose that f is supported in B�

R(a, b). Applying (3.4) for ι = 0,
we obtain

‖F(
√
L) f ‖2 � ‖F‖2‖ f ‖p.

Hence we can assume |a| > 1 without loss of generality. As before, let gη
k = F(

√[k]|η|) f η.
The same arguments as in (3.6) show that

‖F(
√
L) f ‖2L2(Rd )

∼
∞∑

k=0

‖Pη
k g

η
k ‖2L2(Rd1×R

d2
η )

.

We split the sum over k in two parts, one part where [k] ≥ γ |a|, and another part where
[k] < γ |a|. The constant γ > 0 will be chosen later sufficiently small.

Case 1: For those k ∈ N satisfying [k] ≥ γ |a|, we use estimate (3.10) from before, and
we are done since

∑

[k]≥γ |a|
[k]−2d2(1/p−1/2)−1 �γ |a|−2d2(1/p−1/2).

Case 2: For [k] < γ |a|, we replace the restriction type estimate of Proposition 3.2 by an
estimation that uses Hölder’s inequality and the pointwise estimates for Hermite functions
provided by Lemma 3.3. (Note that we have assumed d1 ≥ 2 by choosing 1 ≤ p ≤ pd1,d2 .)
For the component y ∈ R

d2 , we use the Stein–Tomas restriction estimate in the same way as
before.

Fix k ∈ N with [k] < γ |a|. By Proposition 2.1 (3), gη
k is supported in B| · |

R (a) since f is
supported in B�

R(a, b). Recall that the projection Pη
k onto the eigenspace associated to the

eigenvalue [k]|η| possesses the integral kernel Kη
k given by (3.1). Using Hölder’s inequality,

we obtain

|Pη
k g

η
k (x)| ≤ ‖Kη

k (x, ·)‖L p′ (B| · |
R (a))

‖gη
k ‖L p(Rd1 ),

where p′ is the dual exponent of p. Hence

‖Pη
k g

η
k ‖L2(Rd1×R

d2
η )

≤ ∥∥ ‖‖Kη
k (x, ·)‖L p′ (B| · |

R (a))
‖
L2(R

d1
x )︸ ︷︷ ︸

=:βk,η

‖gη
k ‖L p(Rd1 )

∥∥
L2(R

d2
η )

. (3.11)

Since |Kη
k (x, ξ)| ≤ Hη

k (x)1/2Hη
k (ξ)1/2 (with Hη

k being defined as in (3.2)), we get

βk,η ≤ ‖(Hη
k )1/2‖L2(Rd1 )‖(Hη

k )1/2‖
L p′ (B| · |

R (a))
. (3.12)
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The first factor can be estimated by

‖(Hη
k )1/2‖L2(Rd1 ) =

( ∑

|ν|1=k

‖�η
ν‖22

)1/2

= |{ν ∈ N
d1 : |ν|1 = k}|1/2 ≤ kd1/2. (3.13)

Let x ∈ BR(a). Since Pη
k g

η
k = 0 for [k]|η| /∈ supp F , we may assume [k]|η| ∼ 1. Thus,

since R < |a|/4, we have

|η||x |2∞ ∼ |η||x |2 � |η||a|2 ≥ |η|[k]2
γ 2 ∼ [k]

γ 2 .

Choosing γ > 0 small enough absorbs all constants, so that |η||x |2∞ ≥ 2[k]. Thus, together
with Lemma 3.3, we obtain

‖(Hη
k )1/2‖

L p′ (B| · |
R (a))

�
∥∥|η|d1/4 exp(−c|η|| · |2)∥∥

L p′ (B| · |
R (a))

≤ |η|d1/4 exp(−c̃|η||a|2)|B| · |
R (a)|1/p′

.

Recall that we have assumed |a| > 1, whence

|η|d1/4|B| · |
R (a)|1/p′ � (|η||a|2)d1/4.

