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Abstract

The Geometric Shafarevich Conjecture and the Theorem of de Franchis state the finiteness
of the number of certain holomorphic objects on closed or punctured Riemann surfaces.
The analog of these kind of theorems for Riemann surfaces of second kind is an estimate
of the number of irreducible holomorphic objects up to homotopy (or isotopy, respectively).
This analog can be interpreted as a quantitatve statement on the limitation for Gromov’s
Oka principle. For any finite open Riemann surface X (maybe, of second kind) we give an
effective upper bound for the number of irreducible holomorphic mappings up to homotopy
from X to the twice punctured complex plane, and an effective upper bound for the number of
irreducible holomorphic torus bundles up to isotopy on such a Riemann surface. The bound
depends on a conformal invariant of the Riemann surface. If X, is the o-neighbourhood
of a skeleton of an open Riemann surface with finitely generated fundamental group, then
the number of irreducible holomorphic mappings up to homotopy from X, to the twice
punctured complex plane grows exponentially in é
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1 Introduction and statements of results

It seems that the oldest finiteness theorem for mappings between complex manifolds is the
following theorem, which was published by de Franchis [5] in 1913.

Theorem A (de Franchis) For closed connected Riemann surfaces X and Y with Y of genus
at least 2 there are at most finitely many non-constant holomorphic mappings from X to Y.

There is a more comprehensive Theorem in this spirit.
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Theorem B (de Franchis-Severi) For a closed connected Riemann surface X there are (up to
isomorphism) only finitely many non-constant holomorphic mappings f : X — Y where Y
ranges over all closed Riemann surfaces of genus at least 2.

A finiteness theorem which became more famous because of its relation to number theory
was conjectured by Shafarevich [27].

Theorem C (Geometric Shafarevich conjecture) For a given compact or punctured Riemann
surface X and given non-negative numbers g and m such that 2g — 2 + m > 0 there are
only finitely many locally holomorphically non-trivial holomorphic fiber bundles over X with

fiber of type (g, m).

A connected closed Riemann surface (or a smooth connected closed surface) is called
of type (g, m), if it has genus g and is equipped with m distinguished points. Recall that
a closed Riemann surface with a finite number of points removed is called a punctured
Riemann surface. The removed points are called punctures. Sometimes it is convenient to
associate a punctured Riemann surface to a Riemann surface of type (g, m) by removing the
distinguished points. A Riemann surface is called finite if its fundamental group is finitely
generated, and open if no connected component is compact. A finite connected Riemann
surface is called of first kind, if it is a closed or a punctured Riemann surface, otherwise it is
called of second kind.

Each finite connected open Riemann surface X is conformally equivalent to a domain
(denoted again by X) on a closed Riemann surface X¢ such that each connected component
of the complement X\ X is either a point or a closed topological disc with smooth boundary
[29]. The connected components of the complement will be called holes. A finite Riemann
surface X is of first kind, if and only if all connected components of X\ X are points. We
will say that a connected finite open Riemann surface has only thick ends if all connected
components of X\ X are closed topological discs.

Each finite Riemann surface whose universal covering is equal to the upper half-plane
Cy (a finite hyperbolic Riemann surface for short) is conformally equivalent to the quotient
of C4 by a Fuchsian group. The Riemann surface is of first kind if and only if the Fuchsian
group is of first kind [22, II, Theorem 3.2]. We will not make use of Fuchsian groups here.

Theorem C was conjectured by Shafarevich [27] in the case of compact base and fibers
of type (g, 0). It was proved by Parshin [26] in the case of compact base and fibers of type
(9,0), g > 2, and by Arakelov [2] for punctured Riemann surfaces as base and fibers of
type (g, 0). Imayoshi and Shiga [15] gave a proof of the quoted version using Teichmiiller
theory.

The statement of Theorem C “almost” contains the so called Finiteness Theorem of Sec-
tions which is also called the Geometric Mordell conjecture (see [24]), giving an important
conceptional connection between geometry and number theory. For more details we refer to
the surveys by McMullen [24] and Mazur [23].

Theorem A is a consequence of Theorem C, and Theorem A has analogs for the source
X and the target Y being punctured Riemann surfaces. Indeed, we may associate to any
holomorphic mapping f : X — Y of Theorem A the bundle over X with fiber over x € X
equal to Y with distinguished point { f (x)}. Thus, the fibers are of type (g, 1). A holomorphic
self-isomorphism of a locally holomorphically non-trivial (g, 1)-bundle may lead to a new
holomorphic mapping from X to Y, but there are only finitely many different holomorphic
self-isomorphisms.

We will consider here analogs of Theorems A and C for the case when the base X is a
Riemann surface of second kind. Notice that finite hyperbolic Riemann surfaces of second
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kind are interesting from the point of view of spectral theory of the Laplace operator with
respect to the hyperbolic metric (see also [3]). There are interesting relations to scattering
theory and (the Hausdoff dimension of) the limit set of the Fuchsian group defining X.

The Theorems A and C do not hold literally if the base X is of second kind. If the
base is a Riemann surface of second kind the problem to be considered is the finiteness
of the number of irreducible isotopy classes (homotopy classes, respectively) containing
holomorphic objects. In case the base is a punctured Riemann surface this is equivalent to
the finiteness of the number of holomorphic objects. For more detail see Sects. 3 and 4.

We will prove finiteness theorems with effective estimates for Riemann surfaces of second
kind. The estimates depend on a conformal invariant of the base manifold. To define the
invariant we recall Ahlfors’ definition of extremal length (see [1]). For an annulus A = {0 <
r < |z] < R < oo} (and for any open set that is conformally equivalent to A) the extremal

length equals 102;5 .Foranopenrectangle R ={z=x+iy:0<x <b,0<y<a}in

the plane with sides parallel to the axes, and with horizontal side length b and vertical side
length a the extremal length equals A(R) = %. For a conformal mapping w : R — U of
the rectangle R onto a domain U C C the image U is called a curvilinear rectangle, if @
extends to a continuous mapping on the closure R, and the restriction to each (closed) side of
R is a homeomorphism onto its image. The images of the vertical (horizontal, respectively)
sides of R are called the vertical (horizontal, respectively) curvilinear sides of the curvilinear
rectangle w (R). The extremal length of the curvilinear rectangle U equals the extremal length
of R. (See [1]).

Let X be a connected open Riemann surface of genus g > 0 with m + 1 holes, m > 0,
equipped with a base point gg. The fundamental group 71 (X, qo) of X is a free group in
2g + m generators. We describe now the conformal invariant of the Riemann surface X that
will appear in the mentioned estimate. We take a bouquet of non-contractible circles S in
X with base point gg, such that gq is the only common point of any pair of circles in S.
Moreover, S is the union of simple closed oriented curves «;, B;, j = 1,..., g, and yg,
k=1,..., m', with base point go with the following property. Labeling the rays of the loops
emerging from the base point gg by o, B; v; ,and the incoming rays by (x.JF, ﬁj.” y J.+, we
require that when moving in counterclockwise direction along a small circle around gy we
meet the rays in the order

- 5= 7+ gt -+
...,aj,ﬂj,ozj,ﬂj,...,yk,yk,....

(See Fig. 1.) We call such a bouquet of circles a standard bouquet of circles contained in
X. If the collection £ of elements of the fundamental group 71 (X, go) represented by the
collection of curves in S is a system of generators of 71 (X, go) (then in particular, g’ = g,
m’ = m), we call S a standard bouquet of circles for X, and say that the system £ is associated
to a standard bouquet of circles for X.

The existence of a standard bouquet of circles for a connected finite open Riemann surface
can be seen by looking at a fundamental polygon of the compact Riemann surface X¢ that
contains a lift of each hole of X. The pairs of curves «, B8; correspond to the handles of
X¢. Each curve y¢, k = 1, ..., m, surrounds a connected component C; of X\ X counter-
clockwise. More precisely, yx is contractible in X U Cy and divides X into two connected
components, one of them containing Cy. Moreover, moving along y; we see Cy on the left.

Vice versa, if a connected open Riemann surface X contains a standard bouquet of circles
consisting of g pairs of curves «;,8;, and m curves y; as above, that represent a system of
generators of m1(X, qo), then X has genus g and m holes. To see this we cut the compact
Riemann surface X along the or;, 8; and obtain a fundamental polygon which corresponds
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Fig. 1 A standard bouquet of circles for a connected finite open Riemann surface

to a closed Riemann surface of genus g. The y; are contractible in X¢, hence, each of them
surrounds a hole.

Label the generators £ C 1 (X, go) of a standard bouquet of circles for X as follows. The
elements ex; 10 € m1(X,q0), j = 1,..., g, are represented by «, the elements e3; ¢ €
m1(X,q0), j =1,..., g, arerepresented by B;, and the elements ez, 140 € 71 (X, q0), k =
1,...,m, of m; (X, qo) are represented by yx. A standard bouquet of circles for a connected
finite open Riemann surface is a deformation retract of X. We will fix the system of generators
& of 1 (X, go) throughout the paper.

Let X be the universal covering of X. For each element ¢y € 71(X, qo) we consider
the subgroup (ep) of 1 (X, qo) generated by eg. Let o (ep) be the covering transformation
corresponding to eg, and (o (eg)) the group generated by o (ep).

Definition 1 Denote by £;, j = 2, ..., 10, the set of primitive elements of 71 (X, go) which
can be written as product of at most j factors with each factor being either an element of £ or
an element of £~!, the set of inverses of elements of £. Define A j = A (X) as the maximum
over ey € &; of the extremal length of the annulus X /(o (e)).

The quantity A7(X) (for mappings to the twice punctured complex plane), or A1o(X) (for
(1, 1)-bundles) is the mentioned conformal invariant.

Let E be a finite subset of the Riemann sphere P! which contains at least three points. Let
X be a finite open Riemann surface with non-trivial fundamental group. A continuous map
f : X — P'\E is reducible if it is homotopic (as a mapping to P!\ E) to a mapping whose
image is contained in D\ E for an open topological disc D C P! with £\ D containing at
least two points of E. Otherwise the mapping is called irreducible.

In the following theorem we take E = {—1, 1, oo}. We will often refer to P! \{—1, 1, oo}
as the thrice punctured Riemann sphere or the twice punctured complex plane C\{—1, 1}.
Note that a continuous mapping from a Riemann surface to the twice punctured complex
plane is reducible, iff it is homotopic to a mapping with image in a once punctured disc
contained in P!\ E. (The puncture may be equal to 00.) There are countably many non-
homotopic reducible holomorphic mappings with target being the twice punctured complex
plane and source being any finite open Riemann surface with only thick ends and non-trivial
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fundamental group (see the proof of Lemma 15 in [20]). On the other hand the following
theorem holds.

Theorem 1 Foreach open connected Riemann surface X of genus g > Owithm~+1 > 1 holes
there are up to homotopy at most 3(%6247[ 2 XN284M jrreducible holomorphic mappings from

X into Y < PI\ (=1, 1, 00).

Notice that the Riemann surface X is allowed to be of second kind. If X is a torus with a
hole, A7(X) may be replaced by A3(X). If X is a planar domain, 17(X) may be replaced by
ra(X)

A holomorphic (1, 0)-bundle is also called a holomorphic torus bundle. A holomorphic
torus bundle equipped with a holomorphic section is also considered as a holomorphic (1, 1)-
bundle. The following lemma holds.

LemmaD A smooth (0, 1)-bundle admits a smooth section. A holomorphic torus bundle is
(smoothly) isotopic to a holomorphic torus bundle that admits a holomorphic section.

For a proof see [20].

Theorem 2 Let X be an open connected Riemann surface of genus g > Owithm + 1 > 1

g+m

holes. Up to isotopy there are no more than (2 x 15° x exp(367'r)»10(X)))2 irreducible

holomorphic (1, 1)-bundles over X.

For the definition of irreducible (g, m)-bundles see Sect. 4 below. Since on each finite open
Riemann surface with only thick ends and non-trivial fundamental group there are countably
many non-homotopic reducible holomorphic mappings with target being the twice punctured
complex plane, there are also countably many non-isotopic holomorphic (1, 1)-bundles over
each such Riemann surface (see Proposition 5 below).

We wish to point out that reducible (g,m)-bundles over finite open Riemann surfaces can
be decomposed into irreducible bundle components, and each reducible bundle is determined
by its bundle components up to commuting Dehn twists in the fiber over the base point. (For
details see [20].)

Notice that Caporaso proved the existence of a uniform bound for the number of objects
in Theorem C in case X is a closed Riemann surface of genus g with m punctures, and the
fibers are closed Riemann surfaces of genus g > 2. The bound depends only on the numbers
g, 9 and m. Heier gave effective uniform estimates, but the constants are huge and depend
in a complicated way on the parameters.

Theorems 1 and 2 imply effective estimates for the number of locally holomorphically non-
trivial holomorphic (1, 1)-bundles over punctured Riemann surfaces, however, the constants
depend also on the conformal type of the base. More precisely, the following corollaries hold.

Corollary 1 There are no more than 3 (%624” M XN28+m pon-constant holomorphic mappings

from a Riemann surface X of type (g, m + 1) to P'\{—1, 1, 0c0}.

Corollary 2 There are no more than (2 x 15% x eXp(36nk10(X)))2g+m locally holomorphi-

cally non-trivial holomorphic (1, 1)-bundles over a Riemann surface X of type (g, m + 1).

The following examples demonstrate the different nature of the problem in the two cases,
the case when the base is a punctured Riemann surface, and when it is a Riemann surface of
second kind.
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Example 1 There are no non-constant holomorphic mappings from a torus with one puncture
to the twice punctured complex plane. Indeed, by Picard’s Theorem each such mapping
extends to a meromorphic mapping from the closed torus to the Riemann sphere. This implies
that the preimage of the set {—1, 1, co} under the extended mapping must contain at least
three points, which is impossible.

The situation changes if X is a torus with a large enough hole. Let > 1 and o € (0, 1).
Consider the torus with a hole 7% that is obtained from C /(Z + i«Z), (with « > 1 being
a real number) by removing a closed geometric rectangle of vertical side length « — o and
horizontal side length 1 —o (i.e. we remove a closed subset that lifts to such a closed rectangle
in C). A fundamental domain for this Riemann surface is “the golden cross on the Swedish
flag” turned by % with width of the laths being o and length of the laths being 1 and «.
Proposition 1 Up to homotopy there are at most 7e3%2'n g irreducible holomorphic map-
pings from T*° to the twice punctured complex plane.

On the other hand, there are positive constants ¢, C, and oqy such that for any positive
o
numbero < ogandanya > 1 there are at least ce€ s non-homotopic holomorphic mappings
Jfrom T%° to the twice punctured complex plane.

Example 2 There are only finitely many holomorphic maps from a thrice punctured Riemann
sphere to another thrice punctured Riemann sphere. Indeed, after normalizing both, the source
and the target space, by a Mobius transformation we may assume that both are equal to
C\{—1, 1}. Each holomorphic map from C\{—1, 1} to itself extends to a meromorphic map
from the Riemann sphere to itself, which maps the set {—1, 1, oo} to itself and maps no other
point to this set. By the Riemann—Hurwitz formula the meromorphic map takes each value
exactly once. Indeed, suppose it takes each value / times for a natural number /. Then each
point in {—1, 1, oo} has ramification index /. Apply the Riemann Hurwitz formula for the
branched covering X = P! — ¥ = P! of multiplicity

XX =1-x(¥) = (ex— D).

xeY

Here e, is the ramification index at the point x. For the Euler characteristic we have x (P!) = 2,
and ) cylex—1) >3 | olex—1) =3(—1).Weobtain2 <21 —3 (I — 1) whichis
possible only if/ = 1. We saw that each non-constant holomorphic mapping from C\{—1, 1}
to itself extends to a conformal mapping from the Riemann sphere to the Riemann sphere
that maps the set {—1, 1, oo} to itself. There are only finitely may such maps, each a Mobius
transformation permuting the three points.

For Riemann surfaces of second kind the situation changes, as demonstrated in the follow-
ing proposition. The proposition does not only concern the case when the Riemann surface
equals P! with three holes. We consider an open Riemann surface X of genus g with m > 1
holes.

Proposition 2 Let X be a connected finite open hyperbolic Riemann surface, that is equipped
with a Kihler metric. Suppose S is a standard bouquet of piecewise smooth circles in X with
base point qo. We assume that qq is the only non-smooth point of the circles, and all tangent
rays to circles in S at qo divide a disc in the tangent space into equal sectors. Let Sy be the
o -neighbourhood of S (in the Kdhler metric on X).

Then there exists a constant oy > 0, and positive constants C', C”, ¢/, ¢”, depending only
on X, S and the Kdhler metric, such that for each positive o < o the number Ng\{_l’l} of
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non-homotopic irreducible holomorphic mappings from Sy to the twice punctured complex
plane satisfies the inequalities

c”

: ML < e (1)

ces <N s,

The present results may be understood as quantitative statements with regard to limitations
for Gromov’s Oka principle. Gromov [12] formulated his Oka principle as “an expression
of an optimistic expectation with regard to the validity of the h-principle for holomorphic
maps in the situation when the source manifold is Stein”. Holomorphic maps X — Y from
a complex manifold X to a complex manifold Y are said to satisfy the A-principle if each
continuous map from X to Y is homotopic to a holomorphic map. We call a target manifold
Y a Gromov—Oka manifold if the h-principle holds for holomorphic maps from any Stein
manifold to Y. Gromov [12] gave a sufficient condition on a complex manifold Y to be a
Gromov—Oka manifold.

The question of understanding Gromov—Oka manifolds received a lot of attention. It turned
out to be fruitful to strengthen the requirement on the target ¥ by combining the A-principle
for holomorphic maps with a holomorphic approximation property. Manifolds Y satisfying
the stronger requirement are called Oka manifolds. For details and an account on modern
development of Oka theory based on Oka manifolds see [10].

The twice punctured complex plane C\{—1, 1} is not a Gromov—Oka manifold. Then the
question becomes, what prevents a continuous map from a Stein manifold X to C\{—1, 1} to
be homotopic to a holomorphic map, and “how many” homotopy classes contain a holomor-
phic map? As for the first question in case the source manifold is a finite open Riemann surface
X, Proposition 4 below says that an irreducible map X — C\{—1, 1} can only be homotopic
to a holomorphic map, if the “complexity” of the monodromies of the map are compatible
with conformal invariants of the source manifold. Theorem 1 gives an upper bound related
to the second question. Propositions 1 and 2 can be interpreted as statements related to the
following question. Consider a family of Riemann surfaces Y,, o € (0, 0g), obtained by
continuously changing the conformal structure of a fixed Riemann surface. Determine the
growthrate foro — 0 of the number of irreducible holomorphic mappings X, — C\{—1, 1}
up to homotopy. In Proposition 1 the family of Riemann surfaces depends also on a second
parameter «, and the growth rate is determined in « and o.

The proof of both propositions uses solutions of a -problem. The solution in the case of
Proposition 1 uses a simple explicit formula.

The author is grateful to B.Farb who suggested to use the concept of conformal module
and extremal length for a proof of finiteness theorems, and to Berndtsson for proposing the
kernel for solving the 3-problem that arises in the proof of Proposition 1. The work on the
paper was started while the author was visiting the Max-Planck-Institute and was finished
during a stay at IHES. The author would like to thank these institutions for the support. The
author is also indebted to Fanny Dufour for drawing the figures and to an anonymous referee
whose critics helped to improve the overall quality of the paper.

2 Preliminaries on mappings, coverings, and extremal length

In this section, we will prepare the proofs of the Theorems.

The change of the base point. Let X’ be a connected smooth open surface, and let « be an
arc in X" with initial point xo and terminating point x. Change the base point xg € X along
a curve « to the point x € X. This leads to an isomorphism Is, : 71 (X, x9) — 71(X, x)
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of fundamental groups induced by the correspondence y — a~!ya for any loop y with
base point xo and the arc o with initial point xo and terminating point x. We will denote the
correspondence y — o'y« between curves also by Is,.

We call two homomorphisms ; : G; — G2, j = 1,2, from a group G to a group G»
conjugate if there is an element g’ € G, such that for each g € G the equality hy(g) =
g _lhl (g)g’ holds. For two arcs o] and ap with initial point xo and terminating point x we
have ozz_lyaz = (al_laz)_]ozl_lyal(ocl_laz). Hence, the two isomorphisms Isy, and Isg,
differ by conjugation with the element of 71 (X, x) represented by al_] a.

Free homotopic curves are related by homotopy with fixed base point and an application
of a homomorphism Is, that is defined up to conjugation. Hence, free homotopy classes
of curves can be identified with conjugacy classes of elements of the fundamental group
w1 (X, xg) of X.

For two smooth manifolds X and ) with base points xo € X and yp € ) and a continuous
mapping F : X — Y with F(xg) = yp we denote by F, : m1(X, x0) — m1(), yo) the
induced map on fundamental groups. For each element ¢y € 71 (X, xo) the image Fi(eg)
is called the monodromy along ep, and the homomorphism F is called the monodromy
homomorphism corresponding to F. The homomorphism F, determines the homotopy class
of F with fixed base point in the source and fixed value at the base point. Consider a free
homotopy F;, t € (0, 1), of homeomorphisms from X to ) such that the value F;(xg) at the
base point xg of the source space varies along a loop. Then the homomorphisms (Fp), and
(F1)« are related by conjugation with the element of the fundamental group of ) represented
by the loop.

Using deformation retractions we see that each homomorphism 2 : 71(X, x9) —
m1(Y, yo) equals F for a continuous mapping F : X — Y. Moreover, if two homomor-
phisms & : (X, x9) — m1(Y, yo0), j =0, 1, are related by conjugation, h| = e~ hye for
an element e € m1(Y, yo), then there is a free homotopy F; of mappings X — Y such that
F;(xo) changes along a loop representing e and (Fp)s« = ho, (F1)« = hy. Further, since the
fundamental group 1 (), y) with base point y is related to the fundamental group 71 (), yo)
with base point yy by an isomorphism determined up to conjugation we obtain the following
theorem (see [13, 28]).

Theorem E The free homotopy classes of continuous mappings from X to Y are in one-to-one
correspondence to the set of conjugacy classes of homomorphisms between the fundamental
groups of X and ).

