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Abstract
For a Radon measure μ onRd , define Cn

μ(x, t) =
(

1
tn

∣∣∣∫B(x,t)
x−y
t dμ(y)

∣∣∣
)
. This coefficient

quantifies how symmetric the measure μ is by comparing the center of mass at a given scale
and location to the actual center of the ball. We show that if μ is n-rectifiable, then

∫ ∞

0
|Cn

μ(x, t)|2 dt
t

< ∞ μ-almost everywhere.

Together with a previous result of Mayboroda and Volberg, where they showed that the
converse holds true, this gives a new characterisation of n-rectifiability. To prove our main
result, we also show that for an n-uniformly rectifiable measure, |Cn

μ(x, t)|2 dtt dμ is a Car-
leson measure on spt(μ)× (0,∞). We also show that, whenever a measure μ is 1-rectifiable
in the plane, then the same Dini condition as above holds for more general kernels. We also
give a characterisation of uniform 1-rectifiability in the plane in terms of a Carleson measure
condition. This uses a classification of�-symmetric measures from Villa (RevMat Iberoam,
2019).
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1 Introduction

Rectifiable sets are a main object of study in geometric measure theory. These are sets that
can be covered by (countably many) Lipschitz images of the Euclidean space, up to a set of
Hausdorff measure zero. More generally, a measure μ in Rd is n-rectifiable if there exists an
n-rectifiable set E and a Borel function f : Rd → R so that μ = f Hn |E .

In the first part of this paper, however, we will use a quantitative notion of rectifiabil-
ity: that of uniformly rectifiable (or UR) sets. First introduced by Guy David and Stephen
Semmes in [6], uniform rectifiability is a stronger property than rectifiability: one has con-
trol on how much mass in any given ball centered on the set can be covered by just one
Lipschitz image - in contrast to rectifiable sets, where in some places one may need very
many images to cover just a small portion of the original set. This sub-area of GMT
has very strong ties to Harmonic analysis. Indeed, not only ‘is there an obvious anal-
ogy between rectifiability property of sets (this is GMT) and differentiability properties
of functions (see [7], Introduction), but also the problems themselves that originally moti-
vated the development of the theory of UR sets are harmonic analytic in nature, although
this problems concerns more singular integrals and analytic capacity. Here’s an example:
consider f : R → R in L2(R). Then (see [17]) f is locally absolute continuous and
f ′ ∈ L2 if and only if

∫ ∞
0

∫
R
t−2| f (x + t) + f (x − t) − 2 f (x)|2 dx dt

t < ∞. The quantity
t−1( f (x + t) + f (x − t) − 2 f (x)) can be seen as a measurement of how far f is from
being affine. Something along these lines is the following result by Dorronsoro [9]. Let

f ∈ W 1,2(Rd) and define � f (x, t) :=
(
inf A t−d

∫
B(x,t) t

−2 ( f (y) − A(y))2 dy
) 1

2
, where

the infimum is taken over all affine functions A. Then
∫
Rd

∫ ∞
0 � f (x, t)2

dt
t dx ∼ ‖∇ f ‖22.

Since rectifiable sets are composed of Lipschitz images, it is natural to ask whether similar
quantities can be designed for sets. Take a subset E ⊂ R

n and let
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βn
E,p(x, t) := inf

L

(
1

tn

∫

B∩E

(
dist(y, L)

t

)p

dHn(y)

) 1
p

, (1.1)

A similar quantity was first introduced by Peter Jones in [12] as a tool to prove his Analyst’s
Traveling Salesman theorem (and so it is called the Jones-beta number), and further developed
by David and Semmes [6,7], to show that if a set E is n-Ahlfors–David regular (ADR), that
is, if there exists a constant c ≥ 1 such that c−1 rnHn(B(x, r) ∩ E) ≤ c rn for all x ∈ E ,
r > 0, then E is UR if and only if

∫

BR

∫ R

0
βn
E,p(x, t)

2 dt

t
dHn |E (x) ≤ C Rn . (1.2)

Note the analogy with the result by Dorronsoro: there we studied regularity properties of
functions, here those of sets—in both cases such properties are characterised quantitatively
by measuring the linear approximation properties of our objects. David and Semmes also
show that a set E is UR if and only if a wide class of Calderón–Zygmund kernels are L2(E)

bounded; this is precisely the problem which originated the field: on what sort of sets are
Calderón–Zygmund kernels L2 bounded?

Let us go back for a moment to the world of functions: we may find further inspiration.
Recently, Alabern, Mateu and Verdera showed in [1] that if f ∈ W 1,p(Rd), then ‖S( f )‖p ∼
‖∇ f ‖p , where

S( f )2(x) :=
∫ ∞

0

∣∣∣∣t−d
∫

B(x,t)
t−1( f (x) − f (y)) dy

∣∣∣∣
2 dt

t
.

Appealing to analogy once more (‘you can prove anything using the Analogy’1), one may
define a corresponding quantity for sets, or, more generally for a Radon measure μ on R

d :
we let the n-dimensional C-number to be defined as

Cn
μ(x, t)2 = Cμ(x, t)2 :=

(
1

tn

∣∣∣∣
∫

x − y

t
dμ(y)

∣∣∣∣
)2

.

While a β number gives us information on the linear approximation properties of a set or a
measure, Cμ tells us about the geometry of measures by capturing how far the center of mass
of our object is from the center of the ball where we are focusing our attention. This quantity
appears for different reasons other than pure analogy: Mattila, in [14], while investigating
for what kind of measures μ inC does the Cauchy transform exists μ-almost everywhere (in
the sense of principal values), gives a complete characterisation of what he calls symmetric
measures; that is, measures that satisfyCμ(x, t) = 0 for all x ∈ spt(μ) and for all t > 0.He
shows that any symmetric locally finite Borel measure on C is either discrete or continuous.
In the latter case, it is either the 2-dimensional Lebesgue measure (up to a multiplicative
constant) or a countable sum of 1-dimensional Hausdorff measures restricted to equidistant
affine lines. Mattila needed such characterisation to understand the geometry of tangent
measures of a measureμ for which the Cauchy transform existsμ-almost everywhere (in the
sense of principal values) - thus to understand the geometry of μ itself. Briefly after, Mattila
and Preiss (see [15]) generalised this to the higher dimensional equivalent.

More recently, Mayboroda and Volberg in [16] proved the following.

1 See U.K. Le Guin, The Dispossessed. However, the reader should be warned: analogy can be misleading,
see [6], Introduction.
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Theorem 1.1 Let μ be a finite measure with finite and positive n-dimensional upper density
μ-almost everywhere. If

∫ ∞

0
|Cn

μ(x, t)|2 dt
t

< ∞ for μ − almost all x ∈ R
d , (1.3)

then μ is n-rectifiable.

Recall that the n-dimensional upper density of μ at x is given by

θ∗,n(x, μ) := lim sup
r→0

μ(B(x, r))

rn
. (1.4)

The same result appeared as a corollary of the work of Jaye, Nazarov and Tolsa in [11],
Subsection 1.6.

In this paper we prove the converse.

Theorem 1.2 Let μ be an n-rectifiable measure in R
d . Then

∫ ∞

0
|Cn

μ(x, t)|2 dt
t

< ∞ for μ − almost all x ∈ R
d , (1.5)

Thus, together with Theorem 1.1, we have a characterisation of rectifiability.

Corollary 1.3 Let μ be a measure on R
d so that 0 < θ∗,n(x, μ) < ∞ for μ-almost all

x ∈ R
d . Then μ is n-rectifiable if and only if

∫ ∞

0
|Cn

μ(x, t)|2 dt
t

< ∞ μ − almost all x ∈ R
d , (1.6)

Theorem 1.2 will follow from the other result of this paper.

Theorem 1.4 Let μ be an n-ADR measure on Rd . If μ is uniformly rectifiable then, for each
ball B centered on spt(μ) and with radius rB,∫

B

∫ rB

0
|Cμ(x, t)|2 dt

t
dμ(x) � rnB . (1.7)

The condition in (1.7) is analogous to (1.2); it says that |Cμ(x, t)|2 dμ(x) dtt is a Carleson
measure on spt(μ) × (0,∞).

It is natural to ask whether a similar characterisation can be proven for more general

kernels. Note that K (x) = |x |I d
(

x
|x |

)
, where I d : S

d−1 → S
d−1 is the identity map

of the sphere to itself. Now suppose we perturb the identity, in the following sense. Let
� : S

d−1 → S
d−1 be an odd, twice continuously differentiable map which is also bi-

Lipshitz with constant 1 + δ�. Given a Radon measure μ, one can define the corresponding
perturbed Cn

μ number, i.e.

Cn
�,μ(x, t)2 :=

⎛
⎝ 1

tn

∣∣∣∣∣∣

∫ |x − y|�
(

x−y
|x−y|

)

t
dμ(y)

∣∣∣∣∣∣

⎞
⎠

2

.

We prove the following characterisation of uniform rectifiability in the plane.

Theorem 1.5 Let� as above and suppose that δ� is sufficiently small2. Letμ be an Ahlfors 1-
regular measure on C. Then μ is uniformly 1-rectifiable if and only if |C1

�,μ(x, t)|2 dt
t dμ(x)

is a Carleson measure on spt(μ) × (0,∞).

2 We require δ� to be smaller than a universal constant. For example, δ� < 1/10 will work.
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A square function involving the center... 3211

Remark 1.6 In the case � = I d , that the Carleson measure condition implies uniform rec-
tifiability follows from [11]. However, for general �, this is novel and is an application of
Theorem 1.4 in [22].

A counterpart of Theorem 1.2 holds in this case, too.

Theorem 1.7 Let μ be a 1-rectifiable measure on C. Then
∫ ∞

0
|C�,μ(x, t)|2 dt

t
< ∞ for μ-almost all x ∈ C.

Remark 1.8 We will not prove Theorems 1.5 and 1.7 in great details, since the proofs are
very similar to those for the case where � = I d; we will highlight the places where a slight
change is needed. However, we will briefly illustrate on how to apply Theorem 1.4 from [22]
in proving one direction of Theorem 1.5.

Remark 1.9 Now, a remark added two year later, in 2022. A posteriori, this work finds the
following further motivation. In an upcoming article with J. Azzam and M. Mourgoglou
[2], we show that a form of Dorronsoro’s theorem holds for functions defined on uniformly
rectifiable sets. As explained there, the current work could (work in progress) be used to
show a variation of [2], based on [1], where the coefficients involved are purely metrical.
This might be of interest in the context of analysis in metric space.

1.1 Outline of the proof

We first show that if a set is uniformly rectifiable, then we have the Carleson estimate (1.7).
To show this, we follow the strategy in [3], where the same is shown for a different square
function, involving differences in densities. To prove Theorem 1.2, we then borrow the
techniques and ideas from [21], where the same is shown, but again, for the square function
mentioned before.

2 Preliminaries

We collect some notions and theorem from the literature and some lemmas which will be
needed later.

2.1 Notation

We gather here some notation and some results which will be used later on. We write a � b
if there exists a constant C such that a ≤ Cb. By a ∼ b we mean a � b � a. In general, we
will use d ∈ N to denote the dimension of the ambient space Rd , while we will use n, with
n ≤ d − 1, to denote the ‘dimension’ of a measure μ, in the sense of n-Ahlfors regularity.