Moreover, since [k]|η| ∼ 1 and [k] < γ |a|, we have |η||a| � 1/γ . Hence

‖(Hη
k )1/2‖L p′ (Br (a))

�N (|η||a|2)−N �N ,γ |a|−N (3.14)

for any N ∈ N. Gathering the estimates (3.12), (3.13), (3.14) yields

βk,η �N ,γ [k]d1/2|a|−N . (3.15)

Furthermore, recall that Minkowski’s integral inequality and the Stein–Tomas restriction
estimate gave us (3.9), which yields in particular

‖‖gη
k ‖L p(Rd1 )‖L2(R

d2
η )

� ‖F‖2‖ f ‖p. (3.16)

Altogether, (3.11), (3.15) and (3.16) provide

‖Pη
k g

η
k ‖L2(Rd1×R

d2
η )

≤ ∥∥βk,η‖gη
k ‖L p(Rd1 )

∥∥
L2(R

d2
η )

�N ,γ [k]d1/2|a|−N‖F‖2‖ f ‖p.

Finally, by choosing N ∈ N large enough, we obtain

∑

[k]<γ |a|
‖Pη

k g
η
k ‖2L2(Rd1×R

d2
η )

�N ,γ

∑

[k]<γ |a|
[k]d1 |a|−2N‖F‖22‖ f ‖2p

�γ |a|−2d2(1/p−1/2)‖F‖22‖ f ‖2p.
This finishes the proof. ��
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4 Proofs of Theorem 1.1 and Theorem 1.2

Let again � denote the Carnot–Carathéodory distance associated to the Grushin operator L ,
let d = d1 + d2 be the topological dimension, and Q = d1 + 2d2 be the homogeneous
dimension of the metric measure space (Rd , �, | · |). Moreover, let pd1,d2 be defined as in
(1.1). Given any bounded Borel function G : R → C, let

G( j) := (Ĝχ j )
∨ for j ∈ Z,

where χ j is defined by (1.2).
We will use the following result of [6, Proposition I.22], which we record here in a slightly

modified version, see the remark below. The proof of the result in [6] relies on standard
Calderón-Zygmund theory arguments.

Proposition 4.1 Let L be a non-negative self-adjoint operator on a metric measure space
(X , d, μ) of homogeneous type with homogeneous dimension Q. Let 1 ≤ p0 < p < 2.
Suppose that L satisfies the following properties:

(1) L satisfies the finite propagation speed property.
(2) For all t > 0 and all bounded Borel functions F : R → C supported in [0, 1],

‖F(t
√
L)χBR‖p0→2 ≤ Cp0

( (R/t)Q

μ(BR)

)1/p0−1/2‖F‖∞ (4.1)

for all balls BR ⊆ X of radius R > t .

Then for any s > 1/2and every boundedBorel function F : R → C satisfying‖F‖sloc,s < ∞
and

‖(Fχi )
( j)(

√
L)‖p→p ≤ α(i + j)‖F‖sloc,s for all i, j ∈ Z, (4.2)

with
∑

ι≥1 ια(ι) ≤ Cp,s , the operator F(
√
L) is bounded on L p, and

‖F(
√
L)‖p→p ≤ Cp,s‖F‖sloc,s . (4.3)

Remark 4.2 Proposition I.22 of [6] requires the condition (Ep0,2) in place of the Stein–Tomas
restriction type condition (4.1), which is however an equivalent property by Proposition I.3
of the same paper. The additionally required condition (I.3.12) in [6] is automatically fulfilled
by Theorem I.5. Furthermore, in [6] it is only stated that the operator F(

√
L) is of weak type

(p, p), but L p-boundedness can easily be recovered via interpolation,while the estimate (4.3)
follows by the closed graph theorem. The assumption s > 1/2 in Proposition 4.1 ensures
that ‖F |(0,∞)‖∞ � ‖F‖sloc,s .

With Proposition 4.1 at hand, the proofs of Theorem 1.1 and Theorem 1.2 boil down to
proving the following statement.