Extremal length. The fundamental group i = 71 (C\{—1, 1}, 0) is canonically isomorphic
to the fundamental group 771 (C\{—1, 1}, ¢’) for an arbitrary point g’ € (—1, 1). For the arc &
defining the isomorphism we take the unique arc contained in (—1, 1) that joins 0 and ¢’. The
fundamental group 71 (C\{—1, 1}, 0) is a free group in two generators. We choose standard
generators a1 and ap, where a; is represented by a simple closed curve with base point 0
which surrounds —1 counterclockwise, and a5 is represented by a simple closed curve with
base point 0 which surrounds 1 counterclockwise. For ¢" € (—1, 1) we also denote by a; the
generator of 71 (C\{—1, 1}, ¢/) which is obtained from the respective standard generator of
71 (C\{—1, 1}, 0) by the standard isomorphism between fundamental groups with base point
on (—1, 1). More detailed, a; is the generator of 1 (C\{—1, 1}, ¢’) which is represented
by a loop with base point ¢’ that surrounds —1 counterclockwise, and a; is the generator
of w1 (C\{—1, 1}, ¢’) which is represented by a loop with base point ¢’ that surrounds 1
counterclockwise. We refer to a; and a; as to the standard generators of 71 (C\{—1, 1}, ¢’).

@ Springer



Riemann surfaces of second kind... 81

Further, the group 771 (C\{—1, 1}, 0) is canonically isomorphic to the relative fundamental

group 7r{"(C\{—1, 1}) e w1 (C\{—1, 1}, (—1, 1)) whose elements are homotopy classes of

(not necessarily closed) curves in C\{—1, 1} with end points on the interval (—1, 1). We
refer to 71{’ (C\{—1, 1}) as fundamental group with totally real horizontal boundary values
(tr-boundary values for short). For an element w € 71(C\{—1, 1}, ¢') with base point
q" € (—1, 1) we denote by wy, the element of the relative fundamental group {" (C\{—1, 1})
with totally real boundary values, corresponding to w. For more details see [17].

Each element of a free group can be written uniquely as a reduced word in the generators.
(A word is reduced if neighbouring terms are powers of different generators.) The degree (or
word length) d(w) of a reduced word w in the generators of a free group is the sum of the
absolute values of the powers of generators in the reduced word. If the word is the identity
its degree is defined to be zero. We will identify elements of a free group with reduced words
in generators of the group.

For a rectangle R let f : R — C\{—1, 1} be a mapping which admits a continuous
extension to the closure R (denoted again by f) which maps the (open) horizontal sides to
(—1, 1). We say that the mapping f represents an element w;, € w{"(C\{—1, 1}) if for each
maximal vertical line segment contained in R (i.e. R intersected with a vertical line in C) the
restriction of f to the closure of the line segment represents wy,.

The extremal length A(w;) of anelement wy, in the relative fundamental group

m{"(C\{—1, 1}) is defined as

A(wy) aef inf{L(R) : R arectangle which admits a holomorphic map to C\{—1, 1}

that represents wy, }. 2)

For an element w € 71(C\{—1, 1}, ¢’) and the associated element w,, we will also write
Ay (w) instead of A(wy,).

Any reduced word w in 71 (C\{—1, 1}, ¢’) can be uniquely decomposed into syllables.
They are defined as follows. Each term ai_" with |k;j| > 2 is a syllable, and any maximal
sequence of consecutive terms a];ii, for which |k;| = 1 and all k; have the same sign, is a
syllable (see [17, 18]). Let di be the degree of the k-th syllable from the left. (We consider
each syllable as a reduced word in the elements of the fundamental group.) Put

£ L Y logBdp), £1(w)E Y logdp), 3)

where the sum runs over the degrees of all syllables of wy,. Notice that Li(w™h = Li(w).
We define £_(Id) = £4(Id) = O for the identity Id. We need the following theorem which
is proved in [17] (see Theorem 1 there).

TheoremF If w € w1 (C\{—1, 1}, 0) is not equal to a (trivial or non-trivial) power of ay or
of ay then

1

L_(w) < A(wyr) < 300L4 (w). 4
21

Regular zero sets. We will call a subset of a smooth manifold X" a simple relatively closed
curve if it is the connected component of a regular level set of a smooth real-valued function
on X.

Let X be a connected finite open Riemann surface. Suppose the zero set L of a non-
constant smooth real valued function on X is regular. Each component of L is either a simple
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closed curve or it can be parameterized by a continuous mapping ¢ : (—oo, c0) — X. We
call a component of the latter kind a simple relatively closed arc in X'.

A relatively closed curve y in a connected finite open Riemann surface X’ is said to be
contractible to a hole of X, if the following holds. Consider A’ as domain X\ U C; on a
closed Riemann surface X“. Here the C; are the holes, each is either a closed topological
disc with smooth boundary or a point. The condition is the following. For each pair U, Uz
of open subsets of X, UC; C U; € U,, there exists a homotopy of y that fixes y N U
and moves y into U,. Taking for U small enough neighbourhoods of UC; we see that the
homotopy moves y into an annulus adjacent to one of the holes.

For each relatively compact domain X’ € X in X there is a finite cover of L N X7 by
open subsets Uy of X such that each L N Uy is connected. Each set L N Uy is contained in
a component of L. Hence, only finitely many connected components of L intersect X’. Let
Lo be a connected component of L which is a simple relatively closed arc parameterized by
Lo : R — X.Since each set Lo N Uy is connected it is the image of an interval under ¢¢. Take
real numbers 7, and t(T such that all these intervals are contained in (7, t&’ ). Then the images
€((—o0, t;)) and £((#", +00)) are contained in X'\ X, maybe, in different components. Such
parameters /£, and ZJ can be found for each relatively compact deformation retract X’ of X.
Hence for each relatively closed arc Ly C L the set of limit points L[; of £o(¢) fort — o0
is contained in a boundary component of X'. Also, the set of limit points L, of £o(¢) for
t — —oo is contained in a boundary component of X'. The boundary components may be
equal or different.

Moreover, if X’ € X is a relatively compact domain in X’ which is a deformation retract
of X, and a connected component Lo of L does not intersect X’ then Ly is contractible to
a hole of X. Indeed, X \? is the union of disjoint annuli, each of which is adjacent to a
boundary component of X, and the connected set Ly must be contained in a single annulus.

Further, denote by L’ the union of all connected components of L that are simple relatively
closed arcs. Consider those components L ; of L’ that intersect . There are finitely many
such L ;. Parameterize each L; by a mapping £; : R — X’. For each j we let [z; tj+] be a
compact interval for which

£ R\[} zj*]) C xX\X'. 3)

Let X7, X’ € X” &€ X, be a domain which is a deformation retract of X such that
£;(lr7, z]'."]) C X" for each j. Then all connected components of L' N X", that do not

contain a set £ ([tj_, t;.r]), are contractible to a hole of X”. Indeed, each such component is

contained in the union of annuli X"\ X"

Some remarks on coverings. By a covering P : )V — X we mean a continuous map P
from a topological space ) to a topological space X’ such that for each point x € X there is a
neighbourhood V (x) of x such that the mapping P maps each connected component of the
preimage of V (x) homeomorphically onto V (x). (Note that in function theory sometimes
these objects are called unlimited unramified coverings to reserve the notion “covering” for
more general objects.)

Let X be a connected finite open Riemann surface with base point gg and let P : X — X
be the universal covering map. Recall that a homeomorphism ¢ : X — X for which P op =P
is called a covering transformation (or deck transformation). The covering transformations
form a group, denoted by Deck(f( , X). For each pair of points X1, X, € X with P(x1) = P(x2)
there exists exactly one covering transformation that maps ¥ to x,. (See e.g. [9]).
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Fig.2 A commutative diagram
: Ut (X ) QO)

related to the change of the base

oint ~

Deck(X, X) Isa

m1(X,q)

Throughout the paper we will fix a base point gg € X and a base point gg € p-! (q0) C X.
The group of covering transformations of X can be identified with the fundamental group
m1(X, go) of X by the following correspondence. (See e.g. [9]).

Take a covering transformation o € Deck (X, X). Let 7o be an arc in X with initial point
0 (qo) and terminating point go. Denote by Is% (o) the element of 7 (X, qo) represented by
the loop P (7). The mapping Deck(f(, X) 30 — Is?(0) € 71 (X, qo) is a group homomor-
phism. The homomorphism Is% is injective and surjective, hence it is a group isomorphism.
The inverse (Is%)~! is obtained as follows. Represent an element e € 71 (X, go) by a loop
0. Consider the lift yo of yp to X that has terminating point go. Then (Is70)~1(eg) is the
covering transformation that maps g to the initial point of of y.

For another point § of X and the point ¢ = P(g) € X the isomorphism Is?
Deck(X X) — mi(X, q) assigns to each o € Deck(X X) the element of (X, q) that
is represented by P(7) for a curve 7 in X that joins o (§) with . Is? is related to Is% as
follows. Let & be an arc in X with initial point go and terminating point g. Put ¢ = P(g) and
a = P(a). Then for the isomorphism Is, : 71 (X, qo) — 71(X, g) the equation

Is9(0) = Isq 0 Is(0), o € Deck(X, X), (6)

holds, i.e. the diagram Fig. 2 is commutative.

Indeed, let @' denote the curve that is obtained from & by inverting the direction on &,
i.e. moving from g to go. The curve o ((&)~ 1Y has initial point o (g) and terminating pomt
o (qo). Hence, for a curve 7y in X that j joins o (go) with go, the curve o (@)~ 1 Y0 @ in X has
initial point o (¢) and terminating point g. Therefore P(o ((&)™ ) Yo @) represents Is? (o).
On the other hand

Plo@™") 7o @ =P@@ ") P(o) P@ =a 'y (7

represents Isy (eg) with eg = Is9 (). In particular, if g, € Pfl(qo) is another preimage of
the base point go under the projection P, then the associated isomorphisms from Deck (X, X)
to the fundamental group 1 (X, go) are conjugate, i.e. Iso (eg) = (e{))_lls‘?(’ (eo)e6 for each
eg € m1(X, qo). The element ¢, is represented by the projection of an arc in X with initial
point §o and terminating point ;.

Keeping fixed §o and go we will say that a point § € X and a curve & in X are compatible
if the diagram Fig. 2 is commutative, equivalently, if Eq. (6) holds. We may also start with
choosing a curve « in X with initial point g¢ and terminating point g. Then there is a point
¢ = ¢(a), such that ¢ and « are compatible. Indeed, let & be the lift of «, that has initial
point go. Denote the terminating point of & by g («), and repeat the previous arguments.
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Fig.3 A commutative diagram related to subgroups of the group of covering transformations

Let N be a subgroupf)f m1(X, qo). Denote by X(N) the quotient )?/(Iséo)_' (N). We
obtain a covering a)I’X : X — X(N) with group of covering transformations isomorphic to

N. The fundamental group of X (N) with base point (go) § def a)ﬁi (go) can be identified with
N.

If Ny and N, are subgroups of 71 (X, go) and N is a subgroup of N, (we write N1 <
N7), then there is a covering map wxf : f(/(Is‘?O)_l(Nl) — f(/(Is‘?O)_l(Nz), such that

N2 Ni _ N . . . .
wy, oWy = wyy . Moreover, the diagram Fig. 3 is commutative.

Indeed, take any point x| € X / (Is‘7°)_] (N1) and a preimage X of x| under wﬁ‘. There

exists a neighbourhood V (¥) of & in X such that V(%) N o (V (%)) = ¥ for all covering

. o . ix d i -
transformations o € Deck(X, X). Then for j = 1, 2 the mapping a)ﬁ’ T wﬁ’ | V(%)

is a homeomorphism from V (x) onto its image denoted by V;. Put x, = a)ﬁ?’x (x). The set
Vi C )?/(Isqo)*l(N‘,-) is a neighbourhood of x; for j =1, 2.

For each preimage X’ € (a)ﬁ;‘ )_1 (x1) there is a covering transformation ¢; 3 in
(Iséo)‘1 (N1) which maps a neighbourhood V (%") of X’ conformally onto the neighbourhood
V(%) of X so thaton V (X’) the equality a)z‘ S wﬁg‘ o oz z holds. Choose X € (wﬁ;1 )~ xy)
and define

N ) =N 0) L o (@l T (0) for eachy € Vi ®)

We get a correctly defined mapping from V) onto V,. Indeed, since Nj is a subgroup of Na,
the covering transformation @5 3 is contained in (Is7)~1(N,), and we get for another point

- Niy— . N Na i
% € (o)) " H(x1) the equality o™ = " o ¢z 7. Hence, for y € Vi (x1)

Ny, & Np, &'\ —1 N, % N, % -1 Ny, X Np, %\ —1
w1d2 Yo (w[dl * ) ()= (a)ldz Yo ¥z,5) 0 (wldl Yo vre) ()= w[dz Yo (wldl x) ).

(€))

Since each mapping wﬁljj ’x, j = 1,2, is a homeomorphism from V (X) onto its image, the
mapping wxf is ahomeomorphism from V (x) onto V (x2). The same holds for all preimages
of V(x2) under a)xf Hence, w%f is a covering map. The commutativity of the part of the

diagram that involves the mappings wfgl, wﬁ?, and w%f follows from Eq. (8).
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(X,q0) : (X,q0)
v, % and the equality P = wy! "%

above arguments with No = m1(X, go). The equality P = w
same way. Since

o wﬁ/jl follows by applying the
71(X,q0)
N>

The existence of w

o wfgz follows in the

P—= m1(X,q0) N> Np

oy, o wy? 0wy
_m(X,q0) Ny
= Wy, oWy ,
we have
71(X,q0) Ny mi(X.q0)
wy, owy = wy
. . de de X
We will also use the notation &V wiy and wy e a)i,'( “40) for a subgroup N of
(X, o).

Let again Ny < N, be subgroups of m(X, go). Consider the covering a)xf
X /(1s9)"Y(N) — X /(Is90)"1(Ny). Let 8 be a simple relatively closed curve in
X /(1s9)~1(N,). Then (a)xf)*l (B) is the union of simple relatively closed curves in
X /(1s7)~1(Ny) and wxf : (wxf)_l (B) — B is a covering. Indeed, we cover 8 by small
discs Uy in X /(Is?)~1(N>) such that for each k the restriction of a)%f to each connected com-
ponent of (wxf)_l (Uk) is a homeomorphism onto Uy, and Uy intersects  along a connected
set. Take any k with Uy N B # @. Consider the preimages (a)xf)_] (Uy). Restrict (a)%f) to the
intersection of each preimage (wxf)’l (Uy) with (wxf)’l (B). We obtain a homeomorphism
onto Uy N B. It follows that the map (a)j:,/f) is a covering from each connected component of
()~ (B) onto .

The extremal length of monodromies. Let as before X be a connected finite open Riemann
surface with base point go, and go a point in the universal covering X for which P(go) = qo
for the covering map P : X — X.

Recall that for an arbitrary point ¢ € X the free homotopy class of an element e of
the fundamental group 71 (X, ¢) can be identified with the conjugacy class of elements of
m1(X, q) containing e and is denoted by e. Notice that for ey € 71(X, go) and a curve o in X
with initial point gg and terminating point g the free homotopy classes of ¢g and of ¢ = Isy (ep)
coincide, i.e. € = ¢p. Consider a simple smooth relatively closed curve L in X. We will say
that a free homotopy class of curves ¢g intersects L if each representative of ¢ intersects L.
Choose an orientation of L. The intersection number of é; with the oriented curve L is the
intersection number with L of some (and, hence, of each) smooth loop representing &y that
intersects L transversally. This intersection number is the sum of the intersection numbers
over all intersection points. The intersection number at an intersection point equals +1 if the
orientation determined by the tangent vector to the curve representing ¢y followed by the
tangent vector to L is the orientation of X, and equals —1 otherwise.

Let A be an annulus equipped with an orientation (called positive orientation) of simple
closed dividing curves in A. (A relatively closed curve in a surface X is called dividing, if
X\y consists of two connected components.) A continuous mapping o : A — X is said
to represent a conjugacy class e of elements of the fundamental group 71 (X, ¢) for a point
q € X, if the composition w o y represents e for each positively oriented dividing curve y in
A.

Let A be an annulus with base point p with a chosen positive orientation of simple closed
dividing curves in A. Let @ be a continuous mapping from A to a finite Riemann surface X
with base point ¢ such that w(p) = g. We write o : (A, p) — (X, ¢). The mapping is said
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to represent the element e of the fundamental group 1 (X, ¢) if w o y represents e for some
(and hence for each) positively oriented simple closed dividing curve y in A with base point
q.

We associate to each element ey € m(X, qo) of the free group m1(X, qp) the annu-
lus X((eo)) = X,/ (Is%)~!((ep)) with base point gy = @\ (o) and the covering

d . . .

map w(e) e a)?elo()x’q‘)) : X({eg)) — X. By the commutative diagram 3 the equality
®(ep) (9(eg)) = qo holds. We choose the orientation of simple closed dividing curves in
X({eg)) = X / (Isqo)_1 ({ep)) so that for a curve y in X with terminating point g and initial
point Is% (e) the curve Yleo) LI pleo) (y) is positively oriented. The locally conformal map-
1(X,q0)
(eo)

®(eo) Viep)) = a)<eo)(a)<e">()7)) = P(y) = y, since P(y) represents ¢g.

Take a curve « in X that joins ¢o and ¢, and a point § = §(a) € X such that o
and ¢ are compatible, i.e. Is? = Isy o Is% (see Eq. (6)). Put e = Isy(ep). By Eq. (6)
(Is7) " (e) = (1s7) 7" (eo), hence, X /(Is) ™' ((e)) = X,/ (Is) "' ((e0)) = X((eo)). The
locally conformal mapping @) : X({ep)) — X takes the point g) def o) (G)tog € X.
Moreover, w) : (X({eo0)), g()) — (X, g) represents e € m1(X, q). This can be seen by
repeating the previous arguments.

Let « be an arbitrary curve in X joining go with ¢, and § € P~!(¢) be arbitrary (i.e. o
and § are not required to be compatible). Let ¢ € 71(X, ¢). Denote the projection X —
X/ IsH~1((e)) by !4, and the projection X/ IsH 1 ((e)) = X by wey - Put giey,g =
"4 (§). For any such choice we choose the orientation of simple closed dividing curves on
X /IsD)~1((e)) so that wie4 maps any curve y in X with initial point (Is?)~! ({e))(g) and
terminal point g to a positively oriented dividing curve. We will call it the standard orientation
of dividing curves in X,/ (Is7) "' ((e)). The mapping w(,) 7 : (XU~ ({e)), qie).q) —
(X, q) represents e.

Since the mapping we,) : (X({e0)), (90)(ep)) = (X, qo) represents egp , the mapping
Wey)  X({eo)) — X represents the free homotopy class €. The following simple lemma
will be useful.

ping @ 1 (X((e0)), qiey)) — (X, qo) represents eq. This follows from the equality

Lemma 1 The annulus X ({eg)) has smallest extremal length among annuli which admit a
holomorphic mapping to X, that represents the conjugacy class é.

In other words, X ({eg)) is the “thickest” annulus with the property stated in Lemma 1.

Proof Take an annulus A with a choice of positive orientation of simple closed dividing

curves. Suppose A Y, Xisa holomorphic mapping that represents €g. The annulus A is
conformally equivalent to a round annulus in the plane, hence, we may assume that A has
thefoom A = {z € C: r < |z] < R} for0 < r < R < oo and the positive orientation of
dividing curves is the counterclockwise one.

Take a positively oriented simple closed dividing curve y4 in A. Its image w o y4 under
 represents the class &y. Choose a point ¢ in y4, and put ¢ = w(g*). Then y4 represents
a generator of 71(A, ¢*) and y = w o y* represents an element e of 7{(X, q) in the
conjugacy class ¢p. Choose a curve o in X with initial point go and terminating point g,
and a point g in X so that « and q are compatible, and, hence, for e = Isy (ep) the equality
(Is90) =1 (eg) = (Is7)~' (¢) holds. Let L be the relatively closed arc {g - r : r € R} N A in
A that contains g#. After a homotopy of ¥4 with fixed base point, we may assume that its
base point g is the only point of y4 that is contained in L. The restriction w|(A\L) lifts to
a mapping @ : (A\L) — X, that extends continuously to the two strands Ly of L. (Here
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L _ contains the initial point of y4.) Let g4 be the copies of g” on the two strands L. We
choose the lift @ so that d)(qj}) = q. Since the mapping (A, M — (X, q) represents e, we
obtain & (g Ay = o(g) foro = (ISE/)_1 (e). Then for each z € L the covering transformation
o maps the point 4 € @(Ly) for which P(z4) = z to the point Z_ € »(L_) for which
P(z-) = z. Hence w lifts to a holomorphic mapping ¢ : A — X ({eg)). By Lemma 7 of [17]
A(A) = A(X({e0))). o

For each point ¢ € X and each element e € 71(X, ¢) we denote by A(e) the conformal
class of the “thickest” annulus that admits a holomorphic mapping into X that represents e.
We saw that A(A(&g)) = )L(f(/(lsqo)_l ({ep))) foreg € m1 (X, qo). By the same reasoning as
before A(A(@)) = AM(X,/(Is7)~!((e))) for each §’ € X and each element e € 1 (X, P(§")).
Hence, if ¢p and e are conjugate, then A(X /(Is%0)~1((ep))) ix(i/(lsé)—lae))) for
any go € P"'(g0) C X and any § € P~!(g). Notice that A(e~!) = A(@) for each ¢ €
m1(X,q), g € X.

3 Holomorphic mappings into the twice punctured plane

The following lemma will be crucial for the estimate of the £_-invariant of the monodromies
of holomorphic mappings from a finite open Riemann surface to C\{—1, 1}.

Lemma2 Ler f : X — C\{—1, 1} be a non-contractible holomorphic function on a con-
nected finite open Riemann surface X, such that 0 is a regular value of Im f. Assume that
Ly is a simple relatively closed curve in X such that f(Lg) C (—1,1). Let g € Lo and
q' = f(@.

If for an element e € 71(X, q) the free homotopy class € intersects Ly, then either the
reduced word fy(e) € m1(C\{—1, 1}, q¢') is a non-zero power of a standard generator of
11 (C\{—1, 1}, ¢') or the inequality

L_(fx(e)) <271(A(?)) (10)
holds.

Notice that we make a normalization in the statement of the Lemma by requiring that f maps
Ly into the interval (—1, 1), not merely into R\{—1, 1}.
Lemma 2 will be a consequence of the following lemma.

Lemma3 Let X, f, Lo, ¢ € Lo be as in Lemma 2, and e € w1(X, q). Let g be an arbitrary

pointin p~! (q). Consider the annulus A aef f(/(Is‘})_l ({e)) and the holomorphic projection

d d e
wA lef W(e),5- Put qa ef w(e>"1(q) and let Ly C A be the connected component of

(wa)~Y(Lo) that contains qa- Then the mapping wa : (A, qa) — (X, q) represents e.