For sets A, B ⊂ R
n , we let

dist(A, B) := inf
a∈A,b∈B |a − b|.

For a point x ∈ R
n and a subset A ⊂ R

n ,

dist(x, A) := dist({x}, A) = inf
a∈A

dist(x, a).
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3212 M. Villa

We write

B(x, t) := {y ∈ R
n | |x − y| < t},

and, for λ > 0,

λB(x, t) := B(x, λt).

At times, wemaywriteB to denote B(0, 1). When necessary wewrite Bn(x, t) to distinguish
a ball in R

n from one in R
d , which we may denote by Bd(x, t).

We will also write

β p,d
μ (x, t) := β p,d

μ (B(x, t)).

Let A ∈ R
n and 0 < δ ≤ ∞. Set

Hd
δ (A) := inf

{∑
(diam(Ai ))

d | A ⊂ ∪i Ai and diam(Ai ) ≤ δ
}

.

The d-dimensional Hausdorff measure of A is then defined by

Hd(A) := lim
δ→0

Hd
δ (A).

2.2 Intrinsic cubes with small boundaries

The following construction, due to David [5], provides us with a dyadic decomposition of
the support of an AD-regular measure. Such construction has been extended by Christ [4] to
spaces of homogeneous type and further refined by Hytönen and Martikainen [10]. Here is
the construction.

Theorem 2.1 Letμ be an n-AD regularmeasure inRd . There exists a collectionDμ of subsets
Q ⊂ spt(μ) with the following properties.

(1) We have

Dμ =
⋃
j∈Z

D j
μ,

where D j
μ can be thought as the collection of cubes of sidelength 2− j .

(2) For each j ∈ Z,

spt(μ) =
⋃

Q∈D j
μ

Q.

(3) If j ≤ i , Q ∈ D j
μ, Q′ ∈ Di

μ, then either Q ⊂ Q′ or else Q ∩ Q′ = ∅.
(4) If j ∈ Z and Q ∈ D j

μ, then there exists a constant C0 ≥ 1 so that

C−1
0 2− j ≤ diam(Q) ≤ C02

− j , and

C−1
0 2− jn ≤ μ(Q) ≤ C02

− jn .

(5) If j ∈ Z, Q ∈ D j
μ and 0 < τ < 1, then

μ ({x ∈ Q | dist(x, spt(μ)\Q)}) ≤ Cτ
1
C 2−nj .

For a proof of this, see Appendix 1 in [5].
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A square function involving the center... 3213

Notation 2.2 For Q ∈ D j
μ, we set


(Q) := 2− j . (2.1)

We will denote the center of Q by zQ. Furthermore, we set

BQ := B(zQ, 3 diam(Q)). (2.2)

2.3 The weak constant density condition

We follow the definition given in [3]. Let μ be an n-AD regular measure on R
d . We denote

by A(c0, ε) the set of points (x, t) ⊂ spt(μ) × (0,∞) such that there exists a Borel measure
σ = σx,t which satisfies the following three conditions.

(1) spt(σ ) = spt(μ).
(2) The measure σ is n-AD regular with constant c0.
(3) It holds

|σ(B(y, r)) − rn | ≤ ε rn

for all y ∈ spt(μ) ∩ B(x, t) and for all 0 < t < r . (2.3)

Definition 2.3 ABorel measureμ onRd is said to satisfy theweak constant density condition
(WCD), if there exists a constant c0 > 0 such that the complement in spt(μ)× (0,∞) of the
set A(c0, ε) defined above is a Carleson set for every ε > 0, that is, for every ε > 0, there
exists a constant C(ε) > 0 so that

∫ R

0

∫

B(x,R)

1(spt(μ)×(0∞))\A(c0,ε)(x, t) dμ(x)
dt

t
≤ C(ε) Rn .

for all x ∈ spt(μ) and R > 0.

The WCD condition was firstly introduced by David and Semmes in [6], Section 6. There
it was proven that if a set E is n-uniformly rectifiable, then the n-dimensional Hausdorff
measure restricted to E satisfiesWCD. In that case, σx,t was simply the push forwardmeasure
of Hd |E onto the best approximating plane. Shortly after, in [7], they proved the converse
for the dimensions n = 1, 2, d − 1. More recently, Tolsa [19], proved the converse for all
dimension. We thus have the following theorem

Theorem 2.4 [6,7,19] Let n ∈ (0, d) be an integer. An AD-regular measure μ on R
d us

n-uniformly rectifiable if and only if it satisfies WCD.

2.4 Theˇ and the˛ numbers

As mentioned in the introduction, β numbers were firstly used by Jones in [12] to understand
the geometry a set or of a measure. Below we will need another quantity, introduced by Tolsa
some ten years ago in [18]. They are the so called α numbers or coefficients, and they are
defined as follows. For two Radon measures μ, ν on R

d , and a ball B with radius rB , set

dist
B

(μ, ν) := sup

{∣∣∣∣
∫

f dμ −
∫

f dν

∣∣∣∣ | Lip( f ) ≤ 1 and spt( f ) ⊂ B

}
. (2.4)

One can see that distB defines a metric on the set of Radon measures supported on B. Fix
now an n-ADR measure on R

d . Let Q be either an instrinsic cube, i.e. Q ∈ Dμ or let Q be
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3214 M. Villa

an actual dyadic cube of Rd which intersects spt(μ). Recall that BQ = B(zQ, 3 diam(Q))

where zQ is the center of the cube. Then define

αn
μ(Q) := 1


(Q)n+1 inf
c≥0,L

dist
BQ

(μ, cHn |L). (2.5)

Tolsa showed the following.

Theorem 2.5 ([18], Theorem 1.2) Letμ be an n-ADRmeasure. The following are equivalent:

(1) μ is UR.
(2) For any cube R ∈ Dμ, we have

∑
Q∈Dμ,Q⊂R

α(Q)2μ(Q) ≤ Cμ(Q),

with C independent of R.

Tolsa’s motivation to introduce the α coefficient was, again, the study of the relationship
between UR measures and L2(μ) boundedness of Calderón–Zygmund operators; for appli-
cations, see for example Theorem 1.3 in [3,13,20].

The two coefficient β and α are related by the following inequality. See [18], Remark 3.3.

1


(Q)n

∫

B(zQ ,2
(Q)

dist(y, LQ)


(Q)
dμ(y) � αμ(Q). (2.6)

We will need the following auxiliary lemma (where we merge two lemmas from [18]).

Lemma 2.6 ([18], Lemma 5.2 and Lemma 5.4) . Let μ be a n-uniformly rectifiable measure
on R

d . For every R ∈ Dμ, we have

∑
Q∈Dμ

Q⊂R

∫

Q

(
dist(x, LQ)


(Q)

)2

≤ C(n,C0)
(R)n .

2.5 Wavelets

We consider a family of tensor products of Debauchies-type compactly supported wavelets
with three vanishing moments (in particular, they have zero mean). They have the following
properties.

(1) Each element of the family belongs to C1(Rn) and it is supported on 5I , where I ∈ Dn .
Recall that by Dn we denote the standard dyadic grid in Rn . Hence we index the family
as {ϕI }I∈Dn .

(2) For each I ∈ Dn ,

‖ϕI ‖L2(Rn) = 1. (2.7)

(3) For each I ∈ Dn we have

‖ϕI ‖∞ ≤ C
1


(I )
n
2
; (2.8)

‖∇ϕI ‖∞ ≤ C
1


(I )1+ n
2
.. (2.9)
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A square function involving the center... 3215

Then any function f ∈ L2(Rn) can be expressed as

f =
∑
I∈Dn

〈 f , ϕI 〉L2 ϕI .

2.6 Preliminaries on C� and C�,�

We introduce a ‘smooth’ version of the Cμ numbers. The reason for doing so is that such a
quantity is, in general, easier to work with. Moreover, the smooth version is, in some sense,
smaller than the original version (this is because smooth cut offs can be bounded above by
convex combinations of cut offs).

For each N ∈ N, let φN : Rd → R be given by

φN (x) = e−|x |2N . (2.10)

We will omit the subscript N as it is unimportant for the discussion to follow. For t > 0, set

φt (x) := 1

tn
φ

( x
t

)
.

Definition 2.7 (Smooth C number) Let μ be an AD-regular measure on Rd . Set

�t (x) := x

t
φt (x).

Then we define the smooth version of Cμ as

Cμ,φ(x, t) := �t ∗ μ(x)

=
∫

�t (x − y) dμ(y)

The following it’s all well known.

Lemma 2.8 Let μ be an n-AD-regular measure with constant c0 on R
d . Take φt as given

above. Then

tn |Cμ,φ(x, t)| ≤ C(n, c0). (2.11)

Proof It is easy to see that

tn
∫

φt (x − y) dμ(y) ≤ c0�

(
n + 2

2

)
tn .

Let us prove this for the sake of completeness.We use the so called layer-cake decomposition:
∫

tn φt (x − y) dμ(y) =
∫ 1

0

∫

Rd
1{x∈Rd |φt (x−y)>s}(y) dμ(y) ds.

Notice that

φt (x − y) > t ⇐⇒ |x − y| < (− ln(s))1/2t .

Thus ∫

Rd
1{x∈Rd |φt (x−y)>s}(y) dμ(y) =

∫

Rd
1B(x,(− ln(s))1/2t)(y) dμ(y)

≤ c0(− ln(s))1/2t)n .
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Now,
∫ 1

0
(− ln(s))

n
s ds = �

(
n + 2

2

)
.

If we now argue as in [8], we obtain the result. ��
Remark 2.9 Clearly, the very same holds for the quantity Cn

�,μ,φ .

3 Uniform rectifiability implies a Carleson condition

This section will be devoted to prove the following proposition.

Proposition 3.1 Let μ be an AD n-regular measure onRd with constant c0. If μ is uniformly
n-rectifiable, then for each R ∈ Dμ, we have that

∑
Q∈Dμ

Q⊂R

∫

Q

∫ 2
(Q)


(Q)

|Cμ(x, t)|2 dt

t
dμ(x) �c0 μ(R). (3.1)

The same techniques apply to prove one direction of Theorem 1.5.

Proposition 3.2 Let μ be an AD 1-regular measure on C with constant c0. If μ is uniformly
1-rectifiable, then for each R ∈ Dμ, we have that

∑
Q∈Dμ

Q⊂R

∫

Q

∫ 2
(Q)


(Q)

|C1
�,μ(x, t)|2 dt

t
dμ(x) �c0 μ(R). (3.2)

Let δ > 0 be a small constant. To prove (3.1), we may sum only on those cubes for which

αμ(1000Q) ≤ δ2 (3.3)

holds. Indeed, we see that

∑
Q∈Dμ(R)

αμ(1000Q)>δ2

∫

Q

∫ 2
(Q)


(Q)

|Cμ(x, t)|2 dt

t
, dμ(x)

�c0

∑
Q∈Dμ(R)

αμ(1000Q)>δ2

∫

R

∫ 2
(Q)


(Q)

(
αμ(1000Q)

δ2

)2 dt

t
dμ(x)

�c0
1

δ4

∑
Q∈Dμ(R)

αμ(1000Q)>δ2

αμ(1000Q)2 μ(Q)

≤ 1

δ4

∑
Q∈Dμ(R)

αμ(1000Q)2 μ(Q)

�δ μ(R).