Proposition 4.3 Let 1 ≤ p ≤ pd1,d2 and G : R → C be an even bounded Borel function
supported in [−2,−1/2] ∪ [1/2, 2] such that G ∈ L2

s (R) for some s > d(1/p − 1/2). Then
there exists ε > 0 such that

‖G(ι)(
√
L)‖p→p ≤ Cp,s2

−ει‖G(ι)‖L2
s

for all ι ≥ 0.

Before we prove Proposition 4.3, we briefly show how Theorem 1.1 and Theorem 1.2
follow. The Bochner–Riesz summability of Theorem 1.2 (for p > 1) might be seen as a
consequence of Theorem 1.1, but it is however a direct consequence of Proposition 4.3,
without any Calderón–Zygmund theory involved.
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Proof of Theorem 1.2 Let G(λ) := (1 − λ2)δ+. As in Proposition 2.1 (4), define the dilations
δt via δt (x, y) := (t x, t2y) for t > 0 and (x, y) ∈ R

d1 × R
d2 . Since L is homogenous with

respect to δt , we have

G(
√
L)( f ◦ δt ) = (G(t

√
L) f ) ◦ δt .

Hence

‖(1 − t2L)δ+‖p→p = ‖(1 − L)δ+‖p→p for all t > 0.

Thus we may assume t = 1. Choose s > 0 such that d(1/p − 1/2) < s < δ + 1/2. Let Jα
be the Bessel function of the first kind of order α > −1/2, i.e.,

Jα(r) = (r/2)α

�(α + 1/2)π1/2

∫ 1

−1
eirλ(1 − λ2)α−1/2 dλ, r > 0.

Since |Jα(r)| � r−1/2 (see Lemma 3.11 in Chapter IV of [31] for instance),

|Ĝ(ξ)| ∼ |ξ |−δ−1/2|Jδ+1/2(|ξ |)| � |ξ |−δ−1 for ξ ∈ R\{0}.
Hence |ξ s Ĝ(ξ)| � |ξ |s−δ−1 and therefore G ∈ L2

s (R) since s − δ − 1 < −1/2. We may
decompose G = Gψ + G(1 − ψ) where ψ : R → C is a bump function supported in
[−3/4, 3/4] with ψ(λ) = 1 for |λ| ≤ 1/2. Then Gψ is a bump function that may be treated
for instance by the Mikhlin–Hörmander type result of [19, Theorem 1]. Moreover, applying
Proposition 4.3 for G(1 − ψ), we obtain

‖(G(1 − ψ))(ι)(
√
L)‖p→p � 2−ει‖G‖L2

s (R) for ι ≥ 0.

Furthermore,
∑

ι<0(G(1 − ψ))(ι) = (G(1 − ψ)) ∗ (
∑

ι<0 χι)
∨ is a Schwartz function that

may again be treated by Theorem 1 of [19]. Taking the sum over all ι ≥ 0 finishes the proof.
��

Proof of Theorem 1.1 Since ‖F‖sloc,s ∼ ‖F̃‖sloc,s where F(λ) = F̃(
√

λ) for λ ≥ 0, we may
replace F(L) by F(

√
L) in the proof. Moreover, we may assume without loss of generality

that F is an even function since L is a positive operator. To show L p-boundedness of F(
√
L),

we verify the assumptions of Proposition 4.1. Note that s > 1/2 since p ≤ pd1,d2 . The
required condition (4.1) is a consequence of (3.4) and (3.5). Indeed, in our setting, since
|BR(a, b)| ∼ Rd max{R, |a|}d2 by Proposition 2.1 (2), the first factor of the right-hand side
of (4.1) is given by

(
(R/t)Q

|BR(a, b)|
)1/p0−1/2

∼ t−Q(1/p0−1/2) if R ≥ |a|/4,

and, since R > t ,

(
(R/t)Q

|BR(a, b)|
)1/p0−1/2

∼ (|a|−d2 t−d(R/t)d2)1/p0−1/2

≥ (|a|d2 td)−(1/p0−1/2) if R < |a|/4.
Let δt be again the dilation from Proposition 2.1 (4). Then

