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Abstract
The Geometric Shafarevich Conjecture and the Theorem of de Franchis state the finiteness
of the number of certain holomorphic objects on closed or punctured Riemann surfaces.
The analog of these kind of theorems for Riemann surfaces of second kind is an estimate
of the number of irreducible holomorphic objects up to homotopy (or isotopy, respectively).
This analog can be interpreted as a quantitatve statement on the limitation for Gromov’s
Oka principle. For any finite open Riemann surface X (maybe, of second kind) we give an
effective upper bound for the number of irreducible holomorphic mappings up to homotopy
from X to the twice punctured complex plane, and an effective upper bound for the number of
irreducible holomorphic torus bundles up to isotopy on such a Riemann surface. The bound
depends on a conformal invariant of the Riemann surface. If Xσ is the σ -neighbourhood
of a skeleton of an open Riemann surface with finitely generated fundamental group, then
the number of irreducible holomorphic mappings up to homotopy from Xσ to the twice
punctured complex plane grows exponentially in 1

σ
.
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bundles · Gromov’s Oka principle
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1 Introduction and statements of results

It seems that the oldest finiteness theorem for mappings between complex manifolds is the
following theorem, which was published by de Franchis [5] in 1913.

Theorem A (de Franchis) For closed connected Riemann surfaces X and Y with Y of genus
at least 2 there are at most finitely many non-constant holomorphic mappings from X to Y .

There is a more comprehensive Theorem in this spirit.
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74 B. Jöricke

Theorem B (de Franchis-Severi) For a closed connected Riemann surface X there are (up to
isomorphism) only finitely many non-constant holomorphic mappings f : X → Y where Y
ranges over all closed Riemann surfaces of genus at least 2.

A finiteness theorem which became more famous because of its relation to number theory
was conjectured by Shafarevich [27].

Theorem C (Geometric Shafarevich conjecture) For a given compact or punctured Riemann
surface X and given non-negative numbers g and m such that 2g − 2 + m > 0 there are
only finitely many locally holomorphically non-trivial holomorphic fiber bundles over X with
fiber of type (g,m).

A connected closed Riemann surface (or a smooth connected closed surface) is called
of type (g,m), if it has genus g and is equipped with m distinguished points. Recall that
a closed Riemann surface with a finite number of points removed is called a punctured
Riemann surface. The removed points are called punctures. Sometimes it is convenient to
associate a punctured Riemann surface to a Riemann surface of type (g,m) by removing the
distinguished points. A Riemann surface is called finite if its fundamental group is finitely
generated, and open if no connected component is compact. A finite connected Riemann
surface is called of first kind, if it is a closed or a punctured Riemann surface, otherwise it is
called of second kind.

Each finite connected open Riemann surface X is conformally equivalent to a domain
(denoted again by X ) on a closed Riemann surface Xc such that each connected component
of the complement Xc\X is either a point or a closed topological disc with smooth boundary
[29]. The connected components of the complement will be called holes. A finite Riemann
surface X is of first kind, if and only if all connected components of Xc\X are points. We
will say that a connected finite open Riemann surface has only thick ends if all connected
components of Xc\X are closed topological discs.

Each finite Riemann surface whose universal covering is equal to the upper half-plane
C+ (a finite hyperbolic Riemann surface for short) is conformally equivalent to the quotient
of C+ by a Fuchsian group. The Riemann surface is of first kind if and only if the Fuchsian
group is of first kind [22, II, Theorem 3.2]. We will not make use of Fuchsian groups here.

Theorem C was conjectured by Shafarevich [27] in the case of compact base and fibers
of type (g, 0). It was proved by Parshin [26] in the case of compact base and fibers of type
(g, 0), g ≥ 2, and by Arakelov [2] for punctured Riemann surfaces as base and fibers of
type (g, 0). Imayoshi and Shiga [15] gave a proof of the quoted version using Teichmüller
theory.

The statement of Theorem C “almost” contains the so called Finiteness Theorem of Sec-
tions which is also called the Geometric Mordell conjecture (see [24]), giving an important
conceptional connection between geometry and number theory. For more details we refer to
the surveys by McMullen [24] and Mazur [23].

Theorem A is a consequence of Theorem C, and Theorem A has analogs for the source
X and the target Y being punctured Riemann surfaces. Indeed, we may associate to any
holomorphic mapping f : X → Y of Theorem A the bundle over X with fiber over x ∈ X
equal to Y with distinguished point { f (x)}. Thus, the fibers are of type (g, 1). A holomorphic
self-isomorphism of a locally holomorphically non-trivial (g, 1)-bundle may lead to a new
holomorphic mapping from X to Y , but there are only finitely many different holomorphic
self-isomorphisms.

We will consider here analogs of Theorems A and C for the case when the base X is a
Riemann surface of second kind. Notice that finite hyperbolic Riemann surfaces of second
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Riemann surfaces of second kind... 75

kind are interesting from the point of view of spectral theory of the Laplace operator with
respect to the hyperbolic metric (see also [3]). There are interesting relations to scattering
theory and (the Hausdoff dimension of) the limit set of the Fuchsian group defining X .

The Theorems A and C do not hold literally if the base X is of second kind. If the
base is a Riemann surface of second kind the problem to be considered is the finiteness
of the number of irreducible isotopy classes (homotopy classes, respectively) containing
holomorphic objects. In case the base is a punctured Riemann surface this is equivalent to
the finiteness of the number of holomorphic objects. For more detail see Sects. 3 and 4.

Wewill prove finiteness theorems with effective estimates for Riemann surfaces of second
kind. The estimates depend on a conformal invariant of the base manifold. To define the
invariant we recall Ahlfors’ definition of extremal length (see [1]). For an annulus A = {0 ≤
r < |z| < R ≤ ∞} (and for any open set that is conformally equivalent to A) the extremal
length equals 2π

log R
r
. For an open rectangle R = {z = x + iy : 0 < x < b, 0 < y < a } in

the plane with sides parallel to the axes, and with horizontal side length b and vertical side
length a the extremal length equals λ(R) = a

b . For a conformal mapping ω : R → U of
the rectangle R onto a domain U ⊂ C the image U is called a curvilinear rectangle, if ω

extends to a continuous mapping on the closure R̄, and the restriction to each (closed) side of
R is a homeomorphism onto its image. The images of the vertical (horizontal, respectively)
sides of R are called the vertical (horizontal, respectively) curvilinear sides of the curvilinear
rectangleω(R). The extremal length of the curvilinear rectangleU equals the extremal length
of R. (See [1]).

Let X be a connected open Riemann surface of genus g ≥ 0 with m + 1 holes, m ≥ 0,
equipped with a base point q0. The fundamental group π1(X , q0) of X is a free group in
2g +m generators. We describe now the conformal invariant of the Riemann surface X that
will appear in the mentioned estimate. We take a bouquet of non-contractible circles S in
X with base point q0, such that q0 is the only common point of any pair of circles in S.
Moreover, S is the union of simple closed oriented curves α j , β j , j = 1, . . . , g′, and γk ,
k = 1, . . . ,m′, with base point q0 with the following property. Labeling the rays of the loops
emerging from the base point q0 by α−

j , β−
j γ −

j , and the incoming rays by α+
j , β+

j γ +
j , we

require that when moving in counterclockwise direction along a small circle around q0 we
meet the rays in the order

. . . , α−
j , β−

j , α+
j , β+

j , . . . , γ −
k , γ +

k , . . . .

(See Fig. 1.) We call such a bouquet of circles a standard bouquet of circles contained in
X . If the collection E of elements of the fundamental group π1(X , q0) represented by the
collection of curves in S is a system of generators of π1(X , q0) (then in particular, g′ = g,
m′ = m), we call S a standard bouquet of circles for X , and say that the system E is associated
to a standard bouquet of circles for X .

The existence of a standard bouquet of circles for a connected finite open Riemann surface
can be seen by looking at a fundamental polygon of the compact Riemann surface Xc that
contains a lift of each hole of X . The pairs of curves α j , β j correspond to the handles of
Xc. Each curve γk, k = 1, . . . ,m, surrounds a connected component Ck of Xc\X counter-
clockwise. More precisely, γk is contractible in X ∪ Ck and divides X into two connected
components, one of them containing Ck . Moreover, moving along γk we see Ck on the left.

Vice versa, if a connected open Riemann surface X contains a standard bouquet of circles
consisting of g pairs of curves α j ,β j , and m curves γk as above, that represent a system of
generators of π1(X , q0), then X has genus g and m holes. To see this we cut the compact
Riemann surface Xc along the α j , β j and obtain a fundamental polygon which corresponds
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76 B. Jöricke

Fig. 1 A standard bouquet of circles for a connected finite open Riemann surface

to a closed Riemann surface of genus g. The γk are contractible in Xc, hence, each of them
surrounds a hole.

Label the generators E ⊂ π1(X , q0) of a standard bouquet of circles for X as follows. The
elements e2 j−1,0 ∈ π1(X , q0), j = 1, . . . , g, are represented by α j , the elements e2 j,0 ∈
π1(X , q0), j = 1, . . . , g, are represented by β j , and the elements e2g+k,0 ∈ π1(X , q0), k =
1, . . . ,m, of π1(X , q0) are represented by γk . A standard bouquet of circles for a connected
finite openRiemann surface is a deformation retract of X .Wewill fix the system of generators
E of π1(X , q0) throughout the paper.

Let X̃ be the universal covering of X . For each element e0 ∈ π1(X , q0) we consider
the subgroup 〈e0〉 of π1(X , q0) generated by e0. Let σ(e0) be the covering transformation
corresponding to e0, and 〈σ(e0)〉 the group generated by σ(e0).

Definition 1 Denote by E j , j = 2, . . . , 10, the set of primitive elements of π1(X , q0) which
can be written as product of at most j factors with each factor being either an element of E or
an element of E−1, the set of inverses of elements of E . Define λ j = λ j (X) as the maximum
over e0 ∈ E j of the extremal length of the annulus X̃�〈σ(e0)〉.
The quantity λ7(X) (for mappings to the twice punctured complex plane), or λ10(X) (for
(1, 1)-bundles) is the mentioned conformal invariant.

Let E be a finite subset of the Riemann sphere P
1 which contains at least three points. Let

X be a finite open Riemann surface with non-trivial fundamental group. A continuous map
f : X → P

1\E is reducible if it is homotopic (as a mapping to P
1\E) to a mapping whose

image is contained in D\E for an open topological disc D ⊂ P
1 with E\D containing at

least two points of E . Otherwise the mapping is called irreducible.
In the following theorem we take E = {−1, 1,∞}. We will often refer to P

1\{−1, 1,∞}
as the thrice punctured Riemann sphere or the twice punctured complex plane C\{−1, 1}.
Note that a continuous mapping from a Riemann surface to the twice punctured complex
plane is reducible, iff it is homotopic to a mapping with image in a once punctured disc
contained in P

1\E . (The puncture may be equal to ∞.) There are countably many non-
homotopic reducible holomorphic mappings with target being the twice punctured complex
plane and source being any finite open Riemann surface with only thick ends and non-trivial

123



Riemann surfaces of second kind... 77

fundamental group (see the proof of Lemma 15 in [20]). On the other hand the following
theorem holds.

Theorem 1 For each open connectedRiemann surface X of genus g ≥ 0withm+1 ≥ 1 holes
there are up to homotopy at most 3( 32e

24πλ7(X))2g+m irreducible holomorphic mappings from

X into Y
de f= P

1\{−1, 1,∞}.
Notice that the Riemann surface X is allowed to be of second kind. If X is a torus with a
hole, λ7(X) may be replaced by λ3(X). If X is a planar domain, λ7(X) may be replaced by
λ4(X)

A holomorphic (1, 0)-bundle is also called a holomorphic torus bundle. A holomorphic
torus bundle equipped with a holomorphic section is also considered as a holomorphic (1, 1)-
bundle. The following lemma holds.

Lemma D A smooth (0, 1)-bundle admits a smooth section. A holomorphic torus bundle is
(smoothly) isotopic to a holomorphic torus bundle that admits a holomorphic section.

For a proof see [20].

Theorem 2 Let X be an open connected Riemann surface of genus g ≥ 0 with m + 1 ≥ 1
holes. Up to isotopy there are no more than

(
2 × 156 × exp(36πλ10(X))

)2g+m
irreducible

holomorphic (1, 1)-bundles over X.

For the definition of irreducible (g,m)-bundles see Sect. 4 below. Since on each finite open
Riemann surface with only thick ends and non-trivial fundamental group there are countably
many non-homotopic reducible holomorphic mappings with target being the twice punctured
complex plane, there are also countably many non-isotopic holomorphic (1, 1)-bundles over
each such Riemann surface (see Proposition 5 below).

We wish to point out that reducible (g,m)-bundles over finite open Riemann surfaces can
be decomposed into irreducible bundle components, and each reducible bundle is determined
by its bundle components up to commuting Dehn twists in the fiber over the base point. (For
details see [20].)

Notice that Caporaso proved the existence of a uniform bound for the number of objects
in Theorem C in case X is a closed Riemann surface of genus g with m punctures, and the
fibers are closed Riemann surfaces of genus g ≥ 2. The bound depends only on the numbers
g, g and m. Heier gave effective uniform estimates, but the constants are huge and depend
in a complicated way on the parameters.

Theorems 1 and 2 imply effective estimates for the number of locally holomorphically non-
trivial holomorphic (1, 1)-bundles over punctured Riemann surfaces, however, the constants
depend also on the conformal type of the base. More precisely, the following corollaries hold.

Corollary 1 There are nomore than 3( 32e
24πλ7(X))2g+m non-constant holomorphic mappings

from a Riemann surface X of type (g,m + 1) to P
1\{−1, 1,∞}.

Corollary 2 There are no more than
(
2× 156 × exp(36πλ10(X))

)2g+m
locally holomorphi-

cally non-trivial holomorphic (1, 1)-bundles over a Riemann surface X of type (g,m + 1).

The following examples demonstrate the different nature of the problem in the two cases,
the case when the base is a punctured Riemann surface, and when it is a Riemann surface of
second kind.
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78 B. Jöricke

Example 1 There are no non-constant holomorphic mappings from a torus with one puncture
to the twice punctured complex plane. Indeed, by Picard’s Theorem each such mapping
extends to ameromorphicmapping from the closed torus to the Riemann sphere. This implies
that the preimage of the set {−1, 1,∞} under the extended mapping must contain at least
three points, which is impossible.

The situation changes if X is a torus with a large enough hole. Let α ≥ 1 and σ ∈ (0, 1).
Consider the torus with a hole T α,σ that is obtained from C�(Z + iαZ), (with α ≥ 1 being
a real number) by removing a closed geometric rectangle of vertical side length α − σ and
horizontal side length 1−σ (i.e. we remove a closed subset that lifts to such a closed rectangle
in C). A fundamental domain for this Riemann surface is “the golden cross on the Swedish
flag” turned by π

2 with width of the laths being σ and length of the laths being 1 and α.

Proposition 1 Up to homotopy there are at most 7e3×24π 2α+1
σ irreducible holomorphic map-

pings from T α,σ to the twice punctured complex plane.

On the other hand, there are positive constants c, C, and σ0 such that for any positive
numberσ < σ0 and anyα > 1 there are at least ceC

α
σ non-homotopic holomorphicmappings

from T α,σ to the twice punctured complex plane.

Example 2 There are only finitely many holomorphic maps from a thrice punctured Riemann
sphere to another thrice puncturedRiemann sphere. Indeed, after normalizing both, the source
and the target space, by a Möbius transformation we may assume that both are equal to
C\{−1, 1}. Each holomorphic map from C\{−1, 1} to itself extends to a meromorphic map
from the Riemann sphere to itself, which maps the set {−1, 1,∞} to itself and maps no other
point to this set. By the Riemann–Hurwitz formula the meromorphic map takes each value
exactly once. Indeed, suppose it takes each value l times for a natural number l. Then each
point in {−1, 1,∞} has ramification index l. Apply the Riemann Hurwitz formula for the
branched covering X = P

1 → Y = P
1 of multiplicity l

χ(X) = l · χ(Y ) −
∑

x∈Y
(ex − 1).

Here ex is the ramification index at the point x . For theEuler characteristicwehaveχ(P1) = 2,
and

∑
x∈Y (ex −1) ≥ ∑

x=−1,1,∞(ex −1) = 3 (l−1). We obtain 2 ≤ 2 l−3 (l−1)which is
possible only if l = 1.We saw that each non-constant holomorphic mapping fromC\{−1, 1}
to itself extends to a conformal mapping from the Riemann sphere to the Riemann sphere
that maps the set {−1, 1,∞} to itself. There are only finitely may such maps, each a Möbius
transformation permuting the three points.

For Riemann surfaces of second kind the situation changes, as demonstrated in the follow-
ing proposition. The proposition does not only concern the case when the Riemann surface
equals P

1 with three holes. We consider an open Riemann surface X of genus g with m ≥ 1
holes.

Proposition 2 Let X be a connected finite open hyperbolic Riemann surface, that is equipped
with a Kähler metric. Suppose S is a standard bouquet of piecewise smooth circles in X with
base point q0. We assume that q0 is the only non-smooth point of the circles, and all tangent
rays to circles in S at q0 divide a disc in the tangent space into equal sectors. Let Sσ be the
σ -neighbourhood of S (in the Kähler metric on X).

Then there exists a constant σ0 > 0, and positive constants C ′, C ′′, c′, c′′, depending only
on X, S and the Kähler metric, such that for each positive σ < σ0 the number N

C\{−1,1}
Sσ

of
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non-homotopic irreducible holomorphic mappings from Sσ to the twice punctured complex
plane satisfies the inequalities

c′e
c′′
σ ≤ NC\{−1,1}

Sσ
≤ C ′e

C ′′
σ . (1)

The present results may be understood as quantitative statements with regard to limitations
for Gromov’s Oka principle. Gromov [12] formulated his Oka principle as “an expression
of an optimistic expectation with regard to the validity of the h-principle for holomorphic
maps in the situation when the source manifold is Stein”. Holomorphic maps X → Y from
a complex manifold X to a complex manifold Y are said to satisfy the h-principle if each
continuous map from X to Y is homotopic to a holomorphic map. We call a target manifold
Y a Gromov–Oka manifold if the h-principle holds for holomorphic maps from any Stein
manifold to Y . Gromov [12] gave a sufficient condition on a complex manifold Y to be a
Gromov–Oka manifold.

The question of understandingGromov–Okamanifolds received a lot of attention. It turned
out to be fruitful to strengthen the requirement on the target Y by combining the h-principle
for holomorphic maps with a holomorphic approximation property. Manifolds Y satisfying
the stronger requirement are called Oka manifolds. For details and an account on modern
development of Oka theory based on Oka manifolds see [10].

The twice punctured complex plane C\{−1, 1} is not a Gromov–Oka manifold. Then the
question becomes, what prevents a continuous map from a Stein manifold X to C\{−1, 1} to
be homotopic to a holomorphic map, and “how many” homotopy classes contain a holomor-
phicmap?As for the first question in case the sourcemanifold is a finite openRiemann surface
X , Proposition 4 below says that an irreducible map X → C\{−1, 1} can only be homotopic
to a holomorphic map, if the “complexity” of the monodromies of the map are compatible
with conformal invariants of the source manifold. Theorem 1 gives an upper bound related
to the second question. Propositions 1 and 2 can be interpreted as statements related to the
following question. Consider a family of Riemann surfaces Yσ , σ ∈ (0, σ0), obtained by
continuously changing the conformal structure of a fixed Riemann surface. Determine the
growth rate for σ → 0 of the number of irreducible holomorphicmappings Xσ → C\{−1, 1}
up to homotopy. In Proposition 1 the family of Riemann surfaces depends also on a second
parameter α, and the growth rate is determined in α and σ .

The proof of both propositions uses solutions of a ∂-problem. The solution in the case of
Proposition 1 uses a simple explicit formula.

The author is grateful to B.Farb who suggested to use the concept of conformal module
and extremal length for a proof of finiteness theorems, and to Berndtsson for proposing the
kernel for solving the ∂̄-problem that arises in the proof of Proposition 1. The work on the
paper was started while the author was visiting the Max-Planck-Institute and was finished
during a stay at IHES. The author would like to thank these institutions for the support. The
author is also indebted to Fanny Dufour for drawing the figures and to an anonymous referee
whose critics helped to improve the overall quality of the paper.

2 Preliminaries onmappings, coverings, and extremal length

In this section, we will prepare the proofs of the Theorems.

The change of the base point. Let X be a connected smooth open surface, and let α be an
arc in X with initial point x0 and terminating point x . Change the base point x0 ∈ X along
a curve α to the point x ∈ X . This leads to an isomorphism Isα : π1(X , x0) → π1(X , x)
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80 B. Jöricke

of fundamental groups induced by the correspondence γ → α−1γα for any loop γ with
base point x0 and the arc α with initial point x0 and terminating point x . We will denote the
correspondence γ → α−1γα between curves also by Isα .

We call two homomorphisms h j : G1 → G2, j = 1, 2, from a group G1 to a group G2

conjugate if there is an element g′ ∈ G2 such that for each g ∈ G1 the equality h2(g) =
g′−1h1(g)g′ holds. For two arcs α1 and α2 with initial point x0 and terminating point x we
have α−1

2 γα2 = (α−1
1 α2)

−1α−1
1 γα1(α

−1
1 α2). Hence, the two isomorphisms Isα1 and Isα2

differ by conjugation with the element of π1(X , x) represented by α−1
1 α2.

Free homotopic curves are related by homotopy with fixed base point and an application
of a homomorphism Isα that is defined up to conjugation. Hence, free homotopy classes
of curves can be identified with conjugacy classes of elements of the fundamental group
π1(X , x0) of X .

For two smooth manifoldsX and Y with base points x0 ∈ X and y0 ∈ Y and a continuous
mapping F : X → Y with F(x0) = y0 we denote by F∗ : π1(X , x0) → π1(Y, y0) the
induced map on fundamental groups. For each element e0 ∈ π1(X , x0) the image F∗(e0)
is called the monodromy along e0, and the homomorphism F∗ is called the monodromy
homomorphism corresponding to F . The homomorphism F∗ determines the homotopy class
of F with fixed base point in the source and fixed value at the base point. Consider a free
homotopy Ft , t ∈ (0, 1), of homeomorphisms from X to Y such that the value Ft (x0) at the
base point x0 of the source space varies along a loop. Then the homomorphisms (F0)∗ and
(F1)∗ are related by conjugation with the element of the fundamental group of Y represented
by the loop.

Using deformation retractions we see that each homomorphism h : π1(X , x0) →
π1(Y, y0) equals F∗ for a continuous mapping F : X → Y . Moreover, if two homomor-
phisms h j : π1(X , x0) → π1(Y, y0), j = 0, 1, are related by conjugation, h1 = e−1h2e for
an element e ∈ π1(Y, y0), then there is a free homotopy Ft of mappings X → Y such that
Ft (x0) changes along a loop representing e and (F0)∗ = h0, (F1)∗ = h1. Further, since the
fundamental group π1(Y, y) with base point y is related to the fundamental group π1(Y, y0)
with base point y0 by an isomorphism determined up to conjugation we obtain the following
theorem (see [13, 28]).

Theorem E The free homotopy classes of continuous mappings fromX toY are in one-to-one
correspondence to the set of conjugacy classes of homomorphisms between the fundamental
groups of X and Y .

Extremal length.The fundamental groupπ1
de f= π1(C\{−1, 1}, 0) is canonically isomorphic

to the fundamental group π1(C\{−1, 1}, q ′) for an arbitrary point q ′ ∈ (−1, 1). For the arc α

defining the isomorphismwe take the unique arc contained in (−1, 1) that joins 0 and q ′. The
fundamental group π1(C\{−1, 1}, 0) is a free group in two generators. We choose standard
generators a1 and a2, where a1 is represented by a simple closed curve with base point 0
which surrounds −1 counterclockwise, and a2 is represented by a simple closed curve with
base point 0 which surrounds 1 counterclockwise. For q ′ ∈ (−1, 1) we also denote by a j the
generator of π1(C\{−1, 1}, q ′) which is obtained from the respective standard generator of
π1(C\{−1, 1}, 0) by the standard isomorphism between fundamental groups with base point
on (−1, 1). More detailed, a1 is the generator of π1(C\{−1, 1}, q ′) which is represented
by a loop with base point q ′ that surrounds −1 counterclockwise, and a2 is the generator
of π1(C\{−1, 1}, q ′) which is represented by a loop with base point q ′ that surrounds 1
counterclockwise. We refer to a1 and a2 as to the standard generators of π1(C\{−1, 1}, q ′).
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Riemann surfaces of second kind... 81

Further, the group π1(C\{−1, 1}, 0) is canonically isomorphic to the relative fundamental

group π tr
1 (C\{−1, 1}) de f= π1(C\{−1, 1}, (−1, 1)) whose elements are homotopy classes of

(not necessarily closed) curves in C\{−1, 1} with end points on the interval (−1, 1). We
refer to π tr

1 (C\{−1, 1}) as fundamental group with totally real horizontal boundary values
(tr -boundary values for short). For an element w ∈ π1(C\{−1, 1}, q ′) with base point
q ′ ∈ (−1, 1)we denote bywtr the element of the relative fundamental groupπ tr

1 (C\{−1, 1})
with totally real boundary values, corresponding to w. For more details see [17].

Each element of a free group can be written uniquely as a reduced word in the generators.
(A word is reduced if neighbouring terms are powers of different generators.) The degree (or
word length) d(w) of a reduced word w in the generators of a free group is the sum of the
absolute values of the powers of generators in the reduced word. If the word is the identity
its degree is defined to be zero. We will identify elements of a free group with reduced words
in generators of the group.

For a rectangle R let f : R → C\{−1, 1} be a mapping which admits a continuous
extension to the closure R̄ (denoted again by f ) which maps the (open) horizontal sides to
(−1, 1). We say that the mapping f represents an element wtr ∈ π tr

1 (C\{−1, 1}) if for each
maximal vertical line segment contained in R (i.e. R intersected with a vertical line in C) the
restriction of f to the closure of the line segment represents wtr .

The extremal length Λ(wtr ) of an element wtr in the relative fundamental group
π tr
1 (C\{−1, 1}) is defined as

Λ(wtr )
de f= inf{λ(R) : R a rectangle which admits a holomorphic map to C\{−1, 1}

that represents wtr }. (2)

For an element w ∈ π1(C\{−1, 1}, q ′) and the associated element wtr we will also write
Λtr (w) instead of Λ(wtr ).