If e intersects Lo, then L 4 is a relatively closed curve in A that has limit points on both
boundary components of A, and the lift f o w4 is a holomorphic function on A that maps
Ly into (—1,1).

Proofof Lemma 3 Let y : [0, 1] — X be a curve with base point ¢ in X that represents e,

and let 7 be the lift of y to X with terminating point 7 (1) equal to §. Put o < (1s7)~" (e).
Then the initial point y (0) equals o (g).

All connected components of P! (L) are relatively closed curves in X = C. (where C
denotes the upper half-plane) with limit points on the boundary of X. Indeed, the lift foP
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of f to X takes values in (—1, 1) on P~!(Ly). Hence, lexp(£i foP)| = 1on P~1(Lo).
A compact connected component of P~ (L) would bound a relatively compact topological
discin X = C., and by the maximum principle | exp(£i f oP)| = 1 on the disc. This would
imply that f o P is constant on X in contrary to the assumptions.

Let I:,; be the connected component of p-! (Lo) that contains ¢. The point o (g) cannot
be contained in Zq. Indeed, assume the contrary. Then the arc );’ on Zq joining o (g¢) and ¢
is homotopic in X with fixed endpoints to 7. The projection y' = P();’ ) is contained in L
and is homotopic in X with fixed endpoints to y. Since y represents e and e is a primitive
element of the fundamental group 7 (X, ¢), this is possible only if Lg is compact (and after
orienting it) L represents e. A small translation of ' to a side of L gives a curve in X that
does not intersect L and represents the free homotopy class € of e. This contradicts the fact
that e intersects Lg. Since o (L) is also a connected component of p-! (L), the curves I:,;
and cr(I:g) are disjoint.

Each of the two connected components I:q and o(iq) divides X. Let §2 be the domain
on X that is bounded by iq and o(l:(;) and parts of the boundary of X. Aftera homotopy of
y that fixes the endpoints we may assume that y ((0, 1)) is contained in §2. Indeed, for each
connected component of y ((0, 1))\$2 there is a homotopy with fixed endpoints that moves
the connected component to an arc on ié or a(ig). A small perturbation yields a curve 7’
which is homotopic with fixed endpoints to y and has interior contained in §2. Notice that
by the same reasoning as above, 7’((0, 1)) does not meet any ak(iq).

The curve ‘¢4 (') is a closed curve on A that represents a generator of the fundamental
group of A with base point g4. Moreover, wy o @4 (y') = W), O o' = P
represents e. Hence, the mapping wy4 : (A, g4a) — (X, ¢) represents e.

The curve »'®-4(7’) intersects Ly = '€ (lig) exactly once. Hence, L, has limit
points on both boundary circles of A for otherwise L () would intersect one of the components
of A\w'*"9(7") along a set which is relatively compact in A, and 7’ would have intersection
number zero with L. Itis clear that fowa(La) = f(Lo) C (—1, 1). The lemma is proved.

O

Proofof Lemma2 Let wy : (A, ga) — (X, q) be the holomorphic mapping from Lemma 3
that represents e, and let L4 > g4 be the relatively closed curve in A with limit set on both
boundary components of A. Consider a positively oriented dividing curve y4 : [0, 1] — A
with base point y(0) = y (1) = ga such that y4((0, 1)) C A\L4. The curve y = w4 (y4)
represents e. The mapping f o w,4 is holomorphic on A and f o w4 (y4) = f(y) represents
fx(e) € m(C\{—1,1},q¢") with ¢’ = f o wa(ga) = f(q) € (—1,1). Hence, f o wa(ya)
also represents the element (f.(e)); € rr{r (C\{—1, 1}) in the relative fundamental group
w1 (C\{-1,1},(=1,1)) = n]”((C\{—l, 1}) corresponding to f(e).

We prove now that A, (fi(e)) < L(A).Let Ap € A be any relatively compact annulus in
A with smooth boundary such that g4 € Ag. If Ay is sufficiently large, then the connected
component L 4, of L 4N Ag that contains g4 has endpoints on different boundary components
of Ag. The set Ag\ L 4, is a curvilinear rectangle. The open horizontal curvilinear sides are the
strands of the cut that are reachable from the curvilinear rectangle moving counterclockwise,
or clockwise, respectively. The open vertical curvilinear sides are obtained from the boundary
circles of Ag by removing an endpoint of the arc L 4. Since f ows maps L to (—1, 1), the
restriction of f o wa to Ag\L 4, represents ( fi(e)),r. Hence,

A (fe(@)) = A(Ao\Lay)- an
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Moreover,
AMAQ\L4,) < A(Ao). (12)

This is a consequence of the following facts. First, A(Ag\L4,) is equal to the extremal
length A(I"(Ag\ L 4,)) in the sense of Ahlfors [1] of the family I"(Ag\L 4,) of curves in the
curvilinear rectangle Ao\ L 4, that join the two horizontal sides of the curvilinear rectangle.
Further, A(Ap) is equal to the extremal length A(I"(Ag)) [1] of the family I"(Ag) of curves
in Ao that are free homotopic to simple closed positively oriented dividing curves in Ag.
Finally, by [1], Ch.1 Theorem 2, the inequality

A(I"(Ao\L4y)) = A(I"(Ao)) 13)

holds. We obtain the inequality A;(f«(e)) < A(Ap) for each annulus Ag € A, hence, since
A belongs to the class A(e) of conformally equivalent annuli,

A (file)) < A(A(e)), (14)

and the Lemma follows from Theorem F. ]

The monodromies along two generators. In the following Lemma we combine the informa-
tion on the monodromies along two generators of the fundamental group 1 (X, ¢). We allow
the situation when the monodromy along one generator or along each of the two generators
of the fundamental group of X is a power of a standard generator of 71 (C\{—1, 1}, f(q)).

Lemma4 Let f : X — C\{—1, 1} be a holomorphic function on a connected open Riemann
surface X such that 0 is a regular value of the imaginary part of f. Suppose [ maps a simple
relatively closed curve Lo in X to (—1, 1), and q is a point in Lg. Let ¢V and ¢® be primitive
elements of w1 (X, q). Suppose that for each e = eV, ¢ = ¢@ and e = eV @, the free
homotopy class € intersects Lg. Then either f; (e, j = 1,2, are (trivial or non-trivial)
powers of the same standard generator of w1 (C\{—1, 1}, q¢') withq' = f(q) € (=1, 1), or
each of them is the product of at most two elements wi and wy of w1(C\{—1, 1}, ¢") with

L_(wj) <270 0, j =1,2,
where
d — — —
ror o0 2 max{a(AeD)), 1(AED)), A(AED e@))).
Hence,

L(fe(e D)) <4mh,m 00, j=1,2. (15)

Proof If the monodromies fi(e") and £, (@) are not powers of a single standard generator
(the identity is considered as zeroth power of a standard generator) we obtain the following.
At most two of the elements, fi(e1), fi(e®), and fi(eD @) = fi(eD) fu(e?), are
powers of a standard generator, and if two of them are powers of a standard generator,
then they are non-zero powers of different standard generators. If two of them are non-
zero powers of standard generators, then the third has the form aéfaéf,’ with a, and a, being
different generators and k and k’ being non-zero integers. By Lemma 2 the £_ of the third
element does not exceed 27w A1) .2 . On the other hand it equals log (3 |k'|)+1og(3|k|). Hence,

L_(ak) =1ogBlk]) < 27,0 o and L_(ak) = logBIK']) < 27h,0) p0-
If two of the elements fi(e(D), fi(e@), and fi(e e@) = f.(eD) fi(e?), are not
powers of a standard generator, then the £_ of each of the two elements does not exceed
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27 A, @ - Since the £_ of an element coincides with the £_ of its inverse, the third element
is the product of two elements with £_ not exceeding 27 A1) . . Since for x, x> 2 the
inequality log(x + x’) < logx + logx’ holds, the £_ of the product does not exceed the
sum of the £_ of the factors. Hence the £_ of the third element does not exceed 4 A ) @
Hence, inequality (15) holds. O

The following proposition states the existence of suitable connected components of the
zero set of the imaginary part of certain analytic functions on tori with a hole and on planar
domains. For any subset £ of 771 (X; qo) we denote by (£’ )~! the set of all elements that are
inverse to elements in £’. Recall that £ ;j is the set of primitive elements of 71 (X, go) which
can be written as product of at most j elements of £ U (£)~! for the set £ of generators of
1(X, go) chosen in the introduction.

Proposition 3 Let X be a torus with a hole or a planar domain with base point qo and
SJundamental group 71 (X, qo), and let € be a set of generators of w1 (X, qo) that is associated
to a standard bouquet of circles for X. Let f : X — C\{—1, 1} be a non-contractible
holomorphic mapping such that O is a regular value of Im f. Then there exist a simple
relatively closed curve Lo C X such that f(Lo) C R\{—1, 1}, and a set Eé Cc & C
m1(X, qo) of primitive elements of w1 (X, qo), such that the following holds. Each element
ej0 € & C mi(X,qo) is the product of at most two elements ofgé U (é‘é)_]. Moreover, for
each ey € w1 (X, qo) which is the product of one or two elements from £, the free homotopy
class &y has positive intersection number with Ly (after suitable orientation of Lg).

If X is a torus with a hole or X equals P' with three holes, we may chose &) consisting
of two elements, one of them contained in &, the other is either contained in € U E™" oris a
product of two elements of £.

Notice the following facts. By Theorem E a mapping f : X — C\{—1, 1} is contractible
if and only if for each eg € (X, go) the monodromy fi(eo) is equal to the identity.
The mapping f is reducible if and only if the mondromy mapping fi : 71(X, q0) —
71 (C\{—1, 1}, f(go0)) is conjugate to a mapping into a subgroup I" of 71 (C\{—1, 1}, f(g0))
that is generated by a single element that is represented by a curve which separates one of the
points 1, —1 or co from the other points. In other words, I” is (after identifying fundamental
groups with different base point up to conjugacy) generated by a conjugate of one of the
elements ap, ap or ajap of w1 (C\{—1, 1}, 0).

If f is irreducible, then it is not contractible, and, hence, the preimage f~!(R) is not
empty.

Denote by M| a Mobius transformation which permutes the points —1, 1, co and maps
the interval (—oo, —1) onto (—1, 1), and let M5 be a Mobius transformation which permutes

the points —1, 1, co and maps the interval (1, co) onto (—1, 1). Let M) déf Id.

The main step for the proof of Theorem 1 is the following Proposition 4.

Recall that A ;(X) was defined in the introduction. Since for ey € 71 (X, go) the equality
)L(f(/(Is‘}O)_l ({e0))) = L(A(€p)) holds, A j(X) is the maximum of A(A(&p)) over eg € &;.

Proposition 4 Let X be a connected finite open Riemann surface with base point qo, and let £
be the set of generators of t1 (X, qo) that was chosen in Sect. 1. Suppose f : X — C\{—1, 1}
is an irreducible holomorphic mapping, such that O is a regular value of Im f. Then for one

of the functions M; o f, 1 = 0,1,2, which we denote by F, there exists a point ¢ € X

. . d . . .
(depending on f), such that the point q’ ef F(q) is contained in (—1, 1), and a curve a

in X joining qo with q, such that the following holds. For each element e € Isy(E) the
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monodromy Fy(e;) is the product of at most four elements of w1 (C\{—1, 1}, ¢") of L_ not
exceeding 2 A7(X) and, hence,

L_(Fy(ej)) < 8mAr7(X) foreach j. (16)

If X is a torus with a hole the proposition holds with A7(X) replaced by »3(X). If X is a
planar domain the proposition holds with A4(X) instead of A7(X).

Notice, that all monodromies of contractible mappings are equal to the identity, hence the
inequality (16) holds automatically for contractible mappings.
We postpone the proof of the two propositions and prove first the Theorem 1.

Proof of Theorem 1 Let X be a connected finite open Riemann surface (possibly of second
kind) with base point go. Consider an arbitrary open Riemann surface X° € X which is
relatively compact in X and is a deformation retract of X. Consider a free homotopy class of
mappings from X to C\{—1, 1}, that is represented by an irreducible holomorphic mapping
f: X — C\{—1, 1}. Notice that the restriction f| X is also irreducible. Take a small enough
positive number ¢, such that the function (f —ie) | X 0 takes values in C\{—1,1} and O is
a regular value of its imaginary part. Put f = (f — ie) | X°. If  is small enough, then the
irreducible mapping f on X is free homotopic to f | X°. We identify the fundamental groups
of X and of X° by the inclusion mapping from X° to X.

Proposition 4 applied to the mapping f : X — C\{—1, 1} provides a Mdbius trans-
formation M;, that maps one of the components of R\{—1, 1} onto (—1, 1), and further a

point ¢ € X° and a curve « in X° with initial point go and terminating point ¢, such for the

mapping F = M; o f the point g’ e F(q) is contained in (—1, 1), and for the generators

e; déf Isy(ej0), €j0 € &, of my (X0, q) the inequalities (16) hold. After identifying the fun-
damental groups 71 (X, ¢) and 1 (X, go) with different base point by an isomorphism that is
defined up to conjugation, Theorem E states that the free homotopy class of F corresponds
to a conjugacy class of homomorphisms

7T1(X, QO) = ﬂl(X7 fl) g ﬂ]((C\{_l, 1}7 q/),

that is represented by a homomorphism / for which £_(h(ej0)) < 87 A7(X9) for each
ej0 € £ More explicitly, there exists a smooth mapping F:X0— C\{—1, 1}, that is free
homotopic to F, maps qo to ¢’, and satisfies the inequality

L_(Fy(ej0) < 8mA7(X") (17

foreach e o € £. The existence of the smooth mapping F can be seen explicitly as follows.
Write e = Is, (ep) € m1(X, q) foreach eg € (X, qo). Parameterise « by the interval [0, 1].
The image of & under the mapping F is the curve 8 = F o « in C\{—1, 1} with initial point
F(qo) and terminating point F (q) = q’. Then Fy(eg) = (Isﬂ)’l (F4«(e)). Choose ahomotopy

F;, t € [0, 1], that joins the mapping Fy el F with a (smooth) mapping F; denoted by F,
so that Fy(qo) = B(t), t € [0, 1]. The value B(¢) moves from the point §(0) = F(qop) to
B(1) = ¢’ along the curve 8. Then I:"(qo) =g’ and ﬁ*(eo) = F,(e) foreacheg € 71 (X, qo).
Indeed, denote by §; the curve that runs from g(¢) to (1) along B. Then By = B and B
is a constant curve. Let yp be a curve that represents eg. The base point of the curve F;(yp)
equals F;(qo) = B(t). Hence, we obtain a continuous family of curves /3,_1 F;(y0)B; with
base point (1) = F(gq). For t = 1 the curve is equal to F|(yp) = I:"(yo), for t = O the
curve is equal to ﬂ_lFo(yo),B = Fyla™ sy (yo)a) = Fy(y). Since the two curves Fi(yp)
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and Fy(y) are homotopic and F| = F, Fy = F, we obtain Fy(eg) = Fy(e). The inequalities
(16) imply the inequalities (17).

For each irreducible holomorphic mapping f: X — C\{-1, 1} we found a Mobius
transformatlon M) and a mapping F:Xx0— C\{—1, 1} that satisfies the condition F (q0) =
q' € (—1,1) and the inequalities (17), and is free homotopic on X0 to M((f — ie)|X9)
for a small number ¢, and, hence, is free homotopic to M;(f|X 0). Using a deformation
retraction we obtain a mapping FX . X - C\{—1, 1} that is free homotopic on X" to F
and, hence, to M; (f|XO). Identifying the fundamental groups w1 (X 0 qo) and 1 (X, go) by
the homomorphism induced by the inclusion and applying Theorem E, we obtain for each
irreducible holomorphic mapping f : X — C\{—1, 1} a Mobius transformation M; and a
smooth mapping FX:X - C\{—1, 1} that is free homotopic to M;(f) on X, and satisfies
the condition F¥ (q0) = ¢q' € (—1, 1) and the inequalities (17).

Iff: X — C\{—1, 1} is a contractible mapping, it is free homotopic to the function
FX = 0on X, and the inequalities (17) are automatically satisfied for the monodromies of
FX.

The number of free homotopy classes of mappings X — C\{—1, 1}, that contain a
smooth mapping FX, which satisfies the condition FX(gg) = ¢’ € (—1, 1) and the inequal-
ities (17), are estimated from above as follows. By Lemma 1 of [19] there are at most
1e24ma(X%) 1 < 324105 (X different reduced words w € 71 (C\{—1, 1}), 0) (including the
identity) with £_(w) < 8w A7(X 0y, Identify standard generators of 1 (C\{—1, 1}, ¢’) with
standard generators of 71 (C\{—1, 1}, 0) by the canonical isomorphism. We saw, that there
are at most (%624”7(}(0))25"""1 different homomorphisms # : m(X% g0) = m1(X, qo) —
71 (C\{—1, 1}, ¢") = 71 (C\{—1, 1}, 0) with L_(h(e)) < 87 A7(X9) for each element e of
the set of generators £ of 1 (X 0, qo0)- By Theorem E there are at most (%624” )‘7(X0))2g +m dif-
ferent free homotopy classes of mappings X — C\{—1, 1}, that contain a smooth mapping
FX which satisfies the condition ﬁx(qo) = ¢’ € (=1, 1) and the inequalities (17).

For each irreducible or contractible mapping f on X one of the mappings M;of,l =0, 1, 2,
is free homotopic to a mapping FX which satisfies the condition FX (o) =q’ € (—1,1)and
the inequalities (17). The (M;)~" o FX represent at most 3(3 ¢>** 27(X")y28+m free homotopy
classes of irreducible or contractible mappings X — C\{—1, 1}. Theorem 1 is proved with
the upper bound 3(3*4" 21(X")y28+m for an arbitrary relatively compact domain X° C X
that is a deformation retract of X.

It remains to prove that A7(X) = inf{A7 (X9 : X9 € X is a deformation retract of X }.
We have to prove that for each ¢y € 71 (X, go) the quantity A (A(&)) = )\(i/(ls‘i‘))_l ({e0)))
is equal to the infimum of A(X°,~ (Iséo)_] ((e0))) over all X 0 being open relatively compact
subsets of X which are deformation retracts of X. Here X' X0 i is the universal covering of X 0,
and the fundamental groups of X and X° are identified. X X0 (X, respectively) can be deﬁned
as set of homotopy classes of arcs in X° (in X, respectively) joining go with a point ¢ € X°
(in X respectively) equipped with the complex structure induced by the projection to the
endpoint of the arcs, and the point go corresponds to the class of the constant curve. The
isomorphism (Is?0)~! from 7 (X%, o) to the group of covering transformations on X© is
defined in the same way as it was done for X instead of X°. These considerations imply that
there is a holomorphic mapping from X0 / (Is70)~1 ({eg)) into X / (Is70)~1 ({eo)). Hence, the
extremal length of the first set is not smaller than the extremal length of the second set.

Vice versa, take any annulus A which is a relatively compact subset of A(&) and is
a deformation retract of A(ép). Its projection to X is relatively compact in X, hence, it is
contained in a relatively compact deformation retract X° of X. Hence, A can be consid-
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ered as subset of X0 /(Is%0)~1((ep)), and, hence, A(X? /(Is%) ! ((ep))) < A(A®). Since
L(A(&)) = inf{rL(A?) : AY € A(&)) is a deformation retract of A(&y)} we are done. O

We proved a slightly stronger statement, namely, the number of homotopy classes of
mappings X — C\{—1, 1} that contain a contractible holomorphic mapping or an irreducible
holomorphic mapping does not exceed 3(%6’247[ A1 (X)y2g+m,

Proof of Proposition 3 Denote the zero set {x € X : Imf(x) = 0} by L. Since f is not
contractible, L # (.

1. A torus with a hole. Assume first that X is a torus with a hole with base point gg. For
notational convenience we denote by eg and ¢, the two elements of the set of generators £ of
1 (X, qo) that is associated to a standard bouquet of circles for X. We claim that there is a
connected component Lq of L such that (after suitable orientation) the intersection number
of the free homotopy class of one of the elements of/E,\say of ¢y, with Ly is positive, and the

intersection number with one of the classes %, or (e(’))_1 , OI € e(’) with L is positive.

The claim is easy to prove in the case when there is a component of Ly which is a simple
closed curve that is not contractible and not contractible to the hole of X. Indeed, consider
the inclusion of X into a closed torus X¢ and the homomorphism on fundamental groups
m1(X, qo) — w1 (X€, qo) induced by the inclusion. Denote by 68 and eéc the images of ¢g
and ¢), under this homomorphism. Notice that ef and ¢)° commute. The (image under the
inclusion of the) curve Ly is a simple closed non-contractible curve in X¢. It represents the
free homotopy class of an element (eo)/ (e “)k for some integers j and k which are not both
equal to zero. Hence, L is not null-homologous in X¢, and by the Poincaré Duality Theorem
for one of the generators, say for e, the representatives of the free homotopy class eA(L)' have
non-zero intersection number with L. After suitable orientation of Lg, we may assume that
this intersection number is positive. There is a representative of the class % which is contained
in X, hence, ¢ has positive intersection number with L.

Suppose all compact connected components of L are contractible or contractible to the
hole of X. Consider a relatively compact domain X” € X in X with smooth boundary
which is a deformation retract of X such that for each connected component of L at most
one component of its intersection with X” is not contractible to the hole of X”. (See the
paragraph on “Regular zero sets”.) There is at least one component of L N X” that is not
contractible to the hole of X”. Indeed, otherwise the free homotopy class of each element of
& could be represented by a loop avoiding L, and, hence, the monodromy of f along each
element of £ would be conjugate to the identity, and, hence, equal to the identity, i.e. contrary
to the assumption, f : X — C\{—1, 1} would be free homotopic to a constant.

Take a component L{j of L N X” that is not contractible to the hole of X”. There is an
arc of 8 X" between the endpoints of Lg such that the union Lo of the component Lg with
this arc is a closed curve in X that is not contractible and not contractible to the hole. Hence,
for one of the elements of £, say for ey, the intersection number of the free homotopy class
o with the closed curve Ly is positive after orienting the curve Lo suitably. We may take
a representative y of ¢) that is contained in X”. Then y has positive intersection number
with L{. Denote the connected component of L that contains Ly by Lg. All components
of Ly N X" different from L{j are contractible to the hole of X”. Hence, y has intersection
number zero with each of these components. Hence, y has positive intersection number with
Lo since y C X". We proved that the class ¢ has positive intersection number with L.