F(
√
L)( f ◦ δt ) = (F(t

√
L) f ) ◦ δt . (4.4)
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Let t > 0 and F be supported in [1/2, 2]. Since � is homogeneous with respect to δt by
Proposition 2.1 (4), (3.5) yields for R < |a|/4

‖F(t
√
L)(χB�

R(a,b) f )‖2 = t Q/2‖F(
√
L)(χB�

R/t (a/t,b/t2)( f ◦ δt ))‖2
� t Q/2(|a|/t)−d2(1/p0−1/2)‖F‖2‖ f ◦ δt‖p0

= (td |a|d2)−(1/p0−1/2)‖F‖2‖ f ‖p0 . (4.5)

Given a bounded Borel function F : R → C supported in [0, 1], we decompose F as

F =
∑

i≤0

Fχi .

Applying (4.5) for t̃ = t/2i and F̃ = F(2i · )χ and using ‖F̃‖2 � ‖F‖∞, we obtain

‖F(t
√
L) f ‖2 ≤

∑

i≤0

‖(Fχi )(t
√
L) f ‖2

�
∑

i≤0

((t/2i )d |a|d2)−(1/p0−1/2)‖F‖∞‖ f ‖p0

∼ (td |a|d2)−(1/p0−1/2)‖F‖∞‖ f ‖p0 .

The computation for the case R ≥ |a|/4 is similar. This establishes condition (4.1).
Now we verify (4.2). For i ∈ Z, let Fi := Fχi . Given i, j ∈ Z, let ι := i + j and

G(λ) := F(2iλ)χ(λ), λ ∈ R,

where χ is given by (1.2). Then G is an even function, and

(Fi )
( j)(λ) = (F̂iχ j )

∨(λ) = (2i Ĝ(2i ·)χ j )
∨(λ)

= (Ĝχι)
∨(2−iλ) = G(ι)(2−iλ).

Moreover, by the homogeneity (4.4),

‖G(ι)(2−i
√
L)‖p→p = ‖G(ι)(

√
L)‖p→p.

Hence, for ι ≥ 0, Proposition 4.3 provides

‖(Fχi )
( j)(

√
L)‖p→p = ‖G(ι)(

√
L)‖p→p

� 2−ει‖G(ι)‖L2
s

� 2−ει‖F‖sloc,s .
The case ι < 0 will be treated by the Mikhlin–Hörmander type result of [19]. Suppose
ι < 0. Let ψ := ∑

i≤2 χi . Then ψ is supported in [−8, 8]. We decompose G(ι) as G(ι) =
G(ι)ψ + G(ι)(1 − ψ). Since G(ι) = G ∗ χ̌ι, suppG ⊆ [−2, 2] and χ ∈ S(R), we have

∣∣∣
( d

dλ

)α

G(ι)(λ)

∣∣∣ =
∣∣∣
( d

dλ

)α
∫ 2

−2
2ιG(τ )χ̌(2ι(λ − τ)) dτ

∣∣∣

�N 2ι(α+1)
∫ 2

−2

|G(τ )|
(1 + 2ι|λ − τ |)N dτ, α ∈ N. (4.6)

Choosing N := 0 in (4.6) and using 2ι(α+1) ≤ 1, we obtain

‖G(ι)ψ‖sloc,�d/2� �ψ ‖G‖2 � ‖F‖sloc,s . (4.7)
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On the other hand, choosing N := α + 1 in (4.6) yields in particular
∣∣∣
( d

dλ

)α

G(ι)(λ)

∣∣∣ � |λ|−α‖G‖2 for |λ| ≥ 4.

Since all derivatives of 1 − ψ are Schwartz functions, Leibniz rule yields

‖G(ι)(1 − ψ)‖sloc,�d/2� �ψ ‖G‖2 � ‖F‖sloc,s . (4.8)

Hence applying Theorem 1 of [19] provides

‖(Fi )( j)(
√
L)‖p→p = ‖G(ι)(2−i

√
L)‖p→p

= ‖G(ι)(
√
L)‖p→p � ‖F‖sloc,s .