Any reduced word w in π1(C\{−1, 1}, q ′) can be uniquely decomposed into syllables.
They are defined as follows. Each term akiji with |ki | ≥ 2 is a syllable, and any maximal

sequence of consecutive terms akiji , for which |ki | = 1 and all ki have the same sign, is a
syllable (see [17, 18]). Let dk be the degree of the k-th syllable from the left. (We consider
each syllable as a reduced word in the elements of the fundamental group.) Put

L−(w)
de f=

∑
log(3dk), L+(w)

de f=
∑

log(4dk), (3)

where the sum runs over the degrees of all syllables of wtr . Notice that L±(w−1) = L±(w).
We define L−(Id) = L+(Id) = 0 for the identity Id. We need the following theorem which
is proved in [17] (see Theorem 1 there).

Theorem F If w ∈ π1(C\{−1, 1}, 0) is not equal to a (trivial or non-trivial) power of a1 or
of a2 then

1

2π
L−(w) ≤ Λ(wtr ) ≤ 300L+(w). (4)

Regular zero sets. We will call a subset of a smooth manifold X a simple relatively closed
curve if it is the connected component of a regular level set of a smooth real-valued function
on X .

Let X be a connected finite open Riemann surface. Suppose the zero set L of a non-
constant smooth real valued function onX is regular. Each component of L is either a simple
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closed curve or it can be parameterized by a continuous mapping � : (−∞,∞) → X . We
call a component of the latter kind a simple relatively closed arc in X .

A relatively closed curve γ in a connected finite open Riemann surface X is said to be
contractible to a hole of X , if the following holds. Consider X as domain X c\ ∪ C j on a
closed Riemann surface X c. Here the C j are the holes, each is either a closed topological
disc with smooth boundary or a point. The condition is the following. For each pair U1, U2

of open subsets of X c, ∪C j ⊂ U1 � U2, there exists a homotopy of γ that fixes γ ∩ U1

and moves γ into U2. Taking for U2 small enough neighbourhoods of ∪C j we see that the
homotopy moves γ into an annulus adjacent to one of the holes.

For each relatively compact domain X ′ � X in X there is a finite cover of L ∩ X ′ by
open subsets Uk of X such that each L ∩ Uk is connected. Each set L ∩ Uk is contained in
a component of L . Hence, only finitely many connected components of L intersect X ′. Let
L0 be a connected component of L which is a simple relatively closed arc parameterized by
�0 : R → X . Since each set L0 ∩Uk is connected it is the image of an interval under �0. Take
real numbers t−0 and t+0 such that all these intervals are contained in (t−0 , t+0 ). Then the images
�
(
(−∞, t−0 )

)
and �

(
(t+0 ,+∞)

)
are contained inX\X ′,maybe, in different components. Such

parameters t−0 and t+0 can be found for each relatively compact deformation retract X ′ of X .
Hence for each relatively closed arc L0 ⊂ L the set of limit points L+

0 of �0(t) for t → ∞
is contained in a boundary component of X . Also, the set of limit points L−

0 of �0(t) for
t → −∞ is contained in a boundary component of X . The boundary components may be
equal or different.

Moreover, if X ′ � X is a relatively compact domain in X which is a deformation retract
of X , and a connected component L0 of L does not intersect X ′ then L0 is contractible to
a hole of X . Indeed, X\X ′ is the union of disjoint annuli, each of which is adjacent to a
boundary component of X , and the connected set L0 must be contained in a single annulus.

Further, denote by L ′ the union of all connected components of L that are simple relatively
closed arcs. Consider those components L j of L ′ that intersect X ′. There are finitely many
such L j . Parameterize each L j by a mapping � j : R → X . For each j we let [t−j , t+j ] be a
compact interval for which

� j (R\[t−j , t+j ]) ⊂ X\X ′. (5)

Let X ′′, X ′ � X ′′ � X , be a domain which is a deformation retract of X such that
� j ([t−j , t+j ]) ⊂ X ′′ for each j . Then all connected components of L ′ ∩ X ′′, that do not

contain a set � j ([t−j , t+j ]), are contractible to a hole of X ′′. Indeed, each such component is

contained in the union of annuli X ′′\X ′.
Some remarks on coverings. By a covering P : Y → X we mean a continuous map P
from a topological space Y to a topological space X such that for each point x ∈ X there is a
neighbourhood V (x) of x such that the mapping P maps each connected component of the
preimage of V (x) homeomorphically onto V (x). (Note that in function theory sometimes
these objects are called unlimited unramified coverings to reserve the notion “covering” for
more general objects.)

Let X be a connected finite open Riemann surface with base point q0 and let P : X̃ → X
be the universal coveringmap. Recall that a homeomorphism ϕ : X̃ → X̃ for which P◦ϕ = P
is called a covering transformation (or deck transformation). The covering transformations
form a group, denoted byDeck(X̃ , X). For each pair of points x̃1, x̃2 ∈ X̃ with P(x̃1) = P(x̃2)
there exists exactly one covering transformation that maps x̃1 to x̃2. (See e.g. [9]).
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Fig. 2 A commutative diagram
related to the change of the base
point

Throughout the paper we will fix a base point q0 ∈ X and a base point q̃0 ∈ P−1(q0) ⊂ X̃ .
The group of covering transformations of X̃ can be identified with the fundamental group
π1(X , q0) of X by the following correspondence. (See e.g. [9]).

Take a covering transformation σ ∈ Deck(X̃ , X). Let γ̃0 be an arc in X̃ with initial point
σ(q̃0) and terminating point q̃0. Denote by Isq̃0(σ ) the element of π1(X , q0) represented by
the loop P(γ̃0). The mapping Deck(X̃ , X) � σ → Isq̃0(σ ) ∈ π1(X , q0) is a group homomor-
phism. The homomorphism Isq̃0 is injective and surjective, hence it is a group isomorphism.
The inverse (Isq̃0)−1 is obtained as follows. Represent an element e0 ∈ π1(X , q0) by a loop
γ0. Consider the lift γ̃0 of γ0 to X̃ that has terminating point q̃0. Then (Isq̃0)−1(e0) is the
covering transformation that maps q0 to the initial point of of γ̃0.

For another point q̃ of X̃ and the point q
de f= P(q̃) ∈ X the isomorphism Isq̃ :

Deck(X̃ , X) → π1(X , q) assigns to each σ ∈ Deck(X̃ , X) the element of π1(X , q) that
is represented by P(γ̃ ) for a curve γ̃ in X̃ that joins σ(q̃) with q̃. Isq̃ is related to Isq̃0 as
follows. Let α̃ be an arc in X̃ with initial point q̃0 and terminating point q̃ . Put q = P(q̃) and
α = P(α̃). Then for the isomorphism Isα : π1(X , q0) → π1(X , q) the equation

Isq̃(σ ) = Isα ◦ Isq̃0(σ ), σ ∈ Deck(X̃ , X), (6)

holds, i.e. the diagram Fig. 2 is commutative.
Indeed, let α̃−1 denote the curve that is obtained from α̃ by inverting the direction on α̃,

i.e. moving from q̃ to q̃0. The curve σ((α̃)−1) has initial point σ(q̃) and terminating point
σ(q̃0). Hence, for a curve γ̃0 in X̃ that joins σ(q̃0) with q̃0, the curve σ((α̃)−1) γ̃0 α̃ in X̃ has
initial point σ(q̃) and terminating point q̃. Therefore P(σ ((α̃)−1) γ̃0 α̃) represents Isq̃(σ ).
On the other hand

P(σ (α̃−1) γ̃0 α̃) = P(σ (α̃−1)) P(γ̃0) P(α̃) = α−1γ0 α (7)

represents Isα(e0) with e0 = Isq̃0(σ ). In particular, if q̃ ′
0 ∈ P−1(q0) is another preimage of

the base point q0 under the projection P, then the associated isomorphisms from Deck(X̃ , X)

to the fundamental group π1(X , q0) are conjugate, i.e. Isq̃
′
0(e0) = (e′

0)
−1Isq̃0(e0)e′

0 for each
e0 ∈ π1(X , q0). The element e′

0 is represented by the projection of an arc in X̃ with initial
point q̃0 and terminating point q̃ ′

0.
Keeping fixed q̃0 and q0 we will say that a point q̃ ∈ X̃ and a curve α in X are compatible

if the diagram Fig. 2 is commutative, equivalently, if Eq. (6) holds. We may also start with
choosing a curve α in X with initial point q0 and terminating point q . Then there is a point
q̃ = q̃(α), such that q̃ and α are compatible. Indeed, let α̃ be the lift of α, that has initial
point q̃0. Denote the terminating point of α̃ by q̃(α), and repeat the previous arguments.
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Fig. 3 A commutative diagram related to subgroups of the group of covering transformations

Let N be a subgroup of π1(X , q0). Denote by X(N ) the quotient X̃�(Isq̃0)−1(N ). We
obtain a covering ωN

Id : X̃ → X(N ) with group of covering transformations isomorphic to

N . The fundamental group of X(N )with base point (q0)N
de f= ωN

Id(q̃0) can be identified with
N .

If N1 and N2 are subgroups of π1(X , q0) and N1 is a subgroup of N2 (we write N1 ≤
N2), then there is a covering map ω

N2
N1

: X̃�(Isq̃0)−1(N1) → X̃�(Isq̃0)−1(N2), such that

ω
N2
N1

◦ ω
N1
Id = ω

N2
Id . Moreover, the diagram Fig. 3 is commutative.

Indeed, take any point x1 ∈ X̃�(Isq̃0)−1(N1) and a preimage x̃ of x1 under ω
N1
Id . There

exists a neighbourhood V (x̃) of x̃ in X̃ such that V (x̃) ∩ σ(V (x̃)) = ∅ for all covering

transformations σ ∈ Deck(X̃ , X). Then for j = 1, 2 the mapping ω
N j ,x̃
Id

de f= ω
N j
Id | V (x̃)

is a homeomorphism from V (x̃) onto its image denoted by Vj . Put x2 = ω
N2,x̃
Id (x̃). The set

Vj ⊂ X̃�(Isq̃0)−1(N j ) is a neighbourhood of x j for j = 1, 2.

For each preimage x̃ ′ ∈ (ω
N1
Id )−1(x1) there is a covering transformation ϕx̃,x̃ ′ in

(Isq̃0)−1(N1) which maps a neighbourhood V (x̃ ′) of x̃ ′ conformally onto the neighbourhood

V (x̃) of x̃ so that on V (x̃ ′) the equalityω
N1,x̃ ′
Id = ω

N1,x̃
Id ◦ϕx̃,x̃ ′ holds. Choose x̃ ∈ (ω

N1
Id )−1(x1)

and define

ω
N2
N1

(y) = ω
N2,x̃
N1

(y)
de f= ω

N2,x̃
Id ((ω

N1,x̃
Id )−1(y)) for eachy ∈ V1. (8)

We get a correctly defined mapping from V1 onto V2. Indeed, since N1 is a subgroup of N2,
the covering transformation ϕx̃,x̃ ′ is contained in (Isq̃0)−1(N2), and we get for another point

x̃ ′ ∈ (ω
N1
Id )−1(x1) the equality ω

N2,x̃ ′
Id = ω

N2,x̃
Id ◦ ϕx̃,x̃ ′ . Hence, for y ∈ V1(x1)

ω
N2,x̃ ′
Id ◦ (ω

N1,x̃ ′
Id )−1(y) = (ω

N2,x̃
Id ◦ ϕx̃,x̃ ′) ◦ (ω

N1,x̃
Id ◦ ϕx̃,x̃ ′)−1(y) = ω

N2,x̃
Id ◦ (ω

N1,x̃
Id )−1(y).

(9)

Since each mapping ω
N j ,x̃
Id , j = 1, 2, is a homeomorphism from V (x̃) onto its image, the

mappingω
N2
N1

is a homeomorphism from V (x1) onto V (x2). The same holds for all preimages

of V (x2) under ω
N2
N1
. Hence, ω

N2
N1

is a covering map. The commutativity of the part of the

diagram that involves the mappings ω
N1
Id , ωN2

Id , and ω
N2
N1

follows from Eq. (8).
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The existence of ω
π1(X ,q0)
N1

and the equality P = ω
π1(X ,q0)
N1

◦ ω
N1
Id follows by applying the

above arguments with N2 = π1(X , q0). The equality P = ω
π1(X ,q0)
N2

◦ ω
N2
Id follows in the

same way. Since

P = ω
π1(X ,q0)
N2

◦ ω
N2
N1

◦ ω
N1
Id

= ω
π1(X ,q0)
N1

◦ ω
N1
Id ,

we have

ω
π1(X ,q0)
N2

◦ ω
N2
N1

= ω
π1(X ,q0)
N1

We will also use the notation ωN de f= ωN
Id and ωN

de f= ω
π1(X ,q0)
N for a subgroup N of

π1(X , q0).
Let again N1 ≤ N2 be subgroups of π1(X , q0). Consider the covering ω

N2
N1

:
X̃�(Isq̃0)−1(N1) → X̃�(Isq̃0)−1(N2). Let β be a simple relatively closed curve in
X̃�(Isq̃0)−1(N2). Then (ω

N2
N1

)−1(β) is the union of simple relatively closed curves in

X̃�(Isq̃0)−1(N1) and ω
N2
N1

: (ω
N2
N1

)−1(β) → β is a covering. Indeed, we cover β by small

discsUk in X̃�(Isq̃0)−1(N2) such that for each k the restriction ofω
N2
N1

to each connected com-

ponent of (ωN2
N1

)−1(Uk) is a homeomorphism ontoUk , andUk intersects β along a connected

set. Take any k withUk ∩β �= ∅. Consider the preimages (ω
N2
N1

)−1(Uk). Restrict (ω
N2
N1

) to the

intersection of each preimage (ω
N2
N1

)−1(Uk) with (ω
N2
N1

)−1(β). We obtain a homeomorphism

onto Uk ∩ β. It follows that the map (ω
N2
N1

) is a covering from each connected component of

(ω
N2
N1

)−1(β) onto β.
The extremal length of monodromies. Let as before X be a connected finite open Riemann
surface with base point q0, and q̃0 a point in the universal covering X̃ for which P(q̃0) = q0
for the covering map P : X̃ → X .

Recall that for an arbitrary point q ∈ X the free homotopy class of an element e of
the fundamental group π1(X , q) can be identified with the conjugacy class of elements of
π1(X , q) containing e and is denoted by ê. Notice that for e0 ∈ π1(X , q0) and a curve α in X
with initial point q0 and terminating point q the free homotopy classes of e0 and of e = Isα(e0)
coincide, i.e. ê = ê0. Consider a simple smooth relatively closed curve L in X . We will say
that a free homotopy class of curves ê0 intersects L if each representative of ê0 intersects L .
Choose an orientation of L . The intersection number of ê0 with the oriented curve L is the
intersection number with L of some (and, hence, of each) smooth loop representing ê0 that
intersects L transversally. This intersection number is the sum of the intersection numbers
over all intersection points. The intersection number at an intersection point equals +1 if the
orientation determined by the tangent vector to the curve representing ê0 followed by the
tangent vector to L is the orientation of X , and equals −1 otherwise.

Let A be an annulus equipped with an orientation (called positive orientation) of simple
closed dividing curves in A. (A relatively closed curve in a surface X is called dividing, if
X\γ consists of two connected components.) A continuous mapping ω : A → X is said
to represent a conjugacy class ê of elements of the fundamental group π1(X , q) for a point
q ∈ X , if the composition ω ◦ γ represents ê for each positively oriented dividing curve γ in
A .

Let A be an annulus with base point p with a chosen positive orientation of simple closed
dividing curves in A. Let ω be a continuous mapping from A to a finite Riemann surface X
with base point q such that ω(p) = q . We write ω : (A, p) → (X , q). The mapping is said
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to represent the element e of the fundamental group π1(X , q) if ω ◦ γ represents e for some
(and hence for each) positively oriented simple closed dividing curve γ in A with base point
q .

We associate to each element e0 ∈ π1(X , q0) of the free group π1(X , q0) the annu-
lus X(〈e0〉) = X̃�(Isq̃0)−1(〈e0〉) with base point q〈e0〉 = ω

〈e0〉
Id (q̃0) and the covering

map ω〈e0〉
de f= ω

π1(X ,q0)
〈e0〉 : X(〈e0〉) → X . By the commutative diagram 3 the equality

ω〈e0〉(q〈e0〉) = q0 holds. We choose the orientation of simple closed dividing curves in
X(〈e0〉) = X̃�(Isq̃0)−1(〈e0〉) so that for a curve γ̃ in X̃ with terminating point q̃0 and initial

point Isq̃0(e0) the curve γ〈e0〉
de f= ω〈e0〉(γ̃ ) is positively oriented. The locally conformal map-

ping ω
π1(X ,q0)
〈e0〉 : (X(〈e0〉), q〈e0〉) → (X , q0) represents e0. This follows from the equality

ω〈e0〉(γ〈e0〉) = ω〈e0〉(ω〈e0〉(γ̃ )) = P(γ̃ ) = γ , since P(γ̃ ) represents e0.
Take a curve α in X that joins q0 and q , and a point q̃ = q̃(α) ∈ X̃ such that α

and q̃ are compatible, i.e. Isq̃ = Isα ◦ Isq̃0 (see Eq. (6)). Put e = Isα(e0). By Eq. (6)
(Isq̃)−1(e) = (Isq̃0)−1(e0), hence, X̃�(Isq̃)−1(〈e〉) = X̃�(Isq̃0)−1(〈e0〉) = X(〈e0〉). The
locally conformal mapping ω〈e0〉 : X(〈e0〉) → X takes the point q〈e〉

de f= ω〈e0〉(q̃) to q ∈ X .
Moreover, ω〈e0〉 : (X(〈e0〉), q〈e〉) → (X , q) represents e ∈ π1(X , q). This can be seen by
repeating the previous arguments.

Let α be an arbitrary curve in X joining q0 with q , and q̃ ∈ P−1(q) be arbitrary (i.e. α

and q̃ are not required to be compatible). Let e ∈ π1(X , q). Denote the projection X̃ →
X̃�(Isq̃)−1(〈e〉) by ω〈e〉,q̃ , and the projection X̃�(Isq̃)−1(〈e〉) → X by ω〈e〉,q̃ . Put q〈e〉,q̃ =
ω〈e〉,q̃(q̃). For any such choice we choose the orientation of simple closed dividing curves on
X̃�(Isq̃)−1(〈e〉) so that ω〈e〉,q̃ maps any curve γ̃ in X̃ with initial point (Isq̃)−1(〈e〉)(q̃) and
terminal point q̃ to a positively oriented dividing curve.Wewill call it the standard orientation
of dividing curves in X̃�(Isq̃)−1(〈e〉). The mapping ω〈e〉,q̃ : (

X̃�(Isq̃)−1(〈e〉), q〈e〉,q̃
) →

(X , q) represents e.
Since the mapping ω〈e0〉 : (X(〈e0〉), (q0)〈e0〉) → (X , q0) represents e0 , the mapping

ω〈e0〉 : X(〈e0〉) → X represents the free homotopy class ê0. The following simple lemma
will be useful.

Lemma 1 The annulus X(〈e0〉) has smallest extremal length among annuli which admit a
holomorphic mapping to X, that represents the conjugacy class ê0.

In other words, X(〈e0〉) is the “thickest” annulus with the property stated in Lemma 1.

Proof Take an annulus A with a choice of positive orientation of simple closed dividing

curves. Suppose A
ω−−→ X is a holomorphic mapping that represents ê0. The annulus A is

conformally equivalent to a round annulus in the plane, hence, we may assume that A has
the form A = {z ∈ C : r < |z| < R} for 0 ≤ r < R ≤ ∞ and the positive orientation of
dividing curves is the counterclockwise one.

Take a positively oriented simple closed dividing curve γ A in A. Its image ω ◦ γ A under
ω represents the class ê0. Choose a point q A in γ A, and put q = ω(q A). Then γ A represents
a generator of π1(A, q A) and γ = ω ◦ γ A represents an element e of π1(X , q) in the
conjugacy class ê0. Choose a curve α in X with initial point q0 and terminating point q ,
and a point q̃ in X̃ so that α and q̃ are compatible, and, hence, for e = Isα(e0) the equality
(Isq̃0)−1(e0) = (Isq̃)−1(e) holds. Let L be the relatively closed arc {q A · r : r ∈ R} ∩ A in
A that contains q A. After a homotopy of γ A with fixed base point, we may assume that its
base point q A is the only point of γ A that is contained in L . The restriction ω|(A\L) lifts to
a mapping ω̃ : (A\L) → X̃ , that extends continuously to the two strands L± of L . (Here
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L− contains the initial point of γ A.) Let q A± be the copies of q A on the two strands L±. We
choose the lift ω̃ so that ω̃(q A+) = q̃ . Since the mapping (A, q A) → (X , q) represents e, we
obtain ω̃(q A−) = σ(q̃) for σ = (Isq̃)−1(e). Then for each z ∈ L the covering transformation
σ maps the point z̃+ ∈ ω̃(L+) for which P(z̃+) = z to the point z̃− ∈ ω̃(L−) for which
P(z̃−) = z. Hence ω lifts to a holomorphic mapping ι : A → X(〈e0〉). By Lemma 7 of [17]
λ(A) ≥ λ(X(〈e0〉)). ��

For each point q ∈ X and each element e ∈ π1(X , q) we denote by A(̂e) the conformal
class of the “thickest” annulus that admits a holomorphic mapping into X that represents ê.
We saw that λ(A(ê0)) = λ(X̃�(Isq̃0)−1(〈e0〉)) for e0 ∈ π1(X , q0). By the same reasoning as
before λ(A(̂e)) = λ(X̃�(Isq̃

′
)−1(〈e〉)) for each q̃ ′ ∈ X̃ and each element e ∈ π1(X , P(q̃ ′)).

Hence, if e0 and e are conjugate, then λ(X̃�(Isq̃0)−1(〈e0〉)) = λ(X̃�(Isq̃)−1(〈e〉)) for

any q̃0 ∈ P−1(q0) ⊂ X̃ and any q̃ ∈ P−1(q). Notice that A(e−1
∧

) = A(̂e) for each e ∈
π1(X , q), q ∈ X .

3 Holomorphic mappings into the twice punctured plane

The following lemma will be crucial for the estimate of theL−-invariant of the monodromies
of holomorphic mappings from a finite open Riemann surface to C\{−1, 1}.
Lemma 2 Let f : X → C\{−1, 1} be a non-contractible holomorphic function on a con-
nected finite open Riemann surface X, such that 0 is a regular value of Im f . Assume that
L0 is a simple relatively closed curve in X such that f (L0) ⊂ (−1, 1). Let q ∈ L0 and
q ′ = f (q).

If for an element e ∈ π1(X , q) the free homotopy class ê intersects L0, then either the
reduced word f∗(e) ∈ π1(C\{−1, 1}, q ′) is a non-zero power of a standard generator of
π1(C\{−1, 1}, q ′) or the inequality

L−( f∗(e)) ≤ 2πλ(A( ê )) (10)

holds.

Notice that we make a normalization in the statement of the Lemma by requiring that f maps
L0 into the interval (−1, 1), not merely into R\{−1, 1}.

Lemma 2 will be a consequence of the following lemma.

Lemma 3 Let X, f , L0, q ∈ L0 be as in Lemma 2, and e ∈ π1(X , q). Let q̃ be an arbitrary

point inP−1(q). Consider the annulus A
def= X̃�(Isq̃)−1(〈e〉)and the holomorphic projection

ωA
de f= ω〈e〉,q̃ . Put qA

de f= ω〈e〉,q̃(q̃) and let L A ⊂ A be the connected component of
(ωA)−1(L0) that contains qA. Then the mapping ωA : (A, qA) → (X , q) represents e.

If ê intersects L0, then L A is a relatively closed curve in A that has limit points on both
boundary components of A, and the lift f ◦ ωA is a holomorphic function on A that maps
L A into (−1, 1).

Proof of Lemma 3 Let γ : [0, 1] → X be a curve with base point q in X that represents e,

and let γ̃ be the lift of γ to X̃ with terminating point γ̃ (1) equal to q̃ . Put σ
de f= (Isq̃)−1(e).

Then the initial point γ̃ (0) equals σ(q̃).
All connected components of P−1(L0) are relatively closed curves in X̃ ∼= C+ (whereC+

denotes the upper half-plane) with limit points on the boundary of X̃ . Indeed, the lift f ◦ P
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of f to X̃ takes values in (−1, 1) on P−1(L0). Hence, | exp(± i f ◦ P)| = 1 on P−1(L0).
A compact connected component of P−1(L0) would bound a relatively compact topological
disc in X̃ = C+, and by the maximum principle | exp(± i f ◦P)| = 1 on the disc. This would
imply that f ◦ P is constant on X̃ in contrary to the assumptions.

Let L̃ q̃ be the connected component of P−1(L0) that contains q̃ . The point σ(q̃) cannot

be contained in L̃ q̃ . Indeed, assume the contrary. Then the arc γ̃ ′ on L̃ q̃ joining σ(q̃) and q̃

is homotopic in X̃ with fixed endpoints to γ̃ . The projection γ ′ = P(γ̃ ′) is contained in L0

and is homotopic in X with fixed endpoints to γ . Since γ represents e and e is a primitive
element of the fundamental group π1(X , q), this is possible only if L0 is compact (and after
orienting it) L0 represents e. A small translation of γ ′ to a side of L0 gives a curve in X that
does not intersect L0 and represents the free homotopy class ê of e. This contradicts the fact
that ê intersects L0. Since σ(L0) is also a connected component of P−1(L0), the curves L̃ q̃

and σ(L̃ q̃) are disjoint.
Each of the two connected components L̃ q̃ and σ(L̃ q̃) divides X̃ . Let Ω be the domain

on X̃ that is bounded by L̃ q̃ and σ(L̃ q̃) and parts of the boundary of X̃ . After a homotopy of
γ̃ that fixes the endpoints we may assume that γ̃ ((0, 1)) is contained in Ω . Indeed, for each
connected component of γ̃ ((0, 1))\Ω there is a homotopy with fixed endpoints that moves
the connected component to an arc on L̃ q̃ or σ(L̃ q̃). A small perturbation yields a curve γ̃ ′
which is homotopic with fixed endpoints to γ̃ and has interior contained in Ω . Notice that
by the same reasoning as above, γ̃ ′((0, 1)) does not meet any σ k(L̃ q̃).