If eO also has non- zero intersection number w1th Lo we define e (eo)i] so that the

intersection number of eO with Lg is positive. If ‘30 has zero intersection number with Lg
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we put e = eg e(,. Then again the intersection number of ¢ with Lo is positive. Also, the

intersection number of e/oe\ with Lo is positive. The set £} 4 = {eo, e[} satisfies the condition
required in the proposition. We obtained Proposition 3 for a torus With a hole.

2. A planar domain. Let X be a planar domain. The domain X is conformally equivalent
to a disc with m smoothly bounded holes, equivalently, to the Riemann sphere with m + 1
smoothly bounded holes, P!\ U’;’:ll Cj, where Cp, 1 contains the point co. As before the base
point of X is denoted by o, and foreach j = 1, ..., m, the generatore; g € £ C m(X, go)is
represented by a curve that surrounds C; once counterclockwise. Since f is not contractible,
there must be a connected component of L that has limit points on some C; with j < m.
Indeed, otherwise the free homotopy class of each generator could be represented by a curve
that avoids L. This would imply that all monodromies are equal to the identity. We claim that
there exists a component L of L with limit points on the boundary of two components dC
and dC;» for some j’, j” € {1, ..., m + 1} with j” # j'.

Indeed, assume the contrary. Then, if a component of L has limit points on a component
dCj, j < m, then all its limit points are on dC;. Take a smoothly bounded simply connected
domain C} € X U C; that contains the closed set C; , so that its boundary 8C} represents
€; 0. Then all components Lj of L\C ; with an endpoint on BC} have another endpoint on this

circle. The two endpoints of L) on 9C ’] divide BC} into two connected components. The union

of Li;c with each of the two components of 8(,';. \Li;( is a simple closed curve in C, and, hence,
by the Jordan Curve Theorem it bounds a relatively compact topological disc in C. One of
these discs contains C/ the other does not. Assign to each component L;, of L\C/ with both
endpoints on BC’ the closed arc oy in 86” with the same endpoints as L’ , whose union with
L’ bounds a relatwely compact topologlcal disc in C that does not contain C/ These discs
are partially ordered by inclusion, since the L are pairwise disjoint. Hence, the arcs oy are
partially ordered by inclusion. For an arc o which contains no other of the arcs (a minimal
arc) the curve f o o except its endpoints is contained in C\RR. Moreover, the endpoints of
foarlieon f (Li;(), which is contained in one connected components of R\{—1, 1}, since

L;, is connected. Hence, the curve f o oy is homotopic in C\{—1, 1} (with fixed endpoints)
to a curve in R\{—1, 1}. The function f either maps all points on dC’;\ ¢ that are close to
oy to the open upper half-plane or maps them all to the open lower half-plane. (Recall, that
zero is a regular value of Im f.) Hence, for an open arc «;, C 8C} that contains oy the curve
f ooy is homotopic in C\{—1, 1} (with fixed endpoints) to a curve in C\R.

Consider the arcs ay with the following property. For an open arc o, in BC; which contains
the closed arc o the mapping f o «; is homotopic in C\{—1, 1} (with fixed endpoints) to
a curve contained in C\R. Induction on the arcs by inclusion shows that this property is
satisfied for all maximal arcs among the o and, hence, f | dC’; is contractible in C\{—1, 1}.
Hence, if the claim was not true, then for each hole C;, j < m, whose boundary contains
limit points of a connected component of L, the monodromy along the curve C} (with any
base point contained in C’,) that represents ¢; 5 would be trivial. Then all monodromies would
be trivial, which contradicts the fact that the mapping is not contractible. The contradiction
proves the claim.

With ;" and j” being the numbers of the claim and j < m we consider the set £ C &
which consists of the following primitive elements: ¢/ o, the element (e jn,())_l provided

"#m+1l,andejgejoforall j=1,...,m, j# j', j # j”. The free homotopy class of
each element of £ has intersection number 1 with Ly after suitable orientation of the curve
Lg. Each product of at most two different elements of £} is a primitive element of 71 (X, q)
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and is contained in £4. Moreover, the intersection number with L of the free homotopy class
of each product of at most two different elements of £, equals 1 or 2. Each element of £ is
the product of at most two elements of £ U (£3) 1.

The proposition is proved for the case of planar domains X. O

Proof of Proposition 4 1. A torus with a hole. Consider the curve Lo and the set & C
1(X, qo) obtained in Proposition 3. For one of the functions M; o f, denoted by F, the
image F(Lo) is contained in (—1, 1). Let e, e6 be the two elements of £. Move the base
point go to a point ¢ € Lo along a curve « in X, and consider the generators e = Isy (eq)
and ¢’ = Isq (¢)) of 1 (X, ¢), and the set Is, (£) C 71 (X, ¢). Then e and ¢’ are products of
at most two elements of Isy (Eé). Since the free homotopy class of an element of 71 (X, go)
coincides with the free homotopy class of the element of 771 (X, ¢) obtained by applying Is,,
the free homotopy class of each product of one or two elements of s, (Sé) intersects L. We
may assume as in the proof of Proposition 3 that Is, (£}) consists of the elements ¢ and e”,

where ¢ is either equal to ¢’*!, or equals the product of e and ¢’. Lemma 4 applies to the
pair e, ¢”, the function F, and the curve L. Since F is irreducible, the monodromies of F
along e and ¢” are not powers of a single standard generator of the fundamental group of
71 (C\{—1, 1}, ¢’). Hence, the monodromy along each of the ¢ and ¢” is the product of at
most two elements of £_ not exceeding 27 A, .. Therefore, the monodromy of F along each

of the e and ¢” has £_ not exceeding 471, .. Notice that A, ,» = Megey < 23(X), since e(]

is the product of at most two factors, each an element of £ UE~!. Since ¢’ is the product of at
most two different elements among the ¢ and ¢” and their inverses, we obtain Proposition 4
for e and €', in particular £_ (Fy(e)) and £_(F,(e")) do not exceed 8w A3(X). Proposition 4
is proved for tori with a hole.

2. A planar domain. Consider the curve Lo and the set £, of Proposition 3. Move the base
point go along an arc « to a point ¢ € Lo. Then f(q) € R\{—1, 1} and for one of the
mappings f, M| o f, or My o f, denoted by F, the inclusion F(Lg) C (—1, 1)) holds,

d . . .
hence, ¢’ ef F(q) is contained in (—1, 1). Denote ¢; = Isy (¢} o) for each elemente; o € £.

The e form the basis Is, (£) of 1 (X, q). The set Isy (Sé) consists of primitive elements of
m1(X, q) such that the free homotopy class of each product of one or two elements of Is, (£})
intersects Lo. Moreover, each element of Isy (€) is the product of one or two elements of
154 () U (Isq (E5) 7.

By the condition of the proposition not all monodromies F(e), e € Isy (Eé), are (trivial or
non-trivial) powers of the same standard generator of 771 (C\{—1, 1}, ¢’). Apply Lemma 4 to
all pairs of elements of s, (Sé) whose monodromies are not (trivial or non-trivial) powers of
the same standard generator of 7t (C\{—1, 1}, ¢’). Since the product of at most two different
elements of Is, (Sé) is contained in Isy (€4), Lemma 4 shows that the monodromy F (e) along
each element e € Isy (Eé) is the product of at most two factors, each with £_ not exceeding
2 A4(X). Since each element of sy (£) is a product of at most two factors in 5§ U (Eé)’l , the
monodromy Fi(e;) along each generator e; of 1 (X, ¢) is the product of at most 4 factors
of £_ not exceeding 2w A4(X), and, hence, each monodromy F;(e;) has £_ not exceeding
8w A4(X). Proposition 4 is proved for planar domains.

3.1 The general case. Diagrams of coverings

We will use diagrams of coverings to reduce this case to the case of a torus with a hole or to
the case of the Riemann sphere with three holes.
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Let as before g be the point in X with P(go) = qgo chosen in Sect. 2 . Let N be a subgroup
of the fundamental group (X, go) and let oV X > X/(Isqo) L(N) = X(N) be the
projection defined in Sect. 2. Put (go) n aef o™ (o). Foranelementeg € N C 71 (X, go) we
denote by (ep) v the element of 771 (X (N), (go)n) that is obtained as~follows. Take a curve y
in X with base point g that represents ¢y € N. Let y be its lift to X with terminating point
go- Then yy _f N (y)isaclosed curvein X (N) = X/(Is‘io)_] (N) with base point (gg) n -
The element of 1 (X (N), (go) n) represented by yy is the requlred element (eg) y. All curves
¥ representing (eg) v have the form oV () for acurve 7’ in X with terminating point qo
and initial point (Is?0)~ (e0)(Go). Since wy o w™ = P, the curve a)N()/N) =Py =y
represents eq for each curve y,’\, in X (N) thatrepresents (eg) y . We obtain (wy )« ((eo)n) = eo.-
For two subgroups N1 < N, of w1 (X, go) we obtain (a)xf)*((eo)/vl) = (eo)n,, €0 € N (see
the commutative diagram Fig. 3). 5

Let g be another base point of X and let & be a curve in X With initial point go and
terminating point . Let again N be a subgroup of 71(X, qo)- Put gn o oV (¢)- The curve
ay = o™N(@) in X(N), and the base point g of X are compatible, hence, (Isqo) LNy =

d
(Is7) " (Isgy (N)) and X (Isgy (N)) = =4 X/(IS") H(Isay (N)) = X /(Is0) "1 (N) = X(N).

We will use the previous notation le also for the projection X / (Is7)~ 1(Is0[Nl (N1)) —
)?/(Is‘i)_l(lsou\,2 (N3)), N1 < N; being subgroups of m1(X, go) (N1 may be the identity
and N, may be m1(X, qo).)

Put o def P(&). For an element ey € 71(X, go) we put e Isa(eo) e m(X,q) and
denote by ey the element of 71 (X(N), gn), that is represented by wN(y) for a curve 7 in X
with terminating point ¢ and projection P(y) representing e. Again (coN1 )«(en,) = en, for
subgroups N1 < N, of 71(X, g¢) and e € Ny, in particular (wy)«(en) = e for a subgroup N
of 11 (X,g)and e € N.

3.2 The estimate for a chosen pair of monodromies

Since the mapping f : X — C\{—1, 1} is irreducible, there exist two elements ¢, ¢ €
1(X, go) such that the monodromies f; (66) and f; (eg) are not powers of a single con-
jugate of a power of one of the elements a;, a> or aja;. The fundamental group of the

Riemann surface X ((eo, )) is a free group in the two generators (eo) el and (eo) el

hence, X ((e(’), ey 0)) is either a torus with a hole or is equal to P! with three holes. More—
over, the system & e el) {(ef)) (ehel)> (eo) el y} of generators of the fundamental group
1 (X( (eo, )) (qo) el y) is associated to a standard bouquet of circles for X ((eo, )) This

can be seen as follows The set of generators £ of 1 (X, qo) is associated to a standard bouquet
of circles for X. For each eg € £ we denote the circle of the bouquet that represents eg by V.
For each ¢ € £ we lift the circle y,, with base point g¢ to an arc 7, in X with terminating
point ¢go. Let D be a small disc in X around g, and 5}), 5;0, ep € &, be the preimages of D
under the projection P : X — X, that contain qo, or the initial point of y,, respectively. We
assume that D is small enough so that the mentloned prelmages of D are pairwise disjoint.
Put D, ehel) =@ (eg-€q) (Do) For e¢g # eo, o the image w (eg-€q) (Do U e U Deo) is the union

of an arc w'%-<) (Vo) in X ({eg, €7)) with two disjoint discs, each containing an endpoint of
the arc and one of them equal to D, ehel)- For eg = ¢, ¢ the image ') (Do U 7y U Dg,)

d N o~
is the union of Dy, .r, with the 100p (veg)(e; 7 ef ') (71 For eg = ey, € the loop
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(Veo) (e el in X ((eo, )) has base point (q0) (e Lel) =@ {eo-€q) (go) and represents the genera-
tor (eo) 0 el) of the fundamental group of (X ((eo, eo)) (q0) (e el y)- Since the bouquet of
circles er eg Yeo 18 a standard bouquet of circles for X, the union (ye Diepely Y Ve ey el is
a standard bouquet of circles in X ((66, el 0))- This can be seen by lookjng at the intersections
of the loops with a circle that is contarned in D, ehrel) and surrounds (go) ,/ (e} el y- By the com-
mutative diagram of coverings the mtersectron behav1our is the same as for the images of
these objects under o e - Hence, since Ve iep el and (Ve ) e}y Tepresent the generators
(eo) el and (eo) el of & (el the union (ye ) (ehrel) U (yeo) ehoel) is a standard bouquet
of c1rcles for X((eo, eo))

The set X ((66, eg )) is either a torus with a hole or is equal to P! with three holes. Apply
Proposition 3 to the Riemann surface X (e, e7)) with base point (go), (e).el)> the holomorphic
mapping f, ey = J oo e into C\{— 1 1}, and the set of generators Eielel) of the

fundamental group (X ((eo, eo)) (90) (e el })- We obtain a relatively closed curve L(e el
on which the function f, e} is real, and a set (6e el )y = {(eo) (ehoel)> (eo) el y} which

contains one of the elements of i) ey The second element of (€ (ehrel) )5 is erther equal to
second element of £ (e} ey) OF tO its inverse, or to the product of the two elements (in any

order) of & ey (We w1ll usually refer to the product (e), (eh el ) (e0) () el = (e eg )ie!

but we may change the product (e, eo) el 1O the product (e0 eo) L) , without changlng
the arguments and the estimate of the £_ of the monodromies of the elements of £}.) The free
homotopy classes (eo) el (eO) (ehoel y» and (eo) (ehrel) (eo) el (e0 eo) (ehoel y intersect
L v/

(egeq)*

Choose a point g, tel) € Liet eny and a point § € X with » {eg-q) @) = e} - Let a

be a curve in X with 1mt1al point go and terminating point g, and «, ehel) = a)<60 ) (@).

Put e< o Isa(, " ((eo) el y) and e o) Isa(, " ((eo) (ehrel ). For one out of three
€) €0 €)

Mobrus transformauons M; the mappmg F el = Ml o fle tely = Mio fow ehel) takes
L</ n to (—1,1), and hence F</ e akesavalueq = Feg)eg(q / n) € ( 1,1) at
e} el) - By Lemma 4 each of the (F, el )*(e ) ) and (F, Ll )k (e ¢l ) is the product
ofatmosttwo elements of 71 (C\{—1, l} q )ofﬁ notexceedmg 2nk3(X((e0, ))) hence,

L ((F / // )*(e e' e” )) < 47‘[)\_3(X(<€0,€(/)/>))
L_ ((F / // )*(e e/ e// )) < 477)\3(X((60’ >))

It follows that each of the (F, el V) (e el ) and (F, el V) (e ehel) ) is the product of at
most four elements of 71 (C\{— l l} q ) of E not exceedmg 271)@ (X((eo, ))) hence,

Lo ((Figp g€y o)) = 8T (X (e €§))),
Lo ((Fg egs(€lyy o)) = 8TA3(X (e €))).

It remains to take into account that for a subgroup N of m(X,qo) the equation
(Fn)«(en) = Fy(e) holds for each e € Isy(N), and A;(X(N)) < A;(X) for each natu-
ral number j.
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3.3 Other generators. Intersection of free homotopy classes with a component of
the zero set

Take any element e € Isy(€) that is not in (¢’, ¢”). Then the monodromy Fy(e) is either
equal to the identity, or one of the pairs (Fy(e), Fx(€)) or (Fy(e), Fx(e”)) consists of two
elements of 771 (C\{—1, 1}, ¢) that are not powers of the same standard generator a;, j = 1
or 2. Interchanging if necessary €’ and e”, we may suppose this option holds for the pair
(Fy(e), Fy(€')). Moreover, changing if necessary €’ to its inverse (¢/)~!, we may assume
that ¢’ is either an element of Is, (€) or it is a product of two elements of Is, (€). The quotient
X((e,€&)) = )?/(Is‘i)_1 ({e, €’)) is a Riemann surface whose fundamental group is a free
group in two generators. Hence X ({e, ) is either a torus with a hole or is equal to P! with
three holes.

We consider a diagram of cover1ngs as follows. Let first X ((e")) = X / (Is?)~1((e')) be
the annulus with base point gy = w'® (q) that admits a Inappmg a) X)) - X

that represents e’. By Lemma 3 the connected component L ¢y of (w ) 1(L e ery) that

contains gy = w(e/>(c}) is a relatively closed curve in X ((e’)) with lnnlt points on both
boundary components The free homotopy class of the generator e/( e) of w1 (X ((e"), qiery)
intersects L (ery. The mapping Fiery = Mjo f owery maps L ey into (=1, 1), and Fieny (q(ery) =
FoP@) -4 o
Next we consider the quotient X ((¢/, ¢)) = X / (Is7)~1((e’, e)) whose fundamental group
is again a free group in two generators. The image L (' ¢) = w::;e)(L(e/)) is a connected
component of the preimage of (-1, 1) under Fe .. Indeed, L e () is connected as image
of a connected set under a continuous mapping, and F(e/,d(wég;e)(L(e/))) = Fowg, o
e>(L ) = Fien(Ley) C (=1, 1). Moreover, since the mapping a)<e’g> : X(( e')) —
X((e e)) is a covering, its restriction (ImF o wey)™ 10) > (ImF o W e))” L) is a
covering. Hence the image under wée,f of a connected component of (ImF o wey)™ 1(0)

def (¢, e)(

is open and closed in (ImF o w<e/,g>)’1(0). Hence, Loy = O} ) is a connected

component of the preimage of (—1, 1) under Fie ). Put (e oy = a) (q o)) = o' e,) 9%

0 (§) = ' (§). Note that Fie' o) (q(e'.e)) = F 0 (el ) (qer.e)) = F(q) =q'.
The free homotopy class e’< o in X ((¢/, e)) that is related to €’ intersects L 0y. Indeed,

—

consider any loop V(e’,e) in X({€/, e)) with some base point qé that represents e’<e/’e>.

There exists a loop y<’e,> in X ({€’)) which represents e//(; such that a) (y &) ) = y(e’,e)'
Such a curve y(e,) can be obtained as follows. There is a loop y<e, ¢ in X ((€’, e)) with base
point g .y that represents (')’ ), and a curve aze,@ in X({e’, e)), such that y(e,,e) is
nomotopic with fixed endpoint to (O‘Ze’, e))_l y(é,y o O‘Ee’, o)~ Consider the lift 7" of y<’é, o 10
X with terminating point ¢, and the lift &’ of O‘Ze/,e) with initial point g. il"he initial point of
y(’ é/ o equals o (¢) for the covering transformation o = (Is?)~1(e) = (Is%0)~1 (ef)). (See Eq.
6).) The initial point of the curve o (&)~ 1)7" &' is obtained from its terminating point b
( p Y gp y
applying the covering transformatlon o. Hence, 0'®) (o ((@)~1)7"a@’) is a closed curve in
X ((e’)) that represents e<e and projects to (a )‘1 y<e,,e> a<e,‘e) under wé:,;e). Since y(e,’e)
is homotopic to () (@ ) 1 y(e, o) o (@) with ﬁxed base point, it also has alift to X ({(€’)) which

—

/
represents e<e,> .
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. A
Since €

point pze,’@ = a)(e,; (p(e,)) is contained in y(’e/

intersects L (e, the loop y has an intersection point pze,) with L. The

and in L .y. We proved that the free

.€)

homotopy class e/Qez in X ((¢', e)) intersects L e ).

3.4 A system of generators associated to a standard bouquet of circles

We claim that the system of generators e’( eierey of TI(X((€,€)), qier.ey) is associated

ee
to a standard bouquet of circles for X ((€’, P e)). If & € & the claim can be obtained as in
paragraph 3.2. Suppose € = ¢’¢” for ¢/, ¢’ € £. Consider the system &’ of generators of
71 (X, g) that is obtained from & by replacmg ¢ by e'e”. If ¢’ and e” correspond to a handle
of X, then &’ is also associated to a standard bouquet of circles for X, see Fig. 4a for the case
when ¢’ is represented by an a-curve and e” is represented by a B-curve. The situation when
¢’ is represented by a B-curve and e” is represented by an a-curve is similar. The claim is
obtained as in paragraph 3.2.

Suppose one of the pairs (e, ¢’) or (e, ¢”) corresponds to a handle of X. We assume that
e corresponds to an a-curve and ¢’ corresponds to a B-curve of a handle of X (see Fig. 4b).
The remaining cases are treated similarly, maybe, after replacing ¢’e” by e”’¢’ (see paragraph
3.2). With our assumption £’ is associated to a bouquet of circles that is a deformation retract

for X, but it is not a standard bouquet of circles. Nevertheless, the pair (e(e ), e’(e,,e>) with

e’ = ¢'¢” is associated to a standard bouquet of circles for X ({€’, ¢)). This can be seen as

before. Consider the bouquet of circles corresponding to £ and take its union with a disc D
around g. Lift this set to X. We obtain the union of a collection of arcs in X with terminating
point g, with a collection of discs in X around g and around the initial points of the arcs.
Take the union of the arcs and the discs. The image in X ({€’, ¢)) of this union under the
projection '€ is the union of the two loops (Ve)(e,e) U (Ye')(e',e)» the disc De oy and a
set, that is contractible to D .. Looking at the intersection of the two loops with a small
circle contained in D e .y and surrounding g e’ ¢y, we see as before that (ye) e’ ey U (Ver) (e, )
is a standard bouquet of circles for X ((€/, e)). In this case X ({€/, ¢)) is a torus with a hole.

In the remaining case no pair of generators among e, ¢’, and ¢” corresponds to a han-
dle. In this case again £ does not correspond to a standard bouquet of circles for X. But
{ee ey, (€'€") (e )} (maybe, after changing e’e” to e”¢’) corresponds to a standard bouquet
of circles for X ({€’, ¢)). (See Fig. 4c for the case when walking along a small circle around
q counterclockwise, we meet the incoming and outgoing rays of representatives of the three
elements of £ in the order e, ¢’, ¢”. If the order is different the situation is similar, maybe,
after replacing ¢’¢” by e”¢’.) In this case X ({€’, e)) is a planar domain.

