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Abstract
Let (M, J , g, ω) be a 2n-dimensional almost Hermitianmanifold.We extend the definition of
theBott–ChernLaplacian on (M, J , g, ω), proving that it is still elliptic. On a compactKähler
manifold, the kernels of the Dolbeault Laplacian and of the Bott–Chern Laplacian coincide.
We show that such a property does not hold when (M, J , g, ω) is a compact almost Kähler
manifold, providing an explicit almost Kähler structure on the Kodaira–Thurston manifold.
Furthermore, if (M, J , g, ω) is a connected compact almost Hermitian 4-manifold, denoting
by h1,1BC the dimension of the space of Bott–Chern harmonic (1, 1)-forms, we prove that

either h1,1BC = b− or h1,1BC = b− + 1. In particular, if g is almost Kähler, then h1,1BC =
b− + 1, extending the result by Holt and Zhang (Harmonic forms on the Kodaira–Thurston
manifold. arXiv:2001.10962, 2020) for the kernel of Dolbeault Laplacian. We also show that
the dimensions of the spaces of Bott–Chern and Dolbeault harmonic (1, 1)-forms behave
differently on almost complex 4-manifolds endowed with strictly locally conformally almost
Kähler metrics. Finally, we relate some spaces of Bott-Chern harmonic forms to the Bott–
Chern cohomology groups for almost complex manifolds, recently introduced in Coelho et
al. (Maximally non-integrable almost complex structures: an h-principle and cohomological
properties, arXiv:2105.12113, 2021).

Keywords Almost-complex manifold · Bott–Chern harmonic form · Kodaira–Thurston
manifold
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1 Introduction

On a complex manifold, given a Hermitian metric, several elliptic operators naturally arise
from the union of the complex and the Hermitian structure. As a typical example, the Dol-
beault Laplacian is defined as �∂ = ∂∂

∗ + ∂
∗
∂ , where the exterior differential defined on

the space Ap,q of (p, q)-forms decomposes as d = ∂ + ∂ and, if ∗ : Ap,q −→ An−q,n−p is
theC-linear complex Hodge star operator, where n is the complex dimension of the complex
manifold, then ∂∗ = − ∗ ∂∗ and ∂

∗ = − ∗ ∂∗ are the formal adjoints of the operators ∂

and ∂ , respectively. Denote by Hp,q
∂

the space of Dolbeault harmonic forms, i.e., the kernel

of �∂ . Since �∂ is elliptic, when the manifold is compact, by Hodge theory then Hp,q
∂

is
isomorphic to the Dolbeault cohomology

H p,q
∂

= ker ∂

im ∂

and it is finite dimensional; denote by h p,q
∂

its finite complex dimension.
In 1960 Kodaira and Spencer [16], in order to prove the stability of the Kähler condition

under small deformations, introduced the following4th-order elliptic and formally self adjoint
differential operator

�̃BC = ∂∂∂
∗
∂∗ + ∂

∗
∂∗∂∂ + ∂∗∂∂

∗
∂ + ∂

∗
∂∂∗∂ + ∂∗∂ + ∂

∗
∂.

Schweitzer [17] in 2007 studied the operator �̃BC on compactHermitianmanifolds, naming it
theBott–Chern Laplacian. In particular, denoting byHp,q

BC the space of Bott–Chern harmonic
(p, q)-forms on a given compact Hermitian manifold (M, J , g, ω), he proved the following
Bott–Chern decomposition of the space of (p, q)-forms

Ap,q = Hp,q
BC

⊥⊕ ∂∂Ap−1,q−1 ⊥⊕ ∂∗Ap+1,q + ∂
∗
Ap,q+1. (1)

As a consequence, the space Hp,q
BC is finite dimensional and Hp,q

BC
∼= H p,q

BC , where

H p,q
BC = ker d

im ∂∂

denotes the (p, q)-Bott–Chern cohomology group. In particular, the complex dimension
h p,q
BC = dimC Hp,q

BC is a complex invariant of (M, J ), which does not depend on the Hermitian
metric g.

If the compact Hermitian manifold (M, J , g, ω) is Kähler, i.e., dω = 0, then

�̃BC = �∂�∂ + ∂∗∂ + ∂
∗
∂ (2)

and the spaces of Bott–Chern and Dolbeault harmonic forms coincide, i.e.,

Hp,q
BC = Hp,q

∂
. (3)

Now, let (M, J , g, ω) be an almost Hermitian manifold, i.e., the almost complex structure
J may not be integrable, i.e., J may not derive from a complex-manifold structure on M .
The exterior differential decomposes as d = μ + ∂ + ∂ + μ, and Dolbeault and Bott–Chern
cohomologies are, in general, no more well defined. However, the Dolbeault Laplacian�∂ is
still well defined and elliptic, resulting inHp,q

∂
being finite dimensional when M is compact.
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Bott–Chern Laplacian on almost Hermitian manifolds 2687

The study of Dolbeault harmonic forms on almost Hermitian manifold of real dimension
4 has been very recentely developed by Holt and Zhang [12,13], and by Tardini and the
second author [19]. Holt and Zhang working on the Kodaira–Thurston manifold, showed
that the number h0,1

∂
may become arbitrarily large when varying continuously the almost

complex structure with an associated almost Kähler metric and that h0,1
∂

may vary with

different choices of almost Hermitian metrics. Furthermore, they proved that h0,1
∂

may vary
with different choices of almost Kähler metrics. In this way they answered a question by
Kodaira and Spencer [10, Problem 20]. Moreover, they showed h1,1

∂
= b− + 1 on every

compact almost Kähler 4-manifold, where b− is the dimension of the space of anti-self-dual,
i.e., ∗α = −α, Hodge harmonic 2-forms, which is a topological invariant. Tardini and the
second author proved that h1,1

∂
= b− on every compact almost complex 4-manifold with a

strictly locally conformally almost Kähler metric.
In this paper, we focus on the study of the Bott–Chern Laplacian on almost Hermitian

manifolds. Note that, analogously to the Dolbeault Laplacian, also the Bott–Chern Laplacian
�̃BC is still well defined on almost Hermitian manifolds (M, J , g, ω), and it is straightfor-
ward to show that it is also elliptic, see Proposition 3.2. Therefore, when M is compact, the
Bott–Chern decomposition (1) still holds, and Hp,q

BC is finite dimensional.
We prove the following

Theorem (Theorem 4.3) Let (M, J , g, ω) be a compact almost Hermitian manifold of real
dimension 4. Then either h1,1BC = b− or h1,1BC = b− + 1.

Moreover, we specialize the previous theorem when the almost Hermitian metric ω is almost
Kähler, i.e., dω = 0, obtaining that h1,1BC is independent of the choice of an almost Kähler
metric on a given compact almost complex 4-manifold, that is,

Theorem (Corollary 4.4) Let (M, J , g, ω) be a compact almost Kähler manifold of real
dimension 4. Then, h1,1BC = b− + 1 and H1,1

BC = H1,1
∂

.

Note that in the integrable case, i.e., on compact complex surfaces, it holds that h1,1BC = b−+1
on Kähler surfaces, on complex surfaces diffeomorphic to solvmanifolds, and on complex
surfaces of class VII (see [1], [2, Chapter IV, Theorem 2.7]).

We also provide a non integrable almost complex structure on a hyperelliptic surface,
endowed with a strictly locally conformally almost Kähler metric, such that h1,1BC = b− + 1.
This proves that the dimension of Bott–Chern harmonic (1, 1)-forms behaves differently than
the dimension ofDolbeault harmonic (1, 1)-forms [19], when the almost complex 4-manifold
is endowed with a strictly locally conformally almost Kähler metric.