The curve ω〈e〉,q̃(γ̃ ′) is a closed curve on A that represents a generator of the fundamental
group of A with base point qA. Moreover, ωA ◦ ω〈e〉,q̃(γ̃ ′) = ω〈e〉,q̃ ◦ ω〈e〉,q̃(γ̃ ′) = P(γ̃ ′)
represents e. Hence, the mapping ωA : (A, qA) → (X , q) represents e.

The curve ω〈e〉,q̃(γ̃ ′) intersects L〈e〉 = ω〈e〉,q̃(L̃ q̃) exactly once. Hence, L〈e〉 has limit
points on both boundary circles of A for otherwise L〈e〉 would intersect one of the components
of A\ω〈e〉,q̃(γ̃ ′) along a set which is relatively compact in A, and γ̃ ′ would have intersection
number zero with L〈e〉. It is clear that f ◦ωA(L A) = f (L0) ⊂ (−1, 1). The lemma is proved.

��

Proof of Lemma 2 Let ωA : (A, qA) → (X , q) be the holomorphic mapping from Lemma 3
that represents e, and let L A � qA be the relatively closed curve in A with limit set on both
boundary components of A. Consider a positively oriented dividing curve γA : [0, 1] → A
with base point γ (0) = γ (1) = qA such that γA((0, 1)) ⊂ A\L A. The curve γ = ωA(γA)

represents e. The mapping f ◦ ωA is holomorphic on A and f ◦ ωA(γA) = f (γ ) represents
f∗(e) ∈ π1(C\{−1, 1}, q ′) with q ′ = f ◦ ωA(qA) = f (q) ∈ (−1, 1). Hence, f ◦ ωA(γA)

also represents the element ( f∗(e))tr ∈ π tr
1 (C\{−1, 1}) in the relative fundamental group

π1(C\{−1, 1}, (−1, 1)) = π tr
1 (C\{−1, 1}) corresponding to f∗(e).

We prove now that Λtr ( f∗(e)) ≤ λ(A). Let A0 � A be any relatively compact annulus in
A with smooth boundary such that qA ∈ A0. If A0 is sufficiently large, then the connected
component L A0 of L A∩A0 that contains qA has endpoints on different boundary components
of A0. The set A0\L A0 is a curvilinear rectangle. The open horizontal curvilinear sides are the
strands of the cut that are reachable from the curvilinear rectangle moving counterclockwise,
or clockwise, respectively. The open vertical curvilinear sides are obtained from the boundary
circles of A0 by removing an endpoint of the arc L A0 . Since f ◦ ωA maps L A to (−1, 1), the
restriction of f ◦ ωA to A0\L A0 represents ( f∗(e))tr . Hence,

Λtr ( f∗(e)) ≤ λ(A0\L A0). (11)
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Moreover,

λ(A0\L A0) ≤ λ(A0). (12)

This is a consequence of the following facts. First, λ(A0\L A0) is equal to the extremal
length λ(Γ (A0\L A0)) in the sense of Ahlfors [1] of the family Γ (A0\L A0) of curves in the
curvilinear rectangle A0\L A0 that join the two horizontal sides of the curvilinear rectangle.
Further, λ(A0) is equal to the extremal length λ(Γ (A0)) [1] of the family Γ (A0) of curves
in A0 that are free homotopic to simple closed positively oriented dividing curves in A0.
Finally, by [1], Ch.1 Theorem 2, the inequality

λ(Γ (A0\L A0)) ≤ λ(Γ (A0)) (13)

holds. We obtain the inequality Λtr ( f∗(e)) ≤ λ(A0) for each annulus A0 � A, hence, since
A belongs to the class A(̂e) of conformally equivalent annuli,

Λtr ( f∗(e)) ≤ λ(A(̂e)), (14)

and the Lemma follows from Theorem F. ��
Themonodromies along two generators. In the following Lemmawe combine the informa-
tion on the monodromies along two generators of the fundamental group π1(X , q). We allow
the situation when the monodromy along one generator or along each of the two generators
of the fundamental group of X is a power of a standard generator of π1(C\{−1, 1}, f (q)).

Lemma 4 Let f : X → C\{−1, 1} be a holomorphic function on a connected open Riemann
surface X such that 0 is a regular value of the imaginary part of f . Suppose f maps a simple
relatively closed curve L0 in X to (−1, 1), and q is a point in L0. Let e(1) and e(2) be primitive
elements of π1(X , q). Suppose that for each e = e(1), e = e(2), and e = e(1) e(2), the free
homotopy class ê intersects L0. Then either f∗(e( j)), j = 1, 2, are (trivial or non-trivial)
powers of the same standard generator of π1(C\{−1, 1}, q ′) with q ′ = f (q) ∈ (−1, 1), or
each of them is the product of at most two elements w1 and w2 of π1(C\{−1, 1}, q ′) with

L−(w j ) ≤ 2πλe(1),e(2) , j = 1, 2,

where

λe(1),e(2)
de f= max{λ(A(e(1)

∧

)), λ(A(e(2)
∧

)), λ(A(e(1) e(2)
∧

))}.
Hence,

L−( f∗(e( j))) ≤ 4πλe(1),e(2) , j = 1, 2. (15)

Proof If the monodromies f∗(e(1)) and f∗(e(2)) are not powers of a single standard generator
(the identity is considered as zeroth power of a standard generator) we obtain the following.
At most two of the elements, f∗(e(1)), f∗(e(2)), and f∗(e(1) e(2)) = f∗(e(1)) f∗(e(2)), are
powers of a standard generator, and if two of them are powers of a standard generator,
then they are non-zero powers of different standard generators. If two of them are non-
zero powers of standard generators, then the third has the form ak�a

k′
�′ with a� and a�′ being

different generators and k and k′ being non-zero integers. By Lemma 2 the L− of the third
element does not exceed 2πλe(1),e(2) . On the other hand it equals log(3|k′|)+log(3|k|). Hence,
L−(ak� ) = log(3|k|) ≤ 2πλe(1),e(2) and L−(ak

′
�′ ) = log(3|k′|) ≤ 2πλe(1),e(2) .

If two of the elements f∗(e(1)), f∗(e(2)), and f∗(e(1) e(2)) = f∗(e(1)) f∗(e(2)), are not
powers of a standard generator, then the L− of each of the two elements does not exceed
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2πλe(1),e(2) . Since theL− of an element coincides with theL− of its inverse, the third element
is the product of two elements with L− not exceeding 2πλe(1),e(2) . Since for x, x ′ ≥ 2 the
inequality log(x + x ′) ≤ log x + log x ′ holds, the L− of the product does not exceed the
sum of the L− of the factors. Hence the L− of the third element does not exceed 4πλe(1),e(2) .
Hence, inequality (15) holds. ��

The following proposition states the existence of suitable connected components of the
zero set of the imaginary part of certain analytic functions on tori with a hole and on planar
domains. For any subset E ′ of π1(X; q0) we denote by (E ′)−1 the set of all elements that are
inverse to elements in E ′. Recall that E j is the set of primitive elements of π1(X , q0) which
can be written as product of at most j elements of E ∪ (E)−1 for the set E of generators of
π1(X , q0) chosen in the introduction.

Proposition 3 Let X be a torus with a hole or a planar domain with base point q0 and
fundamental group π1(X , q0), and let E be a set of generators of π1(X , q0) that is associated
to a standard bouquet of circles for X. Let f : X → C\{−1, 1} be a non-contractible
holomorphic mapping such that 0 is a regular value of Im f . Then there exist a simple
relatively closed curve L0 ⊂ X such that f (L0) ⊂ R\{−1, 1}, and a set E ′

2 ⊂ E2 ⊂
π1(X , q0) of primitive elements of π1(X , q0), such that the following holds. Each element
e j,0 ∈ E ⊂ π1(X , q0) is the product of at most two elements of E ′

2 ∪ (E ′
2)

−1. Moreover, for
each e0 ∈ π1(X , q0) which is the product of one or two elements from E ′

2 the free homotopy
class ê0 has positive intersection number with L0 (after suitable orientation of L0).

If X is a torus with a hole or X equals P
1 with three holes, we may chose E ′

2 consisting
of two elements, one of them contained in E , the other is either contained in E ∪ E−1 or is a
product of two elements of E .

Notice the following facts. By Theorem E a mapping f : X → C\{−1, 1} is contractible
if and only if for each e0 ∈ π1(X , q0) the monodromy f∗(e0) is equal to the identity.
The mapping f is reducible if and only if the mondromy mapping f∗ : π1(X , q0) →
π1(C\{−1, 1}, f (q0)) is conjugate to a mapping into a subgroup Γ of π1(C\{−1, 1}, f (q0))
that is generated by a single element that is represented by a curve which separates one of the
points 1,−1 or ∞ from the other points. In other words, Γ is (after identifying fundamental
groups with different base point up to conjugacy) generated by a conjugate of one of the
elements a1, a2 or a1a2 of π1(C\{−1, 1}, 0).

If f is irreducible, then it is not contractible, and, hence, the preimage f −1(R) is not
empty.

Denote by M1 a Möbius transformation which permutes the points −1, 1, ∞ and maps
the interval (−∞,−1) onto (−1, 1), and let M2 be a Möbius transformation which permutes

the points −1, 1, ∞ and maps the interval (1,∞) onto (−1, 1). Let M0
de f= Id.

The main step for the proof of Theorem 1 is the following Proposition 4.
Recall that λ j (X) was defined in the introduction. Since for e0 ∈ π1(X , q0) the equality

λ(X̃�(Isq̃0)−1(〈e0〉)) = λ(A(ê0)) holds, λ j (X) is the maximum of λ(A(ê0)) over e0 ∈ E j .

Proposition 4 Let X be a connected finite open Riemann surface with base point q0, and let E
be the set of generators of π1(X , q0) that was chosen in Sect. 1. Suppose f : X → C\{−1, 1}
is an irreducible holomorphic mapping, such that 0 is a regular value of Im f . Then for one
of the functions Ml ◦ f , l = 0, 1, 2, which we denote by F, there exists a point q ∈ X

(depending on f ), such that the point q ′ de f= F(q) is contained in (−1, 1), and a curve α

in X joining q0 with q, such that the following holds. For each element e j ∈ Isα(E) the
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monodromy F∗(e j ) is the product of at most four elements of π1(C\{−1, 1}, q ′) of L− not
exceeding 2πλ7(X) and, hence,

L−(F∗(e j )) ≤ 8πλ7(X) for each j . (16)

If X is a torus with a hole the proposition holds with λ7(X) replaced by λ3(X). If X is a
planar domain the proposition holds with λ4(X) instead of λ7(X).

Notice, that all monodromies of contractible mappings are equal to the identity, hence the
inequality (16) holds automatically for contractible mappings.
We postpone the proof of the two propositions and prove first the Theorem 1.

Proof of Theorem 1 Let X be a connected finite open Riemann surface (possibly of second
kind) with base point q0. Consider an arbitrary open Riemann surface X0 � X which is
relatively compact in X and is a deformation retract of X . Consider a free homotopy class of
mappings from X to C\{−1, 1}, that is represented by an irreducible holomorphic mapping
f : X → C\{−1, 1}. Notice that the restriction f|X0 is also irreducible. Take a small enough
positive number ε, such that the function (f − iε) | X0 takes values in C\{−1, 1} and 0 is
a regular value of its imaginary part. Put f = (f − iε) | X0. If ε is small enough, then the
irreducible mapping f on X0 is free homotopic to f | X0.We identify the fundamental groups
of X and of X0 by the inclusion mapping from X0 to X .

Proposition 4 applied to the mapping f : X0 → C\{−1, 1} provides a Möbius trans-
formation Ml , that maps one of the components of R\{−1, 1} onto (−1, 1), and further a
point q ∈ X0 and a curve α in X0 with initial point q0 and terminating point q , such for the

mapping F = Ml ◦ f the point q ′ de f= F(q) is contained in (−1, 1), and for the generators

e j
de f= Isα(e j,0), e j,0 ∈ E, of π1(X0, q) the inequalities (16) hold. After identifying the fun-

damental groups π1(X , q) and π1(X , q0)with different base point by an isomorphism that is
defined up to conjugation, Theorem E states that the free homotopy class of F corresponds
to a conjugacy class of homomorphisms

π1(X , q0) ∼= π1(X , q) → π1(C\{−1, 1}, q ′),

that is represented by a homomorphism h for which L−(h(e j,0)) ≤ 8πλ7(X0) for each
e j,0 ∈ E . More explicitly, there exists a smooth mapping F̃ : X0 → C\{−1, 1}, that is free
homotopic to F , maps q0 to q ′, and satisfies the inequality

L−(F̃∗(e j,0)) ≤ 8πλ7(X
0) (17)

for each e j,0 ∈ E . The existence of the smooth mapping F̃ can be seen explicitly as follows.
Write e = Isα(e0) ∈ π1(X , q) for each e0 ∈ π1(X , q0). Parameterise α by the interval [0, 1].
The image of α under the mapping F is the curve β = F ◦ α in C\{−1, 1} with initial point
F(q0) and terminating point F(q) = q ′. Then F∗(e0) = (Isβ)−1(F∗(e)). Choose a homotopy

Ft , t ∈ [0, 1], that joins the mapping F0
de f= F with a (smooth) mapping F1 denoted by F̃ ,

so that Ft (q0) = β(t), t ∈ [0, 1]. The value β(t) moves from the point β(0) = F(q0) to
β(1) = q ′ along the curve β. Then F̃(q0) = q ′ and F̃∗(e0) = F∗(e) for each e0 ∈ π1(X , q0).
Indeed, denote by βt the curve that runs from β(t) to β(1) along β. Then β0 = β and β1

is a constant curve. Let γ0 be a curve that represents e0. The base point of the curve Ft (γ0)
equals Ft (q0) = β(t). Hence, we obtain a continuous family of curves β−1

t Ft (γ0)βt with
base point β(1) = F(q). For t = 1 the curve is equal to F1(γ0) = F̃(γ0), for t = 0 the
curve is equal to β−1F0(γ0)β = F0(α−1Isα(γ0)α) = F0(γ ). Since the two curves F1(γ0)
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and F0(γ ) are homotopic and F1 = F̃ , F0 = F , we obtain F̃∗(e0) = F∗(e). The inequalities
(16) imply the inequalities (17).

For each irreducible holomorphic mapping f : X → C\{−1, 1} we found a Möbius
transformation Ml and a mapping F̃ : X0 → C\{−1, 1} that satisfies the condition F̃(q0) =
q ′ ∈ (−1, 1) and the inequalities (17), and is free homotopic on X0 to Ml((f − iε)|X0)

for a small number ε, and, hence, is free homotopic to Ml(f|X0). Using a deformation
retraction we obtain a mapping F̃ X : X → C\{−1, 1} that is free homotopic on X0 to F̃
and, hence, to Ml(f|X0). Identifying the fundamental groups π1(X0, q0) and π1(X , q0) by
the homomorphism induced by the inclusion and applying Theorem E, we obtain for each
irreducible holomorphic mapping f : X → C\{−1, 1} a Möbius transformation Ml and a
smooth mapping F̃ X : X → C\{−1, 1} that is free homotopic to Ml( f) on X , and satisfies
the condition F̃ X (q0) = q ′ ∈ (−1, 1) and the inequalities (17).

If f : X → C\{−1, 1} is a contractible mapping, it is free homotopic to the function
F̃ X ≡ 0 on X , and the inequalities (17) are automatically satisfied for the monodromies of
F̃ X .

The number of free homotopy classes of mappings X → C\{−1, 1}, that contain a
smooth mapping F̃ X , which satisfies the condition F̃ X (q0) = q ′ ∈ (−1, 1) and the inequal-
ities (17), are estimated from above as follows. By Lemma 1 of [19] there are at most
1
2e

24πλ7(X0)+1 ≤ 3
2e

24πλ7(X0) different reducedwordsw ∈ π1(C\{−1, 1}), 0) (including the
identity) with L−(w) ≤ 8πλ7(X0). Identify standard generators of π1(C\{−1, 1}, q ′) with
standard generators of π1(C\{−1, 1}, 0) by the canonical isomorphism. We saw, that there
are at most ( 32e

24πλ7(X0))2g+m different homomorphisms h : π1(X0, q0) ∼= π1(X , q0) →
π1(C\{−1, 1}, q ′) ∼= π1(C\{−1, 1}, 0) with L−(h(e)) ≤ 8πλ7(X0) for each element e of
the set of generators E of π1(X0, q0). By Theorem E there are at most ( 32e

24πλ7(X0))2g+m dif-
ferent free homotopy classes of mappings X → C\{−1, 1}, that contain a smooth mapping
F̃ X which satisfies the condition F̃ X (q0) = q ′ ∈ (−1, 1) and the inequalities (17).

For each irreducible or contractiblemapping f on X one of themappingsMl ◦f, l = 0, 1, 2,
is free homotopic to a mapping F̃ X which satisfies the condition F̃ X (q0) = q ′ ∈ (−1, 1) and
the inequalities (17). The (Ml)

−1 ◦ F̃ X represent at most 3( 32e
24πλ7(X0))2g+m free homotopy

classes of irreducible or contractible mappings X → C\{−1, 1}. Theorem 1 is proved with
the upper bound 3( 32e

24πλ7(X0))2g+m for an arbitrary relatively compact domain X0 ⊂ X
that is a deformation retract of X .

It remains to prove that λ7(X) = inf{λ7(X0) : X0 � X is a deformation retract of X }.
We have to prove that for each e0 ∈ π1(X , q0) the quantity λ(A(ê0)) = λ(X̃�(Isq̃0)−1(〈e0〉))
is equal to the infimum of λ(X̃0�(Isq̃0)−1(〈e0〉)) over all X0 being open relatively compact
subsets of X which are deformation retracts of X . Here X̃0 is the universal covering of X0,
and the fundamental groups of X and X0 are identified. X̃0 (X̃ , respectively) can be defined
as set of homotopy classes of arcs in X0 (in X , respectively) joining q0 with a point q ∈ X0

(in X respectively) equipped with the complex structure induced by the projection to the
endpoint of the arcs, and the point q̃0 corresponds to the class of the constant curve. The
isomorphism (Isq̃0)−1 from π1(X0, q0) to the group of covering transformations on X̃0 is
defined in the same way as it was done for X instead of X0. These considerations imply that
there is a holomorphic mapping from X̃0

�(Isq̃0)−1(〈e0〉) into X̃�(Isq̃0)−1(〈e0〉). Hence, the
extremal length of the first set is not smaller than the extremal length of the second set.

Vice versa, take any annulus A0 which is a relatively compact subset of A(ê0) and is
a deformation retract of A(ê0). Its projection to X is relatively compact in X , hence, it is
contained in a relatively compact deformation retract X0 of X . Hence, A0 can be consid-
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ered as subset of X̃0�(Isq̃0)−1(〈e0〉), and, hence, λ(X̃0�(Isq̃0)−1(〈e0〉)) ≤ λ(A0). Since
λ(A(ê0)) = inf{λ(A0) : A0 � A(ê0) is a deformation retract of A(ê0)} we are done. ��

We proved a slightly stronger statement, namely, the number of homotopy classes of
mappings X → C\{−1, 1} that contain a contractible holomorphicmapping or an irreducible
holomorphic mapping does not exceed 3( 32e

24πλ7(X))2g+m .

Proof of Proposition 3 Denote the zero set {x ∈ X : Im f (x) = 0} by L . Since f is not
contractible, L �= ∅.
1. A torus with a hole. Assume first that X is a torus with a hole with base point q0. For
notational convenience we denote by e0 and e′

0 the two elements of the set of generators E of
π1(X , q0) that is associated to a standard bouquet of circles for X . We claim that there is a
connected component L0 of L such that (after suitable orientation) the intersection number
of the free homotopy class of one of the elements of E , say of ê0, with L0 is positive, and the

intersection number with one of the classes e′
0

∧

, or (e′
0)

−1
∧

, or e0 e′
0

∧

with L0 is positive.
The claim is easy to prove in the case when there is a component of L0 which is a simple

closed curve that is not contractible and not contractible to the hole of X . Indeed, consider
the inclusion of X into a closed torus Xc and the homomorphism on fundamental groups
π1(X , q0) → π1(Xc, q0) induced by the inclusion. Denote by ec0 and e′

0
c the images of e0

and e′
0 under this homomorphism. Notice that ec0 and e′

0
c commute. The (image under the

inclusion of the) curve L0 is a simple closed non-contractible curve in Xc. It represents the
free homotopy class of an element (ec0)

j (e′
0
c
)k for some integers j and k which are not both

equal to zero. Hence, L0 is not null-homologous in Xc, and by the Poincaré Duality Theorem
for one of the generators, say for ec0, the representatives of the free homotopy class ec0

∧

have
non-zero intersection number with L0. After suitable orientation of L0, we may assume that
this intersection number is positive. There is a representative of the class ec0

∧

which is contained
in X , hence, ê0 has positive intersection number with L0.

Suppose all compact connected components of L are contractible or contractible to the
hole of X . Consider a relatively compact domain X ′′ � X in X with smooth boundary
which is a deformation retract of X such that for each connected component of L at most
one component of its intersection with X ′′ is not contractible to the hole of X ′′. (See the
paragraph on “Regular zero sets”.) There is at least one component of L ∩ X ′′ that is not
contractible to the hole of X ′′. Indeed, otherwise the free homotopy class of each element of
E could be represented by a loop avoiding L , and, hence, the monodromy of f along each
element of E would be conjugate to the identity, and, hence, equal to the identity, i.e. contrary
to the assumption, f : X → C\{−1, 1} would be free homotopic to a constant.

Take a component L ′′
0 of L ∩ X ′′ that is not contractible to the hole of X ′′. There is an

arc of ∂X ′′ between the endpoints of L ′′
0 such that the union L̃0 of the component L ′′

0 with
this arc is a closed curve in X that is not contractible and not contractible to the hole. Hence,
for one of the elements of E , say for e0, the intersection number of the free homotopy class
ê0 with the closed curve L̃0 is positive after orienting the curve L̃0 suitably. We may take
a representative γ of ê0 that is contained in X ′′. Then γ has positive intersection number
with L ′′

0. Denote the connected component of L that contains L ′′
0 by L0. All components

of L0 ∩ X ′′ different from L ′′
0 are contractible to the hole of X ′′. Hence, γ has intersection

number zero with each of these components. Hence, γ has positive intersection number with
L0 since γ ⊂ X ′′. We proved that the class ê0 has positive intersection number with L0.

If e′
0

∧

also has non-zero intersection number with L0 we define e′′
0 = (e′

0)
±1 so that the

intersection number of e′′
0

∧

with L0 is positive. If e′
0

∧

has zero intersection number with L0
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we put e′′
0 = e0 e′

0. Then again the intersection number of e′′
0

∧

with L0 is positive. Also, the

intersection number of e0 e′′
0

∧

with L0 is positive. The set E ′
2
de f= {e0, e′′

0} satisfies the condition
required in the proposition. We obtained Proposition 3 for a torus with a hole.
2. A planar domain. Let X be a planar domain. The domain X is conformally equivalent
to a disc with m smoothly bounded holes, equivalently, to the Riemann sphere with m + 1
smoothly bounded holes,P1\ ⋃m+1

j=1 C j , where Cm+1 contains the point∞. As before the base
point of X is denoted by q0, and for each j = 1, . . . ,m, the generator e j,0 ∈ E ⊂ π1(X , q0) is
represented by a curve that surrounds C j once counterclockwise. Since f is not contractible,
there must be a connected component of L that has limit points on some C j with j ≤ m.
Indeed, otherwise the free homotopy class of each generator could be represented by a curve
that avoids L . This would imply that all monodromies are equal to the identity. We claim that
there exists a component L0 of L with limit points on the boundary of two components ∂C j ′
and ∂C j ′′ for some j ′, j ′′ ∈ {1, . . . ,m + 1} with j ′′ �= j ′.

Indeed, assume the contrary. Then, if a component of L has limit points on a component
∂C j , j ≤ m, then all its limit points are on ∂C j . Take a smoothly bounded simply connected
domain C′

j � X ∪ C j that contains the closed set C j , so that its boundary ∂C′
j represents

e j,0
∧

. Then all components L ′
k of L\C′

j with an endpoint on ∂C′
j have another endpoint on this

circle. The two endpoints of L ′
k on ∂C′

j divide ∂C′
j into two connected components. The union

of L ′
k with each of the two components of ∂C′

j\L ′
k is a simple closed curve in C, and, hence,

by the Jordan Curve Theorem it bounds a relatively compact topological disc in C. One of
these discs contains C′

j , the other does not. Assign to each component L ′
k of L\C′

j with both
endpoints on ∂C′

j the closed arc αk in ∂C′
j with the same endpoints as L ′

k , whose union with
L ′
k bounds a relatively compact topological disc in C that does not contain C′

j . These discs
are partially ordered by inclusion, since the L ′

k are pairwise disjoint. Hence, the arcs αk are
partially ordered by inclusion. For an arc αk which contains no other of the arcs (a minimal
arc) the curve f ◦ αk except its endpoints is contained in C\R. Moreover, the endpoints of
f ◦ αk lie on f (L ′

k), which is contained in one connected components of R\{−1, 1}, since
L ′
k is connected. Hence, the curve f ◦ αk is homotopic in C\{−1, 1} (with fixed endpoints)

to a curve in R\{−1, 1}. The function f either maps all points on ∂C′
j\αk that are close to

αk to the open upper half-plane or maps them all to the open lower half-plane. (Recall, that
zero is a regular value of Im f .) Hence, for an open arc α′

k ⊂ ∂C′
j that contains αk the curve

f ◦ α′
k is homotopic in C\{−1, 1} (with fixed endpoints) to a curve in C\R.