//

3.5 End of the proof

Consider first the case when X ({€’, €)) is a torus with a hole. Since e/; intersects L e/ ¢),

we see as in the proof when X itself is a torus with a hole, that the curve L’ ) cannot be
contractible or contractible to the hole, and the intersection number must be different from
zero. Then the intersection number with L e ) of the free homotopy class of one of the
choices e?;,lye) or (¢'e) (e, ¢y, denoted by e ,is not zero and has the same sign. By Lemma 4
each of the (F<e’,e))*(e/e/,e ) and (Fe' ¢) ) (e”é,‘e)) is the product of at most two elements of
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(@) (b)

171
€c
(c)
€

rn
ee
Fig.4 Standard bouquets of circles
71 (C\{—1, 1}, ¢") with £_ not exceeding

27 Ao e, > < 2mis(X), (18)

(e/,e)” (e e

since e’ is the product of at most two elements of £ U £~! and e is the product of at most

three elements of £ U £~!. The element ¢ is the product of at most two different elements
among the " and e” or their inverses. Hence, the monodromy Fi(e) = (Fie' ¢))«(€(e ) 18
the product of at most four elements with £_ not exceeding (18). Hence,

Fi(e) < 8mrs(X). 19)

Consider now the case when X ({€’, e¢)) equals P! with three holes. Since e’( ee) and e(e )
correspond to a standard bouquet of circles for X ({e’, e)), the curves representing e’< ee)

surround counterclockwise one of the holes, denoted by C’ , and the curves representing
e(er.¢y surround counterclockwise another hole, denoted by C”. After applying a Mdbius
transformation we may assume that the remaining hole, denoted by C,, contains the point

0o. There are several possibilities for the behaviour of the curve L . Since e’< e e) intersects
Li¢.), the curve L e,y must have limit points on C'. The first possibility is that Ler .y has
limit points on 3C" and dC”, the second possibility is, L e ¢) has limit points on €’ and Ce,
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the third possibility is, Le ) has all limit points on C’, and C” is contained in the bounded
connected component of C\ (L e/ o) U C).

In the first case the free homotopy classes eze, o) and e(_e,l o have positive intersection
number with the suitably oriented curve L (e . In the second case the free homotopy classes

e/<e, o and (e'e) (' ) have positive intersection number with the suitably oriented curve L e/ o).

In the third case the free homotopy classes of e’< e o)’ G Ze)(e/, ¢y and of their product inter-
sect L e ¢). The first two cases were treated in paragraph 2 of this section. The statement
concerning the third case is proved as follows.

Any curve that is contained in the complement of C’ U L (e’ .y has either winding number
zero around C’ (as a curve in the complex plane C), or its winding number around C’ coin-
cides with the winding number around C”. On the other hand the representatives of the free
homotopy class of e’< ee) have winding number 1 around C" and winding number 0 around

C". The representatives of the free homotopy class of (e’ze)<e/,e> have winding number 2
around C’, and winding number 1 around C”. By the same argument the free homotopy class
of the product of e’<e/ ¢ and (e’ 2€)<e’,e) intersects L e/ o).

We let e’{é, o) be equal to e in the first case, equal to (€’e) e’ ) in the second case, and

(¢.e)
equal to (&’ 2e)<e/,e> in the third case.

By Lemma 4 each of the (Fe/ )« (e’<e,.e>) and (F<e/'g))*(e’<’e’, ) is the product of at most
two elements of 7t (C\{—1, 1}, ¢’) with £_ not exceeding

2”)‘e’< , )7e2/// ) <2 A7 (X). (20)

We used that e’ is the product of at most two elements of EUE™!, e € EUE™! and e” is the
product of at most five elements of £ U £~ Since e is the product of at most two different
elements among the (¢/)*! and (e”)*!, the monodromy Fi.(e) = (Fie'¢))s(e(ere)) is the
product of at most four elements with £_ not exceeding (20). Hence,

Fi(e) < 8ma7(X). (21)

The proposition is proved. O

4 (g, m)-bundles over Riemann surfaces

We will consider bundles whose fibers are smooth surfaces or Riemann surfaces of type
(g, m).

Definition 2 (Smooth oriented (g, m) fiber bundles.) Let X be a smooth oriented manifold
of dimension k, let X be a smooth (oriented) manifold of dimensionk +2and P : X — X
an orientation preserving smooth proper submersion such that for each point x € X the
fiber P~!(x) is a closed oriented surface of genus g. Let E be a smooth submanifold of X
that intersects each fiber P~!(x) along a set E, of m distinguished points. Then the tuple
Sg,m = (X, P, E, X) is called a smooth (oriented) fiber bundle over X with fiber a smooth
closed oriented surface of genus g with m distinguished points (for short, a smooth oriented
(g, m)-bundle).

If m = 0 the set E is the empty set and we will often denote the bundle by (X, P, X). If
m > 0 the mapping x — E, locally defines m smooth sections. (g, 0)-bundles will also be
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called genus g fiber bundles. For g = 1 and m = 0 the bundle is also called an elliptic fiber
bundle.

In the case when the base manifold is a Riemann surface, a holomorphic (g,m) fiber
bundle over X is defined as follows.

Definition 3 Let X be a Riemann surface, let X be a complex surface, and P a holomorphic
proper submersion from X onto X, such that each fiber 7~!(x) is a closed Riemann surface
of genus g. Suppose E is a complex one-dimensional submanifold of X that intersects each
fiber P~1(x) along a set E, of m distinguished points. Then the tuple §g m = (X, P, E, X)
is called a holomorphic (g,m) fiber bundle over X.

Notice that for m > 0 the mapping x — E, locally defines m holomorphic sections.

Two smooth oriented (holomorphic, respectively) (g, m) fiber bundles, 30 = (O, PO,
E° X)and §' = (X!, P!, E!, X), are called smoothly isomorphic (holomorphically iso-
morphic, respectively,) if there are smooth (holomorphic, respectively) homeomorphisms
@ : X% - x'and ¢ : XO — X! such that for each x € X° the mapping & maps the fiber
(P%)~1(x) onto the fiber (P!)~!(¢(x)) and the set of distinguished points in (P?)~!(x) to
the set of distinguished points in PH™ @ (). Holomorphically isomorphic bundles will
be considered the same holomorphic bundles.

Two smooth (oriented) (g, m) fiber bundles over the same oriented smooth base manifold
X, 3 = (0, PYEY X), and §' = (X!, P!, E', X), are called (free) isotopic if for an
open interval I containing [0, 1] there is a smooth (g, m) fiber bundle (), P, E, X x I)
over the base X x I (called an isotopy) with the following property. For each ¢ € [0, 1]
we put ' = P~1(X x {t}) and E' = E NP (X x {t}). The bundle F° is equal to
(0, P Y% E° X x {0}), and the bundle §' isequalto (V!,P | Y, E!, X x {1}).

Two smooth (g, m)-bundles are smoothly isomorphic if and only if they are isotopic (see
[20D.

Denote by S a reference surface of genus g with a set £ C S of m distinguished points.
By Ehresmann’s Fibration Theorem each smooth (g, m)-bundle §g.m = (X, P, E, X) with

set of distinguished points E aef E NP~ 1(x) in the fiber over x is locally smoothly trivial,

i.e. each point in X has a neighbourhood U C X such that the restriction of the bundle to U
is isomorphic to the trivial bundle (U xS,pr;,UxE, U ) with set {x} x E of distinguished
points in the fiber {x} x S over x. Here pr; : U x § — U is the projection onto the first
factor.

The idea of the proof of Ehresmann’s Theorem is the following. Choose smooth coordi-
nates on U by a mapping from a rectangular box to U. Consider smooth vector fields v; on
U, which form a basis of the tangent space at each point of U. Take smooth vector fields
V; on P~ (U) that are tangent to E at points of this set and are mapped to v ; by the differ-
ential of P. Such vector fields can easily be obtained locally. To obtain the globally defined
vector fields V; on P~1(U) one uses partitions of unity. The required diffeomorphism ¢y is
obtained by composing the flows of these vector fields (in any fixed order).

In this way a trivialization of the bundle can be obtained over any simply connected
domain.

Let go be a base point in X and y(¢), ¢t € [0, 1], a smooth curve in X with base point
qo that represents an element e of the fundamental group 71 (X, qo). Let ¢' : P Nq0) —
P_l(y(t)), t € [0,1], guo = Id, be a smooth family of diffeomorphisms that map the
set of distinguished points in P! (qo) to the set of distinguishes points in P (y(@)). To
obtain such a family we may restrict the bundle to the closed curve given by y and lift the
restriction to a bundle over the real axis R. The family of diffeomorphisms may be obtained
by considering Ehrenpreis’ vector field for the lifted bundle and take the flow of this vector
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field. The mapping ¢! obtained for r = 1 is an orientation preserving self-homeomorphism
of the fiber over gq that preserves the set of distinguished points. Its isotopy class depends
only on the homotopy class of the curve and the isotopy class of the bundle. The isotopy
class of its inverse (¢')~! is called the monodromy of the bundle along e. Assign to each
element e € (X, go) the monodromy of the bundle along e. We obtain a homomorphism
from 1 (X, go) to the group of isotopy classes of self-homeomorphisms of the fiber over go
that preserve the set of distinguished points. The modular group Mod(g, m) is the group of
isotopy classes of self-homeomorphisms of a reference Riemann surface of genus g that map
a reference set of m distinguished points to itself.

The following theorem holds (see e.g. [8, 20]).

Theorem G Let X be a connected finite open smooth oriented surface. The set of isotopy
classes of smooth oriented (g, m) fiber bundles over X is in one-to-one correspondence to
the set of conjugacy classes of homomorphisms from the fundamental group w1 (X, qo) into
the modular group Mod(g, m).

Let 2g — 2 + m > 0. A holomorphic (g, m)-bundle is called locally holomorphically
trivial if it is locally holomorphically isomorphic to the trivial (g, m)-bundle. All fibers of a
locally holomorphically trivial (g, m)-bundle § = (X, P, E, X) are conformally equivalent
to each other. Fora locally trivial holomorphlc (g m)- bundle there exists a finite unramified
covering P:X — X and alift 3 (X, P, E, X) of § to X such that S is holomorphically
isomorphic to the trivial bundle. This can be seen as follows. Consider the lift § of the
bundle § to the universal covering P : X — X of X, i.e. § = (22, P, E, )~(), where the
fiber P! (%) with distinguished points ENP () is conformally equivalent to the fiber
P~ (x) with distinguished points E N P~ 1(x) with x = P(X). Let P : X — X be the
respective fiber preserving projection. The bundle Fis locally holomorphically trivial. Since
X is simply connected, § is holomorphlcally trivial on X, hence, there is a blholomorphlc
mapping @ : X — X x S that maps P~ (%) to {¥} x S for each ¥ € X, and maps E
to § x E. Here S is the fiber P~ l(qo) over a chosen point ¢y over the base point qo € X
and E = E N P~!(§o). The mapping & ~! provides a uniquely determined holomorphic
family of conformal mappings ¢z : S = P~(Go) — P~ (%), ¥ € X, that map the set of
distinguished points in one fiber to the set of distinguished points in the other fiber, such that
the total space X" of the bundle § is holomorphically equivalent to the quotient of {x} x S by
the following equlvalence relation ~. Two points (x 1, ¢1) and (%2, &) in X x S are equivalent
if P(X1) = P(x) and <p ({2) = (;‘1) Let P- ! be the inverse of the restriction of P to a

neighbourhood of P~ 1()cl) If P(xl) = P(x), the mapping P(p);2g0_ 737 is a holomorphic
self-homeomorphism of the fiber P~ L(x1). The set of such self- homeomorphlms is ﬁnlte
Consider the set N of elements ¢ € m1(X, go) for which Pw(lgqo) 1e)( qo)P~ is the

identity. As before (Is90)~1 is the isomorphism from the fundamental group to the group of
covering transformations. The set N is a normal subgroup of the fundamental group It is of
finite index, since two cosets e; N and ep N are equal if P(p(mo) Heaer)(G0) qo = Id, and

there are only finitely many distinct holomorphic self-homeomorphisms of P~ (¢o). Hence,

X af X / (Is?0)~1(N) is a finite unramified covering of X and the lift of the bundle § to X
has the required property.
. Vlce versa, if for a holomorphlc (g, m) bundle 3 there exists a finite unramified covering

P:X — X,suchthatthe lift § = (X, P, E, X) of F to X is holomorphically isomorphic to
the trivial bundle, then § is locally holomorphically trivial.
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A smooth (holomorphic, respectively) bundle is called isotrivial, if it has a finite covering
by the trivial bundle. If all monodromy mapping classes of a smooth bundle are periodic,
then the bundle is isotopic (equivalently, smoothly isomorphic) to an isotrivial bundle. This
can be seen by the same arguments as above.

We explain now the notion of irreducible smooth (g, m)-bundles. It is based on Thurston’s
notion of irreducible surface homeomorphisms. Let S be a connected finite smooth oriented
surface. It is either closed or homeomorphic to a surface with a finite number of punctures.
We will assume from the beginning that S is either closed or punctured.

A finite non-empty set of mutually disjoint Jordan curves {Cj, ..., Cy} on a connected
closed or punctured oriented surface S is called admissible if no C; is homotopic to a
point in X, or to a puncture, or to a C; with i # j. Thurston calls an isotopy class m
of self-homeomorphisms of S (in other words, a mapping class on §) reducible if there is an
admissible system of curves {Cy, ..., Cy} on S such that some (and, hence, each) element
in m maps the system to an isotopic system. In this case we say that the system {Cy, ..., Cy}
reduces m. A mapping class which is not reducible is called irreducible.

Let S be a closed or punctured surface with set E of distinguished points. We say that ¢
is a self-homeomorphism of S with distinguished points E, if ¢ is a self-homeomorphism of
S that maps the set of distinguished points E to itself. Notice that each self-homeomorphism
of the punctured surface S\ E extends to a self-homeomorphism of the surface S with set
of distinguished points E£. We will sometimes identify self-homeomorphisms of S\ E and
self-homeomorphism of S with set E of distinguished points.

For a (connected oriented closed or punctured) surface S and a finite subset E of S a finite
non-empty set of mutually disjoint Jordan curves {C1, ..., Cy} in S\ E is called admissible
for S with set of distinguished points E if it is admissible for S\ E. An admissible system of
curves for S with set of distinguished points E is said to reduce a mapping class m on S with
set of distinguished points E, if the induced mapping class on S\ E is reduced by this system
of curves.

Conjugacy classes of reducible mapping classes can be decomposed in some sense into
irreducible components, and conjugacy classes of reducible mapping classes can be recovered
from the irreducible components up to products of commuting Dehn twists. Conjugacy classes
of irreducible mapping classes are classified and studied.

A Dehn twist about a simple closed curve y in an oriented surface S is a mapping that
is isotopic to the following one. Take a tubular neighbourhood of y and parameterize it as
around annulus A = {¢7° < |z| < 1} so that y corresponds to |z| = e~ 2. The mapping is
an orientation preserving self-homeomorphism of S which is the identity outside A and is
equal to the mapping e 5+l s o=EsH2TI(+S) for e=e5+27il ¢ A je 5 € (0, 1). Here &
is a small positive number.

Thurston’s notion of reducible mapping classes takes over to families of mapping classes
on a surface of type (g, m), and therefore to (g, m)-bundles. Namely, an admissible system
of curves on a (connected oriented closed or punctured) surface S with set of m distinguished
points E is said to reduce a family of mapping classes m; € I(S; ¥, E) if it reduces each
m;. Similarly, a (g, m)-bundle with fiber § over the base point g and set of distinguished
points E C S is called reducible if there is an admissible system of curves in the fiber over
the base point that reduces all monodromy mapping classes simultaneously. Otherwise the
bundle is called irreducible.

Reducible bundles can be decomposed into irreducible bundle components and the
reducible bundle can be recovered from the irreducible bundle components up to commuting
Dehn twists in the fiber over the base point.

@ Springer



Riemann surfaces of second kind... 105

Let X be a finite open connected Riemann surface. By a holomorphic (smooth, respec-
tively) (0, n)-bundle with a section over X we mean a holomorphic (smooth, respectively)
(0, n 4+ 1)-bundle (X, P, E, X), such that the complex manifold (smooth manifold, respec-
tively) E C X is the disjoint union of two complex manifolds (smooth manifolds,
respectively) E and s, where E C X intersects each fiber P~!(x) along a set E. of n
points, and s C X intersects each fiber P! (x) along a single point s,. We will also say,
that the mapping x — sy, x € X, is a holomorphic (smooth, respectively) section of the
(0, n)-bundle with set of distinguished points E « in the fiber over x.

A special (0, n + 1)-bundle is a bundle over X of the form (X x P! ,pry, E, X), where
pr; : X x P! — X is the projection onto the first factor, and the smooth submanifold E
of X x P! is equal to the disjoint union E U so where 5o intersects each fiber {x} x P!
along the point {x} x {oo}, and the set E intersects each fiber along n points. A special
(0, n + 1)-bundle is, in particular, a (0, n)-bundle with a section.

Two smooth (0, n)-bundles with a section (in particular, two special (0, n + 1)-bundles)
are called isotopic if they are isotopic as (0, n + 1)-bundles with an isotopy that joins the
sections of the bundles. A holomorphic (smooth, respectively) (0, n)-bundle with a section is
isotopic to a holomorphic (smooth, respectively) special (0, n + 1)-bundle over X (see [20]).

Theorem 2 is a consequence of the following theorem on (0, 3)-bundles with a section.

Theorem 3 Over a connected Riemann surface of genus g with m + 1 holes there are up
to isotopy no more than (15 exp(67w A1o(X 1))0@8HM) jrreducible holomorphic (0, 3)-bundles
with a holomorphic section.

For a reducible (0, 4)-bundle the fiber of each irreducible bundle component is a thrice-
punctured Riemann sphere. Hence each irreducible bundle component of a reducible (0, 4)-
bundle is isotopic to an isotrivial bundle. For more details see [20].

Theorem 1 (with a weaker estimate) is a consequence of Theorem 3. Indeed, consider
holomorphic (smooth, respectively) bundles whose fiber over each point x € X equals P! with
set of distinguished points {—1, 1, f(x), oo} forafunction f which depends holomorphically
(smoothly, respectively) on the points x € X and does not take the values —1 and 1. Then
we are in the situation of Theorem 1. It is not hard to see that the mapping f is reducible, iff
this (0, 4)-bundle is reducible (see also Lemma 7 of [20]).

The relation between Theorems 2 and 3 is given in Proposition 5 below.

A holomorphic (1, 1)-bundle § = (X ,P,s, X ) is called a double branched covering of
the special holomorphic (0, 4)-bundle (X x P!, pr;, E, X) if there exists a holomorphic
mapping P : X — X x P! that maps each fiber P~!(x) of the (1, 1)-bundle onto the
fiber {x} x P! of the (0, 4)-bundle over the same point x, such that the restriction P :
P~1(x) = {x} x P! is a holomorphic double branched covering with branch locus being
the set {x} x (E, U{oo}) = E N ({x} x P) of distinguished points in the fiber {x} x P!,
and P maps the distinguished point s, in the fiber P! (x) over x to the point {x} x {oc} in
{x} x P!. We will also denote (X x Pl pry, E, X) by P((X, P, s, X)), and call the bundle
(X, P,s, X)aliftof (X x P!, pry, E, X). Let the fiber of the (1, 1)-bundle over the base point
go € X be Y with distinguished point s, and let the fiber of the (0, 4)-bundle over g be P!
with distinguished points E U{oo} foraset E C C3(C),/S;. Then the monodromy mapping
class m; € M(P'; 0o, E) of the (0, 4)-bundle along any generator of the fundamental group
of X is the projection of the monodromy mapping class m € M(Y; s, @) of the (1, 1)-bundle
along the same generator. This means that there are representing homeomorphisms ¢ € mand
¢1 € my such that 91 (P(¢)) = P(¢(¢)), ¢ € Y. We will also say that m is a lift of m;. The
lifts of a mapping class m; € 9M(P'; oo, E ) differ by the involution of Y, that interchanges
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the sheets of the double branched covering. Hence, each classm; € M(PL; oo, E ) has exactly
two lifts.

Proposition 5 Let X be a Riemann surface of genus g withm + 1 > 1 holes with base point
qo and curves y; representing a set of generators e; € w1 (X, qo).

(1) Each holomorphic (1, 1)-bundle over X is holomorphically isomorphic to the double
branched covering of a special holomorphic (0, 4)-bundle over X.

(2) Vice versa, for each special holomorphic (0, 4)-bundl_e over X and each collection m/
of lifts of the 2g + m monodromy mapping classes m{ of the bundle along the y; there
exists a double branched covering by a holomorphic (1, 1)-bundle with collection of
monodromy mapping classes equal to the m/. Each special holomorphic (0, 4)-bundle
has exactly 228" non-isotopic holomorphic lifts.

(3) A lift of a special (0,4)-bundle is reducible if and only if the special (0, 4)-bundle is
reducible.

The proof of the proposition uses the fact that a holomorphic (1, 1)-bundle over X is

holomorphically isomorphic to a holomorphic bundle whose fiber over each point x is a
quotient C /A, of the complex plane by a lattice A, with distinguished point 0,/ A,. The
lattices depend holomorphically on the point x. To represent the fibers as branched coverings
depending holomorphically on the points in X we use embeddings of punctured tori into C?
by suitable versions of the Weierstraf} g-function. For a detailed proof of Proposition 5 see
[20].
Preparation of the proof of Theorem 3. The proof will be given in terms of braids. Let
Cpn(C) ={(z1,...,za) € C" : zj # z; for j # k} be the n-dimensional configuration space.
The symmetrized configuration space is its quotient C,, (C) /S, by the diagonal action of the
symmetric group S,. We write points of C,(C) as ordered n-tuples (zy, ..., z,) of points
in C, and points of C,,(C) /S, as unordered tuples {z1, ..., z,} of points in C. We regard
geometric braids on n strands with base point E,, as loops in the symmetrized configuration
space C, (C) /S, with base point E,,, and braids on n strands (n-braids for short) with base
point E, € C,(C)/S, as homotopy classes of loops with base point E, in C,(C) /S,
equivalently, as elements of the fundamental group 71 (C,(C) /S, E,,) of the symmetrized
configuration space with base point E,,.

Each smooth mapping F : X — C,(C)/S, defines a smooth special (0,n + 1)-
bundle (X x P!, pry, E, X), where E N ({x} x Phy = {x} x (F(x) U{oo}). Vice versa, for
each smooth special (0, n + 1)-bundle (X x P!, pry, E, X) the mapping that assigns to each
pointx € X the set of finite distinguished points in the fiber over x defines a smooth mapping
F : X — Cy(C),/S,. The mapping F is holomorphic iff the bundle is holomorphic. It is
called irreducible iff the bundle is irreducible. Choose a base point go € X. The restriction
of the mapping F to each loop with base point go defines a geometric braid with base point
F(qo). The braid represented by it is called the monodromy of the mapping F along the
element of the fundamental group represented by the loop.