The last inequality follows from Tolsa’s Theorem 1.2 in [18].
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Remark 3.3 A recurring issue when working with the Cμ numbers is that there is no quasi-
monotonicity formula (as there is for the β numbers) as we increase the radius of the ball
over which we are integrating. In other words, we do not know how Cμ(x, t) compares
with Cμ(x, 2t), for example. For this reason, when wanting to compare μ with, say, the
Hausdorff measure on the best approximating plane, we cannot simply consider the push
forward measure through an orthogonal projection. TheCμ numbers are unstable under such
space deformations. Because of this, we will use instead a circular projection, which we
learnt from [13] (see eq. 54) and from [3].

Notation 3.4 For x = (x1, ..., xn, xn+1, ..., xd) ∈ R
d , set

x H := (x1, ..., xn) ∈ R
n .

We define the circular projection �� : Rd → R
n by setting

��(x) := |x |
xH

xH .

If we view R
n = V as a subspace of Rd , we may write

��(x) = |x |
|�V (x)|�V (x),

where here �V is the standard orthogonal projection onto V .

For us, the fundamental property of �� (and the reason to use it, see the remark above)
is that

|��(x)| = |x |.
This implies, in particular, that

1Bd = (
1Bn ◦ ��)

. (3.4)

Let x ∈ R
d . Let Lx be an affine n-plane such that x ∈ L . We define �

�
Lx as follows. Let

RLx be the rotation so that RLx (Lx ) is parallel to R
n . For y ∈ R

d , we set

�
�
Lx (y) := R−1

Lx

(
�� (RLx (x − y)) + RLx (x)

)
.

Again the fundamental property is satisfied.
∣∣∣��

Lx (y) − x
∣∣∣ =

∣∣∣R−1
Lx

(
�� (RLx (x − y))

)∣∣∣ = |��(RLx (x − y))|
= |RLx (x − y)| = |x − y|.

Fix a cube Q ∈ Dμ(R) with αμ(1000Q) ≤ δ2 and (x, t) ∈ Q × [
(Q), 2
(Q)]. Let LQ

be the minimising n-plane for αμ(Q) and cQ the minimising constant. Denote by Lx
Q the

n-plane parallel to LQ so that

x ∈ Lx
Q .

Let � : Sd−1 → S
d−1 be an odd, C2 map which is also bi-Lipschitz. For x ∈ R

d , set

Kt (x) :=
|x |�

(
x
|x |

)

t
.
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Note that

|∇Kt (x)| ≤ C(�)

t
. (3.5)

Remark 3.5 We carry out some estimates at this level of generality3. Soon, however, we will
have to restrict to the case where � = I d or d = 2. We will highlight when and why this
happen below.

We write

t−n
∣∣∣∣
∫

B(x,t)
Kt (x − y) dμ(y)

∣∣∣∣ ≤ t−n
∣∣∣∣
∫

B(x,t)
Kt (x − y) − Kt (x − �

�
Lx
Q
(y)) dμ(y)

∣∣∣∣

+ t−n
∣∣∣∣
∫

B(x,t)
Kt (x − �

�
Lx
Q
(y)) dμ(y)

∣∣∣∣
=: I (x, t) + I I (x, t). (3.6)

3.1 Estimates for I(x, t)

Without loss of generality we may take x = 0 and assume that L0
Q is parallel to R

n . We
further split our integral, so to compare the support of μ with the plane containing 0. In this
way, we may be able to use the β numbers.

I (x, t) ≤ t−n
∣∣∣∣
∫

B(x,t)
Kt (x − y) − Kt (x − �L0

Q
(y)) dμ(y)

∣∣∣∣

+ t−n
∣∣∣∣
∫

B(x,t)
K (x − �

�
L0
Q
(y)) − K (x − �L0

Q
(y))

∣∣∣∣
:= I1(x, t) + I2(x, t).

3.1.1 Estimates for I1

We make one more splitting: recall that LQ is the minimising plane of α(Q) and L0
Q is its

translate containing 0. Using (3.5), we write

I1(x, t) � 1

tn

∫

B(0,t)
|y − �LQ (y)|t−1 dμ(y)

+ 1

tn

∫

B(0,t)
|�LQ (y) − �L0

Q
(y)|t−1 dμ(y) =: I1,1 + I1,2.

Now, recalling the definitions in Sect. 2.4,

I1,1 = β1,n
μ (Q, LQ) � αμ(Q).

On the other hand, we see that

I1,2 �c0
dist(0, LQ)


(Q)
.

3 Most of them actually hold more generally, for example it would suffice to assume that K is an odd kernel
with ‖∇K‖∞ ≤ C .
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3.1.2 Estimates for I2

If y ∈ R
d , let θy be the angle between the plane Rn and the line segment [0, y]. Then,

|�L0
Q
(y) − �

�
L0
Q
(y)| = |��

L0
Q
(y)|(1 − cos(θy)) = |��

L0
Q
(y)| (sin(θy/2)2

)

≤ |��
L0
Q
(y)| (sin(θy/2)

) = |��
L0
Q
(y)|dist(y, L

0
Q)

|��
L0
Q
(y)|

= dist(y, LQ) + dist(0, LQ). (3.7)

Thus, as before, I2 �c0 αμ(Q) + dist(0,LQ)


(Q)
. All in all, we have I �c0 αμ(Q) + dist(0,LQ)


(Q)
.

Hence for general x ∈ Q, we have that

I �c0 αμ(Q) + dist(x, LQ)


(Q)
.

Recall Lemma 2.6 and Theorem 2.5. Then we see that

⎛
⎝ ∑

Q∈Dμ(R)

∫

Q

∫ 2
(Q)


(Q)

I (x, t)2 dμ(x)
dt

t

⎞
⎠

1
2

�

⎛
⎝ ∑

Q∈Dμ(R)

∫

Q

∫ 2
(Q)


(Q)

(
αμ(Q) + dist(x, LQ)


(Q)

)2

dμ(x)
dt

t

⎞
⎠

1
2

�

⎛
⎝ ∑

Q∈Dμ(R)

αμ(Q)2μ(Q)

⎞
⎠

1
2

+
⎛
⎝ ∑

Q∈Dμ(R)

∫

Q

(
dist(x, LQ)


(Q)

)2

dμ(x)

⎞
⎠

1
2

�c0 μ(R)
1
2 .

3.2 Estimates for II(x, t)

For this estimate, we let� = I d . We will comment later on the estimate for the case� �= I d
and d = 2, n = 1. Recall that (with � = I d),

I I (x, t) = t−n
∣∣∣∣
∫

B(x,t)
t−1

(
�

�
Lx
Q
(y) − x

)
dμ(y)

∣∣∣∣ .

Due to the property (3.4) of the circular projection, we notice that

∫

B(x,t)

(
�

�
Lx
Q
(y) − x

)
dμ(y) =

∫

�
�
LxQ

(Bd (x,t))
(y − x) d�

�
Lx
Q
[μ](y)

=
∫

Bn(x,t)
(y − x) d�

�
Lx
Q
[μ](y). (3.8)
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For y ∈ Lx
Q , we may write

∫

Bn(x,t)
(y − x) d�

�
Lx
Q
[μ](y) =

d∑
i=1

(
R−1
Lx
Q
ei

) ∫

Bn(x,t)
(y − x) · R−1

Lx
Q
(ei ) d�

�
Lx
Q
[μ](y),

where here {ei }di=1 is the standard orthonormal basis of Rd . Notice that for i = n + 1, ..., d ,
and for y ∈ Lx

Q , (x − y) · R−1
Lx
Q
(ei ) = 0. For each i ∈ {1, ..., d} define

g0i : Rn → R

by

g0i (y) := y · ei1Bn (y).

Notice that

‖g0i ‖∞ ≤ 1. (3.9)

We then see that∫

Bn(x,t)

(
y − x

t

)
d�

�
Lx
Q
[μ](y)

=
n∑

i=1

(
R−1
Lx
Q
ei

) ∫
t−1(x − y) · R−1

Lx
Q
(ei ) d�

�
Lx
Q
[μ](y)

=
n∑

i=1

(
R−1
Lx
Q
ei

)
t−1

∫

Bn(x,t)
(RLx

Q
(y − x)) · ei d�

�
Lx
Q
[μ](y)

=
n∑

i=1

(
R−1
Lx
Q
ei

)
t−1

∫
g0i (RLx

Q
(y − x)) d�

�
Lx
Q
[μ](y)

Recall now Sect. 2.5. For each i ∈ {1, ..., n}, we may decompose g0i through the wavelets
basis {ϕI }. That is, we write g0i as

g0i (y) =
∑
I∈Dn

aIϕI (y).

Thus,
∫

g0i

(
RLx

Q

(
y − x

t

))
d�

�
Lx
Q
[μ](y)

=
∑
I∈Dn

aI

∫
ϕI

(
RLx

Q

(
y − x

t

))
d�

�
Lx
Q
[μ](y).

Moreover,

∫
ϕI

(
RLx

Q

(
y − x

t

))
d�

�
Lx
Q
[μ](y) =

∫
ϕI

⎛
⎝�

�
Rn

(
RLx

Q
(y − x)

)

t

⎞
⎠ dμ(y). (3.10)

The following lemma gives us estimates on the coefficients aI . Recall that

aI = 〈g0i , ϕI 〉L2 =
∫

Rn
g0i (y) ϕI (y) dy.
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Lemma 3.6 Let aI , ϕI as above. Then,

(1) If 5I ∩ ∂B = ∅, then aI = 0.
(2) If 
(I ) � 1, |aI | � 
(I )n/2.
(3) If 
(I ) � 1, |aI | � 
(I )−n/2−1.

Proof

(1) If 5I ⊂
(
B

)c
, then ϕI and g0i have disjoint support and thus aI = 0. Suppose that

5I ⊂ B but that 5I ∩ ∂B = ∅. (3.11)

Then by Fubini’s theorem,
∫

Rn
g0i (y)ϕI dy =

∫

B

yi ϕI (y) dy

(3.11)=
∫

Rn
yi ϕI (y) dy

=
∫

Rn
yi

n∏
j=1

ϕ
j
I (y j ) dy1 · · · dyn

=

⎛
⎜⎜⎝

n∏
j=1
j �=i

∫

R

ϕ
j
I (y j ) dy j

⎞
⎟⎟⎠

(∫

R

yiϕ
i
I (yi ) dyi

)

= 0

since for each i ∈ {1, ..., n}, ϕi
I has zero mean.

(2) We see that, by (3.9) and recalling that ‖ϕI ‖L2 = 1 for each I ,
∣∣∣∣
∫

Rn
ϕI (y) g

0
i (y) dy

∣∣∣∣ ≤
∫

|ϕI (y)| dy ≤ 
(I )
n
2 ‖ϕI ‖L2 = 
(I )

n
2 .

(3) We use the fact that
∫

y · ei1B(y) dy = 0.

