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Abstract
In this note, we study the local properties of the Chern-scalar curvature function by looking
at its linearization. In particular, we study its linearization stability and the structure of the
space of Hermitian metrics with prescribed Chern-scalar curvature.
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stability
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1 Introduction

In Riemannian geometry, the space of Riemannian metrics M attached to a differentiable
manifold M plays a crucial role as a differentiable invariant. From this point of view, the
function scal, assigning to any Riemannian metric g its scalar curvature scal(g), is well
understood. We refer e.g. to the seminal works [6,21–24]. For compact surfaces S, the image
of this function depends on the Euler characteristic. Indeed, the necessary and sufficient
conditions for a smooth function to be the Gaussian curvature of some metric are either to
be positive somewhere when χ(S) > 0, or to change sign or to be identically zero when
χ(S) = 0, or to be negative somewhere when χ(S) < 0, see [21, Thm 6.3, Thm 11.8], [23,
Thm 5.6]. There is a similar trichotomy in higher dimension, where one makes advantage of
the sign of the first eigenvalue of the conformal Laplacian operator, see [23, Thm 6.4]. Two
main ingredients in the work by Kazdan and Warner are the study of the local surjectivity
of the map g �→ scal(g) by means of the Inverse Function Theorem [24, Lemma 2, p 228],
and an Approximation Lemma for studying the L p-closure of the orbits of a function under
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the action of the diffeomorphism group of M [24, p. 228]. This note is born as an attempt
to understand similar questions concerning the geometry of Hermitian metrics on a compact
complex manifold.

In Hermitian geometry, the Levi-Civita connection is replaced by Hermitian connections
with possibly non-zero torsion. Among Hermitian connections, there are some canonical
choices (in the sense of [16]), in particular, the Chern connection is uniquely characterized
by having torsion of type (2, 0), equivalenty, by the (0, 1)-component coinciding with the
Cauchy-Riemann operator of the holomorphic tangent bundle, see e.g. [16, p. 273]. The
Chern-scalar curvature scalCh, obtained by tracing the curvature of such connection (see
Section 2 for the definition), has been investigated by several authors. Hermitian metrics on
compact complexmanifolds with constant Chern-scalar curvature have been investigated and
constructed in [2,4,26] and others. A first result on prescribing the Chern-scalar curvature
appear in [20, Thm1.1], and the problem has been recently addressed in [13] by the conformal
methods of Kazdan and Warner.

In this note, we exploit the techniques by [6,10,12,24] to study the relationship between
infinitesimal and actual deformations of the Chern-scalar curvature function with respect to
a varying metric. Concerning the analogue results for the Riemannian scalar curvature, we
refer in particular to [12, Thm A, Thm A’, Thm 7.9].

Let (M, J ) be a compact, connected, complex manifold of dimension dimR M = 2m,
and MH the space of smooth Hermitian metrics on it. We study the local properties of the
function scalCh : MH → C∞(M,R) by looking at its linearization (see Proposition 3.6 and
Proposition 3.10). Let us recall that scalCh is said to be linearization stable at a metric go ∈
MH if, for any direction h ∈ ker(scalCh)′go , there exists a smooth path g : (−ε, ε) → MH

such that g(0) = go, ġ(0) = h and scalCh(g(t)) = scalCh(go) for any −ε < t < ε. On the
other hand, if scalCh is not linearization stable at go, it is said to be linearization unstable at
go. Our first result reads as follows:

Theorem A Let g ∈ MH, set λ := scalCh(g) ∈ C∞(M,R) and assume that either g is
not first-Chern-Einstein, or g is first-Chern-Einstein with λ

m < d∗ϑ . Then, the function
scalCh : MH → C∞(M,R) is linearization stable at g and maps any neighborhood of g
onto a neighborhood of λ.

In the statement of the theorem above, ϑ denotes the torsion 1-form of g (see Eq. (2.4)).
Moreover, the first-Chern-Einstein condition is a generalization of the Kähler-Einstein equa-
tion in the Hermitian, possibly non-Kählerian, setting (see Sect. 2). In particular, since ϑ = 0
and scalCh = scal at any Kähler metric, we remark that this theorem applies to Kähler-
Einstein metrics with negative scalar curvature.

Our second result concerns the structure of the space MH(λ) := {g ∈ MH : scalCh(g) =
λ} of Hermitian metrics with prescribed Chern-scalar curvature. More precisely, we prove

Theorem B Let λ ∈ C∞(M,R) and assume that MH(λ) is not empty. If either (M, J ) is
non-Kählerian and cBC1 (M, J ) �= 0, or (M, J ) is Kählerian and c1(M, J ) has no sign,
then MH(λ) is a closed smooth ILH-submanifold of MH with tangent space TgMH(λ) =
ker(scalCh)′g at g ∈ MH.