Consider the arcs αk with the following property. For an open arc α′
k in ∂C′

j which contains
the closed arc αk the mapping f ◦ α′

k is homotopic in C\{−1, 1} (with fixed endpoints) to
a curve contained in C\R. Induction on the arcs by inclusion shows that this property is
satisfied for all maximal arcs among the αk and, hence, f | ∂C′

j is contractible in C\{−1, 1}.
Hence, if the claim was not true, then for each hole C j , j ≤ m, whose boundary contains
limit points of a connected component of L , the monodromy along the curve C′

j (with any
base point contained in C′

j ) that represents e j,0
∧

would be trivial. Then all monodromies would
be trivial, which contradicts the fact that the mapping is not contractible. The contradiction
proves the claim.

With j ′ and j ′′ being the numbers of the claim and j ′ ≤ m we consider the set E ′
2 ⊂ E2

which consists of the following primitive elements: e j ′,0, the element (e j ′′,0)−1 provided
j ′′ �= m+1, and e j ′,0 e j,0 for all j = 1, . . . ,m, j �= j ′, j �= j ′′. The free homotopy class of
each element of E ′

2 has intersection number 1 with L0 after suitable orientation of the curve
L0. Each product of at most two different elements of E ′

2 is a primitive element of π1(X , q)
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and is contained in E4. Moreover, the intersection number with L0 of the free homotopy class
of each product of at most two different elements of E ′

2 equals 1 or 2. Each element of E is
the product of at most two elements of E ′

2 ∪ (E ′
2)

−1.
The proposition is proved for the case of planar domains X . ��

Proof of Proposition 4 1. A torus with a hole. Consider the curve L0 and the set E ′
2 ⊂

π1(X , q0) obtained in Proposition 3. For one of the functions Ml ◦ f , denoted by F , the
image F(L0) is contained in (−1, 1). Let e0, e′

0 be the two elements of E . Move the base
point q0 to a point q ∈ L0 along a curve α in X , and consider the generators e = Isα(e0)
and e′ = Isα(e′

0) of π1(X , q), and the set Isα(E ′
2) ⊂ π1(X , q). Then e and e′ are products of

at most two elements of Isα(E ′
2). Since the free homotopy class of an element of π1(X , q0)

coincides with the free homotopy class of the element of π1(X , q) obtained by applying Isα ,
the free homotopy class of each product of one or two elements of Isα(E ′

2) intersects L0. We
may assume as in the proof of Proposition 3 that Isα(E ′

2) consists of the elements e and e′′,
where e′′ is either equal to e′±1, or equals the product of e and e′. Lemma 4 applies to the
pair e, e′′, the function F , and the curve L0. Since F is irreducible, the monodromies of F
along e and e′′ are not powers of a single standard generator of the fundamental group of
π1(C\{−1, 1}, q ′). Hence, the monodromy along each of the e and e′′ is the product of at
most two elements ofL− not exceeding 2πλe,e′′ . Therefore, the monodromy of F along each
of the e and e′′ has L− not exceeding 4πλe,e′′ . Notice that λe,e′′ = λe0e′′

0
≤ λ3(X), since e′′

0

is the product of at most two factors, each an element of E ∪E−1. Since e′ is the product of at
most two different elements among the e and e′′ and their inverses, we obtain Proposition 4
for e and e′, in particular L−(F∗(e)) and L−(F∗(e′)) do not exceed 8πλ3(X). Proposition 4
is proved for tori with a hole.
2. A planar domain. Consider the curve L0 and the set E ′

2 of Proposition 3. Move the base
point q0 along an arc α to a point q ∈ L0. Then f (q) ∈ R\{−1, 1} and for one of the
mappings f , M1 ◦ f , or M2 ◦ f , denoted by F , the inclusion F(L0) ⊂ (−1, 1)) holds,

hence, q ′ de f= F(q) is contained in (−1, 1). Denote e j = Isα(e j,0) for each element e j,0 ∈ E .
The e j form the basis Isα(E) of π1(X , q). The set Isα(E ′

2) consists of primitive elements of
π1(X , q) such that the free homotopy class of each product of one or two elements of Isα(E ′

2)

intersects L0. Moreover, each element of Isα(E) is the product of one or two elements of
Isα(E ′

2) ∪ (Isα(E ′
2))

−1.
By the condition of the proposition not all monodromies F∗(e), e ∈ Isα(E ′

2), are (trivial or
non-trivial) powers of the same standard generator of π1(C\{−1, 1}, q ′). Apply Lemma 4 to
all pairs of elements of Isα(E ′

2) whose monodromies are not (trivial or non-trivial) powers of
the same standard generator of π1(C\{−1, 1}, q ′). Since the product of at most two different
elements of Isα(E ′

2) is contained in Isα(E4), Lemma 4 shows that the monodromy F∗(e) along
each element e ∈ Isα(E ′

2) is the product of at most two factors, each with L− not exceeding
2πλ4(X). Since each element of Isα(E) is a product of at most two factors in E ′

2 ∪ (E ′
2)

−1, the
monodromy F∗(e j ) along each generator e j of π1(X , q) is the product of at most 4 factors
of L− not exceeding 2πλ4(X), and, hence, each monodromy F∗(e j ) has L− not exceeding
8πλ4(X). Proposition 4 is proved for planar domains.

3.1 The general case. Diagrams of coverings

We will use diagrams of coverings to reduce this case to the case of a torus with a hole or to
the case of the Riemann sphere with three holes.
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Let as before q̃0 be the point in X̃ with P(q̃0) = q0 chosen in Sect. 2 . Let N be a subgroup
of the fundamental group π1(X , q0) and let ωN : X̃ → X̃�(Isq̃0)−1(N ) = X(N ) be the

projection defined in Sect. 2. Put (q0)N
de f= ωN (q̃0). For an element e0 ∈ N ⊂ π1(X , q0) we

denote by (e0)N the element of π1(X(N ), (q0)N ) that is obtained as follows. Take a curve γ

in X with base point q0 that represents e0 ∈ N . Let γ̃ be its lift to X̃ with terminating point

q̃0. Then γN
def= ωN (γ̃ ) is a closed curve in X(N ) = X̃�(Isq̃0)−1(N )with base point (q0)N .

The element ofπ1(X(N ), (q0)N ) represented by γN is the required element (e0)N . All curves
γ ′
N representing (e0)N have the form ωN (γ̃ ′) for a curve γ̃ ′ in X̃ with terminating point q̃0

and initial point (Isq̃0)−1(e0)(q̃0). Since ωN ◦ ωN = P, the curve ωN (γ ′
N ) = P(γ̃ ′) = γ ′

represents e0 for each curve γ ′
N in X(N ) that represents (e0)N .We obtain (ωN )∗((e0)N ) = e0.

For two subgroups N1 ≤ N2 of π1(X , q0) we obtain (ω
N2
N1

)∗((e0)N1) = (e0)N2 , e0 ∈ N1 (see
the commutative diagram Fig. 3).

Let q̃ be another base point of X̃ and let α̃ be a curve in X̃ with initial point q̃0 and

terminating point q̃. Let again N be a subgroup of π1(X , q0). Put qN
def= ωN (q̃). The curve

αN = ωN (α̃) in X(N ), and the base point q̃ of X̃ are compatible, hence, (Isq̃0)−1(N ) =
(Isq̃)−1(IsαN (N )) and X(IsαN (N ))

de f= X̃�(Isq̃)−1(IsαN (N )) = X̃�(Isq̃0)−1(N ) = X(N ).
We will use the previous notation ω

N2
N1

also for the projection X̃�(Isq̃)−1(IsαN1
(N1)) →

X̃�(Isq̃)−1(IsαN2
(N2)), N1 ≤ N2 being subgroups of π1(X , q0) (N1 may be the identity

and N2 may be π1(X , q0).)

Put α
de f= P(α̃). For an element e0 ∈ π1(X , q0) we put e

de f= Isα(e0) ∈ π1(X , q) and
denote by eN the element of π1(X(N ), qN ), that is represented by ωN (γ̃ ) for a curve γ̃ in X̃
with terminating point q̃ and projection P(γ̃ ) representing e. Again (ω

N2
N1

)∗(eN1) = eN2 for
subgroups N1 ≤ N2 of π1(X , q) and e ∈ N1, in particular (ωN )∗(eN ) = e for a subgroup N
of π1(X , q) and e ∈ N .

3.2 The estimate for a chosen pair of monodromies

Since the mapping f : X → C\{−1, 1} is irreducible, there exist two elements e′
0, e

′′
0 ∈

π1(X , q0) such that the monodromies f∗(e′
0) and f∗(e′′

0) are not powers of a single con-
jugate of a power of one of the elements a1, a2 or a1a2. The fundamental group of the
Riemann surface X(〈e′

0, e
′′
0〉) is a free group in the two generators (e′

0)〈e′
0,e

′′
0 〉 and (e′′

0)〈e′
0,e

′′
0 〉,

hence, X(〈e′
0, e

′′
0〉) is either a torus with a hole or is equal to P

1 with three holes. More-
over, the system E〈e′

0,e
′′
0 〉 = {(e′

0)〈e′
0,e

′′
0 〉, (e′′

0)〈e′
0,e

′′
0 〉} of generators of the fundamental group

π1(X(〈e′
0, e

′′
0〉), (q0)〈e′

0,e
′′
0 〉) is associated to a standard bouquet of circles for X(〈e′

0, e
′′
0〉). This

can be seen as follows. The set of generators E ofπ1(X , q0) is associated to a standard bouquet
of circles for X . For each e0 ∈ E we denote the circle of the bouquet that represents e0 by γe0 .
For each e0 ∈ E we lift the circle γe0 with base point q0 to an arc γ̃e0 in X̃ with terminating
point q̃0. Let D be a small disc in X around q0, and D̃0, D̃e0 , e0 ∈ E, be the preimages of D
under the projection P : X̃ → X , that contain q̃0, or the initial point of γ̃e0 , respectively. We
assume that D is small enough so that the mentioned preimages of D are pairwise disjoint.
Put D〈e′

0,e
′′
0 〉 = ω〈e′

0,e
′′
0 〉(D̃0). For e0 �= e′

0, e
′′
0 the image ω〈e′

0,e
′′
0 〉(D̃0 ∪ γ̃e0 ∪ D̃e0) is the union

of an arc ω〈e′
0,e

′′
0 〉(γ̃e0) in X(〈e′

0, e
′′
0〉) with two disjoint discs, each containing an endpoint of

the arc and one of them equal to D〈e′
0,e

′′
0 〉. For e0 = e′

0, e
′′
0 the image ω〈e′,e′′〉(D̃0 ∪ γ̃e0 ∪ D̃e0)

is the union of D〈e′
0,e

′′
0 〉 with the loop (γe0)〈e′

0,e
′′
0 〉

de f= ω〈e′
0,e

′′
0 〉(γ̃e0). For e0 = e′

0, e
′′
0 the loop
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(γe0)〈e′
0,e

′′
0 〉 in X(〈e′

0, e
′′
0〉) has base point (q0)〈e′

0,e
′′
0 〉 = ω〈e′

0,e
′′
0 〉(q̃0) and represents the genera-

tor (e0)〈e′
0,e

′′
0 〉 of the fundamental group of π1(X(〈e′

0, e
′′
0〉), (q0)〈e′

0,e
′′
0 〉). Since the bouquet of

circles ∪e0∈E γe0 is a standard bouquet of circles for X , the union (γe′
0
)〈e′

0,e
′′
0 〉 ∪ (γe′′

0
)〈e′

0,e
′′
0 〉 is

a standard bouquet of circles in X(〈e′
0, e

′′
0〉). This can be seen by looking at the intersections

of the loops with a circle that is contained in D〈e′
0,e

′′
0 〉 and surrounds (q0)〈e′

0,e
′′
0 〉. By the com-

mutative diagram of coverings the intersection behaviour is the same as for the images of
these objects under ω〈e′

0,e
′′
0 〉. Hence, since (γe′

0
)〈e′

0,e
′′
0 〉 and (γe′′

0
)〈e′

0,e
′′
0 〉 represent the generators

(e′
0)〈e′

0,e
′′
0 〉 and (e′′

0)〈e′
0,e

′′
0 〉 of E〈e′

0,e
′′
0 〉, the union (γe′

0
)〈e′

0,e
′′
0 〉 ∪ (γe′′

0
)〈e′

0,e
′′
0 〉 is a standard bouquet

of circles for X(〈e′
0, e

′′
0〉).

The set X(〈e′
0, e

′′
0〉) is either a torus with a hole or is equal to P

1 with three holes. Apply
Proposition 3 to the Riemann surface X(〈e′

0, e
′′
0〉)with base point (q0)〈e′

0,e
′′
0 〉, the holomorphic

mapping f〈e′
0,e

′′
0 〉 = f ◦ ω〈e′

0,e
′′
0 〉 into C\{−1, 1}, and the set of generators E〈e′

0,e
′′
0 〉 of the

fundamental group π1(X(〈e′
0, e

′′
0〉), (q0)〈e′

0,e
′′
0 〉). We obtain a relatively closed curve L〈e′

0,e
′′
0 〉

on which the function f〈e′
0,e

′′
0 〉 is real, and a set (E〈e′

0,e
′′
0 〉)′2 = {(e′

0)〈e′
0,e

′′
0 〉, (e

′′
0)〈e′

0,e
′′
0 〉} which

contains one of the elements of E〈e′
0,e

′′
0 〉. The second element of (E〈e′

0,e
′′
0 〉)

′
2 is either equal to

second element of E〈e′
0,e

′′
0 〉 or to its inverse, or to the product of the two elements (in any

order) of E〈e′
0,e

′′
0 〉. (We will usually refer to the product (e′

0)〈e′
0,e

′′
0 〉 (e′′

0)〈e′
0,e

′′
0 〉 = (e′

0 e
′′
0)〈e′

0,e
′′
0 〉,

but we may change the product (e′
0 e

′′
0)〈e′

0,e
′′
0 〉 to the product (e′′

0 e
′
0)〈e′

0,e
′′
0 〉, without changing

the arguments and the estimate of theL− of the monodromies of the elements of E ′
2.) The free

homotopy classes (e′
0)〈e′

0,e
′′
0 〉

∧

, (e′′
0)〈e′

0,e
′′
0 〉

∧

, and (e′
0)〈e′

0,e
′′
0 〉 (e′′

0)〈e′
0,e

′′
0 〉

∧

= (e′
0 e

′′
0)〈e′

0,e
′′
0 〉

∧

intersect
L〈e′

0,e
′′
0 〉.

Choose a point q〈e′
0,e

′′
0 〉 ∈ L〈e′

0,e
′′
0 〉 and a point q̃ ∈ X̃ with ω〈e′

0,e
′′
0 〉(q̃) = q〈e′

0,e
′′
0 〉. Let α̃

be a curve in X̃ with initial point q̃0 and terminating point q̃ , and α〈e′
0,e

′′
0 〉 = ω〈e′

0,e
′′
0 〉(α̃).

Put e′
〈e′

0,e
′′
0 〉 = Isα〈e′0,e′′0 〉((e

′
0)〈e′

0,e
′′
0 〉) and e′′

〈e′
0,e

′′
0 〉 = Isα〈e′0,e′′0 〉((e

′′
0)〈e′

0,e
′′
0 〉). For one out of three

Möbius transformations Ml the mapping F〈e′
0,e

′′
0 〉 = Ml ◦ f〈e′

0,e
′′
0 〉 = Ml ◦ f ◦ ω〈e′

0,e
′′
0 〉 takes

L〈e′
0,e

′′
0 〉 to (−1, 1), and hence F〈e′

0,e
′′
0 〉 takes a value q ′ = F〈e′

0,e
′′
0 〉(q〈e′

0,e
′′
0 〉) ∈ (−1, 1) at

q〈e′
0,e

′′
0 〉. By Lemma 4 each of the (F〈e′

0,e
′′
0 〉)∗(e′

〈e′
0,e

′′
0 〉) and (F〈e′

0,e
′′
0 〉)∗(e′′

〈e′
0,e

′′
0 〉) is the product

of at most two elements ofπ1(C\{−1, 1}, q ′) ofL− not exceeding 2πλ3(X(〈e′
0, e

′′
0〉)), hence,

L−((F〈e′
0,e

′′
0 〉)∗(e′

〈e′
0,e

′′
0 〉)) ≤ 4πλ3(X(〈e′

0, e
′′
0〉)),

L−((F〈e′
0,e

′′
0 〉)∗(e′′

〈e′
0,e

′′
0 〉)) ≤ 4πλ3(X(〈e′

0, e
′′
0〉)).

It follows that each of the (F〈e′
0,e

′′
0 〉)∗(e

′
〈e′

0,e
′′
0 〉) and (F〈e′

0,e
′′
0 〉)∗(e′′

〈e′
0,e

′′
0 〉) is the product of at

most four elements of π1(C\{−1, 1}, q ′) of L− not exceeding 2πλ3(X(〈e′
0, e

′′
0〉)), hence,

L−((F〈e′
0,e

′′
0 〉)∗(e

′
〈e′

0,e
′′
0 〉)) ≤ 8πλ3(X(〈e′

0, e
′′
0〉)),

L−((F〈e′
0,e

′′
0 〉)∗(e

′′
〈e′

0,e
′′
0 〉)) ≤ 8πλ3(X(〈e′

0, e
′′
0〉)).

It remains to take into account that for a subgroup N of π1(X , q0) the equation
(FN )∗(eN ) = F∗(e) holds for each e ∈ Isα(N ), and λ j (X(N )) ≤ λ j (X) for each natu-
ral number j .
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3.3 Other generators. Intersection of free homotopy classes with a component of
the zero set

Take any element e ∈ Isα(E) that is not in 〈e′, e′′〉. Then the monodromy F∗(e) is either
equal to the identity, or one of the pairs (F∗(e), F∗(e′)) or (F∗(e), F∗(e′′)) consists of two
elements of π1(C\{−1, 1}, q ′) that are not powers of the same standard generator a j , j = 1
or 2. Interchanging if necessary e′ and e′′, we may suppose this option holds for the pair
(F∗(e), F∗(e′)). Moreover, changing if necessary e′ to its inverse (e′)−1, we may assume
that e′ is either an element of Isα(E) or it is a product of two elements of Isα(E). The quotient
X(〈e, e′〉) = X̃�(Isq̃)−1(〈e, e′〉) is a Riemann surface whose fundamental group is a free
group in two generators. Hence X(〈e, e′〉) is either a torus with a hole or is equal to P

1 with
three holes.

We consider a diagram of coverings as follows. Let first X(〈e′〉) = X̃�(Isq̃)−1(〈e′〉) be
the annulus with base point q〈e′〉 = ω〈e′〉(q̃), that admits a mapping ω〈e′〉 : X(〈e′〉) → X

that represents e′. By Lemma 3 the connected component L〈e′〉 of (ω
〈e′,e′′〉
〈e′〉 )−1(L〈e′,e′′〉) that

contains q〈e′〉 = ω〈e′〉(q̃) is a relatively closed curve in X(〈e′〉) with limit points on both
boundary components. The free homotopy class of the generator e′

〈e′〉 of π1(X(〈e′〉), q〈e′〉)
intersects L〈e′〉. Themapping F〈e′〉 = Ml ◦ f ◦ω〈e′〉 maps L〈e′〉 into (−1, 1), and F〈e′〉(q〈e′〉) =
F ◦ P(q̃) = q ′.

Nextwe consider the quotient X(〈e′, e〉) = X̃�(Isq̃)−1(〈e′, e〉)whose fundamental group

is again a free group in two generators. The image L〈e′,e〉
de f= ω

〈e′,e〉
〈e′〉 (L〈e′〉) is a connected

component of the preimage of (−1, 1) under F〈e′,e〉. Indeed, L〈e′,e〉 is connected as image

of a connected set under a continuous mapping, and F〈e′,e〉(ω〈e′,e〉
〈e′〉 (L〈e′〉)) = F ◦ ω〈e′,e〉 ◦

ω
〈e′,e〉
〈e′〉 (L〈e′〉) = F〈e′〉(L〈e′〉) ⊂ (−1, 1). Moreover, since the mapping ω

〈e′,e〉
〈e′〉 : X(〈e′〉) →

X(〈e′, e〉) is a covering, its restriction (ImF ◦ ω〈e′〉)−1(0) → (ImF ◦ ω〈e′,e〉)−1(0) is a

covering. Hence the image under ω
〈e′,e〉
〈e′〉 of a connected component of (ImF ◦ ω〈e′〉)−1(0)

is open and closed in (ImF ◦ ω〈e′,e〉)−1(0). Hence, L〈e′,e〉
de f= ω

〈e′,e〉
〈e′〉 (L〈e′〉) is a connected

component of the preimage of (−1, 1) under F〈e′,e〉. Put q〈e′,e〉 = ω
〈e′,e〉
〈e′〉 (q〈e′〉) = ω

〈e′,e〉
〈e′〉 ◦

ω〈e′〉(q̃) = ω〈e′,e〉(q̃). Note that F〈e′,e〉(q〈e′,e〉) = F ◦ ω〈e′,e〉(q〈e′,e〉) = F(q) = q ′.
The free homotopy class e′

〈e′,e〉
∧

in X(〈e′, e〉) that is related to e′ intersects L〈e′,e〉. Indeed,
consider any loop γ ′

〈e′,e〉 in X(〈e′, e〉) with some base point q ′
〈e′,e〉, that represents e

′
〈e′,e〉
∧

.

There exists a loop γ ′
〈e′〉 in X(〈e′〉) which represents e′

〈e′〉
∧

such that ω
〈e′,e〉
〈e′〉 (γ ′

〈e′〉) = γ ′
〈e′,e〉.

Such a curve γ ′
〈e′〉 can be obtained as follows. There is a loop γ ′′

〈e′,e〉 in X(〈e′, e〉) with base
point q〈e′,e〉 that represents (e′)〈e′,e〉, and a curve α′

〈e′,e〉 in X(〈e′, e〉), such that γ ′
〈e′,e〉 is

homotopic with fixed endpoint to (α′
〈e′,e〉)

−1 γ ′′
〈e′,e〉 α′

〈e′,e〉. Consider the lift γ̃ ′′ of γ ′′
〈e′,e〉 to

X̃ with terminating point q̃, and the lift α̃′ of α′
〈e′,e〉 with initial point q̃. The initial point of

γ ′′
〈e′,e〉 equals σ(q̃) for the covering transformation σ = (Isq̃)−1(e′) = (Isq̃0)−1(e′

0). (See Eq.

(6).) The initial point of the curve σ((α̃′)−1)γ̃ ′′α̃′ is obtained from its terminating point by
applying the covering transformation σ . Hence, ω〈e′〉(σ ((α̃′)−1)γ̃ ′′α̃′) is a closed curve in

X(〈e′〉) that represents e′
〈e′〉
∧

and projects to (α′
〈e′,e〉)

−1 γ ′′
〈e′,e〉 α′

〈e′,e〉 underω
〈e′,e〉
〈e′〉 . Since γ ′

〈e′,e〉
is homotopic to (α′

〈e′,e〉)
−1 γ ′′

〈e′,e〉 α′
〈e′,e〉 with fixed base point, it also has a lift to X(〈e′〉)which

represents e′
〈e′〉
∧

.
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Since e′
〈e′〉
∧

intersects L〈e′〉, the loop γ ′
〈e′〉 has an intersection point p′

〈e′〉 with L〈e′〉. The
point p′

〈e′,e〉 = ω
〈e′,e〉
〈e′〉 (p′

〈e′〉) is contained in γ ′
〈e′,e〉 and in L〈e′,e〉. We proved that the free

homotopy class e′
〈e′,e〉
∧

in X(〈e′, e〉) intersects L〈e′,e〉.

3.4 A system of generators associated to a standard bouquet of circles

Weclaim that the system of generators e′
〈e′,e〉, e〈e′,e〉 of π1(X(〈e′, e〉), q〈e′,e〉) is associated

to a standard bouquet of circles for X(〈e′, e〉). If e′ ∈ E the claim can be obtained as in
paragraph 3.2. Suppose e′ = e′e′′ for e′, e′′ ∈ E . Consider the system E ′ of generators of
π1(X , q) that is obtained from E by replacing e′ by e′e′′. If e′ and e′′ correspond to a handle
of X , then E ′ is also associated to a standard bouquet of circles for X , see Fig. 4a for the case
when e′ is represented by an α-curve and e′′ is represented by a β-curve. The situation when
e′ is represented by a β-curve and e′′ is represented by an α-curve is similar. The claim is
obtained as in paragraph 3.2.

Suppose one of the pairs (e, e′) or (e, e′′) corresponds to a handle of X . We assume that
e corresponds to an α-curve and e′ corresponds to a β-curve of a handle of X (see Fig. 4b).
The remaining cases are treated similarly, maybe, after replacing e′e′′ by e′′e′ (see paragraph
3.2). With our assumption E ′ is associated to a bouquet of circles that is a deformation retract
for X , but it is not a standard bouquet of circles. Nevertheless, the pair (e〈e′,e〉, e′

〈e′,e〉) with
e′ = e′e′′ is associated to a standard bouquet of circles for X(〈e′, e〉). This can be seen as
before. Consider the bouquet of circles corresponding to E ′ and take its union with a disc D
around q . Lift this set to X̃ . We obtain the union of a collection of arcs in X̃ with terminating
point q̃ , with a collection of discs in X̃ around q̃ and around the initial points of the arcs.
Take the union of the arcs and the discs. The image in X(〈e′, e〉) of this union under the
projection ω〈e′,e〉 is the union of the two loops (γe)〈e′,e〉 ∪ (γe′)〈e′,e〉, the disc D〈e′,e〉 and a
set, that is contractible to D〈e′,e〉. Looking at the intersection of the two loops with a small
circle contained in D〈e′,e〉 and surrounding q〈e′,e〉, we see as before that (γe)〈e′,e〉 ∪ (γe′)〈e′,e〉
is a standard bouquet of circles for X(〈e′, e〉). In this case X(〈e′, e〉) is a torus with a hole.

In the remaining case no pair of generators among e, e′, and e′′ corresponds to a han-
dle. In this case again E ′ does not correspond to a standard bouquet of circles for X . But
{e〈e′,e〉, (e′e′′)〈e′,e〉} (maybe, after changing e′e′′ to e′′e′) corresponds to a standard bouquet
of circles for X(〈e′, e〉). (See Fig. 4c for the case when walking along a small circle around
q counterclockwise, we meet the incoming and outgoing rays of representatives of the three
elements of E in the order e, e′, e′′. If the order is different the situation is similar, maybe,
after replacing e′e′′ by e′′e′.) In this case X(〈e′, e〉) is a planar domain.