Then we see that∣∣∣∣
∫

g0i (y)ϕI (y) dy

∣∣∣∣ =
∣∣∣∣
∫

g0i (y)(ϕI (y) − ϕI (0)) dy

∣∣∣∣ ≤
∫

B

|g0i (y)||ϕI (y) − ϕI (0)| dy

≤
∫

B

‖∇ϕI ‖∞|y| dy
� ‖∇ϕI ‖∞ � 
(I )−

n
2 −1

��
Now, notice that

spt

⎛
⎝ϕI

⎛
⎝�

�
Rn

(
RLx

Q
(y − x)

)

t

⎞
⎠

⎞
⎠ ⊂ (RLx

Q
◦ �

�
Rn )

−1 (t · 5I ) + x . (3.12)
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We see that if an n-cube satisfies either

5I ∩ ∂B = ∅, (3.13)

or [
(RLx

Q
◦ �

�
Rn )

−1 (t · 5I ) + x
]

∩ spt(μ) = ∅, (3.14)

then I is negligible for our calculations. In the first case, (3.13), the wavelet coefficients aI
will vanish identically, as from Lemma 3.6. In the second case, (3.14), the integrand on the
right hand side of (3.10) and the measure μ will have disjoint support.

Notation 3.7 We say that I ∈ Dn belongs to the subfamily of non negligible cubesNG(x, t)
if it satisfies the two following conditions.

5I ∩ ∂B �= ∅ and
[
(RLx

Q
◦ �

�
Rn )

−1 (t · 5I ) + x
]

∩ spt(μ) �= ∅ (3.15)

Remark 3.8 From now on we will only consider n-cubes I ∈ NG(x, t). Moreover, following
the general strategy laid out in [3], wewill distinguish between n-cubes with small side length
and n-cubes with large side length.

Notation 3.9 Let 0 < η < 1. We set

BNG(x, t) := {I ∈ Dn | I ∈ NG(x, t) and 
(I ) ≥ η} (3.16)

SNG(x, t) := {I ∈ Dn | I ∈ NG(x, t) and 
(I ) < η} (3.17)

3.3 II(x, t): estimates when I ∈ BNG(x, t)

Without loss of generality, we may let x = 0 and assume that L0
Q is parallel to R

n .
Pick a P = P(I ) ∈ Dμ so that

(
�

�
L0
Q

)−1

(t · 5I ) ⊂ 3P(I ),

and so that


(P(I )) ∼ 
(Q)
(I ).

Consider a smooth cut off function χP so that 13P ≤ χP ≤ 1BP and such that

‖∇χP‖∞ � 1


(P)
. (3.18)

Then, for each i ∈ {1, ..., n},

ei

∫
g0i

( y

t

)
d�

�
L0
Q
[μ](y) = ei

∑
I∈Dn

aI

∫
ϕI

⎛
⎝

�
�
L0
Q
(y)

t

⎞
⎠ dμ(y)

=
∑
I∈Dn

ei aI

∫
χP (y)ϕI

⎛
⎝

�
�
L0
Q
(y)

t

⎞
⎠ dμ(y).

Let cP be the constant which infimises αμ(P). As done previously, we want to compare the
measure μ, its push forward through the circular projection, its push forward through the
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orthogonal projection and the n-dimensional Hausdorff measure on the best approximating
plane and its translate: we write

∣∣∣∣∣∣

∫
χP (y) ϕI

⎛
⎝

�
�
L0
Q
(y)

t

⎞
⎠ dμ(y)

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

∫
χP (y)

⎛
⎝ϕI

⎛
⎝

�
�
L0
Q
(y)

t

⎞
⎠ − ϕI

(
�L0

Q
(y)

t

)⎞
⎠ dμ(y)

∣∣∣∣∣∣

+
∣∣∣∣∣
∫

χP (y) ϕI

(
�L0

Q
(y)

t

)
d

(
μ − cPHn

L0
Q

)
(y)

∣∣∣∣∣

+
∣∣∣∣∣
∫

χP (y)ϕI

(
�L0

Q
(y)

t

)
cP dHn

L0
Q
(y)

∣∣∣∣∣
=: I I1 + I I2 + I I3.

We want to obtain the following estimate, which resembles Lemma 5.3 in [3].

Lemma 3.10 Let I ∈ BNG(x, t). Take P as above. Then

I I1 + I I2 + I I3 �
(


(Q)


(P)

)n/2

⎛
⎜⎜⎝
dist(0, LQ)


(P)
+

∑
S∈Dμ

Q⊂S⊂P

αμ(2S)

⎞
⎟⎟⎠ 
(P)n . (3.19)

Proof We arrived at a point where the quantities which we need to bound do not depend on
the kernel which we started with, that is, the center of mass. We will solely use the properties
of the wavelets decomposition. Thus the proof is, almost verbatim, the proof of Lemma 5.3
in [3].

We include it for the sake of completeness.
Estimates for I I1. We see that

I I1 ≤ ‖∇ϕI ‖∞
t

∫

BP

∣∣∣∣��
L0
Q
(y) − �L0

Q
(y)

∣∣∣∣ dμ(y).

Now, as in (3.7), we have that
∣∣∣∣��

L0
Q
(y) − �L0

Q
(y)

∣∣∣∣ � dist(y, L0
Q).

Let y ∈ BP ∩ spt(μ). Let LP denote the n-plane which infimises αμ(P). Let qP ∈ LP be
so that

dist(y, LP ) = dist(y, qP ).

Notice that, because αμ(1000Q) ≤ δ2, qP ∈ BP and LQ ∩ BP �= ∅. Then
inf

qQ∈LQ
dist(y, qQ) ≤ dist(y, qP ) + inf

qQ∈LQ∩BP
dist(qP , qQ)

≤ dist(y, LP ) + dist
H

(
LP ∩ BP , LQ ∩ BP

)
.
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Thus

dist(y, L0
Q) ≤ dist(0, LQ) + dist(y, LP ) + dist

H

(
LP ∩ BP , LQ ∩ BP

)
.

By Lemma 5.2 in [18], and recalling that P(I ) ⊃ Q, we see that

dist
H

(
LP ∩ BP , LQ ∩ BP

) ≤
∑
S∈Dμ

Q⊂S⊂P

αμ(S)
(S). (3.20)

Hence

∫

BP

∣∣∣∣��
L0
Q
(y) − �L0

Q
(y)

∣∣∣∣ dμ(y)

�
∫

BP

dist(0, LQ)dμ(y) +
∫

BP

dist(y, LP ) dμ(y) +
∫

BP

∑
S∈Dμ

Q⊂S⊂P

αμ(S)
(S) dμ(y)

� dist(0, LQ)μ(P) +
∫

BP

dist(y, LP ) dμ(y) + 
(P)n+1
∑
S∈Dμ

Q⊂S⊂P

αμ(S)

� dist(0, LQ)μ(P) + 
(P)n+1
∑
S∈Dμ

Q⊂S⊂P

αμ(2S).

The last inequality is due to Remark 3.3 in [18].
All in all, we get that

I I1 � ‖∇ϕI ‖∞

(P)


(Q)

⎛
⎜⎜⎝
dist(0, LQ)


(P)
+

∑
S∈Dμ

Q⊂S⊂P

αμ(2S)

⎞
⎟⎟⎠ 
(P)n .

Now, because 
(P) ∼ 
(Q)
(I ), and by the bound ‖∇ϕI ‖∞ � 1

(I )1+n/2 , we see that

‖∇ϕI ‖∞

(P)


(Q)
�

(

(Q)


(P)

)n/2

.

Thus

I I1 �
(


(Q)


(P)

)n/2

⎛
⎜⎜⎝
dist(0, LQ)


(P)
+

∑
S∈Dμ

Q⊂S⊂P

αμ(2S)

⎞
⎟⎟⎠ 
(P)n . (3.21)
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Estimates for I I2 Once again, we add and subtract the quantities which we are interested
in comparing.

I I2 =
∣∣∣∣∣
∫

χP (y) ϕI

(
�L0

Q
(y)

t

)
d

(
μ − cPHn

L0
Q

)
(y)

∣∣∣∣∣

≤
∣∣∣∣∣
∫

χP (y) ϕI

(
�L0

Q
(y)

t

)
d

(
μ − cPHn

LP

)
(y)

∣∣∣∣∣

+
∣∣∣∣∣
∫

χP (y) ϕI

(
�L0

Q
(y)

t

)
d

(
cPHn

LP
− cPHn

L0
Q

)
(y)

∣∣∣∣∣
=: I I2,1 + I I2,2.

Notice that, recalling the properties of the wavelets ϕI (see (2.8) and (2.9)),
∣∣∣∣∣∇

(
χP (y) ϕI

(
�L0

Q
(y)

t

))∣∣∣∣∣
(3.18)≤ 1


(P)
‖ϕI ‖∞ +

∣∣∣∣∣∇ϕI

(
�L0

Q
(y)

t

)∣∣∣∣∣

� 1


(P)

(

(Q)


(P)

)n/2

+
(


(Q)


(P)

)n/2+1 1


(Q)

= 1


(Q)

(

(Q)


(P)

)n/2+1

.

Hence

I I2,1 �
∥∥∥∥∥∇

(
χP ϕI

(
�L0

Q
(·)

t

))∥∥∥∥∥∞
αμ(P)
(P)n+1

� 1


(Q)

(

(Q)


(P)

)n/2+1

αμ(P)
(P)n+1

=
(


(Q)


(P)

)n/2

αμ(P)
(P)n .

Similarly, and recalling (3.20) and the subsequent discussion,

I I2,2 � 1


(Q)

(

(Q)


(P)

)n/2+1

dist
H

(
BP ∩ LP , BP ∩ L0

Q

)

(P)n

(

(Q)


(P)

)n/2

⎛
⎜⎜⎝
dist(0, LQ)


(P)
+

∑
S∈Dμ

Q⊂S⊂P

αμ(2S)

⎞
⎟⎟⎠ 
(P)n .

Thus

I I2 �
(


(Q)


(P)

)n/2

⎛
⎜⎜⎝
dist(0, LQ)


(P)
+

∑
S∈Dμ

Q⊂S⊂P

αμ(2S)

⎞
⎟⎟⎠ 
(P)n . (3.22)

Estimates for I I3 Because ϕI has zero mean, we see that

I I3 = 0. (3.23)
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Putting together (3.21), (3.22) (3.23), we get that, when I ∈ BNG(x, t),

I I1 + I I2 + I I3 �
(


(Q)


(P)

)n/2

⎛
⎜⎜⎝
dist(0, LQ)


(P)
+

∑
S∈Dμ

Q⊂S⊂P

αμ(2S)

⎞
⎟⎟⎠ 
(P)n . (3.24)

��

3.4 II(x, t): estimates when I ∈ SNG(x, t)

Remark 3.11 Whatwementioned above holds here, too: the quantity we are estimating do not
depend on the kernel, but rather on the properties of the wavelets decomposition. Thus this
subsection will resemble very closely Subsection 5.3 in [3]: in the stopping time argument
below, we stop only depending on angles, just as in [3]; the subsequent estimates will follow
as they follow in [3]. As a matter of fact, the reader might end up under the impression of
doing shopping at ‘The Other Mathematicians’ Tools Warehouse’.