Here,we say that (M, J ) isKählerian if it admitsKählermetrics, non-Kählerian otherwise.
We also denoted by cBC1 (M, J ) and c1(M, J ) the first Chern class of (M, J ) in theBott-Chern
and deRhamcohomology, respectively.Moreover, for the notion of infinite-dimensional ILH-
manifold, we refer to [27, Ch II]. Notice that both the hypotheses stated in Theorem B assure
that the manifold (M, J ) does not admit any first-Chern-Einstein metric, which is a key
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point in the proof. Let us stress also that, while in the Riemannian case the prescribed scalar
curvature problem is well understood (see [9, Thm 4.35]), the question whether MH(λ) is
non-empty is far from being answered. Therefore, we collect in Remark 4.3 the state of the
art, up to our knowledge.

Finally, in our last result, we exhibit concrete examples of Hermitian metrics at which
scalCh is linearization unstable. Notice that, by Theorem A, any such metric g is necessarily
first-Chern-Einstein with 1

m scalCh(g) − d∗ϑ ≥ 0 at some point. More precisely, we prove

Theorem C Let go be a Kähler-Einstein metric with positive scalar curvature. If (M, go)
admits global non-trivial Killing vector fields, then scalCh is linearization unstable at go.

In particular, this theorem applies to the Kähler-Einstein metrics on compact Fano man-
ifolds admitting an isometric Lie group action. On the other hand, we do not have any
information on the general class of first-Chern-Einstein metrics with 1

m scalCh − d∗ϑ ≥ 0
at some point, which includes Ricci-flat Kähler metrics and Kähler-Einstein metrics with
positive scalar curvature without global non-trivial Killing vector fields.

The paper is organized as follows. In Sect. 2, we summarize some basic facts onGeometric
Analysis, onComplexLinearAlgebra andon theChern connection. InSect. 3,we compute the
first and second variation formulas for the Chern-scalar curvature, proving Proposition 3.6
and Proposition 3.10. In Sect. 4, we prove the main results Theorem A, Theorem B and
Theorem C.

2 Preliminaries and notation

In this section, we summarize some basic facts on geometric analysis on Riemannian man-
ifolds, referring to e.g. [5,9,19,28], and we set the notation and some preliminary results
concerning the geometry of Hermitian metrics, see e.g. [16].

2.1 Basics on geometric analysis

2.1.1 A consequence of the Implicit Function Theorem

Let X , Y be Banach spaces, U ⊂ X an open set and L(X , Y ) the Banach space of
continuous linear maps T : X → Y . A map f : U → Y is said to be of class C1 if there
exists a continuous map d f : U → L(X , Y ) called differential of f such that

d f (x)(v) = lim
t→0

1
t ( f (x + tv) − f (x)) for any x ∈ U , v ∈ X .

Let us consider the Banach space L(k)(X , Y ), k ∈ N, given by

L(k)(X , Y ) := {
k-multilinear continuous maps T : X×. . .×X︸ ︷︷ ︸

k-times

→ Y
}

,

‖T ‖L(k)(X ,Y ) := sup
{|T (x1, . . ., xk)|Y : x1, . . ., xk ∈ X , |x1|X = . . . = |xk |X = 1

}
.

It can be directly checked that L(X , L(k−1)(X , Y )) � L(k)(X , Y ) for any k ∈ N. Therefore,
this allows to give the following recursive definition: a map f : U → Y is said to be of
class Ck if it is of class Ck−1 and there exists a continuous map d(k) f : U → L(k)(X , Y )

such that d(k) f (x) = d
(
d(k−1) f

)
(x) for any x ∈ U. As usual, f is said to be smooth if
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it is of class Ck for any k ∈ N. For the sake of shortness, we set f ′
x (v) := d f (x)(v) and

f ′′
x (v) := d(2) f (x)(v).

Let now f : U → Y be a smooth map and xo ∈ U a point. We recall that f is said to be a
submersion at xo if f ′

xo is surjective and the exact short sequence {0} → ker( f ′
xo) → X →

Y → {0} splits, i.e. there exists a closed subspace Zxo ⊂ X such that X = ker( f ′
xo) ⊕ Zxo

and the restriction f ′
xo |Zxo

is an isomorphism of Banach spaces from Zxo to Y . By the Implicit
Function Theorem, see e.g. [5, p. 72], if f is submersion at xo, it follows that:

i) f is locally surjective at xo, i.e. f maps any neighborhood of xo in X onto a neighborhood
of f (xo) in Y ;

ii) the preimage S f (xo) := f −1( f (xo)) is a smooth submanifold of X in a neighborhood of
xo with tangent space Txo S = ker( f ′

xo).

Finally, we recall that f : U → Y is said to be linearization stable at xo if, for any v ∈
ker( f ′

xo) ⊂ X , there exists a smooth path x : (−ε, ε) → X such that x(0) = xo, ẋ(0) = v

and f (x(t)) = f (xo) for any −ε < t < ε, see [12, p. 519]. Notice that, if f is submersion
at xo, then it is also linearization stable at xo, but the converse assertion is not true.