Very recently Holt improved the result of Theorem 4.3, by showing that

h1,1BC = b− + 1

on any given compact almost Hermitian 4-manifold, see [11, Theorem 4.2].
Taking into account the integrable case, one may ask whether (2) and (3) holds or not,

when the almost Hermitianmetric is almost Kähler.We show that (3) is not true, describing an
explicit example on the Kodaira–Thurston manifold. This also implies that (2) does not hold.
In fact, working on a family of almost Kähler metrics on the Kodaira–Thurston manifold, we
show

Theorem (Corollary 5.3) There exists an almost Kähler 4-manifold (M, J , g, ω) such that
for some bidegree (p, q) it holds that

Hp,q
BC �= Hp,q

∂
.
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Finally, we recall a very recent definition of Bott–Chern cohomology for almost complex
manifolds [5], obtaining a natural injection of some spaces of Bott–Chern harmonic forms
into this new Bott–Chern cohomology.

For other results concerning Bott–Chern-like harmonic forms on almost complex mani-
folds, equipped with cohomological counterparts, see [18].

The present paper is organized in the following way. In Sect. 2, we review some basic
facts on almost complex manifolds and elliptic differential operators. Section 3 is devoted
to the definition and to the proof of the fundamental properties of the Bott–Chern Laplacian
in the almost complex setting. In Sect. 4, we study Bott–Chern harmonic (1, 1)-forms on
almost Hermitian 4-manifolds, proving Theorem 4.3. In Sect. 5, we describe a family of
almost Kähler structures on the Kodaira–Thurston manifold, comparing the two spacesHp,q

BC
andHp,q

∂
and proving Corollary 5.3. In Sect. 6, we describe an almost complex structure on

a hyperelliptic surface, endowed with a strictly locally conformally almost Kähler metric,
such that h1,1BC = b− + 1. Finally, in Sect. 7, we recall a very recent definition of Bott–
Chern cohomology for almost complex manifolds by Coelho et al. [5], and briefly analyse
its relation with the space of Bott–Chern harmonic forms (see Proposition 7.1).

The authors want also to express their gratitude to the anonymous Referee for his/her
useful suggestions, which led to a better presentation of the results presented in the paper.

2 Preliminaries

Throughout this paper, we will only consider connected manifolds without boundary.
Let (M, J ) be an almost complex manifold of dimension 2n, i.e., a 2n-differentiable

manifold together with an almost complex structure J , that is J ∈ End(T M) and J 2 = − id.
The complexified tangent bundle TCM = T M ⊗C decomposes into the two eigenspaces of
J associated to the eigenvalues i,−i , which we denote respectively by T 1,0M and T 0,1M ,
giving

TCM = T 1,0M ⊕ T 0,1M .

Denoting by �1,0M and �0,1M the dual vector bundles of T 1,0M and T 0,1M , respectively,
we set

�p,qM =
p∧

�1,0M ∧
q∧

�0,1M

to be the vector bundle of (p, q)-forms, and let Ap,q = Ap,q(M) = �(�p,qM) be the space
of smooth sections of�p,qM . We denote by Ak = Ak(M) = �(�kM) the space of k-forms.
Note that �kM ⊗ C = ⊕

p+q=k �p,qM .
Let f ∈ C∞(M,C) be a smooth function on M with complex values. Its differential d f

is contained in A1 ⊗C = A1,0 ⊕ A0,1. On complex 1-forms, the exterior differential acts as

d : A1 ⊗ C → A2 ⊗ C = A2,0 ⊕ A1,1 ⊕ A0,2.

Therefore, it turns out that the differential operates on (p, q)-forms as

d : Ap,q → Ap+2,q−1 ⊕ Ap+1,q ⊕ Ap,q+1 ⊕ Ap−1,q+2,

where we denote the four components of d by

d = μ + ∂ + ∂ + μ.
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Bott–Chern Laplacian on almost Hermitian manifolds 2689

From the relation d2 = 0, we derive
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ2 = 0,

μ∂ + ∂μ = 0,

∂2 + μ∂ + ∂μ = 0,

∂∂ + ∂∂ + μμ + μμ = 0,

∂
2 + μ∂ + ∂μ = 0,

μ∂ + ∂μ = 0,

μ2 = 0.

Let (M, J ) be an almost complex manifold. If the almost complex structure J is induced
from a complex manifold structure on M , then J is called integrable. It is equivalent to the
decomposition of the exterior differential as d = ∂ + ∂ .

A Riemannian metric on M for which J is an isometry is called almost Hermitian. Let g
be an almost Hermitian metric, the 2-form ω such that

ω(u, v) = g(Ju, v) ∀u, v ∈ �(T M)

is called the fundamental form of g. We will call (M, J , g, ω) an almost Hermitian manifold.
We denote by h theHermitian extension of g on the complexified tangent bundle TCM , and by
the same symbol g theC-bilinear symmetric extension of g on TCM . Also denote by the same
symbol ω the C-bilinear extension of the fundamental form ω of g on TCM . Thanks to the
elementary properties of the two extensions h and g, wemaywant to consider h as aHermitian
operator T 1,0M⊗T 1,0M → C and g as aC-bilinear operator T 1,0M⊗T 0,1M → C. Recall
that h(u, v) = g(u, v̄) for all u, v ∈ �(T 1,0M).

Let (M, J , g, ω) be an almost Hermitian manifold of real dimension 2n. Extend h on
(p, q)-forms and denote the Hermitian inner product by 〈·, ·〉. Let ∗ : Ap,q(M) −→
An−q,n−p(M) the C-linear extension of the standard Hodge ∗ operator on Riemannian man-
ifolds with respect to the volume form Vol = ωn

n! , i.e., ∗ is defined by the relation

α ∧ ∗β = 〈α, β〉Vol ∀α, β ∈ Ap,q .

Then the operators

d∗ = − ∗ d∗, μ∗ = − ∗ μ∗, ∂∗ = − ∗ ∂∗, ∂
∗ = − ∗ ∂∗, μ∗ = − ∗ μ∗,

are the formal adjoint operators respectively of d, μ, ∂, ∂, μ. Recall �d = dd∗ + d∗d is the
Hodge Laplacian, and, as in the integrable case, set

�∂ = ∂∂∗ + ∂∗∂, �∂ = ∂∂
∗ + ∂

∗
∂,

respectively as the ∂ and ∂ Laplacians.
If M is compact, then we easily deduce the following relations

⎧
⎨

⎩

�dα = 0 ⇐⇒ dα = 0, d ∗ α = 0, ∀α ∈ Ak

�∂α = 0 ⇐⇒ ∂α = 0, ∂ ∗ α = 0, ∀α ∈ Ap,q

�∂α = 0 ⇐⇒ ∂α = 0, ∂ ∗ α = 0, ∀α ∈ Ap,q

which characterizes the spaces of harmonic forms

Hk
d , Hp,q

∂ , Hp,q
∂

,

defined as the spaces of forms which are in the kernel of the associated Laplacians. All these
Laplacians are elliptic operators on the almost Hermitian manifold (M, J , g, ω), implying
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2690 R. Piovani, A. Tomassini

that all the spaces of harmonic forms are finite dimensional when the manifold is compact.
Denote by

bk, h p,q
∂ , h p,q

∂

respectively the real dimension of Hk
d and the complex dimensions of Hp,q

∂ ,Hp,q
∂

.
Since we will need to use the maximum principle for second order uniformly elliptic

differential operators, let us recall some definitions and the results which will be useful. Let
M be a differentiable manifold of dimension m, and let E, F be K-vector bundles over M ,
with K = R or K = C, rank E = r , rank F = s. A differential operator of order l from E
to F is a K-linear operator P : �(M, E) → �(M, F) of the form

Pu(x) =
∑

|α |≤l

aα(x)Dαu(x) ∀x ∈ 	,

where E|	 � 	 × K
r , F|	 � 	 × K

s are trivialized locally on some open chart 	 ⊂ M
equipped with local coordinates x1, . . . , xm , and the functions

aα(x) = (aαi j (x))1≤i≤s,1≤ j≤r

are s × r matrices with smooth coefficients on 	. Here Dα = (∂/∂x1)α1 . . . (∂/∂xm)αm , and
u = (u j )1≤ j≤r , Dαu = (Dαu j )1≤ j≤r are viewed as column matrices. Moreover, we require
aα �≡ 0 for some open chart 	 ⊂ M and for some | α | = l.