Notice that, if before we had that Q ⊂ P(I ), because 
(I ) ≤ η, now we have the opposite
containment (up to a constant):

P(I ) ⊂ CQ.

Choosing η > 0 appropriately, we may pick C = 1000. For a fixed Q ∈ Dμ, we introduce a
stopping time condition on the P ∈ Dμ: let P ∈ Good if the following two conditions hold
true.

(1) We have

P ⊂ 1000Q. (3.25)

(2) We have that
∑
S∈Dμ

P⊂S⊂1000Q

αμ(100S) ≤ δ. (3.26)

Let now Term be the subfamily of cubes in Dμ\Good (these are ‘bad’ cubes!) which
are maximal with respect to inclusion. It is a well known issue that adjacent cubes belong-
ing to Term may have wildly different size. This can cause troubles; we resort to a well
known smoothing procedure, which will output a family of maximal ‘bad’ cubes which have
comparable size if they are close. We define

for y ∈ R
d , d(y) := inf

P∈Good
(
(P) + dist(y, P)) , (3.27)

for z ∈ R
n, D(z) := inf

y∈(�
�
Rn )−1{z}

d(y). (3.28)

Lemma 3.12 ([3], Lemma 5.6)The function d is 1-Lipschitz and the function D is 3-Lipschitz.
Moreover, if the δ in (3.3) is chosen small enough, d(y) < ∞ ans D(z) < ∞.

Proof See Lemma 5.6 in [3] and the comment immediately after the proof. ��
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Now set

F :=
{
I ∈ Dn | t
(I ) ≤ 1

5000
inf
z∈t ·I D(z)

}
.

Moreover, we let Reg to be the subfamily of F of maximal cubes. That is,

Reg := {I ∈ F | if J ∈ F and J ∩ I �= ∅, then I ⊃ J } .

Lemma 3.13 The cubes in Reg are pairwise disjoint. Moreover, if I , J ∈ Reg and

20J ∩ 20I �= ∅,

then


(I ) ∼ 
(J ).

Proof This follows as in [6], Lemma 8.7. ��
We now define two subfamilies of cubes in SNG(x, t), which will need each one its own

treatment.
Let I ∈ Tree(x, t) ⊂ Dn if

I ∈ SNG and there is no J ∈ Reg(x, t) so that J ⊃ I .

Let I ∈ Stop(x, t) ⊂ Dn if

I ∈ SNG(x, t) ∩ Reg(x, t).

We write

∑
I∈SNG(x,t)

aI
tn

∫
ϕI

⎛
⎝�

�
Rn

(
RLx

Q
(y − x)

)

t

⎞
⎠ dμ(y)

=
∑

I∈Tree(x,t)

aI
tn

∫
ϕI

⎛
⎝�

�
Rn

(
RLx

Q
(y − x)

)

t

⎞
⎠ dμ(y)

+
∑

I∈Stop(x,t)

∑
J∈SNG(x,t)

J⊂I

aJ
tn

∫
ϕJ

⎛
⎝�

�
Rn

(
RLx

Q
(y − x)

)

t

⎞
⎠ dμ(y). (3.29)

3.4.1 II(x, t): estimates when I ∈ Tree(x, t)

Lemma 3.14 Let I ∈ Tree(x, t). There exists a P := P(I ) ∈ Dμ with


(P) ∼ 
(I )t and spt(μ) ∩
(
x +

(
�

�
Lx
Q

)−1
(t · 5I )

)
⊂ 3P.

Proof See Lemma 5.7 in [3] and the proof of it. Notice that the hypothesis

5I ∩ (∂Bn(0, 1) ∪ ∂Bn(0, 2)) �= ∅
is substituted with

5I ∩ ∂Bn(0, 1) �= ∅. ��
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Lemma 3.15 Let I ∈ Tree(x, t) and let P := P(I ) be a μ-cube satisfying the conclusions
of Lemma 3.14. Then

∣∣∣∣∣∣

∫
ϕI

⎛
⎝�

�
Rn (RLx

Q
(y − x))

t

⎞
⎠ dμ(y)

∣∣∣∣∣∣
�

(

(Q)


(P)

)n/2

⎛
⎜⎜⎜⎝

∑

S∈Dμ

P⊂S⊂Q

α(S) + dist(x, LQ)


(Q)

⎞
⎟⎟⎟⎠ 
(P)n .

(3.30)

Proof The proof of Lemma 5.8 in [3] can easily be adapted to our current situation; we
include it for the sake of completeness. The idea, as in previous lemmata, is to bound the
wavelet with the sum of angles between n-planes, or αμ numbers, which are under control
because the measure μ is uniformly rectifiable.

Without loss of generality we may take x = 0 and assume that LQ is parallel to R
n .

Denoting by LP the plane which minimises αμ(P), let qP ∈ BP ∩ spt(μ) be so that

dist(qP , LP ) � α(P)
(P). (3.31)

Such a point exists: for some constant c∗ > 0, set

A(c∗) = A

:=
{
y ∈ BP ∩ spt(μ) | dist(y, LP )
(P)−1 < c∗
(P)−n

∫

B(zP ,2
(P))

dist(y, LP )


(P)
dμ(y)

}
.

Then, by Chebyshev inequality, we see that

μ(BP\A) ≤ 1

c∗ βμ,1(P)

∫

BP

dist(y, LP )


(P)
dμ(y)

≤ 
(P)

c∗ .

Choosing c∗ large enough (not depending on P), we see that A �= ∅. Finally, recalling (2.6),
we verify the existence of a point yP ∈ spt(μ) ∩ BP so that (3.31) holds.

Recall that L0
Q is the plane parallel to LQ but containing 0. Now, denote by L̃ P the plane

parallel to L0
Q (and thus to Rn) which moreover contains qP . As before, let χP be a smooth

bump function with

1BP ≤ χP ≤ 13BP and ‖∇χP‖∞ � 1


(P)
. (3.32)

Since α(P) is assumed to be very small, we have that

(
��)−1

(5I · t) ∩ L̃ P ⊂ BP . (3.33)

Recall that �� = �
�
{ R

n}. Set

σP := cPHn |LP and

σ̃P := cPHn |L̃ P
.
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We split the integral on the left hand side of (3.30) so to compare the measure μ to σP , and
then σP to σ̃P .

∫
ϕI

(
��(y)

t

)
dμ(y) =

∫
χP (y)ϕI

(
��(y)

t

)
dμ(y)

=
∫

χP (y) ϕI

(
��(y)

t

)
d (μ − σP ) (y)

+
∫

χP (y) ϕI

(
��(y)

t

)
d (σP − σ̃ ) (y)

+
∫

χP (y) ϕI

(
��(y)

t

)
dσ̃P (y)

=: A1 + A2 + A3.

(1) Estimates for A1. First, notice that since I has small size and it intersects the boundary
of the unit ball on the plane, and moreover, Q lies close to L0

Q (that is, αμ(1000Q) ≤ δ),

then BP is far from (��)−1({0}). Thus we have
‖∇��‖∞ � 1 on BP . (3.34)

Moreover, recall that 
(P) ∼ 
(I ) t ∼ 
(I ) 
(Q). Hence this together with the properties
of the Debauchies wavelets give us

|A1| �
∥∥∥∥∇

(
χP (y) ϕI

(
��(y)

t

))∥∥∥∥∞
α(P)
(P)n+1

(3.32),(2.8),(2.9)
�

(
1


(P) 
(I )n/2 + 1


(I )n/2+1

1

t

)
α(P)
(P)n+1

∼
(


(Q)


(P)

) n
2

α(P)
(P)n . (3.35)

(2) Estimated for A2. As above, we write

|A2| �
(

1


(P) 
(I )n/2 + 1


(I )n/2+1

1

t

)
dist
BP

(σP , σ̃P )

�
(

1


(P) 
(I )n/2 + 1


(I )n/2+1

1

t

)

(P)n dist

H
(LP ∩ BP , L̃ P ∩ BP ). (3.36)

Now, from [3], Lemma 5.2, and using here our choice of qP , i.e. (3.31), we see that

1


(P)
dist
H

(LP ∩ BP , L̃ P ∩ BP ) �
∑

P⊂S⊂Q

α(S).

Hence, together with (3.36) and as in (3.35), we obtain

|A2| �
(


(Q)


(P)

) n
2

α(P)
(P)n . (3.37)

(3) Estimates for A3. Let B be a ball centered on L0
Q containing the support of ϕI

( ·
t

)
and

with r(B) � 
(P). Let 0 < c̃ be a constant which will be chosen below. Recall that L̃ P is

123



3230 M. Villa

the plane parallel to LQ but containing qP . We want to compare σ̃ to the n-dimensional
Hausdorff measure restricted to L0

Q : we further split the integral A3 in the following way.

|A3| (3.33)=
∣∣∣∣
∫

ϕI

(
��(y)

t

)
dσ̃P (y)

∣∣∣∣

=
∣∣∣∣
∫

ϕI

( y

t

)
d��[σ̃P ](y)

∣∣∣∣

≤
∣∣∣∣
∫

ϕI

( y

t

)
d��[σ̃P ](y) − c̃ cP

∫
ϕI

( y

t

)
dHn |L0

Q
(y)

∣∣∣∣

+ c̃ cP

∣∣∣∣
∫

ϕI

( y

t

)
dHn |L0

Q
(y)

∣∣∣∣ .

Notice that since 0 ∈ L0
Q , the second term on the right hand side equals to 0. The first

term can be bounded as in (3.36) (recalling that cP � 1):

|A3| � 1


(I )n/2+1 t
dist
B

(��[Hn |L̃ P
], c̃Hn |L0

Q
).

We need to bound distB(��[Hn |L̃ P
], c̃Hn |L0

Q
).

��

Sublemma 3.16 With the notation as above, we have

dist
B

(��[Hn |L̃ P
], c̃Hn |L0

Q
) �

⎛
⎝ ∑

P⊂S⊂Q

α(S) + dist(0, LQ)


(Q)

⎞
⎠ 
(P)n+1.

Proof of sublemma This is done in [3], see the proof of Lemma 5.8, the paragraph below it
and Lemma 5.9. ��

This and the previous estimates for A1 and A2 give the desired result. ��
Set now

upTree(x, t) := {
P ∈ Dμ | P = P(I ) for I ∈ Tree(x, t)

}
.

Lemma 3.17 Keep the notation as above. Then

∣∣∣∣∣∣
∑

I∈Tree(x,t)

aI
tn

∫
ϕI

⎛
⎝�

�
Rn

(
RLx

Q
(y − x)

)

t

⎞
⎠ dμ(y)

∣∣∣∣∣∣

�
∑

P∈upTree(x,t)

(
α(aP) + dist(x, LQ)


(Q)

)
μ(P)

μ(Q)
,

for some absolute constant a ≥ 1.

Proof Again, one can easily adapt the proof of Lemmas 5.10 and 5.11 in [3] to the current
situation. ��
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Lemma 3.18 With notation as above, we have

∑

Q∈Dμ(R)

αμ(1000Q)≤δ2

∫

Q

∫ 2
(Q)


(Q)

⎛
⎜⎝

∣∣∣∣∣∣
∑

I∈Tree(x,t)

aI
tn

∫
ϕI

⎛
⎝�

�
Rn

(
RLx

Q
(y − x)

)

t

⎞
⎠ dμ(y)

∣∣∣∣∣∣

2⎞
⎟⎠ dt

t
dμ(x)

� μ(R).