2.1.2 Sobolev spaces on Riemannian manifolds

Let M be a connected, compact, oriented smooth manifold without boundary of even
dimension dim M = 2m, g a fixed background Riemannian metric on M and νg the
induced Riemannian volume form. We extend g to a Riemannian metric on the fibers of
the bundle T(r ,s)M → M of (r , s)-tensors over M in the usual way and we denote by
Dg : C∞(M,T(r ,s)M) → C∞(M,T(r ,s+1)M) the Levi-Civita connection of g.

Let E → M be any vector subbundle of T(·,··)M . For any integer k ≥ 0 and for any tensor
fields h1, h2 ∈ C∞(M, E), we define the bilinear form

〈h1, h2〉Wk,2 :=
∑

0≤i≤k

∫

M
g
(
(Dg)i h1, (D

g)i h2
)
νg .

Since M is compact, the topology induced by the norm ‖ · ‖Wk,2 := √〈·, ·〉Wk,2 is indepen-
dent of the Riemannian metric g (see e.g. [19, Prop 2.2]). Accordingly, the Sobolev space
Wk,2(M, E) is defined as the completion of C∞(M, E) with respect to the norm ‖ · ‖Wk,2 .
For the sake of notation, we set L2 := W 0,2.

Notice that
(
Wk,2(M, E), 〈 , 〉Wk,2

)
is a Hilbert space.Moreover, for any k ≥ m+1, by the

Sobolev Embeddings Theorem (see e.g. [19, Thm 2.7]) there exists a continuous embedding
(
Wk,2(M, E), ‖ · ‖Wk,2

)
↪→ (Ck−m−1(M, E), ‖ · ‖Ck−m−1

)
, (2.1)

where ‖ · ‖Ck′ denotes the usual Ck′
-norm for any integer k′ ≥ 0.

Remark 2.1 We stress that (2.1) implies that Wk,2(M, E) consists of continuous sections
if k ≥ m + 1. In particular, it is possible to define Wk,2(M, E) with k ≥ m + 1 for any
subbundle E of T(·,··)M . A remarkable example is the space of Riemannian metrics of class
Wk,2 defined as

Mk := Wk,2(M, S2+(T ∗M)
)

.

Let now E, F be two vector subbundle of T(·,··)M and P : C∞(M, E) → C∞(M, F) a
linear differential operator of order r . We recall that:
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• the principal symbol of P is the endomorphism σ(P) : T ∗M ⊗ E → F defined as
follows: for any x ∈ M , ξ ∈ T ∗

x M , s ∈ Ex

σ(P)x (ξ ⊗ s) := 1
r ! P(φr u)(x) , (2.2)

where φ ∈ C∞(M,R) verifies φ(x) = 0, dφx = ξ and u ∈ C∞(M, E) verifies u(x) = s;
• the L2-adjoint of P is the unique linear differential operator P∗ : C∞(M, F) →

C∞(M, E) of order r satisfying

〈P(s1), s2〉L2 = 〈s1, P∗(s2)〉L2 for any s1 ∈ C∞(M, E) , s2 ∈ C∞(M, F) .

We also remark that P can be uniquely extended to a linear differential operator P :
Wk+r ,2(M, E) → Wk,2(M, F) for any integer k ≥ 0 (see [28, Thm 6, p. 152]). Then,
we have the following

Theorem 2.2 (Berger-Ebin SplittingLemma [7, Thm4.1]) Let P : C∞(M, E) → C∞(M, F)

be a linear differential operator of order r and k ∈ N such that k ≥ r . If P has injective
symbol or its L2-adjoint P∗ has injective symbol, then

Wk,2(M, F) = Im(P) ⊕ ker(P∗) ,

where P is extended to P : Wk+r ,2(M, E) → Wk,2(M, F) and, consequently, P∗ :
Wk,2(M, F) → Wk−r ,2(M, E). Moreover, if P has injective symbol, then ker(P) ⊂
Wk+r ,2(M, E) is finite dimensional and consists of smooth sections.

Remark 2.3 As a consequence of the Berger-Ebin Splitting Lemma, we remark that: if P∗ is
injective and has injective symbol, then P is surjective and its kernel splits.

2.2 Complex linear algebra

Let V = (V , J , g) be a triple given by a real vector space V of dimension dimR V = 2m,
a linear complex structure J on V and an Euclidean scalar product g on V such that
g(J (·), J (··)) = g(·, ··). The complexification VC := V ⊗R C splits as a sum of J -
eigenspaces VC = V 1,0 ⊕ V 0,1 and all the real tensors on V can be uniquely C-linearly
extended to VC. Fix a (J , g)-unitary basis (ei , Jei ) for V , and consider the associated com-
plex basis

εi := 1√
2
(ei − iJei ) , εī := 1√

2
(ei + iJei )

for VC, which is unitary with respect to the Hermitian extension of g to VC. Clearly, it
holds that εi = εī and Jεi = iεi , Jεī = −iεī . Moreover, J acts on covectors ϑ ∈ V ∗ via
(Jϑ) := −ϑ◦J , so that (ei , Jei ) is the dual basis of (ei , Jei ) forV ∗. For the complexification,
we get that

εi := 1√
2
(ei + iJei ) , εī := 1√

2
(ei − iJei )

is the dual basis of (εi , εī ), and Jεi = −iεi , Jεī = iεī . With respect to such basis, we have

g = δ j̄ i ε
i � ε j̄ , with εi � ε j̄ := εi ⊗ ε j̄ + ε j̄ ⊗ εi .