Let P : �(M, E) → �(M, F) be a K-linear differential operator of order l from E to F .
We define the principal symbol of P as the operator

σP : T ∗M → Hom(E, F) (x, ξ) �→
∑

| α |=l

aα(x)ξα,

where ξα = (ξ1)
α1 . . . (ξm)αm , given that ξ = (ξ1, . . . , ξm). Note that, if u ∈ �(M, E) is a

smooth section of E and f ∈ C∞(M) is a smooth real valued function, then

P( f lu)(x) = l!σP (x, d f (x))(u(x)). (4)

We say that P is elliptic if σP (x, ξ) ∈ Hom(Ex , Fx ) is an isomorphism for every x ∈ M and
0 �= ξ ∈ T ∗

x M . By (4), we observe that P is elliptic if and only if for all x ∈ M , u ∈ �(M, E)

and f ∈ C∞(M) such that u(x) �= 0, f (x) = 0 and d f (x) �= 0 we have

P( f lu)(x) �= 0.

Let E = F and consider a Riemannian or a Hermitian metric g on E . We say that P is
strongly elliptic if l = 2k and there exists C > 0 such that

(−1)k Re(g(σP (x, ξ)(u(x)), u(x))) ≥ C | ξ |2k g(u(x), u(x))

for all x ∈ M , u ∈ �(M, E) and ξ ∈ T ∗M , see [15, Definition 4.2].
Wewill make use of the following statement of themaximumprinciple for strongly elliptic

operators of second order, see [7, Chapter 6, Section 4, Theorem 3].

Theorem 2.1 Let 	 ⊂ M be a relatively compact domain, with 	 contained in a local chart,
and let P : C∞(	) → C∞(	) be a strongly elliptic R-linear differential operator of order
2 without zero order terms, i.e., such that P(1) = 0. If Pu = 0 in 	 and u ∈ C(	) attains
its maximum or minimum over 	 at an interior point, then u is constant within 	.
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Bott–Chern Laplacian on almost Hermitian manifolds 2691

3 Bott–Chern and Aeppli Laplacians

Let (M, J , g, ω) be an almost Hermitian manifold. As in the integrable setting, we define

�̃BC = ∂∂∂
∗
∂∗ + ∂

∗
∂∗∂∂ + ∂∗∂∂

∗
∂ + ∂

∗
∂∂∗∂ + ∂∗∂ + ∂

∗
∂,

and

�̃A = ∂∂∂
∗
∂∗ + ∂

∗
∂∗∂∂ + ∂∂

∗
∂∂∗ + ∂∂∗∂∂

∗ + ∂∂∗ + ∂∂
∗
,

and still call them Bott–Chern and Aeppli Laplacian, respectively. Note that

∗ �̃BC = �̃A ∗ �̃BC∗ = ∗�̃A. (5)

If M is compact, then we easily deduce the following relations
{

�̃BCα = 0 ⇐⇒ ∂α = 0, ∂α = 0, ∂∂ ∗ α = 0,
�̃Aα = 0 ⇐⇒ ∂ ∗ α = 0, ∂ ∗ α = 0, ∂∂α = 0,

for any given α ∈ Ap,q which characterizes the spaces of harmonic (p, q)-forms

Hp,q
BC , Hp,q

A ,

defined as the spaces of (p, q)-forms which are in the kernel of the associated Laplacians.

Remark 3.1 By Eq. (5), note that ∗Hp,q
BC = Hn−q,n−p

A and ∗Hp,q
A = Hn−q,n−p

BC . In the
following, we will study only the spaces Hp,q

BC on an almost complex manifolds; this is
sufficient to describe also the spaces Hp,q

A .

We are interested in studying the kernel of the Bott–Chern Laplacian �̃BC on almost
complex manifolds. The kernel of an elliptic operator is finite dimensional on a compact
manifold. Therefore, the first thing we verify is that �̃BC is elliptic. The proofs known by
the authors of the ellipticity of �̃BC , see, e.g., [16, Proposition 5] by Kodaira and Spencer or
[17, Page 8] by Schweitzer, make use of local complex coordinates to compute explicitly the
symbol of �̃BC , therefore do not hold anymore on almost complex manifolds. Nonetheless,
these proofs could be adapted to compute the symbol in suitable local frames on almost
complex manifolds.

Proposition 3.2 Let (M, g, J , ω) be an almost Hermitian manifold of real dimension 2n.
The Bott–Chern Laplacian �̃BC is elliptic.

Proof To compute the symbol of �̃BC , choose a local coframe {θ1, . . . , θn} on A1,0 such
that the almost Hermitian metric is written

ω = i
n∑

k=1

θkk .

We write a form α ∈ Ap,q locally as

α = αi1...i p j1... jq θ
i1 ∧ · · · ∧ θ jq .

Its differential then acts as

dα = dαi1... jq ∧ θ i1 ∧ · · · ∧ θ jq + αi1... jq d(θ i1 ∧ · · · ∧ θ jq )

= ∂αi1... jq ∧ θ i1 ∧ · · · ∧ θ jq + ∂αi1... jq ∧ θ i1 ∧ · · · ∧ θ jq + αi1... jq d(θ i1 ∧ · · · ∧ θ jq ).

123
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In calculating the symbol, we are only interested in the highest order derivatives acting on
αi1... jq . Therefore, for the purpose of computing the symbol, we note that ∂ and ∂ behave like

on a complex manifold. The same reasoning works for ∂∗ and ∂
∗
. Since �̃BC is elliptic on

complex manifolds, this ends the proof. ��
The same considerations in the proof of Proposition 3.2 also prove that the ∂ , ∂ , and the
Aeppli Laplacians are elliptic, too.

Denote by

h p,q
BC , h p,q

A

respectively the finite complex dimensions of Hp,q
BC and of Hp,q

A .

4 Bott–Chern harmonic (1, 1)-forms on almost Hermitian 4-manifolds

The goal of this section is to study the space of Bott–Chern harmonic forms of bidegree
(1, 1) on almost Hermitian manifolds of real dimension 4. We start noting that this space is
a conformal invariant of the metric.

Remark 4.1 Let (M, J ) be a compact almost complex manifold of real dimension 2n. Let
ω̃, ω = et ω̃, with t ∈ C∞(M), be two conformal almost Hermitian metrics. The two Hodge
star operators behave, on the space Ap,q , as

∗ω = et(n−p−q) ∗ω̃ .

Therefore, when p + q = n, the space Hp,q
BC is a conformal invariant of almost Hermitian

metrics, thanks to the characterization

�̃BCα = 0 ⇐⇒ ∂α = 0, ∂α = 0, ∂∂ ∗ α = 0, ∀α ∈ Ap,q .