Proof This follows as Lemma 5.12 in [3]. ��

This concludes the estimates for I ∈ Tree(x, t).

3.4.2 B: estimates for I ∈ Stop(x, t)

Lemma 3.19 Keep the notation as above. Then

∑

Q∈Dμ(R)

αμ(1000Q)≤δ2

∫

Q

∫ 2
(Q)


(Q)

∣∣∣∣∣∣∣∣

∑

I∈Stop(x,t)

∑

J∈SNG(x,t)
J⊂I

aJ
tn

∫
ϕJ

⎛
⎜⎜⎝

�
�
Rn

(
RLxQ

(y − x)

)

t

⎞
⎟⎟⎠ dμ(y)

∣∣∣∣∣∣∣∣

2

dt

t
dμ(x)

� μ(R).

This follows as Lemmas 5.13 and 5.14 in [3].

3.5 Final estimates

We have that

∑

Q∈Dμ(R)

αμ(1000Q)≤δ2

∫

Q

∫ 2
(Q)


(Q)
I I (x, t)2

dt

t
dμ(x)

=
∑

Q∈Dμ(R)

αμ(1000Q)≤δ2

∫

Q

∫ 2
(Q)


(Q)

∣∣∣∣∣∣∣∣

d∑
i=1

∑

I∈NG(x,t)

aI
tn

∫
ϕiI

⎛
⎜⎜⎝

�
�
Rn

(
RLxQ

(y − x)

)

t

⎞
⎟⎟⎠ dμ(y)

∣∣∣∣∣∣∣∣

2

dt

t
dμ(x)

≤
d∑

i=1

∑

Q∈Dμ(R)

αμ(1000Q)≤δ2

∫

Q

∫ 2
(Q)


(Q)

∣∣∣∣∣∣∣∣

∑

I∈NG(x,t)

aI
tn

∫
ϕiI

⎛
⎜⎜⎝

�
�
Rn

(
RLxQ

(y − x)

)

t

⎞
⎟⎟⎠ dμ(y)

∣∣∣∣∣∣∣∣

2

dt

t
dμ(x)
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For each i ∈ {1, ..., d}, we write

∑
Q∈Dμ(R)

αμ(1000Q)≤δ2

∫

Q

∫ 2
(Q)


(Q)

∣∣∣∣∣∣
∑

I∈NG(x,t)

aI
tn

∫
ϕi
I

⎛
⎝�

�
Rn

(
RLx

Q
(y − x)

)

t

⎞
⎠ dμ(y)

∣∣∣∣∣∣

2

dt

t
dμ(x)

(3.16),(3.17)
�

∑
Q∈Dμ(R)

αμ(1000Q)≤δ2

∫

Q

∫ 2
(Q)


(Q)

∣∣∣∣∣∣
∑

I∈BNG(x,t)

aI
tn

∫
ϕi
I

⎛
⎝�

�
Rn

(
RLx

Q
(y − x)

)

t

⎞
⎠ dμ(y)

∣∣∣∣∣∣

2

dt

t
dμ(x)

+
∑

Q∈Dμ(R)

αμ(1000Q)≤δ2

∫

Q

∫ 2
(Q)


(Q)

∣∣∣∣∣∣
∑

I∈SNG(x,t)

aI
tn

∫
ϕi
I

⎛
⎝�

�
Rn

(
RLx

Q
(y − x)

)

t

⎞
⎠ dμ(y)

∣∣∣∣∣∣

2

dt

t
dμ(x)

(3.29)
�

∑
Q∈Dμ(R)

αμ(1000Q)≤δ2

∫

Q

∫ 2
(Q)


(Q)

∣∣∣∣∣∣
∑

I∈BNG(x,t)

aI
tn

∫
ϕi
I

⎛
⎝�

�
Rn

(
RLx

Q
(y − x)

)

t

⎞
⎠ dμ(y)

∣∣∣∣∣∣

2

dt

t
dμ(x)

+
∑

Q∈Dμ(R)

αμ(1000Q)≤δ2

∫

Q

∫ 2
(Q)


(Q)

∣∣∣∣∣∣
∑

I∈Tree(x,t)

aI
tn

∫
ϕi
I

⎛
⎝�

�
Rn

(
RLx

Q
(y − x)

)

t

⎞
⎠ dμ(y)

∣∣∣∣∣∣

2

dt

t
dμ(x)

+
∑

Q∈Dμ(R)

αμ(1000Q)≤δ2

∫

Q

∫ 2
(Q)


(Q)

∣∣∣∣∣∣∣∣

∑
I∈Stop(x,t)

∑
J∈SNG(x,t)

J⊂I

aJ
tn

∫
ϕi
J

⎛
⎝�

�
Rn

(
RLx

Q
(y − x)

)

t

⎞
⎠ dμ(y)

∣∣∣∣∣∣∣∣

2

dt

t
dμ(x)

�
∑

Q∈Dμ(R)

αμ(1000Q)≤δ2

∫

Q

∫ 2
(Q)


(Q)

∣∣∣∣∣∣
∑

I∈BNG(x,t)

aI
tn

∫
ϕi
I

⎛
⎝�

�
Rn

(
RLx

Q
(y − x)

)

t

⎞
⎠ dμ(y)

∣∣∣∣∣∣

2

dt

t
dμ(x)

+ μ(R),

by Lemmas 3.18 and 3.19.
Moreover, by (3.24), we have that

∣∣∣∣∣∣
∑

I∈BNG(x,t)

aI
tn

∫
ϕi
I

⎛
⎝�

�
Rn

(
RLx

Q
(y − x)

)

t

⎞
⎠ dμ(y)

∣∣∣∣∣∣

2

�
∑

I∈BNG(x,t)

aI
tn

(

(Q)


(P(I ))

)n/2

⎛
⎜⎜⎝
dist(0, LQ)


(P(I ))
+

∑
S∈Dμ

Q⊂S⊂P(I )

αμ(2S)

⎞
⎟⎟⎠ 
(P(I ))n

Arguing as in Lemma 5.4 and Lemma 5.5 in [3] one obtains the desired Carleson estimate.
This concludes the proof of Proposition 3.1.
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3.6 Estimates for II(x, t)whenÄ �= Id

Let us consider the estimate of I I (x, t) (as given in (3.6)). Recall that from Sect. 3.2 onward
we assumed that � = I d . Assume now that d = 2, n = 1 and that � and μ are as in the
statement of Theorem 1.5.

Recall that I I (x, t) = t−1
∣∣∫ ∣∣

B (x, t)Kt (�
�
L0
Q
(y) − x) dμ(y). We proceed as in (3.8) to

arrive at

t−1
∫

B1(x,t)
Kt (y − x) d�

�
L0
Q
[μ](y).

Note that because K (x) = |x |�(x/|x |), K (Lx
Q − x) is a line through the origin. This is

not the case if Lx
Q is an n-plane in R

d for n �= 1 or d �= 2. However, with the assumptions
of Theorem 1.5, this holds, and thus we can proceed as in Subsection 3.2 to define the
appropriate function g1 as in (3.9), where this time {e1, e2} will be taken to be the standard
basis of K (Lx

Q − x)× K (Lx
Q − x)⊥. The rest of the argument goes through unchanged. This

gives Proposition 3.2, and thus one direction of Theorem 1.5.

4 Rectifiability implies finiteness of square function

Define the operator Cμ by

Cμ( f )(x) :=
(∫ ∞

0

∣∣C f μ(x, t)
∣∣2 dt

t

) 1
2

.

Here x ∈ R
d .

Here we will prove the following.

Proposition 4.1 Let μ be a finite n-rectifiable measure on Rd . Then

Cμ(x) < ∞ for μ-almost every x ∈ spt(μ).

Remark 4.2 The same proof goes through almost verbatim for the case where K (x) =
|x |�(x/|x |), and � is as in the statement of Theorem 1.7. Actually, the proof below would
work in any dimensions n, d . However, it rests upon Proposition 3.1. Since we only have
Proposition 3.2 for n = 1 and d = 1, we can prove Theorem 1.7 only in this case.

To prove Proposition 4.1, we will show that ifμ is a finite n-uniformly rectifiable measure
on R

d , and if ν is a Borel measure, then

μ
({

x ∈ R
d |Cν(x) > λ

})
≤ ‖ν‖

λ
(4.1)

Now we let spt(μ) be decomposed into a countable compact subsets, say {En}, and we let
ν = μ|En . Then, assuming (4.1),

Hn |En

({
x ∈ R

d |Cμ(x) > λ
})

≤ ‖μ‖
λ

.

4.1 L2(�) boundedness of C�

This subsection will be devoted to proving the following proposition.
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Proposition 4.3 Let μ be an n-uniformly rectifiable measure on R
d such that μ(Rd) < ∞.

The operator Cμ is bounded from L2(μ) to L2(μ).

Set

Cμ,k( f )(x) :=
(∫ 2−k−1

2−k−2

∣∣C f μ(x, t)
∣∣2 dt

t

)1/2

.

We then may write

Cμ( f )(x)2 =
∫ ∞

0
|C f μ(x, t)|2 dt

t
=

∑
k∈Z

Cμ,k( f )(x)
2.

We have that∫ ∣∣Cμ( f )(x)
∣∣2 dμ(x) =

∫ ∑
k∈Z

|Cμ,k( f )(x)|2 dμ(x) (4.2)

=
∑
k∈Z

∫
|Cμ,k( f )(x)|2 dμ(x) (4.3)

=
∑
k∈Z

∑

Q∈Dk
μ

∫

Q
|Cμ,k( f )(x)|2 dμ(x) (4.4)

=
∑
Q∈Dμ

∫

Rd

∣∣1Q(x)Cμ,J (Q)( f )(x)
∣∣2 dμ(x). (4.5)

Notation 4.4 For Q ∈ Dμ,

CQ( f )(x) := 1Q(x)Cμ,J (Q)( f )(x).

Writing this out:

CQ( f )(x) = 1Q(x)Cμ,J (Q)( f )(x)

= 1Q(x)
∫ 
(Q)/2


(Q)/4

∣∣∣∣
1

tn

∫

B(x,t)

(
y − x

t

)
f (y) dμ(y)

∣∣∣∣
2 dt

t
.

Thus, for fixed x ∈ Q, |x − y| ≤ 
(Q)/2 and thus

y ∈ N
(Q)/2(Q),

the 
(Q)
2 -neighbourhood of Q. If we set

Neig(Q) := {
P ∈ Dμ | 
(P) = 
(Q) and dist(P, Q) ≤ 
(Q)

}
,

we see therefore that

y ∈
⋃

P∈Neig(Q)

P. (4.6)

Notation 4.5 For Q ∈ Dμ, set

N (Q) :=
⋃

P∈Neig(Q)

P.
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With (4.6), we see that

Cμ,J (Q)( f )(x) = Cμ,J (Q)(1N (Q) f )(x).