We consider now the spaces

Sym1,1(V ) := {h ∈ End(V ) : g(h(·), ··) = g(·, h(··)) , [h, J ] = 0} ,

Skew1,1(V ) := {h̃ ∈ End(V ) : g(h̃(·), ··) = −g(·, h̃(··)) , [h̃, J ] = 0} .
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Notice now that any h ∈ Sym1,1(V ) preserves the decomposition VC = V 1,0 ⊕ V 0,1 and
takes the form

h = h j
i ε j ⊗ εi + h j̄

ī
ε j̄ ⊗ εī , with h j

i ∈ C and h j̄
ī

= h j
i = hij .

Moreover, the linear map

Sym1,1(V ) → Skew1,1(V ) , h �→ h̃ = J ◦ h

is an isomorphism, with inverse given by h̃ �→ h = −J ◦ h̃. Then, we denote by trR :
Sym1,1(V ) → R the trace of the real endomorphism h : V → V and by trC : Sym1,1(V ) →
R the trace of the complex endomorphism h : V 1,0 → V 1,0, which are related by

tr R(h) =
∑

1≤i≤m

(
g(h(ei ), ei ) + g(h(Jei ), Jei )

)

= 2
∑

1≤i≤m

g(h(εi ), εī ) = 2 tr C(h) .

Finally, we consider the space

1,1(V ∗) := {α ∈ 2(V ∗) : a(J (·), J (··)) = α(·, ··)} ,

and we observe that the linear map

ρg : Sym1,1(V ) → 1,1(V ∗) , ρg(h) := g((J ◦ h) ·, ··)
is an isomorphism. Accordingly, we define

TrCg : 1,1(V ∗) → R , TrCg (α) := trC
(
ρ−1
g (α)

)
.

Since any α ∈ 1,1(V ∗) is of the form

α = α j̄ i i εi ∧ ε j̄ , with εi ∧ ε j̄ := εi ⊗ ε j̄ − ε j̄ ⊗ εi ,

an easy computation shows that

TrCg (α) =
∑

1≤i≤m

α(ei , Jei ) = −i
∑

1≤i≤m

α(εi , εī ) = δi j̄α j̄ i .

2.3 The Chern connection

Let (M, J , g) be a compact, connected, Hermitian manifold of dimension dimR M = 2m
and letω := ρg(Id) = g(J ·, ·) be its fundamental 2-form, where Id ∈ C∞(M,Sym1,1(T M))

is the identity endomorphism, Dg its Levi-Civita connection and ∇ its Chern connection,
defined by

g(∇XY , Z) := g(Dg
XY , Z) − 1

2 dω(J X , Y , Z) (2.3)

for any X , Y , Z ∈ C∞(M, T M). It is well-known that the Chern connection is characterized
by the following properties, see e.g. [16, p. 273]:

∇g = 0 , ∇ J = 0 , J (T (X , Y )) = T (J X , Y ) = T (X , JY ) ,

where T (X , Y ) := ∇XY −∇Y X −[X , Y ] is the torsion tensor of ∇, which can be expressed
by (see e.g. [16, Prop 4])

−2g(T (X , Y ), Z) = dω(J X , Y , Z) + dω(X , JY , Z) .
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We denote by

ϑ(X) := trR(T (X , ·)) = TrCg (X� dω) (2.4)

the Lee form. We also define the Chern-curvature operator by

�(g) ∈ C∞(M,1,1(T ∗M) ⊗ Skew1,1(T M)) , �(g)(X , Y ) := ∇[X ,Y ] − [∇X ,∇Y ] .

(2.5)

Moreover, we call first Chern-Ricci form the tensor field

S̃(g) ∈ C∞(M,1,1(T ∗M)) , S̃(g)(X , Y ) := − trC(J ◦ �(g)(X , Y )) (2.6)

and first Chern-Ricci symmetric endomorphism

S(g) ∈ C∞(M,Sym1,1(T M)) , S(g) := ρ−1
g

(
S̃(g)

)
.

Finally, the Chern-scalar curvature is the trace

scalCh(g) ∈ C∞(M,R) , scalCh(g) := 2 TrCg (S̃(g)) . (2.7)

We remark that, with this notation, when g is Kähler it holds that

S(g) = Ric(g) , scalCh(g) = scal(g) ,

where Ric(g) and scal(g) denote the Riemannian Ricci endomorphism and the Riemannian
scalar curvature of g, respectively. We recall that g is called first-Chern-Einstein if it satisfies
S(g) = λ

2m Id for some λ ∈ C∞(M,R), see [3,31] and references therein. Notice that, in this
case λ = scalCh(g) and, if g is Kähler, then this notion corresponds to the Kähler-Einstein
condition.