3.5 End of the proof

Consider first the case when X(〈e′, e〉) is a torus with a hole. Since e′
〈e′,e〉
∧

intersects L〈e′,e〉,
we see as in the proof when X itself is a torus with a hole, that the curve L〈e′,e〉 cannot be
contractible or contractible to the hole, and the intersection number must be different from
zero. Then the intersection number with L〈e′,e〉 of the free homotopy class of one of the
choices e±1

〈e′,e〉 or (e
′e)〈e′,e〉, denoted by e′′′

〈e′,e〉, is not zero and has the same sign. By Lemma 4
each of the (F〈e′,e〉)∗(e′

〈e′,e〉) and (F〈e′,e〉)∗(e′′′
〈e′,e〉) is the product of at most two elements of
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Fig. 4 Standard bouquets of circles

π1(C\{−1, 1}, q ′) with L− not exceeding

2πλe′
〈e′,e〉,e

′′′
〈e′,e〉

≤ 2πλ5(X), (18)

since e′ is the product of at most two elements of E ∪ E−1 and e′′′ is the product of at most
three elements of E ∪ E−1. The element e is the product of at most two different elements
among the e′ and e′′′ or their inverses. Hence, the monodromy F∗(e) = (F〈e′,e〉)∗(e〈e′,e〉) is
the product of at most four elements with L− not exceeding (18). Hence,

F∗(e) ≤ 8πλ5(X). (19)

Consider now the case when X(〈e′, e〉) equals P
1 with three holes. Since e′

〈e′,e〉 and e〈e′,e〉
correspond to a standard bouquet of circles for X(〈e′, e〉), the curves representing e′

〈e′,e〉
surround counterclockwise one of the holes, denoted by C′ , and the curves representing
e〈e′,e〉 surround counterclockwise another hole, denoted by C′′. After applying a Möbius
transformation we may assume that the remaining hole, denoted by C∞, contains the point

∞. There are several possibilities for the behaviour of the curve L〈e′,e〉. Since e′
〈e′,e〉
∧

intersects
L〈e′,e〉, the curve L〈e′,e〉 must have limit points on C′. The first possibility is that L〈e′,e〉 has
limit points on ∂C′ and ∂C′′, the second possibility is, L〈e′,e〉 has limit points on C′ and C∞,
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the third possibility is, L〈e′,e〉 has all limit points on C′, and C′′ is contained in the bounded
connected component of C\(L〈e′,e〉 ∪ C′).

In the first case the free homotopy classes e′
〈e′,e〉
∧

and e−1
〈e′,e〉
∧

have positive intersection
number with the suitably oriented curve L〈e′,e〉. In the second case the free homotopy classes

e′
〈e′,e〉
∧

and (e′e)〈e′,e〉
∧

have positive intersection numberwith the suitably oriented curve L〈e′,e〉.
In the third case the free homotopy classes of e′

〈e′,e〉, (e
′2e)〈e′,e〉 and of their product inter-

sect L〈e′,e〉. The first two cases were treated in paragraph 2 of this section. The statement
concerning the third case is proved as follows.

Any curve that is contained in the complement of C′ ∪ L〈e′,e〉 has either winding number
zero around C′ (as a curve in the complex plane C), or its winding number around C′ coin-
cides with the winding number around C′′. On the other hand the representatives of the free
homotopy class of e′

〈e′,e〉 have winding number 1 around C′ and winding number 0 around

C′′. The representatives of the free homotopy class of (e′2e)〈e′,e〉 have winding number 2
around C′, and winding number 1 around C′′. By the same argument the free homotopy class
of the product of e′

〈e′,e〉 and (e′2e)〈e′,e〉 intersects L〈e′,e〉.
We let e′′′

〈e′,e〉 be equal to e
−1
〈e′,e〉 in the first case, equal to (e′e)〈e′,e〉 in the second case, and

equal to (e′2e)〈e′,e〉 in the third case.
By Lemma 4 each of the (F〈e′,e〉)∗(e′

〈e′,e〉) and (F〈e′,e〉)∗(e′′′
〈e′,e〉) is the product of at most

two elements of π1(C\{−1, 1}, q ′) with L− not exceeding

2πλe′
〈e′,e〉,e

′′′
〈e′,e〉

≤ 2πλ7(X). (20)

We used that e′ is the product of at most two elements of E ∪ E−1, e ∈ E ∪ E−1 and e′′′ is the
product of at most five elements of E ∪ E−1. Since e is the product of at most two different
elements among the (e′)±1 and (e′′′)±1, the monodromy F∗(e) = (F〈e′,e〉)∗(e〈e′,e〉) is the
product of at most four elements with L− not exceeding (20). Hence,

F∗(e) ≤ 8πλ7(X). (21)

The proposition is proved. ��

4 (g,m)-bundles over Riemann surfaces

We will consider bundles whose fibers are smooth surfaces or Riemann surfaces of type
(g,m).

Definition 2 (Smooth oriented (g,m) fiber bundles.) Let X be a smooth oriented manifold
of dimension k, let X be a smooth (oriented) manifold of dimension k + 2 and P : X → X
an orientation preserving smooth proper submersion such that for each point x ∈ X the
fiber P−1(x) is a closed oriented surface of genus g. Let E be a smooth submanifold of X
that intersects each fiber P−1(x) along a set Ex of m distinguished points. Then the tuple
Fg,m = (X ,P, E, X) is called a smooth (oriented) fiber bundle over X with fiber a smooth
closed oriented surface of genus g withm distinguished points (for short, a smooth oriented
(g,m)-bundle).

Ifm = 0 the set E is the empty set and we will often denote the bundle by (X ,P, X). If
m > 0 the mapping x → Ex locally defines m smooth sections. (g, 0)-bundles will also be
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called genus g fiber bundles. For g = 1 and m = 0 the bundle is also called an elliptic fiber
bundle.

In the case when the base manifold is a Riemann surface, a holomorphic (g,m) fiber
bundle over X is defined as follows.

Definition 3 Let X be a Riemann surface, let X be a complex surface, and P a holomorphic
proper submersion from X onto X , such that each fiber P−1(x) is a closed Riemann surface
of genus g. Suppose E is a complex one-dimensional submanifold of X that intersects each
fiber P−1(x) along a set Ex ofm distinguished points. Then the tuple Fg,m = (X ,P, E, X)

is called a holomorphic (g,m) fiber bundle over X .

Notice that form > 0 the mapping x → Ex locally definesm holomorphic sections.
Two smooth oriented (holomorphic, respectively) (g, m) fiber bundles, F0 = (X 0,P0,

E0, X) and F1 = (X 1,P1, E1, X), are called smoothly isomorphic (holomorphically iso-
morphic, respectively,) if there are smooth (holomorphic, respectively) homeomorphisms
Φ : X 0 → X 1 and φ : X0 → X1 such that for each x ∈ X0 the mapping Φ maps the fiber
(P0)−1(x) onto the fiber (P1)−1(φ(x)) and the set of distinguished points in (P0)−1(x) to
the set of distinguished points in (P1)−1(φ(x)). Holomorphically isomorphic bundles will
be considered the same holomorphic bundles.

Two smooth (oriented) (g,m) fiber bundles over the same oriented smooth base manifold
X , F0 = (X 0,P0, E0, X), and F1 = (X 1,P1, E1, X), are called (free) isotopic if for an
open interval I containing [0, 1] there is a smooth (g,m) fiber bundle (Y,P, E, X × I )
over the base X × I (called an isotopy) with the following property. For each t ∈ [0, 1]
we put Y t = P−1(X × {t}) and Et = E ∩ P−1(X × {t}). The bundle F0 is equal to(Y0,P | Y0, E0, X × {0}) , and the bundle F1 is equal to

(Y1,P | Y1, E1, X × {1}) .
Two smooth (g,m)-bundles are smoothly isomorphic if and only if they are isotopic (see

[20]).
Denote by S a reference surface of genus g with a set E ⊂ S of m distinguished points.

By Ehresmann’s Fibration Theorem each smooth (g,m)-bundle Fg,m = (X ,P, E, X) with

set of distinguished points Ex
de f= E ∩P−1(x) in the fiber over x is locally smoothly trivial,

i.e. each point in X has a neighbourhood U ⊂ X such that the restriction of the bundle to U
is isomorphic to the trivial bundle

(
U × S, pr1,U × E,U

)
with set {x}× E of distinguished

points in the fiber {x} × S over x . Here pr1 : U × S → U is the projection onto the first
factor.

The idea of the proof of Ehresmann’s Theorem is the following. Choose smooth coordi-
nates on U by a mapping from a rectangular box to U . Consider smooth vector fields v j on
U , which form a basis of the tangent space at each point of U . Take smooth vector fields
Vj on P−1(U ) that are tangent to E at points of this set and are mapped to v j by the differ-
ential of P . Such vector fields can easily be obtained locally. To obtain the globally defined
vector fields Vj on P−1(U ) one uses partitions of unity. The required diffeomorphism ϕU is
obtained by composing the flows of these vector fields (in any fixed order).

In this way a trivialization of the bundle can be obtained over any simply connected
domain.

Let q0 be a base point in X and γ (t), t ∈ [0, 1], a smooth curve in X with base point
q0 that represents an element e of the fundamental group π1(X , q0). Let ϕt : P−1(q0) →
P−1(γ (t)), t ∈ [0, 1], ϕ0 = Id, be a smooth family of diffeomorphisms that map the
set of distinguished points in P−1(q0) to the set of distinguishes points in P−1(γ (t)). To
obtain such a family we may restrict the bundle to the closed curve given by γ and lift the
restriction to a bundle over the real axis R. The family of diffeomorphisms may be obtained
by considering Ehrenpreis’ vector field for the lifted bundle and take the flow of this vector
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field. The mapping ϕ1 obtained for t = 1 is an orientation preserving self-homeomorphism
of the fiber over q0 that preserves the set of distinguished points. Its isotopy class depends
only on the homotopy class of the curve and the isotopy class of the bundle. The isotopy
class of its inverse (ϕ1)−1 is called the monodromy of the bundle along e. Assign to each
element e ∈ π1(X , q0) the monodromy of the bundle along e. We obtain a homomorphism
from π1(X , q0) to the group of isotopy classes of self-homeomorphisms of the fiber over q0
that preserve the set of distinguished points. The modular group Mod(g,m) is the group of
isotopy classes of self-homeomorphisms of a reference Riemann surface of genus g that map
a reference set ofm distinguished points to itself.

The following theorem holds (see e.g. [8, 20]).

Theorem G Let X be a connected finite open smooth oriented surface. The set of isotopy
classes of smooth oriented (g,m) fiber bundles over X is in one-to-one correspondence to
the set of conjugacy classes of homomorphisms from the fundamental group π1(X , q0) into
the modular groupMod(g,m).

Let 2g − 2 + m > 0. A holomorphic (g,m)-bundle is called locally holomorphically
trivial if it is locally holomorphically isomorphic to the trivial (g,m)-bundle. All fibers of a
locally holomorphically trivial (g,m)-bundle F = (X ,P, E, X) are conformally equivalent
to each other. For a locally trivial holomorphic (g,m)-bundle there exists a finite unramified
covering P̂ : X̂ → X and a lift F̂ = (X̂ , P̂, Ê, X̂) of F to X̂ such that F̂ is holomorphically
isomorphic to the trivial bundle. This can be seen as follows. Consider the lift F̃ of the
bundle F to the universal covering P : X̃ → X of X , i.e. F̃ = (X̃ , P̃, Ẽ, X̃), where the
fiber P̃−1(x̃) with distinguished points Ẽ ∩ P̃−1(x̃) is conformally equivalent to the fiber
P−1(x) with distinguished points E ∩ P−1(x) with x = P(x̃). Let P̃ : X̃ → X be the
respective fiber preserving projection. The bundle F̃ is locally holomorphically trivial. Since
X̃ is simply connected, F̃ is holomorphically trivial on X̃ , hence, there is a biholomorphic
mapping Φ : X̃ → X̃ × S that maps P̃−1(x̃) to {x̃} × S for each x̃ ∈ X̃ , and maps Ẽ
to S × E . Here S is the fiber P̃−1(q̃0) over a chosen point q̃0 over the base point q0 ∈ X
and E = E ∩ P−1(q̃0). The mapping Φ−1 provides a uniquely determined holomorphic
family of conformal mappings ϕx̃ : S = P̃−1(q̃0) → P̃−1(x̃), x̃ ∈ X̃ , that map the set of
distinguished points in one fiber to the set of distinguished points in the other fiber, such that
the total space X of the bundle F is holomorphically equivalent to the quotient of {x̃} × S by
the following equivalence relation∼. Two points (x̃1, ζ1) and (x̃2, ζ2) in X̃×S are equivalent
if P(x̃1) = P(x̃2) and ϕ−1

x̃2
(ζ2) = ϕ−1

x̃1
(ζ1). Let P̃

−1
x̃1

be the inverse of the restriction of P̃ to a

neighbourhood of P̃−1(x̃1). If P(x̃1) = P(x̃2), the mapping P̃ϕx̃2ϕ
−1
x̃1

P̃−1
x̃1

is a holomorphic

self-homeomorphism of the fiber P−1(x1). The set of such self-homeomorphims is finite.
Consider the set N of elements e ∈ π1(X , q0) for which P̃ϕ(Isq̃0 )−1(e)(q̃0)

P̃−1
q̃0

is the

identity. As before (Isq̃0)−1 is the isomorphism from the fundamental group to the group of
covering transformations. The set N is a normal subgroup of the fundamental group. It is of
finite index, since two cosets e1 N and e2 N are equal if P̃ϕ

(Isq̃0 )−1(e2e
−1
1 )(q̃0)

P̃−1
q̃0

= Id, and

there are only finitely many distinct holomorphic self-homeomorphisms of P−1(q0). Hence,

X̂
de f= X̃�(Isq̃0)−1(N ) is a finite unramified covering of X and the lift of the bundle F to X̂

has the required property.
Vice versa, if for a holomorphic (g,m)-bundle F there exists a finite unramified covering

P̂ : X̂ → X , such that the lift F̂ = (X̂ , P̂, Ê, X̂) of F to X̂ is holomorphically isomorphic to
the trivial bundle, then F is locally holomorphically trivial.
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A smooth (holomorphic, respectively) bundle is called isotrivial, if it has a finite covering
by the trivial bundle. If all monodromy mapping classes of a smooth bundle are periodic,
then the bundle is isotopic (equivalently, smoothly isomorphic) to an isotrivial bundle. This
can be seen by the same arguments as above.

We explain now the notion of irreducible smooth (g,m)-bundles. It is based on Thurston’s
notion of irreducible surface homeomorphisms. Let S be a connected finite smooth oriented
surface. It is either closed or homeomorphic to a surface with a finite number of punctures.
We will assume from the beginning that S is either closed or punctured.

A finite non-empty set of mutually disjoint Jordan curves {C1, . . . ,Cα} on a connected
closed or punctured oriented surface S is called admissible if no Ci is homotopic to a
point in X , or to a puncture, or to a C j with i �= j . Thurston calls an isotopy class m

of self-homeomorphisms of S (in other words, a mapping class on S) reducible if there is an
admissible system of curves {C1, . . . ,Cα} on S such that some (and, hence, each) element
inmmaps the system to an isotopic system. In this case we say that the system {C1, . . . ,Cα}
reduces m. A mapping class which is not reducible is called irreducible.

Let S be a closed or punctured surface with set E of distinguished points. We say that ϕ

is a self-homeomorphism of S with distinguished points E , if ϕ is a self-homeomorphism of
S that maps the set of distinguished points E to itself. Notice that each self-homeomorphism
of the punctured surface S\E extends to a self-homeomorphism of the surface S with set
of distinguished points E . We will sometimes identify self-homeomorphisms of S\E and
self-homeomorphism of S with set E of distinguished points.

For a (connected oriented closed or punctured) surface S and a finite subset E of S a finite
non-empty set of mutually disjoint Jordan curves {C1, . . . ,Cα} in S\E is called admissible
for S with set of distinguished points E if it is admissible for S\E . An admissible system of
curves for S with set of distinguished points E is said to reduce a mapping classm on S with
set of distinguished points E , if the induced mapping class on S\E is reduced by this system
of curves.

Conjugacy classes of reducible mapping classes can be decomposed in some sense into
irreducible components, and conjugacy classes of reduciblemapping classes can be recovered
from the irreducible components up to products of commutingDehn twists. Conjugacy classes
of irreducible mapping classes are classified and studied.

A Dehn twist about a simple closed curve γ in an oriented surface S is a mapping that
is isotopic to the following one. Take a tubular neighbourhood of γ and parameterize it as
a round annulus A = {e−ε < |z| < 1} so that γ corresponds to |z| = e− ε

2 . The mapping is
an orientation preserving self-homeomorphism of S which is the identity outside A and is
equal to the mapping e−εs+2π i t → e−εs+2π i(t+s) for e−εs+2π i t ∈ A, i.e. s ∈ (0, 1). Here ε

is a small positive number.
Thurston’s notion of reducible mapping classes takes over to families of mapping classes

on a surface of type (g,m), and therefore to (g,m)-bundles. Namely, an admissible system
of curves on a (connected oriented closed or punctured) surface S with set ofm distinguished
points E is said to reduce a family of mapping classes m j ∈ M(S; ∅, E) if it reduces each
m j . Similarly, a (g,m)-bundle with fiber S over the base point q0 and set of distinguished
points E ⊂ S is called reducible if there is an admissible system of curves in the fiber over
the base point that reduces all monodromy mapping classes simultaneously. Otherwise the
bundle is called irreducible.

Reducible bundles can be decomposed into irreducible bundle components and the
reducible bundle can be recovered from the irreducible bundle components up to commuting
Dehn twists in the fiber over the base point.
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Let X be a finite open connected Riemann surface. By a holomorphic (smooth, respec-
tively) (0, n)-bundle with a section over X we mean a holomorphic (smooth, respectively)
(0, n + 1)-bundle (X ,P, E, X), such that the complex manifold (smooth manifold, respec-
tively) E ⊂ X is the disjoint union of two complex manifolds (smooth manifolds,
respectively) E̊ and s, where E̊ ⊂ X intersects each fiber P−1(x) along a set E̊x of n
points, and s ⊂ X intersects each fiber P−1(x) along a single point sx . We will also say,
that the mapping x → sx , x ∈ X , is a holomorphic (smooth, respectively) section of the
(0, n)-bundle with set of distinguished points E̊x in the fiber over x .

A special (0, n + 1)-bundle is a bundle over X of the form (X × P
1, pr1, E, X), where

pr1 : X × P
1 → X is the projection onto the first factor, and the smooth submanifold E

of X × P
1 is equal to the disjoint union E̊ ∪ s∞ where s∞ intersects each fiber {x} × P

1

along the point {x} × {∞}, and the set E̊ intersects each fiber along n points. A special
(0, n + 1)-bundle is, in particular, a (0, n)-bundle with a section.

Two smooth (0, n)-bundles with a section (in particular, two special (0, n + 1)-bundles)
are called isotopic if they are isotopic as (0, n + 1)-bundles with an isotopy that joins the
sections of the bundles. A holomorphic (smooth, respectively) (0, n)-bundle with a section is
isotopic to a holomorphic (smooth, respectively) special (0, n+1)-bundle over X (see [20]).

Theorem 2 is a consequence of the following theorem on (0, 3)-bundles with a section.

Theorem 3 Over a connected Riemann surface of genus g with m + 1 holes there are up
to isotopy no more than (15 exp(6πλ10(X)))6(2g+m) irreducible holomorphic (0, 3)-bundles
with a holomorphic section.

For a reducible (0, 4)-bundle the fiber of each irreducible bundle component is a thrice-
punctured Riemann sphere. Hence each irreducible bundle component of a reducible (0, 4)-
bundle is isotopic to an isotrivial bundle. For more details see [20].

Theorem 1 (with a weaker estimate) is a consequence of Theorem 3. Indeed, consider
holomorphic (smooth, respectively) bundleswhosefiber over each point x ∈ X equalsP

1 with
set of distinguished points {−1, 1, f (x),∞} for a function f which depends holomorphically
(smoothly, respectively) on the points x ∈ X and does not take the values −1 and 1. Then
we are in the situation of Theorem 1. It is not hard to see that the mapping f is reducible, iff
this (0, 4)-bundle is reducible (see also Lemma 7 of [20]).

The relation between Theorems 2 and 3 is given in Proposition 5 below.
A holomorphic (1, 1)-bundle F = (X ,P, s, X

)
is called a double branched covering of

the special holomorphic (0, 4)-bundle
(
X × P

1, pr1, E, X
)

if there exists a holomorphic
mapping P : X → X × P

1 that maps each fiber P−1(x) of the (1, 1)-bundle onto the
fiber {x} × P

1 of the (0, 4)-bundle over the same point x , such that the restriction P :
P−1(x) → {x} × P

1 is a holomorphic double branched covering with branch locus being
the set {x} × (E̊x ∪ {∞}) = E ∩ ({x} × P

1) of distinguished points in the fiber {x} × P
1,

and P maps the distinguished point sx in the fiber P−1(x) over x to the point {x} × {∞} in
{x} × P

1. We will also denote (X × P
1, pr1, E, X) by P((X ,P, s, X)), and call the bundle

(X ,P, s, X) a lift of (X×P
1, pr1, E, X). Let the fiber of the (1, 1)-bundle over the base point

q0 ∈ X be Y with distinguished point s, and let the fiber of the (0, 4)-bundle over q0 be P
1

with distinguished points E̊ ∪{∞} for a set E̊ ⊂ C3(C)�S3. Then the monodromy mapping
classm1 ∈ M(P1;∞, E̊) of the (0, 4)-bundle along any generator of the fundamental group
of X is the projection of the monodromy mapping classm ∈ M(Y ; s,∅) of the (1, 1)-bundle
along the same generator. Thismeans that there are representing homeomorphismsϕ ∈ m and
ϕ1 ∈ m1 such that ϕ1(P(ζ )) = P(ϕ(ζ )), ζ ∈ Y . We will also say that m is a lift of m1. The
lifts of a mapping class m1 ∈ M(P1;∞, E̊) differ by the involution of Y , that interchanges
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the sheets of the double branched covering.Hence, each classm1 ∈ M(P1;∞, E̊) has exactly
two lifts.

Proposition 5 Let X be a Riemann surface of genus g with m + 1 ≥ 1 holes with base point
q0 and curves γ j representing a set of generators e j ∈ π1(X , q0).

(1) Each holomorphic (1, 1)-bundle over X is holomorphically isomorphic to the double
branched covering of a special holomorphic (0, 4)-bundle over X.

(2) Vice versa, for each special holomorphic (0, 4)-bundle over X and each collection m j

of lifts of the 2g + m monodromy mapping classes m j
1 of the bundle along the γ j there

exists a double branched covering by a holomorphic (1, 1)-bundle with collection of
monodromy mapping classes equal to the m j . Each special holomorphic (0, 4)-bundle
has exactly 22g+m non-isotopic holomorphic lifts.

(3) A lift of a special (0, 4)-bundle is reducible if and only if the special (0, 4)-bundle is
reducible.

The proof of the proposition uses the fact that a holomorphic (1, 1)-bundle over X is
holomorphically isomorphic to a holomorphic bundle whose fiber over each point x is a
quotient C�Λx of the complex plane by a lattice Λx with distinguished point 0�Λx . The
lattices depend holomorphically on the point x . To represent the fibers as branched coverings
depending holomorphically on the points in X we use embeddings of punctured tori into C

2

by suitable versions of the Weierstraß ℘-function. For a detailed proof of Proposition 5 see
[20].
Preparation of the proof of Theorem 3. The proof will be given in terms of braids. Let
Cn(C) = {(z1, . . . , zn) ∈ C

n : z j �= zk for j �= k}be then-dimensional configuration space.
The symmetrized configuration space is its quotientCn(C)�Sn by the diagonal action of the
symmetric group Sn . We write points of Cn(C) as ordered n-tuples (z1, . . . , zn) of points
in C, and points of Cn(C)�Sn as unordered tuples {z1, . . . , zn} of points in C. We regard
geometric braids on n strands with base point En as loops in the symmetrized configuration
space Cn(C)�Sn with base point En , and braids on n strands (n-braids for short) with base
point En ∈ Cn(C)�Sn as homotopy classes of loops with base point En in Cn(C)�Sn ,
equivalently, as elements of the fundamental group π1(Cn(C)�Sn, En) of the symmetrized
configuration space with base point En .

Each smooth mapping F : X → Cn(C)�Sn defines a smooth special (0, n + 1)-
bundle (X ×P

1, pr1, E, X), where E ∩ ({x}×P
1) = {x}× (F(x)∪{∞}). Vice versa, for

each smooth special (0, n + 1)-bundle (X × P
1, pr1, E, X) the mapping that assigns to each

point x ∈ X the set of finite distinguished points in the fiber over x defines a smooth mapping
F : X → Cn(C)�Sn . The mapping F is holomorphic iff the bundle is holomorphic. It is
called irreducible iff the bundle is irreducible. Choose a base point q0 ∈ X . The restriction
of the mapping F to each loop with base point q0 defines a geometric braid with base point
F(q0). The braid represented by it is called the monodromy of the mapping F along the
element of the fundamental group represented by the loop.

The monodromy mapping classes of a special (0, n + 1)-bundle are isotopy classes of
self-homeomorphisms of the fiber P

1 over the base point q0 which map the set of finite
distinguished points En = F(q0) in this fiber onto itself, and fix ∞. Two smooth mappings
F1 and F2 from X to Cn(C)�Sn , that have equal value En ∈ Cn(C)�Sn at the base point
q0, define special (0, n + 1)-bundles , that are isotopic with an isotopy that fixes the fiber
over q0 and the set of distinguished points in this fiber, iff their restrictions to each curve in
X with base point q0 define braids that differ by an element of the center Zn of the braid
group Bn on n strands (in other words, by a power of a full twist). Indeed, the braid group
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on n strands modulo its center Bn�Zn is isomorphic to the group of mapping classes of P
1

that fix ∞ and map En to itself.
Let σ j , j = 1, 2 be the generators of B3, and Δ3 = σ1σ2σ1. Note that for the group PB3

of pure braids on three strands the quotientPB3�Z3 is isomorphic to the fundamental group
of C\{−1, 1}. The isomorphism maps the generators σ 2

j �〈Δ2
3〉, j = 1, 2, of PB3�Z3 to

the standard generators a j , j = 1, 2, of the fundamental group π1(C\{−1, 1}, 0). Here 〈Δ2
3〉

denotes the group generated by Δ2
3 which is equal to the center Z3.