The monodromy mapping classes of a special (0, n + 1)-bundle are isotopy classes of
self-homeomorphisms of the fiber P! over the base point go which map the set of finite
distinguished points E, = F(qo) in this fiber onto itself, and fix co. Two smooth mappings
F) and F, from X to C,(C), /S, that have equal value E, € C,(C), /S, at the base point
qo, define special (0, n + 1)-bundles , that are isotopic with an isotopy that fixes the fiber
over go and the set of distinguished points in this fiber, iff their restrictions to each curve in
X with base point go define braids that differ by an element of the center Z, of the braid
group B, on n strands (in other words, by a power of a full twist). Indeed, the braid group
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on n strands modulo its center B,/ Z, is isomorphic to the group of mapping classes of P!
that fix co and map E,, to itself.

Leto;, j = 1, 2 be the generators of B3, and A3 = 010207. Note that for the group P33
of pure braids on three strands the quotient P33, Z3 is isomorphic to the fundamental group
of C\{—1, 1}. The isomorphism maps the generators ojz/(Ag), j=1,2,0f PB3, 23 to
the standard generators a;, j = 1, 2, of the fundamental group 71 (C\{—1, 1}, 0). Here (A%)
denotes the group generated by A% which is equal to the center Z3.

The proof of Theorem 3 will go now along the same lines as the proof of Theorem 1 with
some modifications. Lemma H, Lemmas 5 and 6, and Theorem I below are given in terms of
braids rather than in terms of elements of B3 /' Z3.

The following lemma and the following theorem were proved in [17].

LemmaH Any braid b € B3 which is not a power of A3z can be written in a unique way in
the form

o by Af (22)

where j = 1 or j = 2, k # 0 is an integer, { is a (not necessarily even) integer, and by is
a word in 012 and 022 in reduced form. If by is not the identity, then the first term of by is a
non-zero even power of o3 if j = 1, and by is a non-zero even power of o1 if j = 2.

For an integer j # 0 we put g(j) = j if j is even, and for odd j we denote by ¢ (j)
the even integer neighbour of j that is closest to zero. In other words, g(j) = jif j # O is
even, and for each odd integer j, g(j) = j — sgn(j), where sgn(j) for a non-zero integral

number j equals 1 if j is positive, and —1 if j is negative. For a braid in form (22) we put

9(0) < 1% by 1 b is a power of A3 we put 9 (b) < 1d.

Let C, (R), /S, be the totally real subspace of C, (C),/S,,. It is defined in the same way
as C,(C) /S, by replacing C by R. Take a base point E,, € C,(R),S,. The fundamental
group 1(C,(C),/S,, E,) withbase pointis isomorphic to the relative fundamental group

71(Crh(©) /S, Cu(R),S, ). The elements of the latter group are homotopy classes of arcs
in C,(C)/S, with endpoints in the totally real subspace C,(R), S, of the symmetrized
configuration space.

Let b € B, be a braid. Denote by b;, the element of the relative fundamental group
71(Crh(©)/S,, C,(R),S, ) thatcorresponds to b under the mentioned group isomorphism.
For a rectangle R in the plane with sides parallel to the axes we let f : R — C,(C) /S, be
a mapping which admits a continuous extension to the closure R (denoted again by f) which
maps the (open) horizontal sides into C,(R),~S,, . We say that the mapping represents by, if
for each maximal vertical line segment contained in R (i.e. R intersected with a vertical line
in C) the restriction of f to the closure of the line segment represents by, .

The extremal length of a 3-braid with totally real horizontal boundary values is defined as

Ay (D) = inf{L(R) : R arectangle which admits a holomorphic map to
C,(C),/S, thatrepresents by, }.

(see [17].) The following theorem holds (see [17]).

Theorem | Let b € B3 be a (not necessarily pure) braid which is not a power of As, and let
w be the reduced word representing the image of ¥ (b) in ’PB3/(A%). Then

An®) = - L_(w),
2
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except in the case when b = o* Ag, where j = 1 or j =2, k # 0 is an integer number, and
€ is an arbitrary integer. In this case A (b) = 0.

The set

def .
H éf{{zl, 22, 23} € C3(C) /S5 : the three points z1, z2, 23
are contained in a real line in the complex plane} (23)

is a smooth real hypersurface of C3(C),Ss. Indeed, let {z(l), zg, zg} be a point of the sym-
metrized configuration space. Introduce coordinates near this point by lifting a neighbourhood

. . . . . def ._
of the point to C3(C) with coordinates (z1, z2, z3). Since the linear map M (z) &) %, z€

C, maps the points z; and z3 to the real axis, the three points z1, z2, and z3 lie on a real

line in the complex plane iff the imaginary part of z), = (z2) = 2=} vanishes. The
equation Im% = 0 in local coordinates (z1, 22, z3) defines a local piece of a smooth real
hypersurface.

For each complex affine self-mapping M of the complex plane we consider the diag-
onal action M((Zl,zz, 23)) = (M(zl), M(z2), M(z3)) on points (z1,z2,23) € C3(0C),
and the diagonal action M ({z1, 22, z3}) = {M(z1), M(z2), M (z3)} on points {z1, 22, 23} €
CG3(C) /Ss.

The following two lemmas replace Lemma 2 in the case of (0, 3)-bundles with a section.

Lemma5 Let A be an annulus with an orientation of simple closed dividing curves. Suppose
F : A — C3(C) /S5 is a holomorphic mapping whose image is not contained in H. Suppose
L 4 is a simple relatively closed curve in A with limit points on both boundary circles of A, and
F(L4) C H. Moreover, for a point g4 € L 4 the value F(qa) is in the totally real subspace
C3(R),/S3. Let eg € m1(A, ga) be the positively oriented generator of the fundamental

group of A with base point q . If the braid b aef Fy(ea) € B3 is different from crjl.‘ A%e/ with
j equalto 1 or?2, and k # 0 and £’ being integers, then

L_(9(b)) <27 A(A). 24)

Notice that the braids o' Ag for odd ¢ are exceptional for Theorem I, but not exceptional for
Lemma 5. The reason is that the braid in Lemma 5 is related to a mapping of an annulus, not

logt tell,
merely to a mapping of a rectangle. For ¢ € [0, c0) we put log, ¢ = [Oog . c {0 T?)
€Y,

Lemma 6 If the braid in Lemma 5 equals b = ojlf oj’?,/ Ag with j and j' equal to 1 or to 2,

Jj # j, and k and k' being non-zero integers, and € an even integer, then

| K 4
og, |3 5 +log, |3 > <mA(A). (25)

Here for a non-negative number x we denote by [x] the smallest integer not exceeding x.

Proofof Lemma 5 By the same argument as in the proof of Lemma 2 we may assume that the
annulus A has smooth boundary, the mapping F extends continuously to the closure A, and
the curve L 4 is a smooth (connected) curve in A whose endpoints are on different boundary
components of A. Perhaps after a diagonal action of a fixed Mobius transformation on each
point of C3(CS3), we may also assume that the value of F at the point g4 € L4 is equal
to the unordered triple {—1, ¢’, 1} € C3(R), /S5 for a number ¢’ € R\{—1, 1}. We restrict
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the mapping F to A\Lj. Let R be a lift of A\Ly to the infinite strip A that covers A. We
consider R as curvilinear rectangle with horizontal sides being the two different lifts of L 4
and vertical sides being the lifts of the two boundary circles cut at the endpoints of L 4.
Take a closed curve y4 : [0, 1] — A in A with base point g4 € L4, that intersects L 4
only at the base point and represents the element e4 € 71 (A, ga). Let y4 be the lift of y4
to A for which 74((0, 1)) is gontained in R, and let F = (1:"1, B, 133) iR — C3(C) be a
lift of F to a mapping from R to the configuration space C3 (C). The continuous extension
of F to R is also denoted by F. We may choose the lift so that the value of F at the copy
of g4 on the lower horizontal side of R equals (—1, ¢’, 1). For each 7 € R we consider the

complex affine mapping ,(¢) = a(z)¢ + b(z) = def -1+ 2%, ¢ € C. Denote by
3(2)—Fi(z

Fo) Y a(F) = A ((Fi(2), F2(2), F3(2)), z € R, the result of applying 2. to each
of the three points of F(z). The mapping F(z) = (F1(z), F2(2), F3(2)) = (=1, F5(2), 1)
is holomorphic on R. Let Iiym aef {151 Fg, Fg} ( Fbym ef {131 ﬁz, ﬁ3} respectively) be
the projection of F (F, respectively) to a mapping from R to the symmetrized configuration
space C3(C),/Cs. Since F(L 4) C H the mapping Fsym takes the horizontal sides of R to the
totally real subspace C3(R),“S3 of the symmetrized configuration space. Moreover, Fsym
maps the copy of g4 on the lower side of Rto {—1, q’, 1}. Recall that also Fsym takes the
value {—1, ¢’, 1} at the copy of g4 on the lower side of R.

The restrictions of Fsym and of Fsym to the curve y4 represent elements of the relative
fundamental group 7r1 (C3(C) /S3, C3(R),/S3). The represented elements of the relative fun-
damental group differ by a finite number of half-twists. Indeed, for each z, the lifts to C3(C),
F(z) and I:“(z), differ by a complex affine mapping. Hence, ﬁ()?A (1)) = b(r) +a(z)F()7A (1))
for continuous functions @ and b on [0, 1] with @ nowhere vanishing, b(0) = 0, a(0) = 1,
and b(1) and a(1) real valued. Then the function b : [0, 1] — C is homotopic with endpoints
in R to the function that is identically equal to zero. The mapping a : [0, 1] — C\{0} is
homotopic with endpoints in R to -£ Tal . Hence, the mappings F (74(t)) and |Z(’t) F (74 (1)) from
[0, 1] to C3(C) /S5 are homotopic with endpoints in C3(R) /S3. The statements follows.

Let w(z) : A\Ls — R be the conformal mapping of the curvilinear rectangle onto
the rectangle of the form R = {z = x +iy : x € (0, 1), y € (0, a)}, that maps the lower
curvilinear side of A\ L to the lower side of R. (Note that the number a is uniquely defined by

ﬁ.) Fori’ € Z we put I:“l-/ (2) déf 50 I:“Sym (z). Then, for some choice of i’ the restrictions
Fsym | v4 and Is"i/ | v represent the same element of 71 (C3(C) /S3, C3(R),/S3)), namely
b;r. We represented by, by the holomorphic map Fyr from the rectangle R into C3(C) /83
that maps horizontal sides into C3(R) ~S3. Hence,

Abir) < A(R) = M(A\Ly) < A(A). (26)

For b # a]’? Ag with j equal to 1 or 2, and k # 0 and ¢ being integers, the statement of
Lemma 5 follows from Theorem I in the same way as Lemma 2 follows from Theorem F.
For b = UJ’.‘ Ag with &k = 0 the statement is trivial since then ¥ (Id) = Id and £_(d) = 0.

To obtain the statement in the remaining case b = o]’? A%Z/“ with j equal to 1 or 2, and
k and ¢’ being integers we use Lemma 6. Notice that 01 A3 = A30» and 0 Az = A3z o0].
Hence, b? = O'J o AM *2 with oj #oj.Letws : A2 — A be the two-fold unbranched
covering of A by an annulus A2, The equality AL(A%) = 2X(A) holds. Let g 42 be a point
in wy l(qA), and let Lg, be the lift of L4 to A that contains ¢ 42- Denote by y42 the
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loop wz_l (ya) with base point g42. Then F o wy | y42 represents b? and (b?);,. Lemma 6
applied to o o, A3F2 gives the estimate 2log, 3[51) < 7A(A?) = 27A(A). Since

2 B k
8 () = o2 3 15EN®

j , the inequality (24) follows. The lemma is proved. O

Proofof Lemma 6 By [17], Lemma 1 and Proposition 6, statement 2,

An(ok ok A > % <1ogJr (3 [%D +log,, <3 [“‘%])) : (27)

Since by (26) the inequality A;, (a]’.c al’?,/ Ag) < A(A) holds, the lemma is proved. ]

We want to emphasize that periodic braids are not non-zero powers of a o, so the lemma is
true also for periodic braids. For each periodic braid b of the form o102 = o ! Az, (0102)? =
o1 Az, 0001 = 02_1 Az, (0201)* = o9 Az, and A3 the £_ (9 (b)) vanishes. However, for
instance for the conjugate akaA3012k = akaUZZkA3 of A3 wehave L_ (9 (akaA3012k)) =

21og(3|k|). Another example, for the conjugate o, 2k o102 022k of 010, we have

02_2k o10n 022k = 02_2k_1 Az 022k = 02_2k_1 012k As.
and £_ (9 (0, ** 0107 33%)) equals 2 log(3|k]).

Notice that the lemmas and Theorem I descend to statements on elements of B3 Z3
rather than on braids. For an element b of the quotient B3 23 we put ¢ (b) = ¥ () for any
representative b € B3 of b.

Lemma 7 below is an analog of Lemma 4. It follows from Lemma 5 in the same way as
Lemma 4 follows from Lemma 2.

Lemma7 Let X be a connected finite open Riemann surface, and F : X — C3(C) /83 be
a holomorphic map that is transverse to the hypersurface H in C3(C),/S3. Suppose Ly is
a simple relatively closed curve in X such that F(Lg) is contained in H, and for a point
q € Lo the point F(q) is contained in the totally real space C3(R) /Ss. Let eV and ¢® be
primitive elements of w1 (X, q). Suppose that fore = eV, e = @ and e = eMe@ the free
homotopy class € intersects Lg. Then either the two monodromies of F modulo the center
F.(eW)) /23, j = 1,2, are powers of the same element 0j,/ 23 of B3 /23, or each of them
is the product of at most two elements by and by of B3/ Z3 with

L_(W(b))) <270 0, j=1,2, (28)
where
J _ _ _
Ao 0@ < max{(A(eD)), A(AED)), A(AED eD))).

Proof Suppose for an element ¢ € (X, g) the free homotopy class ¢ intersects Lo. By an
analog of Lemma 3 there exists an annulus A, a point g4 € A, and a holomorphic map w4 :
(A,ga) — (X, q) that represents e. Moreover, the connected component of (wa)" Y (Lo)
that contains g4 has limit points on both boundary components of A. Put F4 = F o ws. By
the conditions of Lemma 7 F4(L4) = F(Lo) C H and Fa(ga) € C3(R),/S3. Let e4 be
the generator of 1 (A, g4) for which ws(es) = e. The mapping Fy : A — C3(C),/S;s,
the point g4 and the curve L 4 satisfy the conditions of Lemma 5. Notice that the equality
(Fa)«(ea) = Fy(e) holds. Hence, if Fi(e) is not a power of a o; then inequality (24) holds
for Fy(e).
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Suppose the two monodromies modulo center Fy(e'/)) /23, j = 1,2, are not (trivial
or non-trivial) powers of the same element o; 23 of B3, Z3. Then at most two of the
elements, Fy(e(D) /23, F (@) /23, and F (e e®@) /23 = F . (eV) / Z3- F (@) / 23,
are powers of an element of the form o; /' Z;3.

If the monodromies modulo center along two elements among e, ¢, and e(De®
are not (zero or non-zero) powers of a o;,/Z3 then by Lemma 5 for each of these two
monodromies modulo center inequality (28) holds, and the third monodromy modulo center
is the product of two elements of B3 /" Z3 for which inequality (28) holds. If the monodromies
modulo center along two elements among e, ¢® and e(Ve® have the form crj’.‘ /23 and

a]]?,/ /23, thenthe o and the o j are differentand k and k" are non-zero. The third monodromy

’
modulo center has the form ajika;—fk /23 (or the order of the two factors interchanged).

Lemma 6 gives the inequality log, (3 max([%]) +log, (3 max([lgi]) < A0 @ - Since

L_ (ﬁ(ajik)) = log(3[§]) and £_ (z?(ajj,tk,)) = 10g(3[%]), inequality (28) follows for the
other two monodromies. The lemma is proved. O

The following lemma holds.

Lemma 8 Let X be a connected finite open Riemann surface, and F : X — C3(C) /S5 a
smooth mapping. Suppose for a base point q of X each element of (X, q1) can be repre-
sented by a curve with base point q1 whose image under F avoids H. Then all monodromies
of F are powers of the same periodic braid of period 3.

Proof Take the monodromy of F along any curve with base point ¢;. It has a power that is a
pure 3-braid b, and a representative of b avoids . Then for some integer / the first and the
last strand of b A%l are fixed, and a representative of b A%l avoids H. Hence, b A%l = Id and
b= A3 2 'We saw that the monodromy of F along each element e € 71 (X, ¢1) is a periodic
braid.

If a representative f : [0, 1] — C3(C),/S3, f(0) = f(1), of a 3-braid b avoids H,
then the associated permutation 73(b) cannot be a transposition. Indeed, assume the contrary.
Then there is alift £ of f to C3(C), for which (f1(1), f2(1), f3(1)) = (f3(0), /2(0), f1(0)).
Let L, be the line in C that contains f] (t) and f3 (1), and is oriented so that running along
L, in positive direction we meet first fl (t) and then f3(t). The point f>(0) is not on Lg.
Assume without loss of generality, that it is on the left of Lo with the chosen orientation of
L. Since for each ¢ € [0, 1] the three points fl (1), fz(t) and f3(t) in C are not on a real
line, the point fz () is on the left of L, with the chosen orientation. But the unoriented lines
Lo and L coincide, and their orientation is opposite. This implies fz(l) * fz(O), which is
a contradiction. We proved that all monodromies are periodic with period 3.

There is a smooth homotopy Fj, s € [0, 1], of F, such that Fy = F, each Fj is different
from F only on a small neighbourhood of ¢, each F; avoids H on this neighbourhood of
q1, and F1(q) is the set of vertices of an equilateral triangle with barycenter 0. Since F and
F are free homotopic, their monodromy homomorphisms are conjugate, and it is enough to
prove the statement of the lemma for F7.

For notational convenience we will keep the notation F for the new mapping and assume
that F(q) is the set of vertices of an equilateral triangle with barycenter 0. The monodromy
F,(e) along each element e € m1(X, ¢q1) is a periodic braid of period 3. Hence, 13(Fx(e)) is
a cyclic permutation. Consider the braid g with base point F'(0) that corresponds to rotation
by the angle Z_T”, i.e. it is represented by the geometric braid t — elsz F(0), t € [0, 1], that
avoids H. There exists an integer k such that F,(e) g¥ is a pure braid that is represented by
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a mapping that avoids . Hence, F,(e) g* represents A%l for some integer /. We proved that
for each e € 71 (X, q1) the monodromy Fj(e) is represented by rotation of F(0) around the
origin by the angle ZHT’ for some integer j. The Lemma is proved. O

Let as before X be a finite open connected Riemann surface. The following proposition
is the main ingredient of the proof of Theorem 3. Let as before £ C 71 (X, go) be the system
of generators of the fundamental group with base point go € X that was chosen in Sect. 1.

Proposition 6 Ler (X x P!, pry, E, X) be an irreducible holomorphic special (0, 4)-bundle
over a finite open Riemann surface X, that is not isotopic to a locally holomorphically trivial
bundle. Let F (x), x € X, be the set of finite distinguished points in the fiber over x. Assume
that F is transverse to H. Then there exists a complex affine mapping M and a point g € X
such that M o F(q) is contained in C3(R)/S3, and for an arc a in X with initial point
qo and terminating point q and each element e; € 1s4(E) the monodromy modulo center
(M o F)y(ej),/ Z3 can be written as product of at most 6 elements bj i, k =1,2,3,4,5,6,
of B3,/ Z3 with

L_(3(bj,0)) = 2w h10(X). (29)

If X is a torus with a hole the monodromy along each e; is the product of at most 4
elements with L_(9(b; 1)) < 2mA3(X), and in case of a planar domain the monodrony
along each e; is the product of at most 6 elements with L_(9(b; 1)) < 2w Ag(X).

Proof of Proposition 6 Since the bundle is not isotopic to a locally holomorphically trivial
bundle, it is not possible that all monodromies are powers of the same periodic braid, and by
Lemma 8 the set

LY eX F)eH) (30)
is not empty.
1. A torus with a hole. Let X be a torus with a hole and let £ = {e, ¢j} be a set of
generators of 771 (X, go) that is associated to a standard bouquet of circles for X. There exists
a connected component Lo of L which is not contractible and not contractible to the hole.
Indeed, otherwise there would be a base point g; and a curve «y, that joins go with gy,
such that for both elements of Is,, ” (&) there would be representing loops with base point g1
which do not meet L, and hence, by Lemma 8 the monodromies along both elements would
be powers of a single periodic braid of period 3.
Hence, as in the proof of Proposition 3 there exists a component Ly of L, which is a
simple smooth relatively closed curve in X, such that the free homotopy class of one of the
elements of &, say of ¢, has positive intersection number with Lo. Put e, = ¢(,. Moreover,

the intersection number with L is positive for the free homotopy class of one of the elements

nEl ’on . " . T "o
ey~ oreye,. Denote this element by €. (Since epey = ee, we may also put ey = ege if

the free homotopy class of e[ intersects Lo.) Put £ = {e{, ejj}. The free homotopy class
of each element of &) and of the product of its two elements intersects Lo. One of the e, and

eg is an element of &, the other is in £ U £~! or is the product of two elements of £. Each
element of £ is the product of at most two elements of £, U 5é_1 .

Move the base point g to a point g € L along a curve «, and consider the respective
generators e’ = Isy(e))) and ” = Is,(ef)) of the fundamental group 71 (X, g) with base
point g. Since F(Lg) C H there is a complex affine mapping M such that M o F(q) €
C3(R),/8Ss. Since F is irreducible, the monodromy maps modulo center (M o F),(€e") /' Z3
and (M o F),.(e") /23 are not powers of a single standard generator o'; /23 of B3 /23 (see
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Lemma 7 of [20]). Hence, the second option of Lemma 7 occurs. We obtain that each of the
(Mo F).(e'),/Z3and (M o F).(e"),/ Z3 is a product of at most two elements b ; of B3 /S3
with £_ (9 (b)) < 2w A3(X). Hence, (M o F).(¢),/Z3 and (M o F).(¢") / Z3 are products
of at most 4 elements of B3, Z3 with this property. The proposition is proved for tori with a
hole.