We also set dc := J−1◦ d ◦J , so that
d= ∂ + ∂̄ , dc = −i(∂ − ∂̄) , ddc = 2i∂∂̄

and we denote by �g := (Dg)∗Dg the Laplace-Beltrami operator. We recall that ddc and
�g are related by the following

Lemma 2.4 (see e.g. [15, p. 502]) For any function u ∈ C∞(M,R) it holds that

TrCg (ddcu) = �gu + g(du, ϑ) . (2.8)

Proof For the sake of completeness, we summarize here the computation. By the very defi-
nition, for any vector fields X , Y it holds that

ddcu(X , Y ) = LXLJY u − LYLJ Xu − LJ [X ,Y ]u . (2.9)

Let now (ẽα) = (ei , Jei ) be a local (J , g)-unitary frame on M and set A := ∇ − Dg . Then,
notice that

∑

1≤i≤m

−J [ei , Jei ] =
∑

1≤i≤m

−J (∇ei J ei − ∇Jei ei − T (ei , Jei ))

=
∑

1≤α≤2m

∇ẽα ẽα
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and so

TrCg (ddc u) =
∑

1≤i≤m

(ddc u)(ei , Jei )

= −
∑

1≤i≤m

(LeiLei u + LJeiLJei u) −
∑

1≤i≤m

LJ [ei ,Jei ]u

=
∑

1≤α≤2m

−(LẽαLẽα − LDg
ẽα
ẽα

)u +
∑

1≤α≤2m

LA(ẽα,ẽα)u .

Moreover, from (2.3) we get
∑

1≤α≤2m

A(ẽα, ẽα) =
∑

1≤α,β≤2m

− 1
2 dω(J ẽα, ẽα, ẽβ)ẽβ

=
∑

1≤β≤2m

∑

1≤i≤m

dω(ẽβ, ei , Jei )ẽβ =
∑

1≤β≤2m

ϑ(ẽβ)ẽβ = ϑ#

and therefore we obtain (2.8). ��
Given a function u ∈ C∞(M,R), we also denote by Hessg(u) ∈ C∞(M,Sym(T M)) the

Hessian of u defined by

g(Hessg(u)(X), Y ) := (Dg
X (du))(Y )

and we stress the following

Lemma 2.5 If g is Kähler, then

ddcu(X , Y ) = g(Hessg(u)(X), JY ) − g(Hessg(u)(J X), Y ) . (2.10)

Proof By the very definition, we have

g(Hessg(u)(X), Y ) = LXLY u − LDg
XY

u .

Therefore, since g is Kähler, we get

g(Hessg(u)(X), JY ) − g(Hessg(u)(J X), Y )

= LXLJY u − LDg
X (JY )u − LJ XLY u + LDg

J XY
u

= LXLJY u − LYLJ Xu − L[J X ,Y ]u − LJ Dg
XY

u

+ LJ Dg
Y X

u + L[J X ,Y ]u

= LXLJY u − LYLJ Xu − LJ [X ,Y ]u
= ddcu(X , Y )

which concludes the proof. ��
Finally, we introduce the following two operators

δg, δ
∇ : C∞(M,Sym(T M)) → C∞(M, T ∗M)

defined by

(δgh)(X) := trR
(
(Dgh)X

)
, (δ∇h)(X) := trR

(
(∇h)X

)
. (2.11)
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3 Variation formulas for the Chern-scalar curvature

Let (M, J ) be a compact, connected, complex manifold of dimension dimR M = 2m. We
consider the bundle S1,1+ (T ∗M) → M of symmetric, bilinear, positive definite, J -invariant
forms and, for any integer k ≥ m + 1, we define the space of Hermitian metrics on (M, J )

of class W 2,k as

Mk
H := Wk,2(M, S1,1+ (T ∗M)) .

For the sake of notation, we denote the space of smooth Hermitian metrics by MH :=
C∞(M, S1,1+ (T ∗M)).

3.1 First variation of the Chern-scalar curvature

Fix a smooth Hermitian metric g ∈ MH. Then, given an element h ∈ C∞(M,Sym1,1

(T M)), we consider the corresponding path (gt ) ⊂ MH given by

gt := g((Id+th) ·, ··) , t ∈ (−ε, ε)

with ε > 0 small enough. For the sake of notation, in this section we will always use this
shortener notation: if F is a function defined onMH, we write F ′ instead of F ′

g(h) to denote
the differential of F at g in the direction of h.