The proof of Theorem 3 will go now along the same lines as the proof of Theorem 1 with
some modifications. Lemma H, Lemmas 5 and 6, and Theorem I below are given in terms of
braids rather than in terms of elements of B3�Z3.

The following lemma and the following theorem were proved in [17].

Lemma H Any braid b ∈ B3 which is not a power of Δ3 can be written in a unique way in
the form

σ k
j b1 Δ�

3 (22)

where j = 1 or j = 2, k �= 0 is an integer, � is a (not necessarily even) integer, and b1 is
a word in σ 2

1 and σ 2
2 in reduced form. If b1 is not the identity, then the first term of b1 is a

non-zero even power of σ2 if j = 1, and b1 is a non-zero even power of σ1 if j = 2.

For an integer j �= 0 we put q( j) = j if j is even, and for odd j we denote by q( j)
the even integer neighbour of j that is closest to zero. In other words, q( j) = j if j �= 0 is
even, and for each odd integer j, q( j) = j − sgn( j), where sgn( j) for a non-zero integral
number j equals 1 if j is positive, and −1 if j is negative. For a braid in form (22) we put

ϑ(b)
de f= σ

q(k)
j b1. If b is a power of Δ3 we put ϑ(b)

de f= Id.
Let Cn(R)�Sn be the totally real subspace of Cn(C)�Sn . It is defined in the same way

as Cn(C)�Sn by replacing C by R. Take a base point En ∈ Cn(R)�Sn . The fundamental
group π1(Cn(C)�Sn, En ) with base point is isomorphic to the relative fundamental group
π1(Cn(C)�Sn, Cn(R)�Sn ).The elements of the latter group are homotopy classes of arcs
in Cn(C)�Sn with endpoints in the totally real subspace Cn(R)�Sn of the symmetrized
configuration space.

Let b ∈ Bn be a braid. Denote by btr the element of the relative fundamental group
π1(Cn(C)�Sn, Cn(R)�Sn ) that corresponds to b under thementioned group isomorphism.
For a rectangle R in the plane with sides parallel to the axes we let f : R → Cn(C)�Sn be
a mapping which admits a continuous extension to the closure R̄ (denoted again by f ) which
maps the (open) horizontal sides into Cn(R)�Sn . We say that the mapping represents btr if
for each maximal vertical line segment contained in R (i.e. R intersected with a vertical line
in C) the restriction of f to the closure of the line segment represents btr .

The extremal length of a 3-braid with totally real horizontal boundary values is defined as

Λtr (b) = inf{λ(R) : R a rectangle which admits a holomorphic map to

Cn(C)�Sn that represents btr }.
(see [17].) The following theorem holds (see [17]).

Theorem I Let b ∈ B3 be a (not necessarily pure) braid which is not a power of Δ3, and let
w be the reduced word representing the image of ϑ(b) in PB3�〈Δ2

3〉. Then

Λtr (b) ≥ 1

2π
· L−(w),
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except in the case when b = σ k
j Δ�

3, where j = 1 or j = 2, k �= 0 is an integer number, and
� is an arbitrary integer. In this case Λtr (b) = 0.

The set

H de f= {{z1, z2, z3} ∈ C3(C)�S3 : the three points z1, z2, z3
are contained in a real line in the complex plane} (23)

is a smooth real hypersurface of C3(C)�S3. Indeed, let {z01, z02, z03} be a point of the sym-
metrized configuration space. Introduce coordinates near this point by lifting a neighbourhood

of the point toC3(C)with coordinates (z1, z2, z3). Since the linear map M(z)
de f= z−z1

z3−z1
, z ∈

C, maps the points z1 and z3 to the real axis, the three points z1, z2, and z3 lie on a real

line in the complex plane iff the imaginary part of z′2
de f= M(z2) = z2−z1

z3−z1
vanishes. The

equation Im z2−z1
z3−z1

= 0 in local coordinates (z1, z2, z3) defines a local piece of a smooth real
hypersurface.

For each complex affine self-mapping M of the complex plane we consider the diag-
onal action M

(
(z1, z2, z3)

) = (
M(z1), M(z2), M(z3)

)
on points (z1, z2, z3) ∈ C3(C),

and the diagonal action M
({z1, z2, z3}

) = {M(z1), M(z2), M(z3)} on points {z1, z2, z3} ∈
C3(C)�S3.

The following two lemmas replace Lemma 2 in the case of (0, 3)-bundles with a section.

Lemma 5 Let A be an annulus with an orientation of simple closed dividing curves. Suppose
F : A → C3(C)�S3 is a holomorphic mapping whose image is not contained inH. Suppose
L A is a simple relatively closed curve in A with limit points on both boundary circles of A, and
F(L A) ⊂ H. Moreover, for a point qA ∈ L A the value F(qA) is in the totally real subspace
C3(R)�S3. Let eA ∈ π1(A, qA) be the positively oriented generator of the fundamental

group of A with base point qA. If the braid b
de f= F∗(eA) ∈ B3 is different from σ k

j Δ2�′
3 with

j equal to 1 or 2, and k �= 0 and �′ being integers, then

L−(ϑ(b)) ≤ 2πλ(A). (24)

Notice that the braids σ k
j Δ�

3 for odd � are exceptional for Theorem I, but not exceptional for
Lemma 5. The reason is that the braid in Lemma 5 is related to a mapping of an annulus, not

merely to a mapping of a rectangle. For t ∈ [0,∞) we put log+ t
de f=

{
log t t ∈ [1,∞)

0 t ∈ [0, 1) .

Lemma 6 If the braid in Lemma 5 equals b = σ k
j σ k′

j ′ Δ�
3 with j and j ′ equal to 1 or to 2,

j ′ �= j , and k and k′ being non-zero integers, and � an even integer, then

log+
(
3

[ |k|
2

])
+ log+

(
3

[ |k′|
2

])
≤ πλ(A). (25)

Here for a non-negative number x we denote by [x] the smallest integer not exceeding x .

Proof of Lemma 5 By the same argument as in the proof of Lemma 2 wemay assume that the
annulus A has smooth boundary, the mapping F extends continuously to the closure A, and
the curve L A is a smooth (connected) curve in A whose endpoints are on different boundary
components of A. Perhaps after a diagonal action of a fixed Möbius transformation on each
point of C3(C�S3), we may also assume that the value of F at the point qA ∈ L A is equal
to the unordered triple {−1, q ′, 1} ∈ C3(R)�S3 for a number q ′ ∈ R\{−1, 1}. We restrict
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the mapping F to A\L0. Let R̃ be a lift of A\L A to the infinite strip Ã that covers A. We
consider R̃ as curvilinear rectangle with horizontal sides being the two different lifts of L A

and vertical sides being the lifts of the two boundary circles cut at the endpoints of L A.
Take a closed curve γA : [0, 1] → A in A with base point qA ∈ L A, that intersects L A

only at the base point and represents the element eA ∈ π1(A, qA). Let γ̃A be the lift of γA

to Ã for which γ̃A((0, 1)) is contained in R̃, and let F̃ = (F̃1, F̃2, F̃3) : R̃ → C3(C) be a
lift of F to a mapping from R̃ to the configuration space C3(C). The continuous extension

of F̃ to R̃ is also denoted by F̃ . We may choose the lift so that the value of F̃ at the copy

of qA on the lower horizontal side of R̃ equals (−1, q ′, 1). For each z ∈ R̃ we consider the

complex affine mapping Az(ζ ) = a(z)ζ + b(z)
de f= −1 + 2 ζ−F̃1(z)

F̃3(z)−F̃1(z)
, ζ ∈ C. Denote by

F̂(z)
de f= Az(F̃(z)) = Az

(
(F̃1(z), F̃2(z), F̃3(z)

)
, z ∈ R̃, the result of applying Az to each

of the three points of F̃(z). The mapping F̂(z) = (F̂1(z), F̂2(z), F̂3(z)) = (−1, F̂2(z), 1)

is holomorphic on R̃. Let F̃sym
de f= {F̃1, F̃2, F̃3} ( F̂sym de f= {F̂1, F̂2, F̂3}, respectively) be

the projection of F̃ (F̂ , respectively) to a mapping from R̃ to the symmetrized configuration
spaceC3(C)�C3. Since F(L A) ⊂ H the mapping F̂sym takes the horizontal sides of R̃ to the
totally real subspace C3(R)�S3 of the symmetrized configuration space. Moreover, F̂sym
maps the copy of qA on the lower side of R̃ to {−1, q ′, 1}. Recall that also F̃sym takes the
value {−1, q ′, 1} at the copy of qA on the lower side of R̃.

The restrictions of F̃sym and of F̂sym to the curve γ̃A represent elements of the relative
fundamental groupπ1(C3(C)�S3,C3(R)�S3). The represented elements of the relative fun-
damental group differ by a finite number of half-twists. Indeed, for each z, the lifts to C3(C),
F̃(z) and F̂(z), differ by a complex affine mapping. Hence, F̂(γ̃A(t)) = b(t)+a(t)F̃(γ̃A(t))
for continuous functions a and b on [0, 1] with a nowhere vanishing, b(0) = 0, a(0) = 1,
and b(1) and a(1) real valued. Then the function b : [0, 1] → C is homotopic with endpoints
in R to the function that is identically equal to zero. The mapping a : [0, 1] → C\{0} is
homotopic with endpoints inR to a

|a| . Hence, themappings F̂(γ̃A(t)) and a(t)
|a|(t) F̃(γ̃A(t)) from

[0, 1] to C3(C)�S3 are homotopic with endpoints in C3(R)�S3. The statements follows.
Let ω(z) : A\L A → R be the conformal mapping of the curvilinear rectangle onto

the rectangle of the form R = {z = x + iy : x ∈ (0, 1), y ∈ (0, a)}, that maps the lower
curvilinear side of A\L0 to the lower side of R. (Note that the number a is uniquely defined by

R̃.) For i ′ ∈ Zwe put F̊i ′(z)
de f= e−i ′ π

a ω(z) F̂sym(z). Then, for some choice of i ′ the restrictions
F̃sym | γA and F̊i ′ | γA represent the same element of π1(C3(C)�S3,C3(R)�S3)), namely
btr . We represented btr by the holomorphic map F̊i ′ from the rectangle R̃ into C3(C)�S3
that maps horizontal sides into C3(R)�S3. Hence,

Λ(btr ) ≤ λ(R̃) = λ(A\L A) ≤ λ(A). (26)

For b �= σ k
j Δ�

3 with j equal to 1 or 2, and k �= 0 and � being integers, the statement of
Lemma 5 follows from Theorem I in the same way as Lemma 2 follows from Theorem F.
For b = σ k

j Δ�
3 with k = 0 the statement is trivial since then ϑ(Id) = Id and L−(Id) = 0.

To obtain the statement in the remaining case b = σ k
j Δ2�′+1

3 with j equal to 1 or 2, and
k and �′ being integers, we use Lemma 6. Notice that σ1 Δ3 = Δ3 σ2 and σ2 Δ3 = Δ3 σ1.
Hence, b2 = σ k

j σ k
j ′ Δ

4�′+2
3 with σ j �= σ j ′ . Let ω2 : A2 → A be the two-fold unbranched

covering of A by an annulus A2. The equality λ(A2) = 2λ(A) holds. Let qA2 be a point
in ω−1

2 (qA), and let LqA2
be the lift of L A to A2 that contains qA2 . Denote by γA2 the
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loop ω−1
2 (γA) with base point qA2 . Then F ◦ ω2 | γA2 represents b2 and (b2)tr . Lemma 6

applied to σ k
j σ k

j ′ Δ
4�′+2
3 gives the estimate 2 log+(3[ |k|

2 ]) ≤ πλ(A2) = 2πλ(A). Since

ϑ(b) = σ
2[ |k|

2 ]sgn(k)
j , the inequality (24) follows. The lemma is proved. ��

Proof of Lemma 6 By [17], Lemma 1 and Proposition 6, statement 2,

Λtr (σ
k
j σ k′

j ′ Δ�
3) ≥ 1

π

(
log+

(
3

[ |k|
2

])
+ log+

(
3

[ |k′|
2

]))
. (27)

Since by (26) the inequality Λtr (σ
k
j σ k′

j ′ Δ�
3) ≤ λ(A) holds, the lemma is proved. ��

Wewant to emphasize that periodic braids are not non-zero powers of a σ j , so the lemma is
true also for periodic braids. For each periodic braid b of the form σ1σ2 = σ−1

1 Δ3, (σ1σ2)2 =
σ1 Δ3, σ2σ1 = σ−1

2 Δ3, (σ2σ1)
2 = σ2 Δ3, and Δ3 the L−(ϑ(b)) vanishes. However, for

instance for the conjugate σ−2k
1 Δ3σ

2k
1 = σ−2k

1 σ 2k
2 Δ3 ofΔ3 we haveL−(ϑ(σ−2k

1 Δ3σ
2k
1 )) =

2 log(3|k|). Another example, for the conjugate σ−2k
2 σ1σ2 σ 2k

2 of σ1σ2 we have

σ−2k
2 σ1σ2 σ 2k

2 = σ−2k−1
2 Δ3 σ 2k

2 = σ−2k−1
2 σ 2k

1 Δ3.

and L−(ϑ(σ−2k
2 σ1σ2 σ 2k

2 )) equals 2 log(3|k|).
Notice that the lemmas and Theorem I descend to statements on elements of B3�Z3

rather than on braids. For an element b of the quotient B3�Z3 we put ϑ(b) = ϑ(b) for any
representative b ∈ B3 of b.

Lemma 7 below is an analog of Lemma 4. It follows from Lemma 5 in the same way as
Lemma 4 follows from Lemma 2.

Lemma 7 Let X be a connected finite open Riemann surface, and F : X → C3(C)�S3 be
a holomorphic map that is transverse to the hypersurface H in C3(C)�S3. Suppose L0 is
a simple relatively closed curve in X such that F(L0) is contained in H, and for a point
q ∈ L0 the point F(q) is contained in the totally real space C3(R)�S3. Let e(1) and e(2) be
primitive elements of π1(X , q). Suppose that for e = e(1), e = e(2), and e = e(1)e(2) the free
homotopy class ê intersects L0. Then either the two monodromies of F modulo the center
F∗(e( j))�Z3, j = 1, 2, are powers of the same element σ j�Z3 of B3�Z3, or each of them
is the product of at most two elements b1 and b2 of B3�Z3 with

L−(ϑ(b j )) ≤ 2πλe(1),e(2) , j = 1, 2, (28)

where

λe(1),e(2)
de f= max{λ(A(e(1)

∧

)), λ(A(e(2)
∧

)), λ(A(e(1) e(2)
∧

))}.
Proof Suppose for an element e ∈ π1(X , q) the free homotopy class ê intersects L0. By an
analog of Lemma 3 there exists an annulus A, a point qA ∈ A, and a holomorphic map ωA :
(A, qA) → (X , q) that represents e. Moreover, the connected component of (ωA)−1(L0)

that contains qA has limit points on both boundary components of A. Put FA = F ◦ ωA. By
the conditions of Lemma 7 FA(L A) = F(L0) ⊂ H and FA(qA) ∈ C3(R)�S3. Let eA be
the generator of π1(A, qA) for which ωA(eA) = e. The mapping FA : A → C3(C)�S3,
the point qA and the curve L A satisfy the conditions of Lemma 5. Notice that the equality
(FA)∗(eA) = F∗(e) holds. Hence, if F∗(e) is not a power of a σ j then inequality (24) holds
for F∗(e).
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Suppose the two monodromies modulo center F∗(e( j))�Z3, j = 1, 2, are not (trivial
or non-trivial) powers of the same element σ j�Z3 of B3�Z3. Then at most two of the
elements, F∗(e(1))�Z3, F∗(e(2))�Z3, and F∗(e(1)e(2))�Z3 = F∗(e(1))�Z3 ·F∗(e(2))�Z3,
are powers of an element of the form σ j�Z3.

If the monodromies modulo center along two elements among e(1), e(2), and e(1)e(2)

are not (zero or non-zero) powers of a σ j�Z3 then by Lemma 5 for each of these two
monodromies modulo center inequality (28) holds, and the third monodromy modulo center
is the product of two elements ofB3�Z3 for which inequality (28) holds. If themonodromies
modulo center along two elements among e(1), e(2), and e(1)e(2) have the form σ k

j �Z3 and

σ k′
j ′ �Z3, then the σ j and the σ j ′ are different and k and k′ are non-zero. The thirdmonodromy

modulo center has the form σ±k
j σ±k′

j ′ �Z3 (or the order of the two factors interchanged).

Lemma 6 gives the inequality log+(3max([ |k|
2 ]) + log+(3max([ |k′|

2 ]) ≤ πλe(1),e(2) . Since

L−(ϑ(σ±k
j )) = log(3[ k2 ]) and L−(ϑ(σ±k′

j ′ )) = log(3[ k′
2 ]), inequality (28) follows for the

other two monodromies. The lemma is proved. ��
The following lemma holds.

Lemma 8 Let X be a connected finite open Riemann surface, and F : X → C3(C)�S3 a
smooth mapping. Suppose for a base point q1 of X each element of π1(X , q1) can be repre-
sented by a curve with base point q1 whose image under F avoidsH. Then all monodromies
of F are powers of the same periodic braid of period 3.

Proof Take the monodromy of F along any curve with base point q1. It has a power that is a
pure 3-braid b, and a representative of b avoids H. Then for some integer l the first and the
last strand of bΔ2l

3 are fixed, and a representative of bΔ2l
3 avoidsH. Hence, bΔ2l

3 = Id and
b = Δ−2l

3 . We saw that the monodromy of F along each element e ∈ π1(X , q1) is a periodic
braid.

If a representative f : [0, 1] → C3(C)�S3, f (0) = f (1), of a 3-braid b avoids H,
then the associated permutation τ3(b) cannot be a transposition. Indeed, assume the contrary.
Then there is a lift f̃ of f toC3(C), for which ( f̃1(1), f̃2(1), f̃3(1)) = ( f̃3(0), f̃2(0), f̃1(0)).
Let Lt be the line in C that contains f̃1(t) and f̃3(t), and is oriented so that running along
Lt in positive direction we meet first f̃1(t) and then f̃3(t). The point f2(0) is not on L0.
Assume without loss of generality, that it is on the left of L0 with the chosen orientation of
L0. Since for each t ∈ [0, 1] the three points f̃1(t), f̃2(t) and f̃3(t) in C are not on a real
line, the point f̃2(t) is on the left of Lt with the chosen orientation. But the unoriented lines
L0 and L1 coincide, and their orientation is opposite. This implies f̃2(1) �= f̃2(0), which is
a contradiction. We proved that all monodromies are periodic with period 3.

There is a smooth homotopy Fs, s ∈ [0, 1], of F , such that F0 = F , each Fs is different
from F only on a small neighbourhood of q1, each Ft avoids H on this neighbourhood of
q1, and F1(q1) is the set of vertices of an equilateral triangle with barycenter 0. Since F and
F1 are free homotopic, their monodromy homomorphisms are conjugate, and it is enough to
prove the statement of the lemma for F1.

For notational convenience we will keep the notation F for the new mapping and assume
that F(q1) is the set of vertices of an equilateral triangle with barycenter 0. The monodromy
F∗(e) along each element e ∈ π1(X , q1) is a periodic braid of period 3. Hence, τ3(F∗(e)) is
a cyclic permutation. Consider the braid g with base point F(0) that corresponds to rotation

by the angle 2π
3 , i.e. it is represented by the geometric braid t → e

i2π t
3 F(0), t ∈ [0, 1], that

avoids H. There exists an integer k such that F∗(e) gk is a pure braid that is represented by
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a mapping that avoidsH. Hence, F∗(e) gk represents Δ2l
3 for some integer l. We proved that

for each e ∈ π1(X , q1) the monodromy F∗(e) is represented by rotation of F(0) around the
origin by the angle 2π j

3 for some integer j . The Lemma is proved. ��
Let as before X be a finite open connected Riemann surface. The following proposition

is the main ingredient of the proof of Theorem 3. Let as before E ⊂ π1(X , q0) be the system
of generators of the fundamental group with base point q0 ∈ X that was chosen in Sect. 1.

Proposition 6 Let (X × P
1, pr1, E, X) be an irreducible holomorphic special (0, 4)-bundle

over a finite open Riemann surface X, that is not isotopic to a locally holomorphically trivial
bundle. Let F(x), x ∈ X , be the set of finite distinguished points in the fiber over x. Assume
that F is transverse to H. Then there exists a complex affine mapping M and a point q ∈ X
such that M ◦ F(q) is contained in C3(R)�S3, and for an arc α in X with initial point
q0 and terminating point q and each element e j ∈ Isα(E) the monodromy modulo center
(M ◦ F)∗(e j )�Z3 can be written as product of at most 6 elements b j,k, k = 1, 2, 3, 4, 5, 6,
of B3�Z3 with

L−(ϑ(b j,k)) ≤ 2πλ10(X). (29)

If X is a torus with a hole the monodromy along each e j is the product of at most 4
elements with L−(ϑ(b j,k)) ≤ 2πλ3(X), and in case of a planar domain the monodromy
along each e j is the product of at most 6 elements with L−(ϑ(b j,k)) ≤ 2πλ8(X).

Proof of Proposition 6 Since the bundle is not isotopic to a locally holomorphically trivial
bundle, it is not possible that all monodromies are powers of the same periodic braid, and by
Lemma 8 the set

L
def= {z ∈ X : F(z) ∈ H} (30)

is not empty.
1. A torus with a hole. Let X be a torus with a hole and let E = {e′

0, e
′′
0} be a set of

generators of π1(X , q0) that is associated to a standard bouquet of circles for X . There exists
a connected component L0 of L which is not contractible and not contractible to the hole.
Indeed, otherwise there would be a base point q1 and a curve αq1 that joins q0 with q1,
such that for both elements of Isαq1 (E) there would be representing loops with base point q1
which do not meet L , and hence, by Lemma 8 the monodromies along both elements would
be powers of a single periodic braid of period 3.

Hence, as in the proof of Proposition 3 there exists a component L0 of L , which is a
simple smooth relatively closed curve in X , such that the free homotopy class of one of the
elements of E , say of e′

0, has positive intersection number with L0. Put e′
0 = e′

0. Moreover,
the intersection number with L0 is positive for the free homotopy class of one of the elements

e′′
0
±1 or e′

0e
′′
0 . Denote this element by e′′

0. (Since e
′
0e

′′
0

∧

= e′′
0e

′
0

∧

we may also put e′′
0 = e′′

0e
′
0 if

the free homotopy class of e′
0e

′′
0 intersects L0.) Put E ′

2 = {e′
0, e

′′
0}. The free homotopy class

of each element of E ′
2 and of the product of its two elements intersects L0. One of the e′

0 and
e′′
0 is an element of E , the other is in E ∪ E−1 or is the product of two elements of E . Each

element of E is the product of at most two elements of E ′
2 ∪ E ′

2
−1.

Move the base point q0 to a point q ∈ L0 along a curve α, and consider the respective
generators e′ = Isα(e′

0) and e′′ = Isα(e′′
0) of the fundamental group π1(X , q) with base

point q . Since F(L0) ⊂ H there is a complex affine mapping M such that M ◦ F(q) ∈
C3(R)�S3. Since F is irreducible, the monodromy maps modulo center (M ◦ F)∗(e′)�Z3

and (M ◦ F)∗(e′′)�Z3 are not powers of a single standard generator σ j�Z3 of B3�Z3 (see
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Lemma 7 of [20]). Hence, the second option of Lemma 7 occurs. We obtain that each of the
(M ◦ F)∗(e′)�Z3 and (M ◦ F)∗(e′′)�Z3 is a product of at most two elements b j of B3�S3
with L−(ϑ(b j )) ≤ 2πλ3(X). Hence, (M ◦ F)∗(e′)�Z3 and (M ◦ F)∗(e′′)�Z3 are products
of at most 4 elements of B3�Z3 with this property. The proposition is proved for tori with a
hole.
2. A planar domain. Let X be a planar domain. Maybe, after applying a Möbius transfor-
mation, we represent X as the Riemann sphere with holes C j , j = 1, . . . ,m + 1, such that
Cm+1 contains∞. Recall, that the set E of generators e j,0, j = 1, . . . ,m, of the fundamental
group π1(X , q0) with base point q0 is chosen so that e j,0 is represented by a loop with base
point q0 that surrounds C j counterclockwise and does not surround any other hole. There is
a connected component L0 of L of one of the following kinds. Either L0 has limit points on
the boundary of two different holes (one of themmay contain∞) (first kind), or a component
L0 has limit points on a single hole C j , j ≤ m + 1, and C j ∪ L0 divides the plane C into
two connected components each of which contains a hole (maybe, only the hole containing
∞) (second kind), or there is a compact component L0 that divides C into two connected
components each of which contains at least two holes (one of them may contain ∞). Indeed,
suppose each non-compact component of L has boundary points on the boundary of a single
hole and the union of the component with the hole does not separate the remaining holes
of X , and for each compact component of L one of the connected components of its com-
plement in X contains at most one hole. Then there exists a base point q1, a curve αq1 in
X with initial point q0 and terminating point q1, and a representative of each element of
Isαq1 (E) ⊂ π1(X , q1) that avoids L . Lemma 8 implies that all monodromies modulo center
are powers of a single periodic element of B3�Z3 which is a contradiction.

If there is a component L0 of the first kind we may choose the same set of primitive
elements E ′

2 ⊂ E2 ⊂ π1(X , q0) as in the proof of Proposition 3 in the planar case. The free
homotopy class of each element of E ′

2 and of the product of two such elements intersects L0.
Moreover, each element of E is the product of at most two elements of E ′

2. Let αq be a curve
in X with initial point q0 and terminating point q , and M a complex affine mapping, such
that (M ◦ F)(q) ∈ C3(R)�S3. Since M ◦ F is irreducible, the monodromies modulo center
of M ◦ F along the elements of Isα(E ′

2) are not (trivial or non-trivial) powers of a single
element σ j�Z3. Hence, for each element of Isα(E ′

2) there exists another element of Isα(E ′
2)

so that the second option of Lemma 7 holds for this pair of elements of Isα(E ′
2). Therefore,

the monodromy modulo center of M ◦ F along each element of Isα(E ′
2) is the product of at

most two elements b j ∈ B3�Z3 ofL− not exceeding 2πλ4(X), and themonodromymodulo
center of M ◦ F along each element Isα(E) is the product of at most 4 elements of B3�Z3

with L−(ϑ(b j )), each not exceeding 2πλ4(X).
Suppose there is no component of the first kind but a component L0 of the second kind.