Now, we may decompose 1N (Q) f through a martingale decomposition. That is, we may
write

1N (Q)(x) f (x) =
∑

R∈Neig(Q)

⎛
⎝1R(x) fR +

∑
P∈Dμ(R)

�P f (x)

⎞
⎠ .

Recall that

�P f (x) =
∑

S∈D1
μ(P)

( fS − fP )1S(x).

We write

∑

R∈Neig(Q)

⎛
⎝1R(x) fR +

∑

P∈Dμ(R)

�P f (x)

⎞
⎠

=
∑

R∈Neig(Q)

1R(x) fR +
∑

R∈Neig(Q)

∑

P∈Dμ(R)

�P f (x)

=
∑

R∈Neig(Q)

1R(x) fR +
∑

R∈Neig(Q)

1R(x) fQ −
∑

R∈Neig(Q)

1R(x) fQ +
∑

R∈Neig(Q)

∑

P∈Dμ(R)

�P f (x)

= 1N (Q)(x) fQ +
∑

R∈Neig(Q)

1R(x)( fR − fQ) +
∑

R∈N (Q)

∑

P∈Dμ(R)

�P f (x).

Hence we split Cμ,J (Q) as follows.

Cμ,J (Q)( f )(x)

= 1Q(x)

(∫ 
(Q)/2


(Q)/4

∣∣∣∣t−n
∫

B(x,t)

(
y − x

t

) (
1N (Q) f

)
(y)dμ(y)

∣∣∣∣
2 dt

t

)1/2

≤ 1Q(x)

(∫ 
(Q)/2


(Q)/4

∣∣∣∣t−n
∫

B(x,t)

(
y − x

t

) (
1N (Q) fQ

)
(y)dμ(y)

∣∣∣∣
2 dt

t

)1/2

+ 1Q(x)

⎛
⎜⎝

∫ 
(Q)/2


(Q)/4

∣∣∣∣∣∣
t−n

∫

B(x,t)

(
y − x

t

)⎛
⎝ ∑

R∈Neig(Q)

1R(y)( fR − fQ)

⎞
⎠ dμ(y)

∣∣∣∣∣∣

2
dt

t

⎞
⎟⎠
1/2

+ 1Q(x)

⎛
⎜⎝

∫ 
(Q)/2


(Q)/4

∣∣∣∣∣∣
t−n

∫

B(x,t)

(
y − x

t

)⎛
⎝ ∑

R∈Neig(Q)

∑

P∈Dμ(R)

�P f (y)

⎞
⎠ dμ(y)

∣∣∣∣∣∣

2
dt

t

⎞
⎟⎠
1/2

.
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Thus, also recalling (4.2), we see that
∫ ∣∣Cμ( f )(x)

∣∣2 dμ(x)

≤
∑
Q∈Dμ

∫

Q
| fQ |2|Cμ(1N (Q))(x)|2 dμ(x)

+
∑
Q∈Dμ

∫

Q

∣∣∣∣∣∣

⎛
⎝ ∑

R∈Neig(Q)

fR − fQ

⎞
⎠Cμ(1R)(x)

∣∣∣∣∣∣

2

dμ(x)

+
∑
Q∈Dμ

∫

Q

∣∣∣∣∣∣
∑

R∈Neig(Q)

Cμ

⎛
⎝ ∑

P∈Dμ(R)

�P f

⎞
⎠ (x)

∣∣∣∣∣∣

2

dμ(y)

=: A + B + C .

4.1.1 Estimates for A and B

The terms A and B may be estimated as the first and second term in equation 4.1, page 6 of
[21], to obtain

A + B � ‖ f ‖2L2(μ)
.

4.1.2 Estimate for C

We write

∑

Q∈Dμ

∫

Q

∫ 
(Q)/2


(Q)/4

∣∣∣∣∣∣
∑

R∈Neig(Q)

t−n
∫

B(x,t)

(
y − x

t

)⎛
⎝ ∑

P∈Dμ(R)

�P f

⎞
⎠ (y) dμ(y)

∣∣∣∣∣∣

2
dt

t
dμ(x)

≤
∑

Q∈Dμ

∑

P∈Neig(Q)

∫

Q

∫ 
(Q)/2


(Q)/4

∣∣∣∣∣∣
∑

P∈Dμ(R)

t−n
∫

B(x,t)

(
y − x

t

)
�P (y) dμ(y)

∣∣∣∣∣∣

2
dt

t
μ(x)

�
∑

Q∈Dμ

∑

R∈Neig(Q)

∫

Q

∫ 
(Q)/2


(Q)/4

∣∣∣∣∣∣∣∣∣

∑

P∈Dμ(R)

P∩∂B(x,t)=∅

t−n
∫

B(x,t)

(
y − x

t

)
�P (y) dμ(y)

∣∣∣∣∣∣∣∣∣

2

dt

t
μ(x)

+
∑

Q∈Dμ

∑

R∈Neig(Q)

∫

Q

∫ 
(Q)/2


(Q)/4

∣∣∣∣∣∣∣∣∣

∑

P∈Dμ(R)

P∩∂B(x,t) �=∅

t−n
∫

B(x,t)

(
y − x

t

)
�P (y) dμ(y)

∣∣∣∣∣∣∣∣∣

2

dt

t
μ(x)

=: C1 + C2.

Notice that if P ⊂ B(x, t)c, then it is negligible for our computation. The term C2 may be
estimated as the third term in in equation 4.1, page 6 of [21] (and recalling Proposition 3.1).

To estimate C1, we notice that, because P ⊂ B(x, t), then
∫

B(x,t)
x�P f (y) dμ(y) = 0.
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Thus, letting cP to be the center of P , recalling that spt (�P f ) ⊂ P , and by Cauchy -
Scwhartz, we have

∣∣∣∣∣∣∣∣

∑
P∈Dμ(R)

P∩∂B(x,t)�=∅

t−n
∫

B(x,t)

(
y − x

t

)
�P (y) dμ(y)

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

∑
P∈Dμ(R)

P∩∂B(x,t)�=∅

t−n
∫

B(x,t)

(
cP − y

t

)
�P (y) dμ(y)

∣∣∣∣∣∣∣∣

�
∑

P∈Dμ(R)

P∩∂B(x,t)=∅

1

μ(Q)


(P)


(Q)
‖�P f ‖L1(μ)

�
∑

P∈Dμ(R)

P∩∂B(x,t)=∅

1

μ(Q)


(P)


(Q)

(P)

n
2 ‖�P f ‖L2(μ)

Thus

C1 �
∑
Q∈Dμ

∑
R∈Neig(Q)

∫

Q

∫ 
(Q)/2


(Q)/4

⎛
⎜⎜⎝

∑
P∈Dμ(R)

P∩∂B(x,t)=∅

1

μ(Q)


(P)


(Q)

(P)

n
2 ‖�P f ‖L2(μ)

⎞
⎟⎟⎠

2

�
∑
Q∈Dμ

∑
R∈Neig(Q)

∑
P∈Dμ(R)

(

(P)


(Q)

(P)

n
2 ‖�P f ‖L2(μ)

)2 1

μ(Q)

≤
∑
Q∈Dμ

∑
R∈Neig(Q)

⎛
⎝ ∑

P∈Dμ(R)


(P)


(Q)
‖�P f ‖2L2(μ)

⎞
⎠

⎛
⎝ ∑

P∈Dμ(R)


(P)n+1


(Q)

⎞
⎠ 1

μ(Q)

We see that

∑
P∈Dμ(R)


(P)n+1


(Q)
� μ(Q).

Finally, by Fubini,

∑
Q∈Dμ

∑
R∈Neig(Q)

⎛
⎝ ∑

P∈Dμ(R)


(P)


(Q)
‖�P f ‖2L2(μ)

⎞
⎠

=
∑
P∈Dμ

‖�P f ‖2L2(μ)

∑
Q∈Dμ

Q⊃P

∑
R∈Neig(Q)


(P)


(Q)
.

Since the cardinality of N (Q) is bounded above by a universal constant, we see that

∑
Q∈Dμ

Q⊃P

∑
R∈Neig(Q)


(P)


(Q)
�

∑
Q∈Dμ

Q⊃P


(P)


(Q)
� 1.
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Thus we obtain

C1 �
∑
P∈Dμ

‖�P f ‖2L2(μ)
.

This together with the estimates on A, B and C2 proves Proposition 4.3

4.2 L1,∞(�) boundedness of C�

Let M(Rd) be the set of finite Borel measures on Rd and ν ∈ M(Rd). Let the operator C on
M(Rd) be given by

Cν(x) :=
(∫ ∞

0
|Cν(x, t)|2 dt

t

) 1
2

.

Proposition 4.6 Let μ be an n-uniformly rectifiable measure on Rd . Then,

μ
({

x ∈ R
d |Cν(x) > λ

})
≤ ‖ν‖

λ

for each ν ∈ M(Rd) with compact support and λ > 0.

We will use the Calderón–Zygmund decomposition for ν ∈ M(Rd). See Theorem in [?].

Theorem 4.7 Let μ be an n-AD-regular measure onRd . For every ν ∈ M(Rd) with compact
support and every λ > 2d+1‖ν‖/‖μ‖ we have:

(1) There exists a finite or countable collection of dyadic cubes {Dj } j∈J ⊂ Dd with
∑
j∈J

1Dj � 1, (4.7)

and a function f ∈ L1(μ) such that, for each j ∈ J ,

μ(2Dj ) <
2d+1

λ
|ν|(Dj ). (4.8)

2d+1

λ
ν(ηDj ) ≤ μ(2ηDj ) for every η > 2. (4.9)

ν = f μ in R
d\

⎛
⎝⋃

j∈J

D j

⎞
⎠ with | f | ≤ λ μ − a.e. (4.10)

(2) For each j ∈ J , set

R j := 6Dj (4.11)

w j := 1Dj

(∑
i∈J

1Di

)−1

. (4.12)

There exsits a family of functions {b j } j∈J with

spt(b j ) ⊂ R j , (4.13)
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each one with constant sign, such that
∫

b jdμ =
∫

w j dν (4.14)

‖b j‖L∞(μ)μ(R j ) ≤ c|ν|(Dj ) (4.15)∑
j∈J

|b j | ≤ cλ. (4.16)

Proof of Proposition 4.6 We keep the notation as in Theorem 4.7. Let ν ∈ M(Rd) and fix
λ > 2d+1 ‖ν‖

‖μ‖ . We write

dν = 1Rd\∪ j∈J D j
dν + 1∪ j∈J dν = 1Rd\∪ j∈J D j

f dμ +
∑
j∈J

w j dν

= 1Rd\∪ j∈J D j
f dμ +

∑
j∈J

b j dμ +
∑
j∈J

(
w j dν − b jdμ

)
.

Thus if we set

F :=
⋃
j∈J

D j , g := f 1Fc +
∑
j∈J

b j , dβ :=
∑
j∈J

(w j dν − b jdμ),

we may let

dν = g dμ + dβ. (4.17)

Let 2F = ∪ j∈J2Dj . Notice first that, because (4.8),

μ ({x ∈ 2F |Cν(x) > λ}) ≤ μ(2F) ≤
∑
j∈J

μ(2Dj ) ≤ 2d+1

λ
|ν|(Dj ) �d

‖ν‖
λ

.