This establishes (4.2). Hence we may apply Proposition 4.1. ��
The rest of this section is devoted to the proof of Proposition 4.3. The approach of our proof

is essentially the same as in the proofs of Lemma 4.1 and Theorem 4.2 in [5]. The new feature
is the decomposition into eigenvalues of the rescaled Hermite operator Lη via the truncation
along the spectrum of T afforded by the operators χ�(L/T ). This truncation corresponds to
a subtler analysis of the sub-Riemannian geometry regarding the finite propagation speed
property. A central ingredient of this analysis is the following weighted Plancherel estimate
from [19, Lemma 11], which we can fortunately use out of the box.

Lemma 4.4 Let H : R → C be a bounded Borel function supported in [1/8, 8], and, for
� ∈ N, let H� : R × R → C be defined by

H�(λ, r) = H(
√

λ)χ�(λ/r) for λ ≥ 0, r �= 0

and H�(λ, r) = 0 else. Then, for all N ∈ N and almost all (a, b) ∈ R
d1 × R

d2 ,
∫

Rd

∣∣|y − b|N KH�(L,T )((x, y), (a, b))
∣∣2 d(x, y) ≤ Cχ,N2

�(2N−d2)‖H‖2
L2
N
,

where KH�(L,T ) denotes the integral kernel of the operator H�(L, T ).

Proof of Proposition 4.3 Let ι ∈ N and R := 2ι. We proceed in several steps.
(1) Reduction to compactly supported functions. Let f ∈ D(Rd). We will first show

that we may restrict to functions supported in balls of radius R with respect to the Carnot–
Carathéodory distance �. Recall that � induces the Euclidean topology onRd , which implies
in particular that the metric space (Rd , �) is separable. Since the metric measure space
(Rd , �, | · |) is a space of homogeneous type, we may thus choose a decomposition into
disjoint sets Bn ⊆ B�

R(an, bn), n ∈ N, such that for every λ ≥ 1, the number of overlapping
dilated balls B�

λR(an, bn) may be bounded by a constant C(λ), which is independent of ι. We
decompose f as

f =
∞∑

n=0

fn where fn := f χBn .

Since G is even, so is Ĝ. As χι is even as well, the Fourier inversion formula provides

G(ι)(
√
L) fn = 1

2π

∫

2ι−1≤|τ |≤2ι+1
χι(τ )Ĝ(τ ) cos(τ

√
L) fn dτ.
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By Proposition 2.1 (5), L satisfies the finite propagation speed property, whenceG(ι)(
√
L) fn

is supported in B�

3R(an, bn) by the formula above. Since the balls B�

3R(an, bn) have only a
bounded overlap, we obtain

‖G(ι)(
√
L) fn‖p

p �
∞∑

n=0

‖G(ι)(
√
L) fn‖p

p.

Thus, since the functions fn have disjoint support, it suffices to show

‖G(ι)(
√
L) fn‖p � 2−ει‖G(ι)‖L2

s
‖ fn‖p, (4.9)

with a constant independent of n ∈ N.
(2) Localizing the multiplier.Next we show that only the part of the multiplierG(ι) located

at |λ| ∼ 1 is relevant. Let ψ := ∑
|i |≤2 χi . Then ψ is supported in {λ ∈ R : 1/8 ≤ |λ| ≤ 8},

while 1 − ψ is supported in {λ ∈ R : |λ| /∈ (1/4, 4)}. We decompose G(ι) as G(ι) =
G(ι)ψ +G(ι)(1− ψ). The second part of this decomposition can be treated by the Mikhlin–
Hörmander type result of [19]. As in (4.6), we observe

∣∣∣
( d

dλ

)α

G(ι)(λ)

∣∣∣ �N 2ι(α+1)
∫ 2

−2

|G(τ )|
(1 + 2ι|λ − τ |)N dτ, α ∈ N. (4.10)

Recall that G is supported in [−2,−1/2] ∪ [1/2, 2]. Thus, choosing N := α + 2 in (4.10),
we obtain

∣∣∣
( d

dλ

)α

G(ι)(λ)

∣∣∣ � 2−ι min{|λ|−α, 1}‖G‖2 whenever |λ| /∈ [1/4, 4].