Proposition 3.1 The differential at g in the direction of h of the Chern connection is the
(1, 2)-tensor field ∇′ defined by

2∇′
XY = (∇Xh)(Y ) − (J ◦ ∇J Xh)(Y ) . (3.1)

Proof We setCt := ∇gt −∇g , that is a (2, 1)-tensor field. Then, by using the Koszul Formula
of the Chern connection (see e.g. [4, Sect 2.1])

2gt (C
t
XY , Z) = 2gt (∇gt

X Y , Z) − 2gt (∇g
XY , Z)

= LX (gt (Y , Z)) − LX (g(Y , Z)) − LJ X (gt (JY , Z)) + LJ X (g(JY , Z))

+ gt ([X , Y ], Z) − g([X , Y ], Z) − gt ([J X , Y ], J Z) + g([J X , Y ], J Z)

− gt ([X , Z ], Y ) + g([X , Z ], Y ) + gt ([J X , Z ], JY )

− g([J X , Z ], JY ) − 2tg(h(∇g
XY ), Z)

= tLX (g(h(Y ), Z)) − tLJ X (g(h(JY ), Z)) + tg(h([X , Y ]), Z)

− tg(h([J X , Y ]), J Z) − tg(h([X , Z ]), Y )

+ tg(h([J X , Z ]), JY ) − 2tg(h(∇g
XY ), Z)
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and so

2g(( 1t C
t )XY , Z) + 2g(h(Ct

XY ), Z) =
= g((∇g

Xh)(Y ), Z) − g((∇g
J Xh)(JY ), Z) − g(h(∇g

XY ), Z)

+ g(h([X , Y ]), Z) + g(h(∇g
X Z), Y )

− g(h([X , Z ]), Y ) + g(h(∇g
J XY ), J Z) − g(h([J X , Y ]), J Z)

− g(h(∇g
J X Z), JY ) + g(h([J X , Z ]), JY )

= g((∇g
Xh)(Y ), Z) − g((∇g

J Xh)(JY ), Z) − g(h(∇g
Y X + T g(X , Y )), Z)

+ g(h(∇g
Y X + T g(X , Y )), Z)

+ g(h(∇g
Z X + T g(X , Z)), Y ) − g(h(∇g

Z X + T g(X , Z)), Y )

= g((∇g
Xh)(Y ), Z) − g((∇g

J Xh)(JY ), Z) .

Letting t → 0, we obtain (3.1). ��
Lemma 3.2 The differential at g in the direction of h of the complex trace is the linear map
defined, for α ∈ C∞(M,1,1(T ∗M)), by

(TrC)′(α) = − 1
2 g(h, ρ−1

g (α)) . (3.2)

Proof Fix a local (J , g)-unitary frame (ei , Jei ) on M and the associated frame

εi := 1√
2
(ei − iJei ) , εī := 1√

2
(ei + iJei ) ,

so that

g = δ j̄ i ε
i � ε j̄ , ρg(h) = h j̄i i εi ∧ ε j̄ , α = α j̄ i i εi ∧ ε j̄ ,

where h j̄i = δ j̄ sh
s
i . If (gt ) j̄ i := δ j̄ i + th j̄i and ((gt )i j̄ ) := ((gt ) j̄ i )

−1, it follows that

(gt )
i j̄ = δi j̄ − tgir̄ hr̄s(gt )

s j̄ .

Since TrCg (α) = δi j̄α j̄ i , we get

(Tr C)′(α) = lim
t→0

1
t (Tr

C

gt (α) − Tr Cg (α))

= lim
t→0

1
t

(
(gt )

i j̄ − δi j̄
)
α j̄ i = −hi j̄α j̄ i ,

where hi j̄ = hisδ
s j̄ . On the other hand, one can directly check that

g(h, ρ−1
g (α)) = 2hi j̄α j̄ i ,

which completes the proof. ��
Proposition 3.3 The differential at g in the direction of h of the Chern-curature operator is
given by

2�′(X , Y ) = [�(X , Y ), h] + J ◦ (∇X∇JY h − ∇Y∇J Xh − ∇J [X ,Y ]h
)

. (3.3)

Proof By differentiating (2.5), we get

�′(X , Y ) = ∇′[X ,Y ] − [∇X ,∇′
Y ] − [∇′

X ,∇Y ] .
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Notice that

2[∇X ,∇′
Y ] = ∇X∇Y h − J ◦ ∇X∇JY h

and so we get

2�′(X , Y ) = ∇[X ,Y ]h − J ◦ ∇J [X ,Y ]h − ∇X∇Y h + J ◦ ∇X∇JY h

+ ∇Y∇Xh − J ◦ ∇Y∇J Xh

= �X ,Y h + J ◦ (∇X∇JY h − ∇Y∇J Xh − ∇J [X ,Y ]h
)

.

Here, by a slight abuse of notation, we denoted by �X ,Y the curvature of the connection
naturally induced on the bundle End(T M). Since �X ,Y h = [�(X , Y ), h], we obtain (3.3).