Assume first that all limit points of L0 are on the boundary of a hole C j that does not contain
∞. Put E ′

3 = {e j,0} ∪1≤k≤m, k �= j {e2j,0ek,0}. Each element of E ′
3 is a primitive element and is

the product of at most three generators contained in the set E . Further, each element of E is
the product of at most three elements of E ′

3 ∪ E ′
3
−1.

The free homotopy class of each element of E ′
3 and of each product of two different

elements of E ′
3 intersects L0. Indeed, any curve that is contained in the complement of

C j ∪ L0 has either winding number zero around C j (as a curve in the complex plane C), or
its winding number around C j coincides with the winding number around each of the holes
in the bounded connected component of C j . On the other hand the representatives of the free
homotopy class of e j,0 have winding number 1 around C j and winding number 0 around
each other hole that does not contain ∞. The representatives of the free homotopy class of
e2j,0ek,0, k ≤ m, k �= j , have winding number 2 around C j , winding number 1 around Ck ,
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and winding number zero around each other hole Cl , l ≤ m. The argument for products of
two elements of E ′

3 is the same.
Choose a point q ∈ L0, a curve α in X with initial point q0 and terminating point q , and a

complex affinemappingM such thatM ◦F(q) ∈ C3(R)�S3. Lemma 7 finishes the proof for
this case in the same way as in the case when there is a component of first kind. In the present
case each (M ◦ F)∗(ẽ)�Z3, ẽ ∈ Isα(E ′

3), can be written as a product of at most 2 factors
b ∈ B3�Z3 with L−(ϑ(b)) ≤ 2πλ6(X). Hence, each (M ◦ F)∗(e j )�Z3, e j = Isα(e j,0),
can be written as a product of at most 6 factors b ∈ B3�Z3 with L−(ϑ(b)) ≤ 2πλ6(X).

Assume that the limit points of L0 are on the boundary of the hole C∞ that contains ∞.
Let C j0 and Ck0 be holes that are contained in different components of X\(L0 ∪ C∞), and let
e j0,0 and ek0,0 be the elements of E whose representatives surround C j0 , and Ck0 respectively.
Denote by E ′

3 the set that consists of the elements e j0,0ek0,0 , e2j0,0ek0,0 , and all elements
e j0,0ek0,0ẽ0 with ẽ0 running over E\{e j0,0, ek0,0}. Each element of E ′

3 is the product of at most
3 elements of E , and each element of E is the product of at most 3 elements of E ′

3 ∪ (E ′
3)

−1.
Each element of E ′

3 and each product of at most two different elements of E ′
3 intersects

L0. Indeed, if a closed curve is contained in one of the components of X\(L0 ∪ C∞) then
its winding number around each hole contained in the other component is zero. But for all
mentioned elements there is a hole in each component of X\(L0 ∪C∞) such that the winding
number of the free homotopy class of the element around the hole does not vanish. Lemma 7
applies with the same meaning of q , α, and M as before. Again, each (M ◦ F)∗(e j )�Z3,
e j = Isα(e j,0), can be written as a product of at most 6 factors b ∈ B3�Z3 withL−(ϑ(b)) ≤
2πλ6(X).

Notice that in case of m + 1 = 3 holes only these two possibilities for the curve L0

may occur. Hence in this case we find a set E ′
3 = {e′

0, e
′′
0} ⊂ π1(X , q0), such that one

of the elements of E ′
3 is the product of at most two elements of E ∪ E−1, and each of the

monodromies F∗(e′
0) and F∗(e′′

0) is the product of at most two elements b ∈ B3�Z3 with
L−(ϑ(b)) ≤ 2πλ5(X). Moreover, e and e′ are products of at most three factors, each an
element of E ′

3 ∪ E ′−1
3 .

Suppose there are no components of L of the first or the second kind, but there is a
connected component L0 of L of the third kind. Let C j0 be a hole contained in the bounded
component of the complement of L0, and let Ck0 , k0 ≤ m, be a hole that is contained in the
unbounded component of X\L0. Let e j0,0 and ek0,0 be the elements ofE whose representatives
surround C j0 , and Ck0 respectively. Consider the set E ′

4 consisting of the following elements:
e j0,0ek0,0, e

2
j0,0

ek0,0, and e2j0,0ek0,0ẽ0 for each ẽ0 ∈ E different from e j0,0 and ek0,0. Each
element of E ′

4 is the product of at most 4 elements of E and each element of E is the product
of at most 3 elements of E ′

4∪(E ′
4)

−1. The product of two different elements of E ′
4 is contained

in E ′
8.
The free homotopy classes of each element of E ′

4 and of each product of two different
elements of E ′

4 intersects L0. Indeed, if a loop is contained in the bounded connected compo-
nent of X\L0, its winding number around the holes C j , j ≤ m, contained in the unbounded
component is zero. If a loop is contained in the unbounded connected component of X\L0,
its winding numbers around all holes contained in the bounded connected component are
equal. But the winding number of e j0,0ek0,0 and e2j0,0ek0,0 around the hole C j0 is positive
and the winding number around the other holes that are contained in the bounded connected
component of X\L0 vanishes, hence the representatives of these two elements cannot be
contained in the unbounded component of X\L0. Since the winding number of representa-
tives of these elements around Ck0 is positive, the representatives cannot be contained in the
bounded component of X\L0. For representatives of the elements e2j0,0ek0,0ẽ0 the winding
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number around C j0 equals 2, the winding number around any other hole in the bounded
component of X\L0 is at most 1, and the winding number around Ck0 equals 1. Hence, the
free homotopy classes of the mentioned elements must intersect both components of X\L0,
hence they intersect L0.

Representatives of any product of two elements of E ′
4 have winding number around C j0 at

least 3, the winding number around any other hole in the bounded component of X\L0 is at
most 1, and the winding number around Ck0 equals 2. Hence, the free homotopy classes of
these elements intersect L0.

For a point q ∈ L0, a curve α in X joining q0 and q , and a complex affine mapping
M for which M ◦ F(q) ∈ C3(R)�S3, an application of Lemma 7 proves that in this case
each (M ◦ F)∗(e j )�Z3, e j = Isα(e j,0), can be written as a product of at most 6 factors
b ∈ B3�Z3 with L−(ϑ(b)) ≤ 2πλ8(X). Proposition 6 is proved in the planar case with a
slightly better constant.
3. The general case. Since not all monodromies are powers of a single element of B3�Z3

that is either periodic or reducible, there exists a pair of generators e′
0, e

′′
0 in E , such that the

monodromies along them are not powers of a single periodic or reducible element. Consider
the projectionω〈e′

0,e
′′
0 〉 : X̃ → X(〈e′

0, e
′′
0〉). By the proof for toriwith a hole or forP1 with three

holes there exist a relatively closed curve L〈e′
0,e

′′
0 〉 in X(〈e′

0, e
′′
0〉) and aMöbius transformation

M , such that for F = M ◦ f the mapping F〈e′
0,e

′′
0 〉 = F ◦ ω〈e′

0,e
′′
0 〉 takes L〈e′

0,e
′′
0 〉 into H, and

takes a chosen point q〈e′
0,e

′′
0 〉 ∈ L〈e′

0,e
′′
0 〉 to a point in C3(R)�S3.

Choose a point q̃ ∈ X̃ , for which ω〈e′
0,e

′′
0 〉(q̃) = q〈e0,e′

0〉. Let α̃ be a curve in X̃

with initial point q̃0 and terminating point q̃ . Then α〈e′
0,e

′′
0 〉

de f= ω〈e′
0,e

′′
0 〉(α̃) is a curve in

X(〈e′
0, e

′′
0〉) with initial point (q0)〈e′

0,e
′′
0 〉 and terminating point q〈e′

0,e
′′
0 〉, and the curve α〈e′

0,e
′′
0 〉

in X(〈e′
0, e

′′
0〉) and the point q̃0 in the universal covering X̃ of X(〈e′

0, e
′′
0〉) are compatible. Put

α = ω〈e′
0,e

′′
0 〉(α〈e′

0,e
′′
0 〉), and for each e0 ∈ π1(X , q0) we denote as before the element Isα(e0)

by e.
As in the case of a torus with a hole or P

1 with three holes there are elements e′
0 and

e′′
0, one of them contained in E or equal to the product of at most two factors among the

e′
0 and e′′

0 , the second either contained in E ∪ E−1, or equal to the product of at most three
factors among the e′

0 and e
′′
0 , such that the free homotopy classes of (e′

0)〈e′
0,e

′′
0 〉, of (e′′

0)〈e′
0,e

′′
0 〉,

and of their product intersect L〈e′
0,e

′′
0 〉. (For the definitions of (e′

0)〈e′
0,e

′′
0 〉 and of (e′′

0)〈e′
0,e

′′
0 〉 see

paragraph 3.1.) Moreover, e′
0 and e′′

0 are products of at most three factors, each being either
(e′

0)
±1 or (e′′

0)
±1. Put e′

〈e′
0,e

′′
0 〉 = Isα〈e′0,e′′0 〉((e

′
0)〈e′

0,e
′′
0 〉), e′′

〈e′
0,e

′′
0 〉 = Isα〈e′0,e′′0 〉((e

′′
0)〈e′

0,e
′′
0 〉). By

Lemma 7 each monodromy (F〈e′
0,e

′′
0 〉)∗(e′

〈e′
0,e

′′
0 〉) = F∗(e′) and (F〈e′

0,e
′′
0 〉)∗(e

′′
〈e′

0,e
′′
0 〉) = F∗(e′′)

is the product of at most two elements b j ∈ B3�Z3 with L−(ϑ(b j )) ≤ 2πλ5(X). Since
e′ and e′′ are products of at most three elements among (e′)±1 and (e′′)±1, each of the
monodromies F∗(e′) and F∗(e′′) is the product of at most 6 elements b j ∈ B3�Z3 with
L−(ϑ(b j )) ≤ 2πλ5(X).

Take any element e0 ∈ E\{e′
0, e

′′
0}. Let e = Isα(e0). Either the pair of monodromies

(F∗(e′), F∗(e)) or the pair of monodromies (F∗(e′′), F∗(e)) does not consist of two powers
of the same element of B3�S3 that is either periodic or reducible. Suppose this is so for the
pair (F∗(e′), F∗(e)).

Let L〈e′〉 be the connected component of (ω
〈e′,e′′〉
〈e′〉 )−1(L〈e′,e′′〉) that contains ω〈e′〉(q̃).

By Lemma 3, applied to the holomorphic projection X̃�(Isq̃)−1(〈e′〉) → X(〈e′, e′′〉), the
free homotopy class e′

〈e′〉
∧

intersects L〈e′〉. (For the definition of e′
〈e′〉 see paragraph 3.1.) As

in the proof of Proposition 4 we consider the Riemann surface X(〈e, e′〉) and the curve
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L〈e,e′〉 = ω
〈e,e′〉
〈e′〉 (L〈e′〉) (see paragraph 3.3. of the proof of proposition 4). As there we see

that the free homotopy class e′
〈e,e′〉
∧

intersects L〈e,e′〉. The system e〈e,e′〉, e′
〈e,e′〉 is associated

to a standard bouquet of circles for X(〈e, e′〉) (though the representing curves of e′ in X may
not be simple closed curves or may intersect representing curves of e). This can be seen in
the same way as in the proof of Proposition 4. Apply the arguments, used for X(〈e′, e′′〉) and
the generators e′

〈e′,e′′〉, e
′′
〈e′,e′′〉 of the fundamental group π1(X(〈e′, e′′〉), q〈e′,e′′〉), to X(〈e, e′〉)

and the generators e〈e,e′〉, e′
〈e,e′〉 of the fundamental group π1(X(〈e, e′〉), q〈e,e′〉).

In the case when X(〈e, e′〉) is a torus with a hole, the intersection number of e′
〈e,e′〉
∧

with

L〈e,e′〉 is non-zero. Put e′ = e′. For one of the choices e±1, or e′ e, denoted by e′′, the free
homotopy classes of e′〈e,e′〉, e

′′
〈e,e′〉, and of their product intersect L〈e,e′〉. Moreover, e is the

product of at most two factors, each being (e′)±1, or (e′′)±1.
In case X(〈e, e′〉) is planar, the curve L〈e,e′〉 must have limit points on the hole that

corresponds to the generator e′
〈e,e′〉 of the fundamental group π1(X(〈e, e′〉), q〈e,e′〉). We find

elements e′ and e′′ such that e′ = e′ and e′′ is either equal to e−1, or to the product of at most
three factors, one being equal to e and the others equal to e′, and the free homotopy classes
of e′〈e,e′〉, e

′′
〈e,e′〉, and their product intersect L〈e,e′〉. Moreover, e is the product of at most 3

factors, each being equal to (e′′)±1 or (e′)±1.
In both cases for X(〈e, e′〉) the element e′e′′ is the product of at most 10 elements of

E ∪ E−1. Lemma 7 implies, that F∗(e) and F∗(e′) are products of at most two factors b with
L−(ϑ(b)) not exceeding 2πλ10(X). Hence, F∗(e) is the product of at most 6 factors b with
L−(ϑ(b)) not exceeding 2πλ10(X). We obtain the statement of Proposition 6 in the general
case. Proposition 6 is proved. ��

Proof of Theorem 3 Let X be a connected Riemann surface of genus g with m + 1 ≥ 1
holes. Since each holomorphic (0, 3)-bundle with a holomorphic section on X is isotopic
to a holomorphic special (0, 4)-bundle, we need to estimate the number of isotopy classes
of irreducible smooth special (0, 4)-bundles on X , that contain a holomorphic bundle. By
Lemma 4 of [20] the monodromies of such a bundle are not powers of a single element
of B3�Z3 which is conjugate to a σ j�Z3, but they may be powers of a single periodic
element of B3�Z3 (equivalently, the isotopy class may contain a locally holomorphically
trivial holomorphic bundle).

Consider an irreducible special holomorphic (0, 4)-bundle on X which is not isotopic to
a locally holomorphically trivial bundle. Let F(x), x ∈ X , be the set of finite distinguished
points in the fiber over x . By the Holomorphic Transversality Theorem [21] the mapping
F : X → C3(C)�S3 can be approximated on relatively compact subsets of X by holo-
morphic mappings that are transverse to H. Similarly as in the proof of Theorem 1 we will
therefore assume in the following (after slightly shrinking X to a deformation retract of X
and approximating F) that F is transverse to H.

By Proposition 6 there exists a complex affine mapping M and a point q ∈ X such that
M◦F(q) is contained inC3(R)�S3, and for an arcα in X with initial point q0 and terminating
point q and each element e j ∈ Isα(E) the monodromy (M ◦ F)∗(e j )�Z3 of the bundle can
be written as product of at most 6 elements b j,k, k = 1, 2, 3, 4, 5, 6, of B3�Z3 with

L−(ϑ(b j,k)) ≤ 2πλ10(X). (31)

The mappings F and M ◦ F from X into the symmetrized configuration space are free
homotopic.
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Consider an isotopy class of special (0, 4)-bundles that corresponds to a conjugacy class
of homomorphisms π1(X , q0) → B3�Z3 whose image is generated by a single periodic
element of B3�Z3. Up to conjugacy we may assume that this element is one of the fol-
lowing: Id, Δ3�Z3, (σ1σ2)�Z3, (σ1σ2)

−1
�Z3. For each of these elements b the equality

L−(ϑ(b)) = 0 holds. Hence, in this case the isotopy class contains a smooth mapping F̃
such that for each e j,0 ∈ E the monodromy (M ◦ F)∗(e j,0)�Z3 of the bundle can be written
as product of at most 6 elements b j,k, k = 1, 2, 3, 4, 5, 6, of B3�Z3 satisfying inequality
(31).

The same argument as in the proof of Theorem1 shows the following fact. Each irreducible
free homotopy class of mappings X → C3(C)�S3 that contains a holomorphic mapping
contains a smooth mapping F̃ such that for each e j,0 ∈ E the monodromy F̃∗(e j,0)�Z3

of the bundle can be written as product of at most 6 elements b j,k, k = 1, 2, 3, 4, 5, 6, of
B3�Z3 satisfying inequality (31).

Using Lemma 1 of [18] the number of elements b ∈ B3�Z3 (including the identity), for

whichL−(ϑ(b)) ≤ 2πλ10(X), is estimated as follows. The elementw
de f= ϑ(b) ∈ PB3�Z3

can be considered as a reduced word in the free group generated by a1 = σ 2
1 �Z3 and

a2 = σ 2
2 �Z3. By Lemma 1 of [18] there are no more than 1

2 exp(6πλ10(X)) + 1 ≤
3
2 exp(6πλ10(X)) reducedwordsw ina1 anda2 (including the identity) satisfying the inequal-
ity L−(w) ≤ 2πλ10(X).

For a given element w ∈ PB3�Z3 (including the identity) we describe now all elements
b of B3�Z3 with ϑ(b) = w. If w �= Id these are the following elements. If the first term
of w equals akj with k �= 0, then the possibilities are b = w · (Δ�

3�Z3) with � = 0 or

1, b = (σ
sgnk
j �Z3) · w · (Δ�

3�Z3) with � = 0 or 1, or b = (σ±1
j ′ �Z3) · w · (Δ�

3�Z3)

with � = 0 or 1 and σ j ′ �= σ j . Hence, for w �= Id there are 8 possible choices of elements
b ∈ B3�Z3 with ϑ(b) = w.

If b = Id then the choices are Δ�
�Z3 and (σ±1

j Δ�)�Z3 for j = 1, 2, and � = 0 or
� = 1. These are 10 choices. Hence, there are no more than 15 exp(6πλ10(X)) different
elements b ∈ B3�Z3 with L−(ϑ(b)) ≤ 2πλ10(X).

Each monodromy is the product of at most six elements b j of B3�Z3 with L−(ϑ(b j )) ≤
2πλ10(X).Hence, for eachmonodromy there are nomore than (15 exp(6πλ10(X)))6 possible
choices. We proved that there are up to isotopy no more than (15 exp(6πλ10(X)))6(2g+m)

irreducible holomorphic (0, 3)-bundles with a holomorphic section over X . Theorem 3 is
proved. ��

Notice that we proved a slightly stronger statement, namely, over a Riemann surface of
genus g with m + 1 ≥ 1 holes there are no more than (15 exp(6πλ10(X)))6(2g+m) isotopy
classes of smooth (0, 3)-bundles with a smooth section that contain a holomorphic bundle
with a holomorphic section that is either irreducible or isotopic to the trivial bundle.

Proof of Theorem 2 Proposition 5 and Theorem 3 imply Theorem 2 as follows. Suppose an
isotopy class of smooth (1, 1)-bundles over a finite open Riemann surface X contains a
holomorphic bundle. By Proposition 5 the class contains a holomorphic bundle which is
the double branched covering of a holomorphic special (0, 4)-bundle. If the (1, 1)-bundle
is irreducible then also the (0, 4)-bundle is irreducible. There are up to isotopy no more

than
(
15(exp(6πλ10(X)))

)6(2g+m) holomorphic special (0, 4)-bundles over X that are either
irreducible or isotopic to the trivial bundle.

By Theorem G and Theorem 3 there are no more than
(
15

(
exp(6πλ10(X)))

)6(2g+m)

conjugacy classes of monodromy homomorphisms that correspond to a special holomor-
phic (0, 4)-bundle over X that is either irreducible or isotopic to the trivial bundle. Each
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monodromy homomorphism of the holomorphic double branched covering is a lift of the
respective monodromy homomorphism of the holomorphic special (0, 4)-bundle. Differ-
ent lifts of a monodromy mapping class of a special (0, 4)-bundle differ by involution,
and the fundamental group of X has 2g + m generators. Using Theorem G for (1, 1)-

bundles, we see that there are no more than 22g+m
(
15(exp(6πλ10(X)))

)6(2g+m) = (
2 ×

156 × exp(36πλ10(X))
)2g+m isotopy classes of (1, 1)-bundles that contain a holomorphic

bundle that is either irreducible or isotopic to the trivial bundle. Theorem 2 is proved. ��
For convenience of the reader we give the short proofs of the Corollaries 1 and 2. Such
statements are known in principle, but the case considered here is especially simple.

Proof of Corollary 1 We will prove that on a punctured Riemann surface there are no non-
constant reducible holomorphic mappings to the twice punctured complex plane and that
any homotopy class of mappings from a punctured Riemann surface to the twice punctured
complex plane contains at most one holomorphic mapping. This implies the corollary.

Recall that a holomorphic mapping f from any punctured Riemann surface X to the twice
punctured complex plane extends by Picard’s Theorem to a meromorphic function f c on the
closed Riemann surface Xc. Suppose now that X is a punctured Riemann surface and that the
mapping f : X → C\{−1, 1} is reducible, i.e. it is homotopic to a mapping into a punctured
disc contained in C\{−1, 1}. Perhaps after composing f with a Möbius transformation we
may suppose that this puncture equals −1. Then the meromorphic extension f c omits the
value 1. Indeed, if f c was equal to 1 at some puncture of X , then f wouldmap the boundary of
a sufficiently small disc on Xc that contains the puncture to a loop inC\{−1, 1}with non-zero
winding number around 1 , which contradicts the fact that f is homotopic to a mapping into
a disc punctured at −1 and contained in C\{−1, 1}. Hence, f c is a meromorphic function
on a compact Riemann surface that omits a value, and, hence f is constant. Hence, on a
punctured Riemann surface there are no non-constant reducible holomorphic mappings to
C\{−1, 1}.

Suppose f1 and f2 are non-constant homotopic holomorphicmappings from the punctured
Riemann surface X to the twice punctured complex plane. Then for their meromorphic
extensions f c1 and f c2 the functions f c1 − 1 and f c2 − 1 have the same divisor on the closed
Riemann surface Xc. Indeed, suppose, for instance, that f c1 − 1 has a zero of order k > 0 at
a puncture p. Then for the boundary γ of a small disc in Xc around p the curve ( f1 − 1) ◦ γ

in C\{−2, 0} has index k with respect to the origin. Since f2 − 1 is homotopic to f1 − 1 as
mapping toC\{−2, 0}, the curve ( f2−1)◦γ is free homotopic to ( f1−1)◦γ . Hence, f2−1
has a zero of order k at p. Applying the same arguments with 0 replaced by ∞, we obtain
that f c1 − 1 and f c2 − 1 have the same divisor. Hence, f c1 − 1 and f c2 − 1 differ by a non-zero
multiplicative constant. Since the functions are non-constant they must take the value −2.
By the same reasoning as above the functions are equal to −2 simultaneously. Hence, the
multiplicative constant is equal to 1. We proved that non-constant homotopic holomorphic
maps from punctured Riemann surfaces to C\{−1, 1} are equal. ��
Proof of Corollary 2 We need the following fact. For each special (0, 4)-bundle F = (X ×
P
1, pr1, E, X) there is a finite unramified covering P̂ : X̂ → X of X , such that F lifts to a

special (0, 4)-bundle (X̂ × P
1, pr1, Ê, X), for which the complex curve Ê is the union of

four disjoint complex curves Ê
k
, k = 1, 2, 3, 4, each intersecting each fiber {x̂} × P

1 along
a single point (x̂, ĝk(x̂)). This can be seen as follows. Let q0 be the base point of X . The
monodromy mapping class along each element e of π1(X , q0) takes the set of distinguished
points E ∩ ({q0} × P

1) onto itself, permuting them by a permutation σ(e). Consider the
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set N of elements e ∈ π1(X , q0) for which σ(e) is the identity. The set N is a normal
subgroup of π1(X , q0). Its index is finite, since two left cosets e1 N and e2 N are equal if
σ(e2 e

−1
1 ) = σ(e2)σ (e1)−1 = Id, and there are only finitely many distinct permutations of

points of E ∩ ({q0} × P
1). The quotient X̂

de f= X̃�Isq̃0(N ) of the universal covering of X
by the group of covering transformations corresponding to N and the canonical projection
X̂ → X define the required covering.

To prove the corollary, we have to show, that any reducible holomorphic (1, 1)-bundle
over a punctured Riemann surface X is locally holomorphically trivial, and that two isotopic
(equivalently, smoothly isomorphic) holomorphically non-trivial holomorphic (1, 1)-bundles
over X are holomorphically isomorphic.

The second fact is obtained as follows. Suppose the holomorphically non-trivial holo-
morphic (1, 1)-bundles F j , j = 1, 2, have conjugate monodromy homomorphisms. By
Proposition 5 each F j is holomorphically isomorphic to a double branched covering of a

special holomorphic (0, 4)-bundle (X × P
1, pr1, E j , X)

de f= P(F j ). The bundles P(F j )

are isotopic, since they have conjugate monodromy homomorphisms. There is a finite
unramified covering P̂ : X̂ → X of X , such that the bundles P(F j ) have isotopic lifts
(X̂ ×P

1, pr1, Ê j , X) to X̂ , and for each j the complex curve Ê j is the union of four disjoint

complex curves Ê
k
l , k = 1, 2, 3, 4, each intersecting each fiber {x̂} × P

1 along a single
point (x̂, ĝkj (x̂)). The lifted bundles are not isotopic to the trivial bundle. The mappings

X̂ � x̂ → ĝkj (x̂) are holomorphic. We may assume that ĝ4j (x̂) = ∞ for each x̂ . Define for

j = 1, 2, a holomorphic isomorphism of the bundle (X̂ × P
1, pr1, Ê j , X) by

{x̂} × P
1 � (x̂, ζ ) →

(
x̂, −1 + 2

ĝ1j (x̂) − ζ

ĝ1j (x̂) − ĝ2j (x̂)

)
.