Similar as in (4.7) and (4.8), we obtain

‖G(ι)(1 − ψ)‖sloc,�d/2� �ψ 2−ι‖G‖2.
Hence applying Theorem 1 of [19] provides

‖(G(ι)(1 − ψ))(
√
L)‖p→p � 2−ι‖G‖2.

Thus, in place of (4.9), it suffices to show

‖χB�
3R(an ,bn)(G

(ι)ψ)(
√
L) fn‖p � 2−ει‖G(ι)‖L2

s
‖ fn‖p. (4.11)

To that end, we distinguish the cases |an | > 4R and |an | ≤ 4R.
(3) The elliptic region. Suppose |an | > 4R. Then, by Proposition 2.1 (2),

|B�

3R(an, bn)| ∼ Rd max{R, |an |}d2 = Rd |an |d2 .
Let 2 ≤ q ≤ ∞ such that 1/q = 1/p − 1/2. Applying Hölder’s inequality together with
the restriction type estimate (3.5) for the multiplier G(ι)ψ |[0,∞) (recall that L is a positive
operator) yields

‖χB�
3R(an ,bn)(G

(ι)ψ)(
√
L) fn‖p � (Rd |an |d2)1/q‖(G(ι)ψ)(

√
L) fn‖2

� 2ιd/q‖G(ι)ψ‖2‖ fn‖p

� 2−ει‖G(ι)‖L2
s
‖ fn‖p

if we choose 0 < ε < s − d/q . This shows (4.11) in the case |an | > 4R.
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(4) The non-elliptic region: Truncation along the spectrum of T . Suppose |an | ≤ 4R. Let
G(ι)

� : R × R → C be given by

G(ι)
� (λ, r) = (G(ι)ψ)(

√
λ)χ�(λ/r) for λ ≥ 0, r �= 0

and G(ι)
� (λ, r) = 0 else. We decompose the function on the left-hand side of (4.11) as

χB�
3R(an ,bn)(G

(ι)ψ)(
√
L) fn

= χB�
3R(an ,bn)

( ι∑

�=0

+
∞∑

�=ι+1

)
G(ι)

� (L, T ) fn =: gn,≤ι + gn,>ι.

The second summand gn,>ι can be directly treated by Theorem 3.4. Indeed, Proposition 2.1
(2), Hölder’s inequality and the restriction type estimate (3.4) imply

‖gn,>ι‖p � RQ/q‖gn,>ι‖2
� 2ι(Q−d2)/q‖G(ι)ψ‖2‖ fn‖p

� 2−ει‖G(ι)‖L2
s
‖ fn‖p

if we choose 0 < ε < s − d/q . Hence we are done once we have shown

‖gn,≤ι‖p � 2−ει‖G(ι)‖L2
s
‖ fn‖p. (4.12)

(5) (Almost) finite propagation speed on Euclidean scales in the non-elliptic region. The
key idea is as follows: Since T = (−�y)

1/2, we have

(G(ι)ψ)(
√
L)χ{2k+d1}(L/T ) = Hι

([k]√−�y
)
χ{2k+d1}(L/T ),

where Hι(λ) := (G(ι)ψ)
(√

λ
)
. Thus one might expect that the operator G(ι)

� (L, T ) behaves
roughly like Hι(2�

√−�y) regarding the finite propagation property. Since |an | ≤ 4R, Propo-
sition 2.1 (3) yields

B�

R(an, bn) ⊆ B| · |
R (an) × B| · |

CR2(bn).

Hence, for every 0 ≤ � ≤ ι, we find a decomposition of Bn ⊆ B�

R(an, bn) such that

Bn =
Mn,�⋃

m=1

B(�)
n,m,

where B(�)
n,m ⊆ B| · |

R (an) × B| · |
CR�

(b(�)
n,m) with R� := 2�R are disjoint subsets, and

|b(�)
n,m − b(�)

n,m′ | > R�/2 for m �= m′.