Hence we may work on (2F)c only. We split Cν as suggested by (4.17):

Cν(x) =
(∫ ∞

0

∣∣∣∣t−n
∫

B(x,t)

(
x − y

t

)
(g(y)dμ(y) + dβ(y))

∣∣∣∣
2
)1/2

≤
(∫ ∞

0

∣∣∣∣t−n
∫

B(x,t)

(
x − y

t

)
g(y) dμ(y)

∣∣∣∣
2
)1/2

+
(∫ ∞

0

∣∣∣∣t−n
∫

B(x,t)

(
x − y

t

)
dβ(y)

∣∣∣∣
2
)1/2

= Cμ(g)(x) + Cβ(x).

Then

μ
({
x ∈ (2F)c |Cν(x) > λ

}) ≤ μ(

({
x ∈ (2F)c |Cμ(g)(x) >

λ

2

})

+μ

({
x ∈ (2F)c |Cβ(x) >

λ

2

})

=: A + B. ��
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4.2.1 Estimates for A

This is easily done by noticing that g ∈ L2(μ), since g ∈ L∞(μ) and μ(Rd) < ∞. Thus, in
particular,

μ
({
x ∈ (2F)c |Cμ(g)(x) > λ/2

}) ≤ C

λ2

∫
|g|2 dμ � 1

λ

∫
|g| dμ,

since, by (4.10) and (4.16),

‖g‖L∞(μ,) ≤ ‖ f 1Fc‖L∞(μ) +
∥∥∥∥∥∥
∑
j∈J

b j

∥∥∥∥∥∥
L∞(μ)

≤ cλ.

Moreover, using some of the properties listed in Theorem 4.7,

∫
|g| dμ ≤

∫
| f 1Fc | dμ +

∫ ∣∣∣∣∣∣
∑
j∈J

b j dμ

∣∣∣∣∣∣
= |ν|(Fc) +

∑
j∈J

∫
|b j | dμ ≤ ‖ν‖

+
∑
j∈J

‖b j‖∞μ(R j ) ≤ ‖ν‖ +
∑
j∈J

c|ν|(Dj ) � ‖ν‖.

Thus

μ
({
x ∈ (2F)c |Cμ(g)(x) > λ/2

})
� ‖ν‖

λ
.

4.2.2 Estimates for B

Set E := (2F)c. By Chebyshev’s inequality,

μ
({
x ∈ E |Cβ(x) > λ/2

}) ≤ 2

λ

∫

E
Cβ(x) dμ(x)

≤ 2

λ

∑
j∈J

∫

Rd\2R j

Cβ j (x) dμ(x)

+ 2

λ

∑
j∈J

∫

2R j \2Dj

Cβ j (x) dμ(x) =: B1 + B2.

Estimates for B1. We write

∫

Rd\R j

Cβ j (x) =
∫

Rd\R j

(∫ ∞

0

∣∣∣∣t−n−1
∫

B(x,t)
(x − y) dβ j (y)

∣∣∣∣
2 dt

t

)1/2

dμ(x)

=
∫

Rd\R j

(∫

{t :R j⊂B(x,t)c}

∣∣∣∣t−n−1
∫

B(x,t)
(x − y) dβ j (y)

∣∣∣∣
2 dt

t

)1/2

dμ(x)

+
∫

Rd\R j

(∫

{t :R j⊂B(x,t)}

∣∣∣∣t−n−1
∫

B(x,t)
(x − y) dβ j (y)

∣∣∣∣
2 dt

t

)1/2

dμ(x)

+
∫

Rd\R j

(∫

{t :R j∩B(x,t)}

∣∣∣∣t−n−1
∫

B(x,t)
(x − y) dβ j (y)

∣∣∣∣
2 dt

t

)1/2

dμ(x)

:= B1,1 + B1,2 + B1,3
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Clearly B1,1 = 0; moreover, since x ∈ R
d\2R j , if t ≤ dist(x, R j ), then t ∈{

t : R j ⊂ B(x, t)c
}
.

We estimate B1,2. First, notice that β j (R j ) = 0. Thus, if t ∈ {
t : R j ∩ B(x, t)

}
and letting

c j denote the center of R j , we get

∣∣∣∣
∫

B(x,t)
t−n−1(x − y) dβ j (y)

∣∣∣∣ =
∣∣∣∣
∫

B(x,t)
t−n−1(c j − y) dβ j (y)

∣∣∣∣

�
(∫

B(x,t)
t−n 
(R j )

|x − c j |d|β j |(y)
)

= t−n 
(R j )|β j |(R j )

|x − c j | .

Since, if t ∈ {
t : R j ∩ B(x, t)

}
, then t > dist(x, R j ), then

Cβ j (x)
2 �

∫ ∞

dist(x,R j )

(
t−n 
(R j )|β j |(R j )

|x − c j |
)2 dt

t
= 
(R j )

2|β j |(R j )
2

|x − c j |2
∫ ∞

dist(x,R j )

t−n−1 dt

� 
(R j )
2|β j |(R j )

2

|x − c j |2
1

|x − c j |2n .

Recalling that μ is n-uniformly rectifiable and thus n-AD-regular,

∫

Rd\2R j

1

|x − c j |n+1 dμ(x) =
∞∑
k=0

∫

2k (2
(R j ))≤|c j−x |≤2k+1(2
(R j ))

1

|x − c j |n+1 dμ(x)

≤
∞∑
k=0

μ(B(c j , 2k+12
(R j )))

2(n+1)k(2
(R j ))n+1

�c0

∞∑
k=0

2(k+1)n(2
(R j ))
n

2(n+1)k(2
(R j ))n+1

� 1


(R j )
.

All in all, we then see that
∫

Rd\2R j

Cβ j (x) dμ(x) � 
(R j )|β j |(R j )

∫

Rd\2R j

1

|x − c j |n+1 dμ(x) � |β j |(R j ).

One can easily estimate B1,3 by arguing as Tolsa and Toro [21]; see the treatment of the
first term on the right hand side of equation 5.10 at page 10 there.

Estimates for B2. Applying Cauchy–Schwartz, We write

∫

2R j \2R j

Cβ j (x) dμ(x) ≤ μ(R j )
n/2

(∫

2R j \2R j

|Cβ j (x)|2 dμ(x)

)1/2

≤ μ(R j )
n/2

(∫

2R j \2R j

|Cμ(b j )(x)|2 dμ(x)

)1/2

+ μ(R j )
n/2

(∫

2R j \2R j

|Cν(w j )(x)|2 dμ(x)

)1/2

.
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Since b j ∈ L∞(μ) with compact support, then b j ∈ L2(μ). Thus, by Proposition 4.3, we
see that

μ(R j )
n/2

(∫

2R j \2R j

|Cμ(b j )(x)|2 dμ(x)

)1/2

� μ(R j )
n/2‖b j‖L2(μ)

≤ μ(R j )
n/2μ(R j )

n/2‖b j‖∞
≤ |ν|(Dj ).

On the other hand, recalling that spt(w j ) ⊂ Dj and ‖w j‖∞ ≤ 1,

Cν(w j )(x)
2 =

∫ ∞

0

∣∣∣∣t−n
∫

B(x,t)
(x − y)w j (y) dν(y)

∣∣∣∣
2 dt

t

≤
∫ ∞


(R j )

∣∣∣∣t−n
∫

B(x,t)
(x − y)w j (y) dν(y)

∣∣∣∣
2 dt

t

≤
∫ ∞


(R j )


(R j )
2|ν|(Dj )

2

t2n+2 dν(y)
dt

t
≤ |ν|(Dj )

2


(R j )2n
.

Hence, we see that

μ(R j )
n/2

(∫

2R j \2R j

|Cν(w j )(x)|2 dμ(x)

)1/2

� μ(R j )
n/2μ(R j )

n/2 |ν|(Dj )


(R j )n
� |ν|(Dj ).

All in all, recalling (4.7), we see that

B1 + B2 � 1

λ

∑
j∈J

|ν|(Dj ) � ‖ν‖
λ

.

��
As in the proof of Theorem 5.1 in [21], we have the following corollary.

Corollary 4.8 Proposition 4.6 holds for any ν ∈ M(Rd).

Proof Fix N1 be an arbitrary positive number. Pick N2 ≥ 2N1 and such that |N1−N2| >
2‖ν‖

λ
.

We see that, if x ∈ B(0, N1),

Cν(1Rd\B(0,N2)
)(x)2 =

∫ ∞

0

∣∣∣∣t−n
∫

B(x,t)

(
x − y

t

)
1Rd\B(0,N2)

dν(y)

∣∣∣∣
dt

t

≤
∫ ∞

|N1−N2|

∣∣∣∣t−n
∫

B(x,t)

(
x − y

t

)
1Rd\B(0,N2)

dν(y)

∣∣∣∣
dt

t

� |ν|(Rd\B(0, N2))

∫ ∞

|N1−N2|
1

t2n+1 dt

= |ν|(Rd\B(0, N2))

|N1 − N2|2n .

Thus, by our choice of N2, we see that

Cν(1Rd\B(0,N2)
)(x) ≤ C

λ

2
.

Notice that, here, the constant C does not depend on N1.
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Set ν2 := ν|B(0,N2). We see that

μ ({x ∈ B(0, N1) |Cν(x) > λ}) ≤ μ
({
x ∈ B(0, N1) |Cν2(x) > λ/2

})

� ‖ν2‖
λ

≤ ‖ν‖
λ

.

Since these estimates do not depend on N1, we may let N1 → ∞. ��

5 Proof of Theorem 1.5

What is left to do is to prove the remaining direction in Theorem 1.5. That is, we need to
prove the following.

Proposition 5.1 Let μ be an Ahlfors 1-regular measure in C. Let � be as in the statement of
Theorem 1.5. If |C1

�,μ,φ(x, t)|2 dt
t dμ(x) is a Carleson measure on spt(μ) × (0,∞), then μ

is uniformly 1-rectifiable.

Recall that

C1
�,μ,φ(x, t) := t−1

∫ |x − y|�((x − y)/|x − y|)
t

e
−

∣∣∣ x−y
t

∣∣∣2N
dμ(y).

The proof of Proposition 5.1 is a standard compactness argument. For example, one can
follow [3] almost verbatim. There is one important difference, however. In the limit, one
ends up with a measure which satisfies C1

�,ν,φ(x, t) = 0 for all t > 0 and x ∈ spt(ν). It then
follows from an argument similar to the proof of Lemma 3.6 in [3], that ν is an �-symmetric
measure, that is, a measure satisfying C�,ν(x, t) = 0 for all t > 0 and x ∈ spt(ν). Then one
needs to appeal to Theorem 1.4 in [22] to conclude that such a measure is flat. With this, one
can close the compactness argument and continue as in [3].

The remaining direction of Theorem 1.5 follows from Proposition 5.1 since
∫

B

∫ r(B)

0
|C1

�,μ,φ(x, t)|2 dt

t
dμ(x) �

∫

B

∫ r(B)

0
|C1

�,μ(x, t)|2 dt

t
dμ(x).

This is a standard fact. A proof can be found for example in [3], Corollary 3.12.
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