��
Lemma 3.4 For any vector field X it holds that

trC(∇Xh) = LX (trC h) . (3.4)

Proof Fix x ∈ M and let (ẽα) be a local orthonormal frame around x such that (Dẽα)x = 0.
Then, by using (2.3), at the point x we get

trR(∇Xh) =
∑

α

g((∇Xh)(ẽα), ẽα)

=
∑

α

g(∇X (h(ẽα)), ẽα) − g(h(∇X ẽα), ẽα)

=
∑

α

LX g(h(ẽα), ẽα) − 2g(h(ẽα),∇X ẽα)

= LX (trR h) +
∑

α,β

dω(J X , ẽα, ẽβ)g(h(ẽα), ẽβ)

= 2LX (trC h) .

Moreover, since ∇Xh ∈ C∞(M,Sym1,1(T M)), it holds that

trR(∇Xh) = 2 trC(∇Xh)

and so we get the thesis. ��
Proposition 3.5 The differential at g in the direction of h of the first Chern-Ricci form is
given by

S̃′ = 1
2 dd

c(trC h) . (3.5)

Proof Notice that the trace trC commutes with the differentiation. Moreover, it is straightfor-
ward to check that, for any vector fields X , Y and h ∈ C∞(M,Sym1,1(T M)), the commutator
[�(X , Y ), h] is a section of Sym1,1(T M), with zero trace. Therefore, J ◦ [�(X , Y ), h] ∈
C∞(M,Skew1,1(T M)), and so, by means of (2.6), (3.3), (3.4), and (2.9), we obtain

S̃′(X , Y ) = 1
2 tr

C
(∇X∇JY h − ∇Y∇J Xh − ∇J [X ,Y ]h

)

= 1
2

(
LXLJY (trC h) − LYLJ X (trC h) − LJ [X ,Y ](trC h)

)

= 1
2 dd

c(trC h)(X , Y )

and so we get (3.5). ��
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As a direct consequence of (3.2) and (3.5), and by (2.8), we get

Proposition 3.6 The differential at g in the direction of h of the Chern-scalar curvature is
given by

(scalCh)′ = �g(tr
C h) + g(d(trC h), ϑ) − g(h, S(g)) . (3.6)

3.2 Second variation of the Chern-scalar curvature

We are going to compute the second variation of the Chern-scalar curvature at a fixed
point g ∈ MH. Let gt = g((Id+th) ·, ··) as before. From [9], and by recalling the definition
of δg in (2.11), we have

Proposition 3.7 (see [9, Prop 1.184]) The differential at g in the direction of h of the Laplace-
Beltrami operator is given by

�′u = g(Hessg(u), h) + g(du, δgh) − g(du, d(trC h)) . (3.7)

By means of a straightforward computation in local coordinates, one can show that, for
any α, β ∈ C∞(M, T ∗M) and A, B ∈ C∞(M,End(T M)), we have

g(α, β)′ = −g(α ◦ h, β) , g(A, B)′ = 0 . (3.8)

For the following, we recall that δ∇ has been defined in (2.11):

Proposition 3.8 The differential at g in the direction of h of the Lee form is given by

ϑ ′ = d(trC h) − δ∇h . (3.9)

Proof By the very definition of Lee form (2.4), we have

ϑ ′(X) = trR
(
T ′(X , ·)) = trR

(∇′
X (·)) − trR

(∇′
(·)X

)
.

Then, from (3.1) and (3.4), it follows that

trR
(∇′

X (·)) = 1
2 tr

R
(∇Xh

) − 1
2 tr

R
(
J ◦ (∇J Xh)

) = LX (trC h) .

Moreover, given a local (J , g)-unitary frame (ei , Jei ), from (3.1) and (2.11) we get

tr R
(∇′

(·)X
) = 1

2

∑

1≤i≤m

(
g((∇ei h)(X), ei ) + g((∇Jei h)(X), Jei )

− g((∇Jei h)(J X), ei ) + g((∇ei h)(J X), Jei )
)

=
∑

1≤i≤m

g((∇ei h)(X), ei ) + g((∇Jei h)(X), Jei )

= (δ∇h)(X)

and so this proves Formula (3.9). ��
Proposition 3.9 The differential at g in the direction of h of the first Chern-Ricci symmetric
endomorphism is given by

g(S′(X), Y ) = −g((h ◦ S(g))(X), Y ) + 1
2 dd

c(trC h)(X , JY ) . (3.10)
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Proof Differentiating both sides of g(S(g)(X), Y ) = S̃(g)(X , JY ), we get

g((h ◦ S(g))(X), Y ) + g(S′(X), Y ) = S̃′(X , JY ) .

Therefore, by using (3.5), we get (3.10). ��

Finally, we are ready to prove the following

Proposition 3.10 The second differential at g in the direction of (h1, h2) of the Chern-scalar
curvature is given by

( scal Ch)′′ = g(Hess g( tr Ch1), h2) + g( d ( tr Ch1), δgh2 − δ∇h2)
−g( d ( tr Ch1), ϑ ◦ h2) + g(h1, h2 ◦ S(g))

− 1
2 g(h1, ρ

−1
g ( d d c( tr Ch2))) . (3.11)

Moreover, if g is Kähler, then

( scal Ch)′′ = g(Hess g( tr
Ch1), h2) + g(h1, Hess g( tr

Ch2))

+g(h1, h2 ◦ Ric(g)) .