The number of subsets in this decomposition is bounded by

Mn,� � (R2/R�)
d2 = 2(ι−�)d2 . (4.13)

Moreover, given γ > 0, the number Nγ of overlapping balls

B̃(�)
n,m := B| · |

3R (an) × B| · |
2γ ι+1CR�

(b(�)
n,m), 1 ≤ m ≤ Mn,�

can be bounded by Nγ �ι 1, where

A �ι B
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means A ≤ 2C(p,d1,d2)ιγ B for some constant C(p, d1, d2) > 0 depending only on the
parameters p, d1, d2. (The parameter γ > 0 is necessary for having rapid decay for the
negligible part of the propagation, see (4.19). This trick has also been used in a similar
fashion in [25].) We decompose fn as

fn =
Mn,�∑

m=1

f (�)
n,m where f (�)

n,m := fnχB(�)
n,m

.

In the next step, we show that the function

g(�)
n,m := χB�

3R(an ,bn)G
(ι)
� (L, T ) f (�)

n,m

is essentially supported in the ball B̃(�)
n,m . Let χ

(�)
n,m denote the indicator function of B̃(�)

n,m . We
decompose gn,≤ι as

gn,≤ι =
ι∑

�=0

Mn,�∑

m=1

g̃(�)
n,m +

ι∑

�=0

Mn,�∑

m=1

(1 − χ(�)
n,m)g(�)

n,m,

where g̃(�)
n,m := χ

(�)
n,mg

(�)
n,m . The first summand represents the essential parts of the propagation,

while the second one should be seen as an error term.
For the first summand, we observe that Hölder’s inequality and the bounded overlapping

property of the balls B̃(�)
n,m imply

∥∥∥∥
ι∑

�=0

Mn,�∑

m=1

g̃(�)
n,m

∥∥∥∥
p

p
≤ ((ι + 1)Nγ )p−1

ι∑

�=0

Mn,�∑

m=1

‖g̃(�)
n,m‖p

p. (4.14)

Using Hölder’s inequality together with (3.3) yields

‖g̃(�)
n,m‖p �ι (Rd1 Rd2

� )1/q‖g(�)
n,m‖2

= 2ιd/q+�d2/q‖g(�)
n,m‖2

� 2ιd/q‖G(ι)‖2‖ f (�)
n,m‖p

∼ 2ι(d/q−s)‖G(ι)‖L2
s
‖ f (�)

n,m‖p. (4.15)

By (4.14) and (4.15), we obtain

∥∥∥∥
ι∑

�=0

Mn,�∑

m=1

g̃(�)
n,m

∥∥∥∥
p

p
� 2−ει‖G(ι)‖p

L2
s
‖ fn‖p

p

for some ε > 0 provided we choose γ > 0 small enough before. As an upshot, to verify
(4.12) it remains to show

∥∥∥∥
ι∑

�=0

Mn,�∑

m=1

(1 − χ(�)
n,m)g(�)

n,m

∥∥∥∥
p

� 2−ει‖G(ι)‖L2
s
‖ fn‖p. (4.16)

(6) The negligible part of the propagation. For showing (4.16), we interpolate between L1

and L2 via the Riesz–Thorin interpolation theorem. The L2-estimate is allowed to be quite
rough, since the rapid decay in terms of 2ι derives from the L1-estimate. For the L2-estimate,
we employ the Sobolev embedding

‖G(ι)‖∞ � ‖G(ι)‖L2
1/2+δ

∼ 2ι(1/2+δ)‖G(ι)‖L2 , δ > 0,
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which in conjunction with Hölder’s inequality and (4.13) provides

∥∥∥∥
ι∑

�=0

Mn,�∑

m=1

(1 − χ(�)
n,m)g(�)

n,m

∥∥∥∥
2

≤ ‖G(ι)ψ‖∞
ι∑

�=0

Mn,�∑

m=1

‖ f (�)
n,m‖2

≤ ‖G(ι)ψ‖∞(ι + 1)2ιd2/2‖ fn‖2
� 2ι(1+d2/2)‖G(ι)‖2‖ fn‖2. (4.17)

The L1-estimate is derived from an L∞ integral kernel estimate. Let K(ι)
� denote the integral

kernel of G(ι)
� (L, T ). Then

G(ι)
� (L, T ) f (�)

n,m(x, y) =
∫

Rd
K(ι)

� ((x, y), (a, b)) f (�)
n,m(a, b) d(a, b).