In particular, h p,q
BC is also a conformal invariant of almost Hermitian metrics for p + q = n.

This is especially true when 2n = 4 and p = q = 1.
By a remarkable result of Gauduchon [8], for any given almost Hermitian metric ω̃ on the

compact almost complex 2n-manifold (M, J ), there always exists a unique, up to homothety,
Gauduchon metric ω conformal to ω̃, i.e., ∂∂ωn−1 = 0. In particular, for 2n = 4, we have
∂∂ω = 0.

Let (M, g) be a compact oriented Riemannian manifold of real dimension 4, and set

�− = {α ∈ �2M : ∗α = −α}
the bundle of anti self dual 2-forms. Denote by

H− = {α ∈ A2 : �dα = 0, ∗α = −α},
the subspace of harmonic anti-self-dual 2-forms and set b− = dimR H−. Note that b− is
metric independent: see [6, Chapter 1] for its topological meaning.

Remark 4.2 Let (M, J , g, ω) be a compact almost Hermitian manifold of real dimension 4.
Note that the space of harmonic anti-self-dual complex valued 2-forms H− ⊗ C is indeed a
subspace of A1,1, which will be denoted by H−

C
. We remark that every harmonic anti-self-

dual (1, 1)-form γ ∈ H−
C
, i.e., dγ = 0 and ∗γ = −γ , is a Bott–Chern harmonic (1, 1)-form.

In fact, it holds ∂γ = 0, ∂γ = 0, ∂∂ ∗ γ = 0. Hence, h1,1BC ≥ b−.
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Now we can state and prove the following theorem, gaining a topological interpretation
of the dimension h1,1BC .

Theorem 4.3 Let (M, J , g, ω) be a compact almost Hermitian manifold of real dimension
4. Then either h1,1BC = b− or h1,1BC = b− + 1.

Proof Since h1,1BC is a conformal invariant of the metric, up to a conformal change of the
Hermitian metric g, we can assume in this proof that ω is Gauduchon, i.e., ∂∂ω = 0.

We divide the proof in two steps.
(I) First, we prove that the space of Bott–Chern harmonic (1, 1)-forms is

H1,1
BC = { f ω + γ ∈ A1,1 | f ∈ C, ∗γ = −γ, d( f ω + γ ) = 0}. (6)

(II) Then, we prove that the complex dimension ofH1,1
BC can only be equal to either b− or

b− + 1.
(I) From the Lefschetz decomposition for 2-forms, see [14, Proposition 1.2.30], one gets

the following decomposition:

�1,1M = C(ω) ⊕ (�− ⊗ C). (7)

Let φ ∈ H1,1
BC . By Eq. (7), we have φ = f ω+γ , where f is a smooth function with complex

values on M and ∗γ = −γ . To prove the characterization of H1,1
BC , we claim that f is a

complex constant. Note that

∂φ = 0 ⇐⇒ ∂ f ∧ ω + f ∂ω + ∂γ = 0, (8)

∂φ = 0 ⇐⇒ ∂ f ∧ ω + f ∂ω + ∂γ = 0, (9)

∂
∗
∂∗φ = 0 ⇐⇒ ∂∂ ∗ ( f ω + γ ) = 0. (10)

Expanding condition (10), using condition (9) and ∂∂ω = 0, we get

0 = ∂∂ ∗ ( f ω + γ ) = ∂∂( f ω − γ )

= ∂(∂ f ∧ ω + f ∂ω − ∂γ )

= 2∂(∂ f ∧ ω + f ∂ω)

= 2∂∂ f ∧ ω − 2∂ f ∧ ∂ω + 2∂ f ∧ ∂ω.

We claim that the differential operator P : C∞(M,C) → C∞(M,C) defined by

P : f �→ −i ∗ (∂∂ f ∧ ω − ∂ f ∧ ∂ω + ∂ f ∧ ∂ω)

is strongly elliptic, since its principal part is given by

−i ∗ (∂∂ f ∧ ω).

Let us then verify that the differential operator L : C∞(M,C) → C∞(M,C) defined by

L : f �→ −i ∗ (∂∂ f ∧ ω)

is strongly elliptic. Choose a local coframe {ζ 1, ζ 2} of bi-degree (1, 0) centered in a point
m ∈ M and such that the almost Hermitian metric is written

ω = i(ζ 11 + ζ 22).
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Let {V1, V2} be the corresponding dual frame. We have

∂∂ f = ∂(V 1( f )ζ
1 + V 2( f )ζ

2
)

= V1(V 1( f ))ζ
11 + V2(V 1( f ))ζ

21+
+ V1(V 2( f ))ζ

12 + V2(V 2( f ))ζ
22+

+ V 1( f )∂ζ
1 + V 2( f )∂ζ

2
.

Wedging ∂∂ f together with ω, we get

∂∂ f ∧ ω = i
(
V1(V 1( f )) + V2(V 2( f )) + R( f )

)
ζ 1122,

where R is a differential operator which involves at most first order derivatives of f . Since
Vol = ζ 1212, it follows that

L( f ) = − (
V1(V1( f )) + V2(V2( f )) + R( f )

)
,

which is strongly elliptic since −V1V1 − V2V2 is strongly elliptic, proving the claim. Note
that L( f ) = i〈∂∂ f , ω〉 is equal, up to a factor −2, to the complex Laplacian by Gauduchon
[8].

Let us prove that the function f ∈ ker(P) is constant. Note that P is a real differential
operator, i.e., P( f ) = P( f ). Hence, f ∈ ker(P) iff Re f ∈ ker(P) and Im f ∈ ker(P). By
considering Re f and Im f instead of f , for themoment wemay assume that f is real valued.
Then, f : M → R has a maximum and a minimum. Let m0 ∈ M be a maximum point for
f and set f (m0) = N . Let U � m0 be a local chart and r > 0 such that B(m0, r) ⊂ U . The
differential operator P is strongly elliptic on M , therefore it is strongly elliptic on B(m0, r).
Since f ∈ ker(P), by the maximum principle it follows that f is constant on B(m0, r). Since
{m ∈ M : f (m) = N } is both open and closed, f is constant on M .

Therefore, we have just proved

H1,1
BC ⊂ { f ω + γ ∈ A1,1 | f ∈ C, ∗γ = −γ, d( f ω + γ ) = 0}.

Vice versa, if φ = f ω + γ ∈ A1,1, with f ∈ C, ∗γ = −γ , and d( f ω + γ ) = 0, then
a straightforward computation shows that (8), (9) and (10) hold, providing the converse
inclusion ⊃. Therefore (6) is proved.

(II) Now, let us prove that either h1,1BC = b− or h1,1BC = b− + 1 hold. We have two possible
cases:
(a) there exists an element f0ω + γ0 ∈ H1,1

BC such that

f0 ∈ C\{0}, ∗γ0 = −γ0, d( f0ω + γ0) = 0;
(b) for any given element f ω + γ ∈ H1,1

BC we have f = 0.
In case (a), we claim that

H1,1
BC = { f ( f0ω + γ0) + γ ∈ A1,1 | f ∈ C, ∗γ = −γ, dγ = 0},

which yields h1,1BC = b− + 1. The inclusion ⊃ is immediate. Indeed,

d( f ( f0ω + γ0) + γ ) = f d( f0ω + γ0) + dγ = 0,

and ∗( f γ0 + γ ) = − f γ0 − γ .
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To prove the converse inclusion ⊂, let f1ω + γ1 ∈ H1,1
BC , i.e., f1 ∈ C, ∗γ1 = −γ1 and

d( f1ω + γ1) = 0. We compute

f1ω + γ1 = f1
f0

( f0ω + γ0) + γ1 − f1
f0

γ0 = f ( f0ω + γ0) + γ,

where we set f = f1
f0
and γ = γ1 − f1

f0
γ0. Note that

f ∈ C, ∗γ = −γ, dγ = − f1dω + f1
f0

f0dω = 0,

proving the claim.
In case (b), since for every element f ω + γ ∈ H1,1

BC we have f = 0, it follows that H1,1
BC

coincideswith the space of harmonic and anti-self-dual (1, 1)-formsH−
C
, yielding h1,1BC = b−.