2. A planar domain. Let X be a planar domain. Maybe, after applying a Mobius transfor-
mation, we represent X as the Riemann sphere with holes C;, j =1, ..., m + 1, such that
Cim+1 contains 0o. Recall, that the set £ of generators e o, j = 1, ..., m, of the fundamental
group 1 (X, go) with base point gq is chosen so that ¢; ¢ is represented by a loop with base
point gq that surrounds C; counterclockwise and does not surround any other hole. There is
a connected component L of L of one of the following kinds. Either L has limit points on
the boundary of two different holes (one of them may contain co) (first kind), or a component
L has limit points on a single hole C;, j < m + 1, and C; U L divides the plane C into
two connected components each of which contains a hole (maybe, only the hole containing
00) (second kind), or there is a compact component L that divides C into two connected
components each of which contains at least two holes (one of them may contain co). Indeed,
suppose each non-compact component of L has boundary points on the boundary of a single
hole and the union of the component with the hole does not separate the remaining holes
of X, and for each compact component of L one of the connected components of its com-
plement in X contains at most one hole. Then there exists a base point g1, a curve a, in
X with initial point go and terminating point g, and a representative of each element of
Isy ” () € m(X, q1) that avoids L. Lemma 8 implies that all monodromies modulo center
are powers of a single periodic element of B3, Z3 which is a contradiction.

If there is a component L of the first kind we may choose the same set of primitive
elements & C & C m1(X, qo) as in the proof of Proposition 3 in the planar case. The free
homotopy class of each element of £} and of the product of two such elements intersects Lo.
Moreover, each element of £ is the product of at most two elements of Eé. Let oy be a curve
in X with initial point go and terminating point ¢, and M a complex affine mapping, such
that (M o F)(g) € C3(R),/S3. Since M o F is irreducible, the monodromies modulo center
of M o F along the elements of Is, (Sé) are not (trivial or non-trivial) powers of a single
element o /" Z3. Hence, for each element of Is,, (Eé) there exists another element of Is,, (Sé)
so that the second option of Lemma 7 holds for this pair of elements of Is, (£3). Therefore,
the monodromy modulo center of M o F along each element of Is, (£}) is the product of at
most two elements b; € B3/ Z3 of L_ not exceeding 27 14 (X), and the monodromy modulo
center of M o F along each element Is, (€) is the product of at most 4 elements of B3/ Z3
with £_(¢(b;)), each not exceeding 27 A4 (X).

Suppose there is no component of the first kind but a component L of the second kind.
Assume first that all limit points of L are on the boundary of a hole C; that does not contain
oo. Put & = {e; 0} Ur<k<m, k) {e?ﬁoek,o}‘ Each element of &} is a primitive element and is
the product of at most three generators contained in the set £. Further, each element of £ is
the product of at most three elements of £5 U €§7l.

The free homotopy class of each element of £ and of each product of two different
elements of &} intersects Lo. Indeed, any curve that is contained in the complement of
C;j U Ly has either winding number zero around C; (as a curve in the complex plane C), or
its winding number around C; coincides with the winding number around each of the holes
in the bounded connected component of C;. On the other hand the representatives of the free
homotopy class of e; o have winding number 1 around C; and winding number O around
each other hole that does not contain co. The representatives of the free homotopy class of
e?qoek,g, k < m, k # j, have winding number 2 around C;, winding number 1 around C,
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and winding number zero around each other hole C;, [ < m. The argument for products of
two elements of & is the same.

Choose a point ¢ € Lo, a curve « in X with initial point g and terminating point ¢, and a
complex affine mapping M such that M o F'(q) € C3(R),/S3. Lemma 7 finishes the proof for
this case in the same way as in the case when there is a component of first kind. In the present
case each (M o F),(e) /Z3, ¢ € Isy (Eé), can be written as a product of at most 2 factors
b € B3,/ 23 with L_(#(b)) < 2mwAs(X). Hence, each (M o F)y(e;) /23, e; = Isq(ej 0),
can be written as a product of at most 6 factors b € B3,/ Z3 with £_ (9 (b)) < 27w i¢(X).

Assume that the limit points of L are on the boundary of the hole C, that contains co.
Let Cj, and Cy, be holes that are contained in different components of X\ (Lo U C), and let
ej,,0 and ey, o be the elements of £ whose representatives surround Cj,, and Cy, respectively.
Denote by €§ the set that consists of the elements e, opex,,0 » e%,oeko.O , and all elements
€j,,0€k,0€0 With &g running over £\{e , 0, ex,,0}. Each element of .Sé is the product of at most
3 elements of £, and each element of £ is the product of at most 3 elements of Sé U (Sé)_] .

Each element of &£} and each product of at most two different elements of £} intersects
Lo. Indeed, if a closed curve is contained in one of the components of X\ (Lo U Cx) then
its winding number around each hole contained in the other component is zero. But for all
mentioned elements there is a hole in each component of X\ (Lo UC,) such that the winding
number of the free homotopy class of the element around the hole does not vanish. Lemma 7
applies with the same meaning of ¢, &, and M as before. Again, each (M o F).(e;),/ 23,
ej = Isy(ej o), can be written as a product of at most 6 factors b € B3,/ Z3 with L_ (¢ (b)) <
27 re(X).

Notice that in case of m + 1 = 3 holes only these two possibilities for the curve Lo
may occur. Hence in this case we find a set & = {ef,, ej} C m1(X, qo), such that one
of the elements of Sé is the product of at most two elements of £ U £ —! and each of the
monodromies Fi (e6) and F, (eg ) is the product of at most two elements b € B3, 23 with
L_(¥(b)) < 2mwis5(X). Moreover, e and ¢’ are products of at most three factors, each an
element of £ U 5;1.

Suppose there are no components of L of the first or the second kind, but there is a
connected component Lq of L of the third kind. Let C}, be a hole contained in the bounded
component of the complement of Ly, and let Cy,, ko < m, be a hole that is contained in the
unbounded componentof X\ Lo.Lete, o and eg, o be the elements of £ whose representatives
surround Cj,, and Cy, respectively. Consider the set £, consisting of the following elements:
€,,0€k0,0 eio,oeko,O’ and eio,oeko,oéo for each ey € & different from e} o and ey, 0. Each
element of & is the product of at most 4 elements of £ and each element of £ is the product
of at most 3 elements of £, U (€, [‘)_1 . The product of two different elements of £ is contained
in &.

The free homotopy classes of each element of &, and of each product of two different
elements of &) intersects L. Indeed, if a loop is contained in the bounded connected compo-
nent of X\ Lo, its winding number around the holes C;, j < m, contained in the unbounded
component is zero. If a loop is contained in the unbounded connected component of X\ Lo,
its winding numbers around all holes contained in the bounded connected component are
equal. But the winding number of e, gex,,0 and ei),oekoqo around the hole Cj, is positive
and the winding number around the other holes that are contained in the bounded connected
component of X\L¢ vanishes, hence the representatives of these two elements cannot be
contained in the unbounded component of X\ L. Since the winding number of representa-
tives of these elements around Cy, is positive, the representatives cannot be contained in the
bounded component of X\ L¢. For representatives of the elements e?o’oeko,o'éo the winding
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number around Cj, equals 2, the winding number around any other hole in the bounded
component of X\ L is at most 1, and the winding number around Cy,, equals 1. Hence, the
free homotopy classes of the mentioned elements must intersect both components of X\ Lo,
hence they intersect L.

Representatives of any product of two elements of £, have winding number around Cj, at
least 3, the winding number around any other hole in the bounded component of X\ Ly is at
most 1, and the winding number around Cy, equals 2. Hence, the free homotopy classes of
these elements intersect L.

For a point ¢ € Lo, a curve « in X joining go and ¢, and a complex affine mapping
M for which M o F(gq) € C3(R),/S3, an application of Lemma 7 proves that in this case
each (M o F).(ej), 23, e; = Isq(ej 0), can be written as a product of at most 6 factors
b € B3, Z3 with L_(9 (b)) < 2w Ag(X). Proposition 6 is proved in the planar case with a
slightly better constant.

3. The general case. Since not all monodromies are powers of a single element of 53,23
that is either periodic or reducible, there exists a pair of generators e(’), e(’)’ in &, such that the
monodromies along them are not powers of a single periodic or reducible element. Consider
the projection w0 1 X — X( (e, €3))- By the proof for tori with a hole or for P! with three
holes there exist a relatively closed curve L, (ehrel) in X (((36, el ) and a Mobius transformation

M, such that for F = M o f the mapping F ehel) = =Fo el el takes L (ehrel) into H, and
takes a chosen point g, 0el) € L( [ey) t0 2 pomt m C3 (R)/Sq

Choose a point § € X, for Wthh ) (G) = Qeg.e))- Let @ be a curve in X

d / u ~ . .

with initial point gp and terminating point g. Then el ety = ') (&) is a curve in
X (e, €4)) with initial point (go), (ehrel) and terminating point g (ehrel) , and the curve o) el
in X ({(e, e;)) and the point g in the universal covering Xof X ((eo, e()) are compatible. Put
o= W oy y (e el 1) and for each ¢g € m1(X, qo) we denote as before the element Isy (eq)
by e.

As in the case of a torus with a hole or P! with three holes there are elements e; and
eg, one of them contained in £ or equal to the product of at most two factors among the
e, and (], the second e1ther contained in £ U £, or equal to the product of at most three
factors among the eo and e , such that the free homotopy classes of (eO) el , of (eO) el
and of their product intersect L, ehel)) . (For the definitions of (eo) L€l and of (eo) el see
paragraph 3.1.) Moreover, ¢, and e are products of at most three factors each belng e1ther
(66)i1 or (e//)il~ Put e/( el = ISO!(g(/),eg)((ei)) (ege) ) e/(/e(’),eg) = Isa( ’.eg>((e6) (ef.e) ) By
Lemma 7 each monodromy (Fiep ) (€, ) =Fu(€)and (F, )€, )= Fi(e")

o) (eg-€0) 0:0) (eg-€p)
is the product of at most two elements b; € B3,/ Z3 with L_(¥(b;)) < 2mA5(X). Since
¢’ and ¢” are products of at most three elements among (¢/)*! and (e”)*!, each of the
monodromies F.(¢') and F,(e") is the product of at most 6 elements b; € B3,/ Z3 with

L_(D (b)) < 2mis(X).

Take any element eg € &£ \{eo, e } Let e = Isy(ep). Either the pair of monodromies
(Fy(€"), Fy(e)) or the pair of monodromles (Fx(€"), Fx(e)) does not consist of two powers
of the same element of B3,/S3 that is either periodic or reducible. Suppose this is so for the
pair (F.(e)), Fu(e)). .

Let Ly be the connected component of (wéz,;e >)’1(L<e/,e~>) that contains w<e/>@).
By Lemma 3, applied to the holomorphic projection X /(Is?)~'((e/)) — X((¢/, €")), the
free homotopy class g; intersects L ey. (For the definition of e’( o) S€€ paragraph 3.1.) As
in the proof of Proposition 4 we consider the Riemann surface X ({e, €’)) and the curve
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Liey = a) (L y) (see paragraph 3.3. of the proof of proposition 4). As there we see

that the free homotopy class eQE &) intersects L, ¢7). The system e, ¢y, e’< is associated

e,e
to a standard bouquet of circles for X ({e, €')) (though the representing curves (>)f e’ in X may
not be simple closed curves or may intersect representing curves of ¢). This can be seen in
the same way as in the proof of Proposition 4. Apply the arguments, used for X ((¢’, ¢”)) and
the generators e/(e,’g,,), ez/e " of the fundamental group 71 (X ((¢/, €”)), q(e e7)), to X ({e, €))

and the generators e, ¢y, e ) of the fundamental group 71 (X ({e, €)), gc,e'))-

e e
In the case when X ({e, €’)) is a torus with a hole, the intersection number of €/ with
+1

(e.e’)
Ly is non-zero. Put ¢ = e’. For one of the choices e™, or € ¢, denoted by ¢”, the free
homotopy classes of e/(e’ ey e’(’e’ ey and of their product intersect L, ¢/y. Moreover, e is the
product of at most two factors, each being (¢/)*!, or (¢”)*!.

In case X ({e,€')) is planar the curve L ¢y must have limit points on the hole that

corresponds to the generator e of the fundamental group m (X({e,€)), qe,ery). We find

elements ¢’ and ¢” such that ¢’ = e and ¢” is either equal to ¢!, or to the product of at most
three factors, one being equal to e and the others equal to €/, and the free homotopy classes
of e’<e’ ) e’{e o) and their product intersect L, ¢/y. Moreover, e is the product of at most 3
factors, each being equal to (¢/)*! or (¢/)*!.

In both cases for X((e, €’)) the element ¢’¢” is the product of at most 10 elements of
EUE Lemma’7 implies, that Fy(¢) and Fy(e") are products of at most two factors b with
L_ (9 (b)) not exceeding 2w A10(X). Hence, Fi(e) is the product of at most 6 factors b with
L_ (9 (b)) not exceeding 2t A19(X). We obtain the statement of Proposition 6 in the general
case. Proposition 6 is proved. O

Proof of Theorem 3 Let X be a connected Riemann surface of genus g with m 4+ 1 > 1
holes. Since each holomorphic (0, 3)-bundle with a holomorphic section on X is isotopic
to a holomorphic special (0, 4)-bundle, we need to estimate the number of isotopy classes
of irreducible smooth special (0, 4)-bundles on X, that contain a holomorphic bundle. By
Lemma 4 of [20] the monodromies of such a bundle are not powers of a single element
of B3,/ 23 which is conjugate to a o, Z3, but they may be powers of a single periodic
element of B3, Z3 (equivalently, the isotopy class may contain a locally holomorphically
trivial holomorphic bundle).

Consider an irreducible special holomorphic (0, 4)-bundle on X which is not isotopic to
a locally holomorphically trivial bundle. Let F(x), x € X, be the set of finite distinguished
points in the fiber over x. By the Holomorphic Transversality Theorem [21] the mapping
F : X — C3(C),/8S3 can be approximated on relatively compact subsets of X by holo-
morphic mappings that are transverse to H. Similarly as in the proof of Theorem 1 we will
therefore assume in the following (after slightly shrinking X to a deformation retract of X
and approximating F') that F is transverse to H.

By Proposition 6 there exists a complex affine mapping M and a point g € X such that
Mo F(q) is contained in C3(R) ' S3, and for an arc « in X with initial point g and terminating
point g and each element e; € Isy(£) the monodromy (M o F'),(e;),” Z3 of the bundle can
be written as product of at most 6 elements b; ;, k = 1,2,3,4,5, 6, of B3 /23 with

L_((bjk) =27 r10(X). 3D

The mappings F and M o F from X into the symmetrized configuration space are free
homotopic.
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Consider an isotopy class of special (0, 4)-bundles that corresponds to a conjugacy class
of homomorphisms 71 (X, go) — B3, Z3 whose image is generated by a single periodic
element of B3, Z3. Up to conjugacy we may assume that this element is one of the fol-
lowing: Id, A3 Z3, (0102),/ 23, (0102)~! / Z3. For each of these elements b the equality
L_(9(b)) = 0 holds. Hence, in this case the isotopy class contains a smooth mapping F
such that for each e ¢ € £ the monodromy (M o F).(ej o), Z3 of the bundle can be written
as product of at most 6 elements b; s, k = 1,2, 3,4,5,6, of B3,/ Z3 satisfying inequality
31).

The same argument as in the proof of Theorem 1 shows the following fact. Each irreducible
free homotopy class of mappings X — C3(C), /83 that contains a holomorphic mapping
contains a smooth mapping F such that for each e j,0 € & the monodromy F.(e 7,0/ 23
of the bundle can be written as product of at most 6 elements b; s, k = 1,2,3,4,5, 6, of
B3/ Z3 satisfying inequality (31).

Using Lemma 1 of [18] the number of elements b € B3, Z3 (including the identity), for

which £_ (¢ (b)) < 2w A19(X), is estimated as follows. The element w def (b)) € PB3,/ 23

can be considered as a reduced word in the free group generated by a; = 012 /23 and
a = 022/23. By Lemma 1 of [18] there are no more than %exp(6n)qo(X)) +1 <
% exp(6 X10(X)) reduced words win a; and a, (including the identity) satisfying the inequal-
ity L_(w) < 2mA10(X).

For a given element w € PB3 /23 (including the identity) we describe now all elements
b of B3, Z3 with ¥ (b) = w. If w # Id these are the following elements. If the first term
of w equals a? with £ # 0, then the possibilities are b = w - (A§/23) with £ = 0 or

b= (ofg“"/z3) W (A Z3) with £ = O or 1 orb = (03 /Z3) - w - (A} /Z3)
with ¢ = O or 1 and 0, # o;. Hence, for w # Id there are 8 possible choices of elements
b € B3,/ Z; with ¥ (b) = w.

If b = Id then the choices are A’ /23 and (aflAZ)/Z3 forj = 1,2, and £ = 0 or
£ = 1. These are 10 choices. Hence, there are no more than 15exp(67i10(X)) different
elements b € B3/ Z3 with L_ (9 (b)) < 2w A19(X).

Each monodromy is the product of at most six elements b; of B3 /23 with L_(#(b;)) <
27 X10(X). Hence, for each monodromy there are no more than (15 exp(6 A19(X )°© possible
choices. We proved that there are up to isotopy no more than (15 exp(6mA1g(X)))0&+™
irreducible holomorphic (0, 3)-bundles with a holomorphic section over X. Theorem 3 is
proved. O

Notice that we proved a slightly stronger statement, namely, over a Riemann surface of
genus g with m + 1 > 1 holes there are no more than (15 exp(67 A 10(X)))°@¢+™ jsotopy
classes of smooth (0, 3)-bundles with a smooth section that contain a holomorphic bundle
with a holomorphic section that is either irreducible or isotopic to the trivial bundle.

Proof of Theorem 2 Proposition 5 and Theorem 3 imply Theorem 2 as follows. Suppose an
isotopy class of smooth (1, 1)-bundles over a finite open Riemann surface X contains a
holomorphic bundle. By Proposition 5 the class contains a holomorphic bundle which is
the double branched covering of a holomorphic special (0, 4)-bundle. If the (1, 1)-bundle
is irreducible then also the (0, 4)-bundle is irreducible. There are up to isotopy no more
than (lS(exp(6nAlo(X ))))6(2g +m) holomorphic special (0, 4)-bundles over X that are either
irreducible or isotopic to the trivial bundle.

By Theorem G and Theorem 3 there are no more than (15(exp(6i10(X))))
conjugacy classes of monodromy homomorphisms that correspond to a special holomor-
phic (0, 4)-bundle over X that is either irreducible or isotopic to the trivial bundle. Each

6(2g+m)
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monodromy homomorphism of the holomorphic double branched covering is a lift of the
respective monodromy homomorphism of the holomorphic special (0, 4)-bundle. Differ-
ent lifts of a monodromy mapping class of a special (0, 4)-bundle differ by involution,
and the fundamental group of X has 2g + m generators. Using Theorem G for (1, 1)-
bundles, we see that there are no more than 228“"”(15 (exp(6A10(X ))))6(2g+m) (2 X

15% x exp(36m A1o(X )))28+m isotopy classes of (1, 1)-bundles that contain a holomorphic
bundle that is either irreducible or isotopic to the trivial bundle. Theorem 2 is proved. O

For convenience of the reader we give the short proofs of the Corollaries 1 and 2. Such
statements are known in principle, but the case considered here is especially simple.

Proof of Corollary 1 We will prove that on a punctured Riemann surface there are no non-
constant reducible holomorphic mappings to the twice punctured complex plane and that
any homotopy class of mappings from a punctured Riemann surface to the twice punctured
complex plane contains at most one holomorphic mapping. This implies the corollary.

Recall that a holomorphic mapping f from any punctured Riemann surface X to the twice
punctured complex plane extends by Picard’s Theorem to a meromorphic function f¢ on the
closed Riemann surface X°. Suppose now that X is a punctured Riemann surface and that the
mapping f : X — C\{—1, 1} is reducible, i.e. it is homotopic to a mapping into a punctured
disc contained in C\{—1, 1}. Perhaps after composing f with a Mdbius transformation we
may suppose that this puncture equals —1. Then the meromorphic extension f¢ omits the
value 1. Indeed, if f¢ was equal to 1 at some puncture of X, then f would map the boundary of
asufficiently small disc on X¢ that contains the puncture to aloop in C\{—1, 1} with non-zero
winding number around 1, which contradicts the fact that f is homotopic to a mapping into
a disc punctured at —1 and contained in C\{—1, 1}. Hence, f¢ is a meromorphic function
on a compact Riemann surface that omits a value, and, hence f is constant. Hence, on a
punctured Riemann surface there are no non-constant reducible holomorphic mappings to
C\{—-1,1}.

Suppose f1 and f> are non-constant homotopic holomorphic mappings from the punctured
Riemann surface X to the twice punctured complex plane. Then for their meromorphic
extensions f{ and f; the functions f{" — 1 and f5 — 1 have the same divisor on the closed
Riemann surface X°. Indeed, suppose, for instance, that f{" — 1 has a zero of order k > 0 at
a puncture p. Then for the boundary y of a small disc in X around p the curve (f; — 1) oy
in C\{—2, 0} has index k with respect to the origin. Since f> — 1 is homotopic to f; — I as
mapping to C\{—2, 0}, the curve (f> — 1) oy is free homotopic to (f; — 1) oy . Hence, f> — 1
has a zero of order k at p. Applying the same arguments with O replaced by oo, we obtain
that f{" — 1 and f; — 1 have the same divisor. Hence, f{ — 1 and f; — 1 differ by a non-zero
multiplicative constant. Since the functions are non-constant they must take the value —2.
By the same reasoning as above the functions are equal to —2 simultaneously. Hence, the
multiplicative constant is equal to 1. We proved that non-constant homotopic holomorphic
maps from punctured Riemann surfaces to C\{—1, 1} are equal. O

Proof of Corollary 2 We need the following fact. For each special (0, 4)-bundle § = (X x
P!, pry, E, X) there is a finite unramified covering P:X = Xof X, such that § lifts to a
special (0, 4)-bundle (X x P!, pry, E X ), for which the complex curve E is the union of
four disjoint complex curves Ek, k =1, 2,3, 4, each intersecting each fiber {x} x P! along
a single point (£, g%(%)). This can be seen as follows. Let gq be the base point of X. The
monodromy mapping class along each element e of 71 (X, go) takes the set of distinguished
points E N ({go} x P!) onto itself, permuting them by a permutation o (¢). Consider the
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set N of elements e € m1(X, go) for which o (e) is the identity. The set N is a normal
subgroup of 71 (X, go). Its index is finite, since two left cosets ¢; N and ey N are equal if
o(ep efl) = o (er)o(e;)”! = Id, and there are only finitely many distinct permutations of

points of E N ({go} % P1). The quotient X f X / Is70(N) of the universal covering of X
by the group of covering transformations corresponding to N and the canonical projection
X — X define the required covering.

To prove the corollary, we have to show, that any reducible holomorphic (1, 1)-bundle
over a punctured Riemann surface X is locally holomorphically trivial, and that two isotopic
(equivalently, smoothly isomorphic) holomorphically non-trivial holomorphic (1, 1)-bundles
over X are holomorphically isomorphic.