For b ∈ R
d2 , define the set

B(b)
n := {(x, y) ∈ B�

3R(an, bn) : |y − b| ≥ 2γ ιCR�}.
Note that (x, y) ∈ supp((1 − χ

(�)
n,m)χB�

3R(an ,bn)
) and (a, b) ∈ supp f (�)

n,m imply

|y − b(�)
n,m | ≥ 2γ ι+1CR� and |b − b(�)

n,m | < CR�,

and thus in particular (x, y) ∈ B(b)
n . Hence

∥∥∥∥
ι∑

�=0

Mn,�∑

m=1

(1 − χ(�)
n,m)g(�)

n,m

∥∥∥∥
1

≤
∫

Rd

ι∑

�=0

Mn,�∑

m=1

(1 − χ(�)
n,m(x, y))χB�

3R(an ,bn)(x, y)

×
∫

Rd
|K(ι)

� ((x, y), (a, b)) f (�)
n,m(a, b)| d(a, b) d(x, y)

≤
∫

B�
R(an ,bn)

∫

B(b)
n

ι∑

�=0

Mn,�∑

m=1

|K(ι)
� ((x, y), (a, b)) f (�)

n,m(a, b)| d(x, y) d(a, b)

=
∫

B�
R(an ,bn)

κγ (a, b)| fn(a, b)| d(a, b), (4.18)

where

κγ (a, b) :=
ι∑

�=0

∫

B(b)
n

|K(ι)
� ((x, y), (a, b))| d(x, y).

Given N ∈ N, the Cauchy–Schwarz inequality yields

κγ (a, b) �
ι∑

�=0

(2γ ιR�)
−N

∫

B�
3R(an ,bn)

∣∣|y − b|NK(ι)
� ((x, y), (a, b))

∣∣ d(x, y)

≤
ι∑

�=0

(2γ ιR�)
−N |B�

3R(an, bn)|1/2
( ∫

Rd

∣∣|y − b|NK(ι)
� ((x, y), (a, b))

∣∣2 d(x, y)

)1/2

.
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Recall that R� = 2ι+� and R = 2ι, and |an | ≤ 4R. By Proposition 2.1 (2), we have

|B�

3R(an, bn)| ∼ RQ = 2ιQ .

Now, applying Lemma 4.4 for H = G(ι)ψ |[0,∞), and using the fact

2−ιN‖G(ι)ψ |[0,∞)‖L2
N

�ψ ‖G(ι)‖2,
we get

κγ (a, b) �
ι∑

�=0

2−(γ ι+ι+�)N2ιQ/22�(N−d2/2)‖G(ι)ψ |[0,∞)‖L2
N

� 2−γ ιN2ιQ/2‖G(ι)‖2.
Hence, plugging this estimate into (4.18), we obtain

∥∥∥∥
ι∑

�=0

Mn,�∑

m=1

(1 − χ(�)
n,m)g(�)

n,m

∥∥∥∥
1

� 2−γ ιN2ιQ/2‖G(ι)‖2‖ fn‖1. (4.19)

Via (4.17) and (4.19), the Riesz–Thorin interpolation theorem provides

∥∥∥∥
ι∑

�=0

Mn,�∑

m=1

(1 − χ(�)
n,m)g(�)

n,m

∥∥∥∥
p

� (2−γ ιN2ιQ/2)1−θ (2ι(1+d2/2))θ‖G(ι)‖2‖ fn‖p,

where θ := 2(1 − 1/p) < 1. Choosing N ∈ N large enough yields (4.16), whence we are
done with the proof. ��
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