The theorem is proved. ��

We specialize Theorem 4.3 when the Hermitian metric is almost Kähler, yielding that h1,1BC
is independent of the choice of almost Kähler metrics g compatible with J . The following
corollary is the Bott–Chern analogue of [12, Proposition 6.1] by Holt and Zhang.

Corollary 4.4 Let (M, J , g, ω) be a compact almost Kähler manifold of real dimension 4.
Then, h1,1BC = b− + 1 and H1,1

BC = H1,1
∂

.

Proof By the characterization (6) of Theorem 4.3 and dω = 0 we get the characterization

H1,1
BC = { f ω + γ ∈ A1,1 | f ∈ C, ∗γ = −γ, dγ = 0},

yielding h1,1BC = b−+1. By [12, Proposition 6.1], the spaceH1,1
∂

has the same characterization

as H1,1
BC , implying H1,1

BC = H1,1
∂

. ��

By Remark 4.1, note that the same thesis of Corollary 4.4 holds if the almost Hermitian
metric is conformal to an almost Kähler metric.

As another consequence of Theorem 4.3, we derive the following

Corollary 4.5 Let (M, J , g, ω) be a compact almost Hermitian manifold of real dimension
4. If ∂∂ω = 0 and dω �= 0, then every Hodge harmonic (1, 1)-form is anti-self-dual.

Proof Assume ∂∂ω = 0 and dω �= 0, and take φ ∈ A1,1 such that �dφ = 0. As in Theorem
4.3, by Eq. (7), we have φ = f ω + γ , where f is a smooth function with complex values on
M and γ is anti-self-dual, i.e., ∗γ = −γ . Recall �dφ = 0 if and only if dφ = d ∗ φ = 0.
This implies φ ∈ H1,1

BC , since d = ∂ + ∂ on (1, 1)-forms, and d ∗ φ = 0 yields ∂∂ ∗ φ = 0.
By the proof of Theorem 4.3, f is a complex constant. Computing dφ = d ∗φ = 0, we find

0 = dφ = f dω + dγ,

0 = d ∗ φ = f dω − dγ,

hence

f dω = 0, dγ = 0.

Since dω �= 0, we get f = 0. ��
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5 Bott–Chern harmonic forms on the Kodaira–Thurstonmanifold

In this section, we are going to compare Bott–Chern and Dolbeault harmonic forms on a
family of almost Kähler structures on the Kodaira–Thurston manifold, following Holt and
Zhang [12].

The Kodaira–Thurston manifold, here denoted by M , is defined to be the direct product
S1 × (H3(Z)\H3(R)), where H3(R) denotes the Heisenberg group

H3(R) =
⎧
⎨

⎩

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ ∈ GL(3,R)

⎫
⎬

⎭ ,

and H3(Z) is the subgroup H3(R) ∩ GL(3,Z), acting on H3(R) by left multiplication. The
manifold M is compact and connected. If t is the coordinate on the circle S1, and x, y, z are
the coordinates on H3(Z)\H3(R) as in the definition of H3(R), we see that the manifold M
can be identified with R

4, endowed with the group structure of R × H3(R), quotiented by
the equivalence relation

⎛

⎜⎜⎝

t
x
y
z

⎞

⎟⎟⎠ ∼

⎛

⎜⎜⎝

t + t0
x + x0
y + y0

z + z0 + x0y

⎞

⎟⎟⎠ ,

for every t0, x0, y0, z0 ∈ Z. The vector fields

e1 = ∂

∂t
, e2 = ∂

∂x
, e3 = ∂

∂ y
+ x

∂

∂z
, e4 = ∂

∂z

are left invariant and form a basis of TpM at each point p ∈ M . The dual left invariant
coframe is given by

e1 = dt, e2 = dx, e3 = dy, e4 = dz − xdy.

Consider the almost complex structure Jb, for b ∈ R \ {0}, given by

V1 = 1

2

(
∂

∂t
− i

∂

∂x

)
, V2 = 1

2

((
∂

∂ y
+ x

∂

∂z

)
+ i

b

∂

∂z

)

spanning T 1,0
p M at every point p ∈ M , along with their dual (1, 0)-forms

φ1 = dt + idx, φ2 = dy − ib(dz − xdy).

Their structure equations are

dφ1 = 0, dφ2 = b

4
(φ12 + φ12 + φ21 − φ12).

Endow every (M, Jb) with the family of almost Kähler metrics given by the compatible
symplectic forms

ωb = i(φ1 ∧ φ
1 + φ2 ∧ φ

2
) = 2dt ∧ dx + 2bdz ∧ dy.

Define the volume form Vol such that

2Vol = ω2
b = 2φ1 ∧ φ2 ∧ φ

1 ∧ φ
2 = 8bdt ∧ dx ∧ dz ∧ dy.
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Holt and Zhang [12], computed the spacesHp,q
∂

for every p, q . We will verify whenHp,q
BC =

Hp,q
∂

and show that this equality is not true for every p, q on the Kodaira–Thurston manifold

M . Note thatHp,q
∂

= ∗H2−p,2−q
∂

by Serre duality. For Bott–Chern harmonic forms, we have

Hp,q
BC = Hq,p

BC (11)

if it holds ∂∂ + ∂∂ = 0 when restricted on (n − q, n − p) forms. For an almost complex
4-manifold, Eq. (11) is true when

(p, q) ∈ {(0, 0), (2, 2), (2, 0), (0, 2), (1, 0), (0, 1), (1, 1)}.

Let us compute the spaces Hp,q
BC , H

p,q
∂

and compare them.

Bidegrees (0, 0), (2, 2)

For p = q = 0, it is immediate to see that both spaces are equal to constant functions on M .
Similarly, for p = q = 2, both spaces are spanned by φ1212.

Bidegrees (2, 0), (0, 2)

For (p, q) ∈ {(2, 0), (0, 2)}, note that H2,0
∂

= ∗H0,2
∂

and H2,0
BC = H0,2

BC , therefore it is

sufficient to prove H2,0
BC = H2,0

∂
. This follows immediately since both spaces turn out to be

equal to the set of ∂-closed (2, 0)-forms, i.e.,

H2,0
BC = H2,0

∂
= {α ∈ A2,0(M) | ∂α = 0}.

In [3, Section 6] it is proved that

H2,0
∂

=
{
C < φ12 > if 0 �= b ∈ 4πZ,

0 if b /∈ 4πZ.