The image Ê
′
j of Ê j under the j-th isomorphism intersects the fiber over each x̂ ∈ X̂

along the four points (x̂,−1), (x̂, 1), (x̂,∞), and (x̂, g̊ j (x̂)) for a holomorphic function g̊ j

on X̂ that avoids −1, 1 and ∞. The functions g̊ j , j = 1, 2, are homotopic, since the
bundles are isotopic. They are not homotopic to a constant function since the bundles are not
isotopic to the trivial bundle. By Corollary 1 the functions g̊1 and g̊2 coincide. Hence, the
bundles (X̂ × P

1, pr1, Ê j , X) are holomorphically isomorphic. This means that there is
a nowhere vanishing holomorphic function α̂ on X̂ , such that for each x̂ ∈ X̂ the equality
{x̂}×Ê2(x̂) = {x̂}×α̂(x̂)Ê1(x̂)holds.Here Ê j (x̂) is definedby the equality Ê j∩({x̂}×P

1) =
{x̂} × Ê j (x̂). Define also E j (x) by the equality {x} × E j (x) = E j ∩ ({x} × P

1). For a point

x ∈ X and x̂1, x̂2 ∈ P̂
−1

(x) the equalities Ê j (x̂1) = Ê j (x̂2) = E j (x), j = 1, 2, hold.
Hence, E2(x) = α̂(x̂1)E1(x) = α̂(x̂2)E1(x). For a set E ⊂ C3(C)�S3 and a complex
number α the equality E = αE is possible only if α = 1, or α = −1 and E is obtained

from {−1, 0, 1} by multiplication with a non-zero complex number, or α = e± 2π i
3 and E is

obtained from the set of vertices of an equilateral triangle with barycenter 0 by multiplication
with a non-zero complex number.

For x in a small open disc on X and x → x̂ j (x), j = 1, 2, being two local inverses
of P̂ the functions x → α̂(x̂ j (x)) are two analytic functions whose ratio is contained in a
finite set, hence the ratio is equal to a constant. If the constant was different from one, then
all fibers of P(F1) would be conformally equivalent to each other and, hence, P(F1) would
be locally holomorphically trivial. Since the bundles F j , and, hence, also the P(F j ), are
locally holomorphically non-trivial, the ratio of the two functions equals 1. We saw that for
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each pair of points x̂1, x̂2 ∈ X̂ , that project to the same point x ∈ X , α̂(x̂1) = α̂(x̂2). Put
α(x) = α̂(x̂ j ) for any point x̂ j ∈ (P̂)−1(x). We obtain E2(x) = α(x)E1(x), that means, the
bundles P(F j ) are holomorphically isomorphic. Since the bundles F j , j = 1, 2, are double
branched coverings of the P(F j ) and have conjugate monodromy homomorphism, they are
holomorphically isomorphic.

The first fact is obtained as follows. After a holomorphic isomorphism we may assume
that the reducible holomorphic (1, 1)-bundle is a double branched covering of a reducible
special (0, 4)-bundle P(F) = (X × P

1, pr1, E̊ ∪ s∞, X). After a further isomorphism the

bundle P(F) lifts to a holomorphic bundle P(F)
∧

= (X̂ × P
1, pr1,

ˆ̊E ∪ ŝ∞, X̂), such that ˆ̊E
intersects each fiber {x}×P

1 along a set of the form {x̂}×{−1, 1, g̊(x̂)}. Since F is reducible,
hence P(F) and also P(F)

∧

are reducible, the mapping g̊ is constant by Corollary 1. Hence,
all fibers of P(F)

∧

are conformally equivalent, and, hence, all fibers of P(F) are conformally
equivalent. Since F is the double branched covering of P(F), all fibers of F are conformally
equivalent. The first fact is proved. ��
Proof of Proposition 1 Denote by Sα a skeleton of T α,σ ⊂ T α which is the union of two
circles each of which lifts under the covering P : C → T α to a straight line segment which
is parallel to an axis in the complex plane. Denote the intersection point of the two circles by
q0. Note that Sα is a standard bouquet of circles for T α,σ with base point q0, and P−1(T α,σ )

is the σ
2 -neighbourhood of P

−1(Sα).
Denote by e the generator of π1(T α,σ , q0), that lifts to a vertical line segment and e′ the

generator of π1(T α,σ , q0), that lifts to a horizontal line segment. Put E = {e, e′}. We show
first the inequality

λ3(T
α,σ ) ≤ 4(2α + 1)

σ
. (32)

For this purpose we take any primitive element e′′ of the fundamental group π1(T α,σ , q0)
which is the product of at most three factors, each of the factors being an element of E or
the inverse of an element of E . We represent the element e′′ by a piecewise C1 mapping f1
from an interval [0, l1] to the skeleton Sα . We may consider f1 as a piecewise C1 mapping
from the circle R�(x ∼ x + l1) to the skeleton, and assume that for all points t ′ of the circle
where f1 is not smooth, f1(t ′) = q0. Let t0 ∈ [0, l1] be a point for which f1(t0) �= q0. Let f̃1
be a piecewise smooth mapping from [t0, t0 + l1] to the universal covering C of T α ⊂ T α,σ

which projects to f1. We may take f1 so that the equality | f̃ ′
1| = 1 holds. The mapping may

be chosen so that l1 ≤ 2α + 1. (Recall that α ≥ 1 and the element e is primitive.)
Take any t ′ for which f1 is not smooth. We may assume that f1 is chosen so that the direc-

tion of f̃ ′
1 changes by the angle ±π

2 at each such point. Hence, there exists a neighbourhood
I (t ′) of t ′ on (t0, t0 + �1), such that the restriction f̃ ′

1|I (t ′) covers two sides of a square of
side length σ

2 . Denote q̃
′
0 the common vertex f̃ ′

1(t
′) of these sides, and by q̃ ′′

0 the vertex of
the square that is not a vertex of one of the two sides. Replace the union of the two sides of
the square that contain q̃ ′

0 by a quarter-circle of radius σ
2 with center at the vertex q̃ ′′

0 , and

parameterize the latter by t → σ
2 e

±i 2
σ
t so that the absolute value of the derivative equals 1.

Notice that the quarter-circle is shorter than the union of the two sides.
Proceed in this way with all such points t ′. After a reparameterization we obtain a C1

mapping f̃ of the interval [0, l] of length l not exceeding 2α + 1 whose image is contained
in the union of P−1(Sα) with some quarter-circles, such that | f̃ ′| = 1. The distance of each
point of the image of f̃ to the boundary of P−1(T α,σ ) is not smaller than σ

2 . The mapping f̃

is piecewise of class C2. The normalization condition | f̃ ′| = 1 implies | f̃ ′′| ≤ 2
σ
.
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The projection f = P ◦ f̃ can be considered as a mapping from the circle R�(x ∼ x + l)

of length l not exceeding 2α + 1 to T α,σ , that represents the free homotopy class e′′
∧

of the
chosen element of the fundamental group.

Consider the mapping x + iy → F̃(x + iy)
de f= f̃ (x) + i f̃ ′(x)y ∈ C, where x + iy

runs along the rectangle Rl = {x + iy ∈ C : x ∈ [0, l], |y| ≤ σ
4 }. The image of this

mapping is contained in the closure of P−1(T α,σ ). Since 2 ∂
∂z F̃(x + iy) = 2 f̃ ′(x)+ i f̃ ′′(x)y

and 2 ∂
∂ z̄ F̃(x + iy) = i f̃ ′′(x)y, the Beltrami coefficient μF̃ (x + iy) =

∂
z̄ F̃(x+iy)
∂
z F̃(x+iy)

of F̃

satisfies the inequality |μF̃ (x + iy)| ≤ 1
3 . Hence, for K = 1+ 1

3

1− 1
3

= 2 the mapping F̃

descends to a K -quasiconformal mapping F from the annulus Al to T α,σ of extremal length
λ(Al) = l

σ
2

≤ 2 (2α+1)
σ

that represents the free homotopy class of the element e′′ of the
fundamental group π1(T α,σ , q0). Realize Al as an annulus in the complex plane. Let ϕ be
the solution of the Beltrami equation on C with Beltrami coefficient μF̃ on Al and zero else.
Then the mapping g = F ◦ ϕ−1 is a holomorphic mapping of the annulus ϕ(Al) of extremal
length not exceeding Kλ(Al) ≤ 4(2α+1)

σ
into T α,σ that represents the chosen element of the

fundamental group π1(T α,σ , q0). Inequality (32) is proved.
By Theorem 1 for tori with a hole there are up to homotopy nomore than 3( 32e

24πλ3(T α,σ ))2

≤ 27
4 e

3×24π 2α+1
σ < 7e3×24π 2α+1

σ non-constant irreducible holomorphic mappings from T α,σ

to the twice punctured complex plane.

We give now the proof of the lower bound. Let δ = 1
10 . We consider the annulus Aα,δ de f=

{z ∈ C : |Rez| < 5δ
2 }�(z ∼ z + αi). The extremal length of the annulus equals α

5δ = 2α.
For any natural number j we consider all elements of π1(C\{−1, 1}, 0) of the form

a±2
1 a±2

2 . . . a±2
1 a±2

2 (33)

containing 2 j terms, each of the form a±2
j . The choice of the sign in the exponent of each term

is arbitrary. There are 22 j elements of this kind. By [17] there is a relatively compact domain
G in the twice punctured complex plane C\{−1, 1} and a positive constant C such that the
following holds. For each j , each element of the fundamental group of the form (33), and for
each annulus of extremal length at least 2C j there exists a base point q in the annulus, and
a holomorphic mapping from the annulus to G that maps q to 0 and represents the element.
Put j = [ α

10Cδ
], where [x] is the largest integer not exceeding a positive number x . Then

each element of the form (33) with this number j can be represented by a holomorphic map
g̊ from the annulus Aα,δ to G. There is a constant C1 that depends only on G such that the
mapping g̊ satisfies the inequality |g̊| < C1. Let g be the lift of g̊ to a mapping from the strip
{z ∈ C : |Rez| < 5δ

2 } to G. On the thinner strip {|Rez| < 3δ
2 } the derivative of g satisfies the

inequality |g′| ≤ C1
δ
.

We will associate to the holomorphic mapping g̊ on the annulus a smooth mapping g1
from T α,δ ⊂ T α to G, such that (with P being the projection P : C → T α) the monodromy
along the circle P({Rez = 0}) with base point P(0) is equal to (33), and the monodromy
along P({Imz = 0} with the same base point equals the identity. This is done as follows. Let
Fα = [− 1

2 ,
1
2 )×[−α

2 , α
2 ) ⊂ C be a fundamental domain for the projection P : C → T α . Put

Δα,δ = Fα ∩ P−1(T α,δ). Let χ0 : [0, 1] → R be a non-decreasing function of class C2 with
χ0(0) = 0, χ0(1) = 1, χ ′

0(0) = χ ′
0(1) = 0 and |χ ′

0(t)| ≤ 3
2 . Define χ : [−3δ

2 , +3δ
2 ] → [0, 1]
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Fig. 5 A fundamental domain for
a torus with a hole and the poles
of the kernel for the ∂̄-equation

by

χ(t) =

⎧
⎪⎨

⎪⎩

χ0
( 1

δ
t + 3

2

)
t ∈ [−3δ

2 , −δ
2 ]

1 t ∈ [−δ
2 , +δ

2 ]
χ0

(− 1
δ
t + 3

2

)
t ∈ [ δ

2 ,
3δ
2 ].

(34)

Notice thatχ is aC2-function that vanishes at the endpoints of the interval [−3δ
2 , +3δ

2 ] together
with its first derivative, is non-decreasing on [−3δ

2 , −δ
2 ], and non-increasing on [ δ

2 ,
3δ
2 ]. Put

g1(z) = χ(Rez) g(z)+(1−χ(Rez)) g(0) for z in the intersection ofΔα,δ with {|Rez| < 3δ
2 },

and g1(z) = g(0) for z in the rest of Δα,δ .
Put ϕ(z) = ∂

∂ z̄ g1(z) on Δα,δ . Since ∂
∂ z̄χ(Rez) = 0 for |Rez| < δ

2 and for |Rez| > 3δ
2 , the

function ϕ(z) vanishes on Δα,δ\Q with Q
def= ([− 3δ

2 ,+ 3δ
2 ] × [− δ

2 ,
δ
2 ]). On Q ∩ Δα,δ the

inequality

|ϕ(z)| ≤ 1

2
|χ ′(Rez)| |g(z) − g(0)| ≤ 3

4δ
· C1

δ
|z| <

3

4δ2
· C1 · 2δ = 3

2

C1

δ
(35)

holds. Notice that the functions g1 and ϕ extend to P−1(T α,δ) as continuous doubly periodic
functions. Hence, we may consider them as functions on T α,δ (Fig. 5).

We want to find a small positive number ε that depends on C and C1, but not on α, such

that the following holds. For σ
de f= εδ there exists a solution f of the equation ∂

∂ z̄ f (z) = ϕ(z)
on T α,σ such that for each z the value | f (z)| is smaller than the Euclidean distance in C

of ±1 to G. Then g1 − f is a holomorphic mapping from T α,σ to C\{−1, 1} whose class
has monodromies equal to (33), and to the identity, respectively. This gives 22[ α

10Cδ
] ≥
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22
α

10Cδ
−2 = 1

4e
2ε log 2
10C

α
σ different homotopy classes of mappings from T α,σ toC\{−1, 1}, and,

hence proves the lower bound.
To solve the ∂̄-problem on T α,εδ = T α,σ , we consider an explicit kernel function which

mimics the Weierstraß ℘-function. The author is grateful to Bo Berndtsson who suggested
to use this kernel function.

Recall that the Weierstraß ℘-function related to the torus T α is the doubly periodic mero-
morphic function

℘α(ζ ) = 1

ζ 2 +
∑

(n,m)∈Z2\(0,0)

( 1

(ζ − n − imα)2
− 1

(n + imα)2

)

on C. It defines a meromorphic function on T α with a double pole at the projection of the
origin and no other pole.

Put ν = 1
2 + αi

2 . Since for ζ /∈ (Z + iαZ) ∪ (ν + Z + iαZ) the equality

1

(ζ − n − imα)
− 1

(ζ − n − imα − ν)
+ ν

(ζ − n − imα)2

= −ν2

(ζ − n − imα)2(ζ − n − imα − ν)

holds, and the series with these terms converges uniformly on compact sets not containing
poles, the expression

℘ν
α(ζ ) = 1

ζ
− 1

ζ − ν
+

∑

(n,m)∈Z2\(0,0)

( 1

(ζ − n − imα)
− 1

(ζ − n − imα − ν)
+ ν

(n + imα)2

)

defines a doubly periodic meromorphic function on C with only simple poles. The function
descends to a meromorphic function on T α with two simple poles and no other pole.

Recall that the support of ϕ is contained in Q. The set Q is contained in the 2δ-disc in C

(in the Euclidean metric) around the origin. If ζ is contained in the 2δ-disc around the origin
and z ∈ Δα,δ , then the point ζ −z is contained in the 2δ-neighbourhood (inC) ofΔα,δ . By the
choice of δ the distance of any such point ζ − z to any lattice point n+ iαm except 0 is larger
than 1

2 − 2δ > 1
4 . Further, for z ∈ Δα,δ and ζ in the 2δ-disc around the origin the distance of

the point ζ −z to any point n+iαm+ν (including the point ν) is not smaller than 1
2 − 5δ

2 = 1
4 .

Put Qε
de f= Q ∩ Δα,εδ = ([− 3δ

2 ,+ 3δ
2 ] × [− εδ

2 ,+ εδ
2 ])⋃

([− εδ
2 ,+ εδ

2 ] × [− δ
2 ,+ δ

2 ]). Then
the function

f (z) = − 1

π

∫∫

Qε

ϕ(ζ )℘ν
α(ζ − z)dm2(ζ ) , (36)

for z in Δα,εδ is holomorphic outside Qε and satisfies the equation ∂
∂ z̄ f = ϕ on Qε. It

extends continuously to a doubly periodic function on P−1(T α,εδ) and hence descends to a
continuous function on T α,εδ . It remains to estimate the supremum norm of the function f
on Δα,σ = Δα,εδ . The following inequality holds for z ∈ Δα,σ

∣∣∣∣

∫∫

Qε

ϕ(ζ )℘ν
α(ζ − z)dm2(ζ )

∣∣∣∣ =
∣∣∣∣
1

π

∫∫

Qε

ϕ(ζ )
( 1

ζ − z
+ (℘ν

α(ζ − z) − 1

ζ − z
)
)
dm2(ζ )

∣∣∣∣

≤ 1

π

∫∫

Qε

3C1

2δ

(
| 1

ζ − z
| + C2

)
dm2(ζ ). (37)
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We used the upper bound for ϕ and the fact that for z ∈ Δα,σ and ζ in Qε the expression
|℘ν

α(ζ−z)− 1
ζ−z | is bounded by a universal constantC2. The integral of the second termon the

right hand side does not exceed 3C1
2δ ·C2 ·4εδ2 = 6C1C2εδ. The integral

∫∫
Qε

| 1
ζ−z |dm2(ζ )

does not exceed the sum of the two integrals I1 = ∫∫
(− 3

2 δ, 32 δ)×(− 1
2 εδ, 12 εδ)

| 1
ζ−z |

dm2(ζ ) , and I2 = ∫∫
(− 1

2 εδ, 12 εδ)×(− 1
2 δ, 12 δ)

| 1
ζ−z | dm2(ζ ) . The first integral I1 is

largest when z = 0. Hence, it does not exceed

∫∫

|ζ |<(
√
2)−1εδ

| 1

ζ
| dm2(ζ ) + 2εδ

∫ 3
2 δ

1
2 εδ

1

η
dη ≤ √

2πεδ + 2εδ log
3

ε
. (38)

The second integral I2 is smaller. We obtain the estimate

| f (z)| ≤ 6C1C2εδ

π
+ 3

C1

πδ
(
√
2πεδ + 2εδ log

3

ε
). (39)

Recall that we have chosen δ = 1
10 . We may choose ε0 > 0 depending only on C1 (and,

hence, only on the domain G) so that if ε < ε0 the supremum norm of f is less than the
distance of ±1 to G. The proposition is proved. ��
Proof of Proposition 2 Let �0 be the length in the Kähler metric of the longest circle in the
bouquet. For each natural number k and each positive σ < σ0 the value λk(Sσ ) satisfies the
inequalities

C ′
1
�0

σ
≤ λk(Sσ ) ≤ C ′′

1
�0

σ
(40)

for constants C ′
1 and C ′′

1 depending on k, X , S and the Kähler metric. This can be seen by
the argument used in the proof of Proposition 1.

The upper bound in inequalities (1) follows from Theorem 1.
The proof of the lower bound in (1) follows along the same lines as the proof of Proposi-

tion 1. It leads to a ∂-problemon anopenRiemann surface, forwhichHörmander’s L2-method
can be used. The case of openRiemann surfaces is easier to treat as the general case of pseudo-
convex domains. The needed results for Riemann surfaces are explicitly formulated in [25].

To obtain the lower bound we consider for each positive number δ < σ0 the δ-
neighbourhood of the longest circle γ0 of the bouquet. Consider a curvilinear rectangle
RX

δ , that avoids q0 and is contained in the δ-neighbourhood of the largest circle γ0, whose
“vertical curvilinear sides” are contained in the boundary of Sδ and whose open “horizontal
curvilinear sides” are contained in Sδ . Choosing σ0 small enough, we may choose RX

δ so
that for its extremal length the inequality λ(RX

δ ) > c �0
δ

+ 4 holds for a number c > 0 that
depends only on X , S and the Kähler metric. For any positive δ < σ0 we denote by Rδ the

true rectangle Rδ
de f= {x+iy : x ∈ (−δ, δ), y ∈ (−c�0−2δ, c�0+2δ)} in the complex plane.

Shrinking perhaps RX
δ , we may assume that RX

δ is conformally equivalent to Rδ . Denote by
ω the conformal mapping RX

δ → Rδ for which the orientation of the curve γ0 corresponds
to the positive orientation of the imaginary axis.

LetG ⊂ C\{−1, 1} be the same relatively compact domain as in the proof of Proposition 1,
and let R̊δ ⊂ Rδ be the rectangle in the complex plane with the same center and horizontal
side length as Rδ , and with vertical side length 2c�0. There is an absolute constant C > 0
such that for j = [ c

C
�0
δ
] and any word of the form a±1

1 a±
2 . . . a±1

2 in the relative fundamental

group π1(C\{−1, 1}, (−1, 1)) with 2 j terms there exists a holomorphic mapping g : R̊δ →
G ⊂ C\{−1, 1} that represents this word and vanishes at±ic�0 (see Theorem 1 of [17]). The
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function g extends by reflection through the horizontal sides of R̊δ to a holomorphic function
on Rδ , that we also denote by g. Since |g| ≤ C1 on R̊δ and, hence, |g| ≤ C1 also on Rδ ,
for any positive α < 1 the inequality |g′| ≤ C1

δ(1−α)
holds for the derivative of the mapping

g on the smaller rectangle Rδα (defined as Rδ with δ replaced by αδ). This fact implies that

|g| ≤
√
2C1α
1−α

on Q±
αδ

de f= {x + iy : x ∈ (−αδ, αδ),±y ∈ (c�0, c�0 + αδ)}. We took into

account that g(±ic�0) = 0. We take α so that
√
2C1α
1−α

= 1
2 .

With the same function χ0 as in the proof of Proposition 1 we define

χ(t) =

⎧
⎪⎨

⎪⎩

1 t ∈ [−c�0, c�0]
χ0(

c�0+αδ−|t |
αδ

) |t | ∈ (c�0, c�0 + αδ),

0 t ∈ R\[−c�0 − αδ, c�0 + αδ] .
(41)

Consider the function g̃(z) = g(z) ·χ(Im(z)) and the continuous (0, 1)-form ϕ
de f= ∂̄ g̃ on

Rαδ . The form ϕ vanishes outside Q±
αδ . Let ε be a small positive number that will be chosen

later. Consider the measurable (0, 1)-form ϕε on Rδ that equals ϕ on Q±
αδ,ε

de f= {x + iy :
x ∈ (−αδε, αδε),±y ∈ (c�0, c�0 + αδ)} and vanishes outside this set. Extend its pullback
under the conformal mapping ω : RX

δ → Rδ to a measurable (0, 1)-form on X by putting it
equal to zero outside RX

δ . Denote the obtained form by ϕX
ε .

By Corollary 2.14.2 of [25] there exists a strictly subharmonic exhaustion function ψ

on X . The L2-norm of ϕε with respect to the Euclidean metric on the complex plane does
not exceed C2

√
ε for an absolute constant C2. Hence, the weighted L2-norm on X of ϕX

ε

with respect to the Kähler metric and the weight e−ψ (see Definition 2.6.1 of [25]) does
not exceed C3C2

√
ε for a constant C3 that depends on ψ and on the Kähler metric on the

relatively compact subset RX
δ of X . ByCorollary 2.12.6 of [25] there exists a function f X with

∂̄ f X = ϕX in the weighted L2-space on X with respect to the Kähler metric and the weight
e−ψ (see Definition 2.6.1 of [25]), whose norm in this space does not exceedC4C3C2

√
ε for a

constant C4 depending only on X , ψ , and the Kähler metric. Let (Q±
αδ,ε)

X be the preimages

of Q±
αδ,ε under ω. The function f X is holomorphic on X \ (

(Q+
αδ,ε)

X ∪ (Q−
αδ,ε)

X
)
. Put

Q̃±
δ

de f= {x + iy ∈ Rδ : ±y ∈ (c�0 − δ, c�0 + 2δ)}, and (Q̃±
δ )X = ω−1(Q̃±

δ ). Then (Q±
αδ,ε)

X

is relatively compact in (Q̃±
δ )X . On a relatively compact open subset of X , containing the

closed subset Sδ0\((Q̃+
δ )X ∪ (Q̃−

δ )X ) of X , the supremum norm of | f X | is estimated by
its weighted L2-norm: | f X | < C5

√
ε in a neighbourhood of Sδ0\((Q̃+

δ )X ∪ (Q̃−
δ )X ) for a

constant C5 that depends on the Kähler metric, on ψ and on the constants chosen before (see
Theorem 2.6.4 of [25]).

On the other hand the classical Cauchy-Green formula on the complex plane provides
a solution f̃ of the equation ∂ f̃ = ϕε on the set Q̃+

δ ∪ Q̃−
δ . The supremum norm of the

function f̃ is estimated by C6
√

ε for an absolute constant C6. Let f̃ X be the pullback of f̃ to
(Q̃+

δ )X ∪(Q̃−
δ )X . The function f X − f̃ X is holomorphic on (Q̃+

δ )X ∪(Q̃−
δ )X and satisfies the

inequality | f X − f̃ X | < (C5 +C6)
√

ε at all points of the set (Q̃+
δ )X ∪ (Q̃−

δ )X , that are close
to its boundary. Hence, the inequality is satisfied on (Q̃+

δ )X ∪ (Q̃−
δ )X . As a consequence,

| f X | < (C5 + 2C6)
√

ε on (Q̃+
δ )X ∪ (Q̃−

δ )X .
Choose ε depending on C5 and C6, so that

| f X | < min
{
dist(G, {−1, 1}), 1

2

}
on Sσ0 . (42)
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Put σ = εαδ. Consider the smooth function gXσ on Sαδε = Sσ which equals the pullback
g̃X = g̃ ◦ ω on ω−1(Rαδ) ∩ Sσ , and vanishes on the rest of Sσ . Hence, it vanishes on
all circles of the bouquet except γ0, and therefore, the monodromy of its homotopy class
along each such circle is the identity. The restriction of gXσ to R̊X

δ ∩ Sσ = ω−1(R̊δ) ∩ Sσ

represents the element a±
1 a

±
2 . . . a±

2 ∈ π1(C\{−1, 1}, (−1, 1)). Moreover, on
(
RX

δ \R̊X
δ

) ∩
Sσ the inequality |gXσ | < 1

2 holds, and on Sσ \RX
δ the mapping gXσ vanishes. Hence, the

monodromy of the homotopy class of gXσ along γ0 equals a±
1 a

±
2 . . . a±

2 . By the inequality
(42) the monodromies of the homotopy class of gXσ − f X along all circles of the bouquet
coincide with those of the homotopy class of gXσ . The function gXσ − f X is holomorphic

on Sσ . We put C7 = 2 log 2cαε
C . For each positive σ < εασ0 we found no less than 1

4e
C7�0

σ

irreducible non-homotopic holomorphic mappings from Sσ to C\{−1, 1}. The proposition
is proved. ��
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