The second fact is obtained as follows. Suppose the holomorphically non-trivial holo-
morphic (1, 1)-bundles §;, j = 1,2, have conjugate monodromy homomorphisms. By
Proposition 5 each §; is holomorphically isomorphic to a double branched covering of a

special holomorphic (0, 4)-bundle (X x P!, pri, E;, X) 4 P(5§}). The bundles P(F;)
are isotopic, since they have conjugate monodromy homomorphisms. There is a finite
unramified covering P : X — X of X, such that the bundles P(§;) have isotopic lifts

()A( x P!, pry, E j»X)to X , and for each j the complex curve E j is the union of four disjoint

complex curves E ;- k= 1,2,3,4, each intersecting each fiber {X} x P! along a single
point (%, g’; (X)). The lifted bundles are not isotopic to the trivial bundle. The mappings

X35%—> gf (x) are holomorphic. We may assume that g}? (¥) = oo for each x. Define for
Jj =1, 2, a holomorphic isomorphism of the bundle (X x P!, pry, Ej, X) by
Al A
gj(x)=¢
@ =P s (o) > (2 —1 422 ).
g — &)

The image E // of E ; under the j-th isomorphism intersects the fiber over each X € X
along the four points (X, —1), (%, 1), (%, 00), and (%, g, (%)) for a holomorphic function g
on X that avoids —1, 1 and oco. The functions ¢ j »J = 1,2, are homotopic, since the
bundles are isotopic. They are not homotopic to a constant function since the bundles are not
isotopic to the trivial bundle. By Corollary 1 the functions ¢; and g» coincide. Hence, the
bundles (X x P!, pr 1 Ej, X) are holomorphically isomorphic. This means that there is
a nowhere vanishing holomorphic function & on X, such that for each £ € X the equality
{X}x Ea (%) = {X}x&(X) E1(X) holds. Here E ; (X) is defined by the equality E ;N({x} xPh =
{x} x Ej (%). Define also Ej (x) by the equality {x} x E;(x) = E; N ({x} x P1). For a point

x € Xand &, % € P ' (x) the equalities EjG) = Ej(%) = E;(x), j = 1,2, hold.
Hence, E>(x) = a(X))E((x) = @(X2)E (x). For aset E C C3(C),S3 and a complex
number « the equality £ = o F is possible only if « = 1, or ¢ = —1 and E is obtained
from {—1, 0, 1} by multiplication with a non-zero complex number, or « = eiz% and E is
obtained from the set of vertices of an equilateral triangle with barycenter O by multiplication
with a non-zero complex number.

For x in a small open disc on X and x — X i (x), j = 1,2, being two local inverses
of P the functions x — @(Xj(x)) are two analytic functions whose ratio is contained in a
finite set, hence the ratio is equal to a constant. If the constant was different from one, then
all fibers of P ($1) would be conformally equivalent to each other and, hence, P (1) would
be locally holomorphically trivial. Since the bundles §;, and, hence, also the P(§;), are
locally holomorphically non-trivial, the ratio of the two functions equals 1. We saw that for
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each pair of points X, Xy € X, that project to the same point x € X, &(X;) = &(xy). Put
a(x) = a(x;) for any point X; € (P)~!(x). We obtain E»(x) = a(x)E (x), that means, the
bundles P(F;) are holomorphically isomorphic. Since the bundles §;, j = 1, 2, are double
branched coverings of the P (§;) and have conjugate monodromy homomorphism, they are
holomorphically isomorphic.

The first fact is obtained as follows. After a holomorphic isomorphism we may assume
that the reducible holomorphic (1, 1)-bundle is a double branched covering of a reducible
special (0, 4)-bundle P(F) = (X x P!, pry, Eus® x ). After a further isomorphism the

bundle P (§) lifts to a holomorphic bundle P/(ﬁ = ()2 x PL, pry, EU ;’\o, )A(), such that £
intersects each fiber {x} x P! along a set of the form {£} x {—1, 1, §(%)}. Since § is reducible,
hence P(§F) and also P/(5 are reducible, the mapping ¢ is constant by Corollary 1. Hence,
all fibers of ?(?) are conformally equivalent, and, hence, all fibers of P (§) are conformally
equivalent. Since § is the double branched covering of P (), all fibers of § are conformally
equivalent. The first fact is proved. O

Proof of Proposition 1 Denote by S a skeleton of 7%? C T% which is the union of two
circles each of which lifts under the covering P : C — T to a straight line segment which
is parallel to an axis in the complex plane. Denote the intersection point of the two circles by
qo- Note that S, is a standard bouquet of circles for 7% with base point gg, and p! (T%)
is the Z-neighbourhood of P=1(5%).

Denote by e the generator of 1 (T%?, qq), that lifts to a vertical line segment and ¢’ the
generator of 71 (T%7, qo), that lifts to a horizontal line segment. Put £ = {e, ¢’}. We show
first the inequality

_dQatn)

A3 (T*7) < (32)

o
For this purpose we take any primitive element ¢” of the fundamental group 71 (T*?, qo)
which is the product of at most three factors, each of the factors being an element of £ or
the inverse of an element of £. We represent the element e” by a piecewise C! mapping f]
from an interval [0, /1] to the skeleton S%. We may consider f] as a piecewise C' mapping
from the circle R /(x ~ x +1}) to the skeleton, and assume that for all points ¢’ of the circle
where f7 is not smooth, f1(t") = qo. Let fo € [0, /1] be a point for which f(f9) # qo. Let f]
be a piecewise smooth mapping from [#, 7o + /1] to the universal covering C of T% C T%°
which projects to f1. We may take fi so that the equality | fl’ | = 1 holds. The mapping may
be chosen so that /] < 2« + 1. (Recall that « > 1 and the element e is primitive.)

Take any ¢’ for which f7 is not smooth. We may assume that f7 is chosen so that the direc-
tion of fl’ changes by the angle &7 at each such point. Hence, there exists a neighbourhood
1(t") of t’ on (1, to + £1), such that the restriction fl’ |1(t") covers two sides of a square of
side length %. Denote g, the common vertex f]’ (¢') of these sides, and by g the vertex of
the square that is not a vertex of one of the two sides. Replace the union of the two sides of
the square that contain g, by a quarter-circle of radius § with center at the vertex g, and
parameterize the latter by + — 71 5o that the absolute value of the derivative equals 1.
Notice that the quarter-circle is shorter than the union of the two sides.

Proceed in this way with all such points ¢’. After a reparameterization we obtain a C'
mapping f of the interval [0, /] of length [ not exceeding 2« + 1 whose image is contained
in the union of P~!(5%) with some quarter-circles, such that | f ’| = 1. The distance of each
point of the image of f to the boundary of P~ (7%) is not smaller than 7. The mapping f

o +i
je

is piecewise of class C2. The normalization condition | f'| = 1 implies | /| < %
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The projection f = Po f can be considered as a mapping from the circle R /(x ~ x +1)

of length / not exceeding 2« + 1 to 7“7, that represents the free homotopy class ¢’ of the
chosen element of the fundamental group.

Consider the mapping x + iy — F(x + iy) = f(x) + if’(x)y € C, where x + iy
runs along the rectangle R = {x +iy € C : x € [0,[],|y| < GT} The image of this
mapping is contained in the closure of P~1(T*). Since 25 F(x+ iy) = 2f (x)+i f”(x)y
gﬁ(x+iy)

%ﬁ(x+iy) fF

and 2L F(x + iy) = if"(x)y, the Beltrami coefficient pz(x + iy) =
1+3
1_,
descends to a K-quasiconformal mapping F from the annulus A; to T"‘ 9 of extremal length

AAD) = @ < 2(2“;1) that represents the free homotopy class of the element ¢” of the

satisfies the inequality |uz(x + iy)| < l Hence, for K = = 2 the mapping F

fundamental group 71 (T*?, qo). Realize A; as an annulus in the complex plane. Let ¢ be
the solution of the Beltrami equation on C with Beltrami coefficient 7 on A and zero else.
Then the mapping g = F o ¢! is a holomorphic mapping of the annulus ¢(A;) of extremal
length not exceeding KA (A4;) < 4(2““) into 7% that represents the chosen element of the
fundamental group 71 (T*?, qo). Inequallty (32) is proved.

By Theorem 1 for tori with a hole there are up to homotopy no more than 3(5e 3 2473
- ¥63><24712"‘;1 73x24

T“TJ))2

2at1
o non-constant irreducible holomorphic mappings from 7%

to the twice punctured complex plane.

We give now the proof of the lower bound. Let § = 1—10 We consider the annulus A%? def

{zeC:|Rez| < 5%}/(z ~ 7 + ai). The extremal length of the annulus equals g5 = 2a.
For any natural number j we consider all elements of 71 (C\{—1, 1}, 0) of the form

+2 42 +2 42
ayay”...a;7°a; (33)

containing 2 j terms, each of the form a 2 The choice of the sign in the exponent of each term

is arbitrary. There are 22/ elements of thlS kind. By [17] there is a relatively compact domain
G in the twice punctured complex plane C\{—1, 1} and a positive constant C such that the
following holds. For each j, each element of the fundamental group of the form (33), and for
each annulus of extremal length at least 2Cj there exists a base point ¢ in the annulus, and
a holomorphic mapping from the annulus to G that maps ¢ to 0 and represents the element.
Put j = [{g¢s], where [x] is the largest integer not exceeding a positive number x. Then
each element of the form (33) with this number j can be represented by a holomorphic map
§ from the annulus A%? to G. There is a constant C; that depends only on G such that the
mapping ¢ satisfies the inequality |g| < C;. Let g be the lift of ¢ to a mapping from the strip
{z € C:|Rez| < 8} to G. On the thinner strip {|Rez| < %} the derivative of g satisfies the
inequality |g'| < C‘

We will assoc1ate to the holomorphic mapping ¢ on the annulus a smooth mapping gi
from T7%% C T% to G, such that (with P being the projection P : C — T¢) the monodromy
along the circle P({Rez = 0}) with base point P(0) is equal to (33), and the monodromy
along P({Imz = 0} with the same base point equals the identity. This is done as follows. Let
F, = [—%, %) X [—5, 7) C C be a fundamental domain for the projection P : C — T¢. Put
A%S — F,onp! (T*%). Let xo : [0, 1] = R be a non- decreasing function of class C% with
x0(0) = 0, xo(1) = 1 x(0) = x5(1) = Oand |x)(1)| < 3. Define x : [52, £2] - [0, 1]
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Fig.5 A fundamental domain for ) 1 i
a torus with a hole and the poles V= 5 + -5
of the kernel for the d-equation —
«
Q 2
/ é
ed i X
0
| «
] 9
//
Aa,eé
36 ‘
A T A S
2 2
by
(:+3)  rel55F
x) =11 tel3, (34)
o(hi+d) e ¥
Notice that x is a C2-function that vanishes at the endpomts of theinterval [ 5= =3 +3‘S ] together
with its first derivative, is non-decreasing on [ 238 ] and non-increasing on [‘S g‘s] Put

g1(2) = x(Rez) g(z)+(1—x(Rez)) g(0) forzin the intersection of A% with {|Rez| < 2 8y,
and g (z) = g(0) for z in the rest of A%*.

Put p(z) = %g1(z) on A%, Since %X(Rez) = 0 for |Rez| < % and for |Rez| > Q , the
function ¢(z) vanishes on A%\ Q with Q 4ef (=2, +321x [-5,5D). On 0 N A% the
inequality

1, 3 C 3 3C
< —-Ix'(R 0<—— — - C1-26==-— 35
lp(2)| < 2I)( (Rez)| |g(z) — g(0)] < 3 lz] < 152 273 (35)

holds. Notice that the functions g; and ¢ extend to P~!(7%%) as continuous doubly periodic
functions. Hence, we may consider them as functions on 7% (Fig. 5).
We want to find a small positive number ¢ that depends on C and Cy, but not on «, such

that the following holds. For o ““/' ¢5 there exists a solution f of the equation % (@) =¢@©)
on T%? such that for each z the value | f(z)| is smaller than the Euclidean distance in C
of 1 to G. Then g — f is a holomorphic mapping from 7%¢ to C\{—1, 1} whose class
has monodromies equal to (33), and to the identity, respectively. This gives 22mics] >
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a 2elog?2 o
22002 = % 06 ¢ different homotopy classes of mappings from 7% to C\{—1, 1}, and,

hence proves the lower bound.

To solve the é-problem on T%#% = T%% we consider an explicit kernel function which
mimics the Weierstral g-function. The author is grateful to Bo Berndtsson who suggested
to use this kernel function.

Recall that the Weierstrafl g-function related to the torus 7¢ is the doubly periodic mero-
morphic function

O==+ Y : !
¢ (TN OO ¢ —n—ima) (n+ima)
on C. It defines a meromorphic function on 7 with a double pole at the projection of the
origin and no other pole.
Putv = J + % Since for ¢ ¢ (Z +iaZ) U (v + Z + iaZ) the equality

1 B 1 n v
(¢—n—ima) (& —n—ima—v) (& —n—ima)?

2

- (& —n—ima)2( —n—ima —v)

holds, and the series with these terms converges uniformly on compact sets not containing
poles, the expression

1 1 1 v
s ey : (n,m>eZZZ:\<o,o>((§ —n—ima) ({—n—ima—v) * (n+ ima)z)
defines a doubly periodic meromorphic function on C with only simple poles. The function
descends to a meromorphic function on T¢ with two simple poles and no other pole.

Recall that the support of ¢ is contained in Q. The set Q is contained in the 25-disc in C
(in the Euclidean metric) around the origin. If ¢ is contained in the 25-disc around the origin
and z € A%?, then the point ¢ —z is contained in the 28-neighbourhood (in C) of A%%. By the
choice of § the distance of any such point ¢ — z to any lattice point n +iam except O is larger
than % —25 > l . Further, for z € A%® and ¢ in the 25-disc around the origin the distance of

the pomt; zto any point n+iam+v (including the point v) is not smaller than 5= % = %.
Put 0, Y o ame = (=32 43 x -2, +2)UI-2L, +2] x [—§,+§]).Then

the function

1
f@) =+ / / PO — Ddm(C) | (36)
T Q¢

for z in A%# is holomorphic outside Q. and satisfies the equation 3% f =¢on Q. It
extends continuously to a doubly periodic function on P~!(7%¢%) and hence descends to a
continuous function on 7%#%, It remains to estimate the supremum norm of the function f
on A%? = A%# The following inequality holds for z € A%

1 1 ) 1
‘*// @) f‘f‘(@a(f —2)— :))dmz(é‘)'

3C
< f//‘ 1 Iil + C2>dM2(§) (37)

‘//Q Py (& —z)dmz(;“)‘
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We used the upper bound for ¢ and the fact that for z € A% and ¢ in Q. the expression
loo(C—2)— ;“%z | is bounded by a universal constant C;. The integral of the second term on the
right hand side does not exceed % -Cy-4£8% = 6C{C1&8. The integral foF |;1fz |dm7(¢)
does not exceed the sum of the two integrals [ = f-/(—%S,%S)X(—%sé,%gS) | ;%Z |
dmy(), and @ = ff(—%sé,%sé)x(—%&,%é) | é | dmy(¢) . The first integral 7 is
largest when z = 0. Hence, it does not exceed

3s

1 291 3
| = | dma(2) + 268 —dn < V2mes + 2e8log = (38)
cl<(v2)tes ¢ les €
The second integral I, is smaller. We obtain the estimate
6C1Cred Cc 3
()] < % +3H—;(\f2ma+2ga log >). (39)

Recall that we have chosen § = %. We may choose g9 > 0 depending only on C; (and,
hence, only on the domain G) so that if ¢ < & the supremum norm of f is less than the
distance of £1 to G. The proposition is proved. O

Proof of Proposition 2 Let £( be the length in the Kéhler metric of the longest circle in the
bouquet. For each natural number k and each positive o < o the value 1 (Sy) satisfies the
inequalities

) )
Cl— < M(Sy) =C/— (40)
o o

for constants C{ and C{ depending on k, X, S and the Kihler metric. This can be seen by
the argument used in the proof of Proposition 1.

The upper bound in inequalities (1) follows from Theorem 1.

The proof of the lower bound in (1) follows along the same lines as the proof of Proposi-
tion 1. It leads to a 3-problem on an open Riemann surface, for which Hsrmander’s L2-method
can be used. The case of open Riemann surfaces is easier to treat as the general case of pseudo-
convex domains. The needed results for Riemann surfaces are explicitly formulated in [25].

To obtain the lower bound we consider for each positive number § < op the §-
neighbourhood of the longest circle yy of the bouquet. Consider a curvilinear rectangle
Rgf , that avoids gg and is contained in the §-neighbourhood of the largest circle yy, whose
“vertical curvilinear sides” are contained in the boundary of S5 and whose open “horizontal
curvilinear sides” are contained in Ss. Choosing op small enough, we may choose Rg( SO
that for its extremal length the inequality )L(Rg( ) > c%o + 4 holds for a number ¢ > 0 that
depends only on X, S and the Kéhler metric. For any positive § < o¢ we denote by Rs the

true rectangle R; déf {x+iy:x € (=45,68),y € (—clp—28, clp+25)} in the complex plane.
Shrinking perhaps Rgf , we may assume that Rg( is conformally equivalent to Rs. Denote by
o the conformal mapping R§( — R; for which the orientation of the curve yy corresponds
to the positive orientation of the imaginary axis.

LetG C C\{—1, 1} be the same relatively compact domain as in the proof of Proposition 1,
and let Rs C R; be the rectangle in the complex plane with the same center and horizontal
side length as Rj, and with vertical side length 2¢€g. There is an absolute constant C > 0

such that for j = [% %0] and any word of the form afl azjE ... azil in the relative fundamental

group 11 (C\{—1, 1}, (—1, 1)) with 2 terms there exists a holomorphic mapping g : ég —
G c C\{—1, 1} that represents this word and vanishes at i cf¢ (see Theorem 1 of [17]). The
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function g extends by reflection through the horizontal sides of R; to a holomorphic function
on R, that we also denote by g. Since |g| < Cl on 1%5 and, hence, |g| < C; also on Ry,
for any positive o < 1 the inequality |g’| < S 1 holds for the derivative of the mapping
g on the smaller rectangle Rs, (defined as Rs w1th & replaced by «§). This fact implies that

lg] < IC‘D‘ on Qas def {x +iy :x € (—aé,ad), £y € (clo, cly + «d)}. We took into

account that g(Ficly) = 0. We take a so that % =
With the same function yg as in the proof of Proposition 1 we define

=

1 t € [—clo, cly]
X(6) = xo(CLtL=ly 1) € (clo, clo + ad), (41)
0 t € R\[—clyp — ad, clp + af].

Consider the function g(z) = g(z) x (Im(z)) and the continuous (0, 1)-form ¢ = 4 5 dg on
Rqys. The form ¢ vanishes outside Qa 5- Let & be a small positive number that will be chosen

later. Consider the measurable (0, 1)-form ¢, on Rs that equals ¢ on Qas . = {x +iy:
x € (—ade, ade), £y € (cly, clo + ad)} and vanishes outside this set. Extend its pullback
under the conformal mapping w : R§‘ — R; to a measurable (0, 1)-form on X by putting it
equal to zero outside R g( . Denote the obtained form by <p8X .

By Corollary 2.14.2 of [25] there exists a strictly subharmonic exhaustion function ¥
on X. The L2-norm of ¢, with respect to the Euclidean metric on the complex plane does
not exceed Cy+/¢ for an absolute constant C. Hence, the weighted L%-norm on X of gogX
with respect to the Kéhler metric and the weight e~V (see Definition 2.6.1 of [25]) does
not exceed C3C;4/¢ for a constant C3 that depends on ¥ and on the Kéhler metric on the
relatively compact subset Rgf of X. By Corollary 2.12.6 of [25] there exists a function fX with
3 fX = gx in the weighted L>-space on X with respect to the Kihler metric and the weight
eV (see Definition 2.6.1 of [25]), whose norm in this space does not exceed C4C3Cy /e fora
constant C4 depending only on X, ¥, and the Kéhler metric. Let (Q )X be the preimages

od,e

of Qaa . under . The function f¥ is holomorphic on X \ ((Qaa DY U Qs )%). Put

Qa {x—}-ly € Rs : £y € (clyp— 8, clo+28)}, and (Q5 )X = a)*l(Qg) Then (Q
)X

ad, S)X
is relatively compact in (Q 5)°. On a relatively compact open subset of X, containing the
closed subset S5,\((Q;)* U (0;)%) of X, the supremum norm of | fX| is estimated by
its weighted L?-norm: X < Cs+/¢ in a neighbourhood of STU\((Q;)X U (Q(;)X) for a
constant Cs that depends on the Kéhler metric, on 1 and on the constants chosen before (see
Theorem 2.6.4 of [25]).

On the other hand the classical Cauchy-Green formula on the complex plane provides
a solution f of the equation 8 f = @, on the set oF s Y 05 s - The supremum norm of the
function f is estimated by Cg+/¢ for an absolute constant Cg. Let f FX be the pullback of fto
(Q;)X U (Q )X. The function fX — fX is holomorphic on (Qa HXu (Qg)X and satisfies the
inequality |fX FX| < (Cs+ Ce) /= atall points of the set (07X U (Q5)¥, that are close
to its boundary. Hence, the inequality is satisfied on (Q;)X U (Qg)X
|fX] < (Cs +2Ce)y/E on () U (07) .

Choose ¢ depending on Cs and Cg, so that

.Asa consequence,

17X <min[dist(G —1,1)) l] on S 42)
s , "5 00+
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Put 0 = ewad. Consider the smooth function gff on Syse = Sy which equals the pullback

¥ = g owon w !(Rys) N Sy, and vanishes on the rest of S,. Hence, it vanishes on

all circles of the bouquet except yp, and therefore, the monodromy of its homotopy class

along each such circle is the identity. The restriction of g(’f to Iég( NSy = ! (1%5) N Sy
represents the element a]iazjE .. .412i € m1(C\{—1, 1}, (—1, 1)). Moreover, on (Rg(\lég() N
So the inequality | g;( | < % holds, and on SU\R§( the mapping gé( vanishes. Hence, the
monodromy of the homotopy class of gX along y, equals aliait e af. By the inequality
(42) the monodromies of the homotopy class of gX — ¥ along all circles of the bouquet
coincide with those of the homotopy class of gX. The function gX — ¥ is holomorphic
on S,. We put C7 = M. For each positive 0 < exop we found no less than %eiﬁ
irreducible non-homotopic holomorphic mappings from S, to C\{—1, 1}. The proposition

is proved. O
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