Bidegree (1, 1)

For (p, q) = (1, 1), in [12] Holt and Zhang proved that on every almost complex 4-manifold
with an almost Kähler metric, every (1, 1)-Dolbeault harmonic form is the sum of a com-
plex multiple of the almost Kähler symplectic form and of an anti-self-dual harmonic form.
Corollary 4.4 affirms that the same holds for every (1, 1)-Bott–Chern harmonic forms. Since
b− = 2, it follows that h1,1

∂
= h1,1BC = 3 and it suffices to find three harmonic (1, 1)-forms

to prove

H1,1
BC = H1,1

∂
= C < φ11, φ22, φ12 − φ21 > .
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Bidegrees (1, 0), (0, 1)

For (p, q) ∈ {(1, 0), (0, 1)}, sinceH1,0
BC = H0,1

BC , let us computeH0,1
BC . Let s = f φ

1+gφ
2 ∈

H0,1
BC , i.e., ∂s = 0 and ∂s = 0. We get

∂s = 0 ⇐⇒ V1( f )φ
11 + (V1(g) − b

4
g)φ12 + (V2( f ) − b

4
g)φ21 + V2(g)φ

22, (12)

∂s = 0 ⇐⇒ (−V2( f ) + V1(g) + b

4
g)φ12 = 0. (13)

By Eq. (12), note that V2(g) = 0, implying V2V2(g) = 0. The operator −V2V2 is a
real operator, and it is strongly elliptic when computed on functions depending only on the
coordinates yz.yz. Consider the projectionπ : M → T 2 = Z

2\R2 given byπ([t, x, y, z]) =
([t, x]). The fiber of π is a torus with coordinates y, z. As the fiber is compact, by the
maximum principle applied to Re (g) and Im (g), we get that g is constant on each fiber.
Therefore, the function g on M depends only on the coordinates t, x .

Applying V2 to the coefficient of φ12 in (13), taking into account that 4[V1, V2] = b(V2 −
V2) and V2(g) = 0, we infer V2V2( f ) = 0. Since V1( f ) = 0, then f is in the kernel of the
strongly elliptic operator −V1V1 − V2V2 and therefore it is constant.

Equation (12) also yields

V2( f ) − b

4
g = 0.

Since f is a complex constant, we get g = 0.
Therefore

H0,1
BC = C < φ

1
>, H1,0

BC = C < φ1 > .

Analogously, since H1,0
∂

= {α ∈ A1,0(M) | ∂α = 0}, it is easy to see that

H1,0
∂

= C < φ1 >= H1,0
BC ,

see [3, Section 6] for the proof a = 0. It is also easy to see

C < φ
1

>⊂ H0,1
∂

.

However, in [12], Holt and Zhang proved that σ = Ce2π ilxφ
2 ∈ H0,1

∂
, for l ∈ Z, b = 4πl

and for any C ∈ C. Since σ /∈ H0,1
BC , we just proved, for b = 4πl,

H0,1
BC ⊂

�=
H0,1

∂
.

Bidegree (2, 1)

For (p, q) = (2, 1), note that H2,1
∂

= ∗H0,1
∂

. Therefore, for b = 4πl, we know ∗σ ∈ H2,1
∂

.

We will show that ∗σ /∈ H2,1
BC , implying

H2,1
BC �= H2,1

∂
.
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Let us begin by describing the spaceH2,1
BC . Let s = f φ121 + gφ122, then s ∈ H2,1

BC if and
only if ∂∂ ∗ s = 0 and ∂s = 0, i.e., iff

⎧
⎪⎨

⎪⎩

V1V1( f ) + V2V1(g) − b
4V1( f ) + b

4V1( f ) − b
4V2(g) − b2

8 f = 0,

V1V2( f ) + V2V2(g) + b
4V2( f ) = 0,

V1(g) − V2( f ) = 0.

(14)

It is an easy verification that the (2, 1)-form ∗σ does not satisfy the first equation of the
system (14).

Bidegree (1, 2)

For (p, q) = (1, 2), we know H1,2
∂

= ∗H1,0
∂

= C < φ212 >. We will show that for some
value of b �= 0 it holds

H1,2
∂

⊂
�=

H1,2
BC . (15)

Let s = f φ112 + gφ212 ∈ H1,2
BC , i.e., ∂∂ ∗ s = 0 and ∂s = 0, i.e.,

⎧
⎪⎨

⎪⎩

V1V1( f ) + V1V2(g) + b
4V1( f ) − b

4V1( f ) − b
4V2(g) − b2

16 f = 0,

V2V1( f ) + V2V2(g) + b
4V2( f ) = 0,

V1(g) − V2( f ) = 0.

(16)

To prove (15), it will be sufficient to study solutions f , g of system (16) which only depend
on coordinates t, x, y. We decompose the functions f , g in Fourier series as

f =
∑

k,l,m∈Z
fk,l,me

2π i(kt+lx+my), g =
∑

k,l,m∈Z
gk,l,me

2π i(kt+lx+my).

System (16) rewrites into
⎧
⎪⎨

⎪⎩

(16π2(k2 + l2) − 8bπl + b2) fk,l,m + 4πm(4πk − 4π il + ib)gk,l,m = 0, (17)

πm(4πk + 4π il − ib) fk,l,m + 4π2m2gk,l,m = 0, (18)

m fk,l,m = (k − il)gk,l,m, (19)

for all k, l,m ∈ Z. From (18) and (19), we obtain k = 0 and

4πm2 + 4πl2 − bl = 0, (20)

and, once we impose these conditions, (17) reduces to (19).
Summing up, for any l,m ∈ Z and b �= 0 such that 4πm2 + 4πl2 − bl = 0, there exists

s ∈ H1,2
BC given by

{
s = Ce2π i(lx+my)φ112 − C im

l e
2π i(lx+my)φ212 if l �= 0,

s = Cφ212 if l = 0,
(21)

for any C ∈ C. For l = 0, we get the inclusion of (15); to show that the inclusion is not an
equality, take, e.g., b = 8π , l = 1, m = 1.
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Remark 5.1 Counting the solutions (21), i.e., finding a lower bound on the complex dimen-
sion of H1,2

BC , is equivalent to asking how many couples (l,m) ∈ Z
2 satisfy (20), which is

equivalent to counting how many couples (l,m) ∈ Z
2 satisfy

m2 + (l − d)2 = d2,

where we set d = b/8π . Counting the number of solutions can be thought of as asking how
many lattice points in Z×Z lie on a circle with centre (d, 0) and radius d . This last number
theoretic problem has already been addressed and solved by Holt and Zhang in [12, Section
4], where they show that by changing the choice of b (or equivalently d) one can make the
number of solutions become arbitrarily large.

Therefore, in view of the argument as above, we infer that by changing our choice of b,
h1,2BC may become arbitrarily large. This conclusion has been already obtained by Holt in
[11, Example 4.4] (the case ρ = 1 in the notation of Holt), where the space of Bott–Chern
harmonic (1, 2)-forms is fully characterized.

Summarizing the results just obtained, we state the following proposition.

Proposition 5.2 Let M be the Kodaira–Thurston manifold S1 × (H3(Z)\H3(R)) with local
coordinates t, x, y, z. Consider the almost complex structure Jb, for b ∈ R \ {0}, given by

φ1 = dt + idx, φ2 = dy − ib(dz − xdy).

spanning (T 1,0
p M)∗ at every point p ∈ M. Endow (M, Ja,b) with the almost Kähler metric

given by the compatible symplectic form

ωb = i(φ1 ∧ φ
1 + φ2 ∧ φ

2
) = 2dt ∧ dx + 2bdz ∧ dy,

and the volume form Vol such that 2Vol = ω2
b. Then, for all b ∈ R \ {0}, and (p, q) ∈

{(0, 0), (1, 0), (1, 1), (2, 0), (0, 2), (2, 2)}
Hp,q

BC = Hp,q
∂

,

while for (p, q) ∈ {(0, 1), (2, 1), (1, 2)}, there exists b ∈ R\{0} such that a ∈ R

Hp,q
BC �= Hp,q

∂
.

Corollary 5.3 There exists an almost Kähler 4-manifold (M, J , g, ω) such that for some
bidegree (p, q) it holds that

Hp,q
BC �= Hp,q

∂
.

6 Locally conformally almost Kähler metrics

Let (M, J , g, ω) be an almostHermitianmanifold. Following [19], we sayω is strictly locally
conformally almost Kähler if

dω = θ ∧ ω,

and θ is d-closed but non d-exact. Conversely, we say ω is globally conformally almost
Kähler, if

dω = θ ∧ ω,
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and θ is d-exact. As mentioned in the introduction, Tardini and the second author proved that
h1,1

∂
= b− on every compact almost complex 4-manifold with a strictly locally conformally

almost Kähler metric. Here, we prove Bott–Chern harmonic (1, 1)-forms have a different
behaviour than Dolbeault harmonic (1, 1)-forms. Namely, we describe an almost complex
structure on a hyperelliptic surface, endowedwith a strictly locally conformally almostKähler
metric, such that h1,1BC = b− + 1.

Note that in the integrable case, i.e., on compact complex surfaces, it holds h1,1BC = b− +1
on Kähler surfaces, on complex surfaces diffeomorphic to solvmanifolds, and on complex
surfaces of class VII (see [1], [2, Chapter IV, Theorem 2.7]).

Following Hasegawa [9], let G be the group C2 together with the multiplication

(w1, w2) · (z1, z2) = (w1 + eiπ
w2+w2

2 z1, w2 + z2),

and let � be the subgroup of G given by (Z + iZ)2. This corresponds to the hyperelliptic
surface with η = π and p = q = s = t = 0 in the notation of Hasegawa. Let M be the
solvmanifold �\G, and denote by x1, y1, x2, y2 the local coordinates of M induced from
C
2, i.e., z1 = x1 + iy1, z2 = x2 + iy2. The vector fields

e1 = cos(πx2)
∂

∂x1
+ sin(πx2)

∂

∂ y1
,

e2 = − sin(πx2)
∂

∂x1
+ cos(πx2)

∂

∂ y1
,

e3 = ∂

∂x2
, e4

∂

∂ y2

are left invariant and form a basis of T M at each point. The dual left invariant coframe is
given by

e1 = cos(πx2)dx1 + sin(πx2)dy1,

e2 = − sin(πx2)dx1 + cos(πx2)dy1,

e3 = dx2, e4 = dy2,

with structure equations

de1 = −πe23, de2 = πe13, de3 = 0, de4 = 0.

The De Rham cohomology of M is computed using left invariant forms, see e.g. [1], yielding

H1
dR = R < e3, e4 >, H2

dR = R < e12, e34 > . (22)

Consider the almost complex structure J given by

V1 = 1

2
(e1 − ie3) = 1

2

(
cos(πx2)

∂

∂x1
+ sin(πx2)

∂

∂ y1
− i

∂

∂x2

)
,

V2 = 1

2
(e2 − ie4) = 1

2

(
− sin(πx2)

∂

∂x1
+ cos(πx2)

∂

∂ y1
− i

∂

∂ y2

)
,

spanning T 1,0
p M at every point p ∈ M , along with their dual (1, 0)-forms

φ1 = e1 + ie3 = cos(πx2)dx1 + sin(πx2)dy1 + idx2,

φ2 = e2 + ie4 = − sin(πx2)dx1 + cos(πx2)dy1 + idy2.
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Their structure equations are

dφ1 = i
π

4
(−φ12 − φ12 − φ21 + φ12), dφ2 = i

π

2
φ11.

Endow (M, J )with the almost Hermitianmetric given by the compatible symplectic form

ω = e13 + e24 = i

2
(φ1 ∧ φ

1 + φ2 ∧ φ
2
),

and define the volume form Vol such that

Vol = ω2

2
= 1

4
φ1 ∧ φ2 ∧ φ

1 ∧ φ
2
.

Note b− = 1. Also note that ω is strictly locally conformally almost Kähler, since

dω = πe134 = θ ∧ ω,

with θ = πe4, which is closed but not exact by (22).
Let us now compute h1,1BC . Let ψ = f ω + γ ∈ H1,1

BC , with f ∈ C and ∗γ = −γ . The
(1, 1)-form γ can be written as

γ = Aφ11 + Bφ12 + Cφ21 − Aφ22,

with A, B,C ∈ C∞(M,C). We compute dψ = 0 and find

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4V1(C) − 4V2(A) − 2π i A − π f = 0,

4V1(A) + 4V2(B) + π i B + π iC = 0,

4V1(B) − 4V2(A) + 2π i A + π f = 0,

4V1(A) + 4V2(C) − π iC − π i B = 0.

(23)

Note that for 2A = i f �= 0 and B = C = 0, we get f ω + γ ∈ H1,1
BC with f �= 0. By the

proof of Theorem 4.3, it immediately yields that h1,1BC = b− +1. However, let us also reprove

h1,1BC = b− + 1 explicitly, without the help of Theorem 4.3.
Every function on M is, in particular, 2(Z + iZ)-periodic in both complex variables,

therefore we may decompose the functions A, B,C in Fourier series as

A =
∑

k,l,m,n∈Z
Ak,l,m,ne

iπ(kx1+ly1+mx2+ny2),

B =
∑

k,l,m,n∈Z
Bk,l,m,ne

iπ(kx1+ly1+mx2+ny2),

C =
∑

k,l,m,n∈Z
Ck,l,m,ne

iπ(kx1+ly1+mx2+ny2).
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For every (0, 0, 0, 0) �= (k, l,m, n) ∈ Z
4 and x2 ∈ R, system (23) rewrites into

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i cos(πx2)l + i sin(πx2)k + m)Ck,l,m,n

+(i sin(πx2)l − i cos(πx2)k − n − i)Ak,l,m,n = 0,

(2i cos(πx2)l + 2i sin(πx2)k + 2m)Ak,l,m,n

+(−2i sin(πx2)l + 2i cos(πx2)k + 2n + i)Bk,l,m,n + iCk,l,m,n = 0,

(i cos(πx2)l + i sin(πx2)k − m)Bk,l,m,n

+(i sin(πx2)l − i cos(πx2)k + n + i)Ak,l,m,n = 0,

(2i cos(πx2)l + 2i sin(πx2)k − 2m)Ak,l,m,n

+(−2i sin(πx2)l + 2i cos(πx2)k − 2n − i)Ck,l,m,n − i Bk,l,m,n = 0.

(24)

Differentiate (for sign convenience) system (24) two times with respect to x2 to find
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(− cos(πx2)l − sin(πx2)k)Ck,l,m,n + (− sin(πx2)l + cos(πx2)k)Ak,l,m,n = 0,

(− cos(πx2)l − sin(πx2)k)Ak,l,m,n + (sin(πx2)l − cos(πx2)k)Bk,l,m,n = 0,

(− cos(πx2)l − sin(πx2)k)Bk,l,m,n + (− sin(πx2)l + cos(πx2)k)Ak,l,m,n = 0,

(− cos(πx2)l − sin(πx2)k)Ak,l,m,n + (sin(πx2)l − cos(πx2)k)Ck,l,m,n = 0.

(25)

If x2 = 0, it is easy to see that (k, l) �= (0, 0) implies Ak,l,m,n = Bk,l,m,n = Ck,l,m,n = 0.
Therefore, the functions A, B,C depend only on variables x2, y2, and we can assume k =
l = 0. For every (0, 0) �= (m, n) ∈ Z

2, system (24) rewrites into
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mC0,0,m,n − (n + i)A0,0,m,n = 0,

2mA0,0,m,n + (2n + i)B0,0,m,n + iC0,0,m,n = 0,

mB0,0,m,n − (n + i)A0,0,m,n = 0,

2mA0,0,m,n + (2n + i)C0,0,m,n + i B0,0,m,n = 0.

(26)

From system (26), subtracting the third equation from the first, we get

m(C0,0,m,n − B0,0,m,n) = 0.

If m = 0, then A0,0,0,n = B0,0,0,n = C0,0,0,n = 0 for every 0 �= n ∈ Z. Conversely, if
C0,0,m,n = B0,0,m,n for all m, n ∈ Z with m �= 0, combining the first two equations of (26)
we get

(m2 + n2 − 1 + 2ni)B0,0,m,n = 0,

implying either n = 0 andm2 = 1 or B0,0,m,n = 0 for n �= 0. If B0,0,m,n = 0 for allm, n ∈ Z

with m �= 0 �= n, it also follows that A0,0,m,n = C0,0,m,n = 0. On the other hand, if n = 0
and m = ±1, then every choice B0,0,m,0 = C0,0,m,0 = imA0,0,m,0 ∈ C provides a solution
of system (24). Therefore

B = C = ±i A = ±i K e±iπx2 (27)

are solutions of system (23) for every complex constant K ∈ C. However, note that

A(z1, z2) = Ke±iπx2 �= Ke±iπ(x2+1) = A(−z1, z2 + 1) = A((0, 1) · (z1, z2))

for every z1 = x1 + iy1, z2 = x2 + iy2 ∈ C and 0 �= K ∈ C, thus the functions A, B,C in
(27) are not well defined on M .

Other solutions of system (23) are found when k = l = m = n = 0 and A, B,C ∈ C are
complex constants. More precisely, we get 2A = i f and B = −C .
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Therefore, we re-obtain h1,1BC = 2 = b− + 1 and

H1,1
BC = C < φ11, φ12 − φ21 > .

Remark 6.1 It is worth asking if on compact almost complex 4-manifolds h1,1BC may be always

equal to b− + 1 or there are explicit examples where h1,1BC = b−. Very recently Holt in [11,

Theorem 4.2], proved that h1,1BC is always equal to b− + 1.

7 Bott–Chern cohomology of almost complexmanifolds

In [4], Cirici and Wilson introduced a generalization of Dolbeault cohomology on almost
complex manifolds. Let (M, J ) be an almost complex manifold and

H p,q
μ = kerμ ∩ Ap,q

μAp+1,q−2

be the μ-cohomology, which is well defined since μ2 = 0. Note that ∂ induces a morphism
of vector spaces

∂ : H p,q
μ → H p,q+1

μ ,

since μ∂ + ∂μ = 0. Furthermore, ∂
2 + μ∂ + ∂μ = 0 implies ∂

2 = 0 on H p,q
μ . Then, the

Dolbeault cohomology of M is defined by

H p,q
Dol = ker ∂ ∩ H p,q

μ

∂H p,q−1
μ

.

Analogously, define the μ-cohomology

H p,q
μ = kerμ ∩ Ap,q

μAp−2,q+1 ,

and the conjugated Dolbeault cohomology

H p,q
Dol

= ker ∂ ∩ H p,q
μ

∂H p−1,q
μ

.

The Dolbeault cohomology of almost complex manifolds generalizes the classical Dolbeault
cohomology of complex manifolds, and satisfies some desirable properties. In particular, the
authors modify the classical Hodge filtration for complex manifolds by taking into account
the presence ofμ and show that theDolbeault cohomology of every almost complexmanifold
arises in the first stage of the spectral sequence associated to this new Hodge filtration, which
converges to the complex de Rham cohomology of the manifold. However, in [5], Coelho,
Placini and Stelzig show that the Dolbeault cohomology of almost complex manifolds is
often infinite dimensional.

Still in [5], the authors also give the following definition for Bott–Chern and Aeppli
cohomologies of almost complex manifolds. Given any almost complex manifold (M, J ),
consider the spaces of forms

A∗,∗
s := kerμ ∩ ker ∂

2 ∩ ker ∂2 ∩ kerμ
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and

A∗,∗
r := A∗,∗/(imμ + im ∂

2 + im ∂2 + imμ),

and note that both (A∗,∗
s , ∂, ∂) and (A∗,∗

r , ∂, ∂) are double complexes. Therefore, define the
Bott–Chern andAeppli cohomologies of an almost complexmanifold as the usualBott–Chern
and Aeppli cohomologies of respectively the double complexes (A∗,∗

s , ∂, ∂) and (A∗,∗
r , ∂, ∂).

More precisely,

H p,q
BC := ker d ∩ Ap,q

s

∂∂Ap−1,q−1
s

and

H p,q
A := ker ∂∂ ∩ Ap,q

r

∂Ap−1,q
r + ∂Ap,q−1

r

.

It turns out the following commutative diagram holds as in the integrable case

H∗,∗
BC

H∗,∗
Dol H∗

dR H∗,∗
Dol

H∗,∗
A

where arrows are morphisms of vector spaces. Moreover, H∗,∗
A is a bigraded module over

H∗,∗
BC , and conjugation induces isomorphisms H p,q

BC
∼= Hq,p

BC , H p,q
A

∼= Hq,p
A . Note that, like

Dolbeault cohomology, also Bott–Chern and Aeppli cohomologies may be infinite dimen-
sional on compact almost complex manifolds.

Let (M, J , g, ω) be a compact almost Hermitian manifold. Since the Bott–Chern and
Aeppli Laplacians are elliptic, the Hodge theory developed by Schweitzer in [17] applies,
yielding the L2-orthogonal decompositions

Ap,q = Hp,q
BC ⊕ ∂∂Ap−1,q−1 ⊕ (∂∗Ap+1,q + ∂

∗
Ap,q+1)

and

Ap,q = Hp,q
A ⊕ ∂

∗
∂∗Ap+1,q+1 ⊕ (∂Ap−1,q + ∂Ap,q−1).

In general, the spacesHp,q
BC andHp,q

A seem to be unrelated to the Bott–Chern and Aeppli
cohomology spaces just introduced.

However, if we take n = dimR M = 4 and p = q = 1, note that A1,1
s = A1,1 = A1,1

r ,
and the previous Bott–Chern decomposition yields, intersecting with ker d ,

ker d ∩ A1,1 = H1,1
BC ⊕ ker d ∩ ∂∂A0,0.

Therefore, there is a well defined injection
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H1,1
BC

j−→ H1,1
BC = ker d ∩ A1,1

∂∂A0,0
s

.

In general, there seems no reason to think this injection is also a surjection. Note that j being
surjective would imply h1,1BC is an almost complex invariant on 4-manifolds.

We can re-obtain the previous injection of (1, 1)-forms as a particular case of the following
observation. Let (M, J , g, ω) be a compact almost Hermitian manifold of real dimension 2n
and intersect the Bott–Chern decomposition with the space ker d ∩ Ap,q

s , deriving

ker d ∩ Ap,q
s = Hp,q

BC ∩ Ap,q
s ⊕ ker d ∩ Ap,q

s ∩ ∂∂Ap−1,q−1.

Therefore, there is a well defined injection

Hp,q
BC ∩ Ap,q

s
j−→ H p,q

BC .

Summing up, we have

Proposition 7.1 Let (M, J , g, ω) be a compact almost Hermitian manifold of real dimension
2n. Then we have an injection

Hp,q
BC ∩ Ap,q

s
j−→ H p,q

BC .
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