(3.12)

Proof Notice that (3.11) follows directly from (3.6), (3.7), (3.8), (3.9) and (3.10). Assume
now that g is Kähler, then

δ∇ = δg , ϑ = 0 , S(g) = Ric(g) .

Moreover, by (2.10), we get

− 1
2 g(h1, ρ

−1
g (ddc(trC h2)))

= − 1
2

∑

1≤α,β≤2m

g(h1(ẽα), ẽβ) ddc(trC h2)(ẽα, J ẽβ)

= 1
2

∑

1≤α,β≤2m

(
g(h1(ẽα), ẽβ)g(Hessg(tr

C h2)(ẽα), ẽβ)

+ g(h1(ẽα), ẽβ)g(Hessg(tr
C h2)(J ẽα), J ẽβ)

)

=
∑

1≤α,β≤2m

g(h1(ẽα), ẽβ)g(Hessg(tr
C h2)(ẽα), ẽβ)

= g(h1,Hessg(tr
C h2))

which concludes the proof of (3.12). ��

4 Main results

Let again (M, J ) be a compact, connected, complex manifold of dimension dimR M = 2m.
In this section, we prove our main results, concerning the submersion and local surjectivity
properties for the map scalCh : MH → C∞(M,R), in view of the relationship between
infinitesimal and actual deformations of the Chern-scalar curvature function with respect to
a varying metric (see [12] for the Riemannian case).
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4.1 Submersion points for the Chern-scalar curvature

We begin this section with the following striaghtforward

Lemma 4.1 For any integer k ≥ m + 2, the map scalCh : Mk+2
H → Wk,2(M,R) is smooth.

Proof This follows directly by the local formula of the Chern-scalar curvature. More pre-
cisely, take a local chart (U, ξ = (z1, . . ., zm)) of holomorphic coordinates in an open set
of (M, J ). If we denote by � the Christoffel symbol of ∇ with respect to (U, ξ), by using
the Koszul Formula for the Chern connection (see e.g. [4, Sect 2.1] for notation), one can
directly check that the only non-vanishing components of � are

�k
i j = gkr̄ gr̄ j,i , �k̄

ī j̄
= �k

i j . (4.1)

Then, if we denote by �̂(g) ∈ C∞(M,1,1(T ∗M) ⊗ 1,1(T ∗M)) the totally covariant
Chern-curvature, by using (4.1) we can write

�̂(g) =� j̄ i �̄k i dz j̄ ∧ dzi ⊗ i dzk ∧ dz�̄ ,

� j̄ i �̄k = −�̂
(

∂
∂zi

, ∂

∂z j̄
, ∂

∂zk
, ∂

∂z�̄

) = −g�̄k, j̄ i + gsr̄ gr̄k,i g�̄s, j̄ .

Therefore, by the very definition of Chern-scalar curvature, we get

scalCh(g) = 2gk�̄gi j̄� j̄ i �̄k = −2gk�̄gi j̄ g�̄k, j̄ i + 2gk�̄gi j̄ gsr̄ gr̄k,i g�̄s, j̄ . (4.2)

Finally, notice that the local formula (4.2) and the multiplicative properties of the Sobolev
spaces (see e.g. [1, Thm 4.39]) imply that the map scalCh : Mk+2

H → Wk,2(M,R) is smooth
for any k ≥ m + 2. ��

For any g ∈ MH, we consider the linearized Chern-scalar curvature

γg : C∞(M,Sym1,1(T M)) → C∞(M,R) ,

γg(h) = 1
2

(
�g( tr

Rh) + g( d ( tr Rh), ϑ)
) − g(h, S(g))

given by (3.6) and its L2-adjoint

γ ∗
g : C∞(M,R) → C∞(M,Sym1,1(T M)) ,

γ ∗
g (u) = 1

2

(
�gu − g( du, ϑ) + ( d ∗ϑ) u

)
Id − u S(g) . (4.3)

For the following result in the Riemannian context, compare [12, Thm 1].

Proposition 4.2 Fix an integer k ≥ m + 2, let g ∈ Mk+2
H and set λ := scalCh(g) ∈

Wk,2(M,R). Assume that one of the following is satisfied:

i) g is not first-Chern-Einstein;
ii) g is first-Chern-Einstein and λ

m < d∗ϑ .

Then, the map scalCh : Mk+2
H → Wk,2(M,R) is a submersion at g.

Proof The principal symbol of γ ∗
g is clearly injective. Therefore, by means of Remark 2.3,

it is sufficient to prove that both (i), (ii) imply that γ ∗
g is injective.

Firstly, assume that g is not first-Chern-Einstein. Take u ∈ ker(γ ∗
g ) and a vector field

X ∈ C∞(M, T M) such that g(X , X) = 1 and set g(S(g)(X), X) = φ
2m , for some φ ∈

Wk,2(M,R). Then, by (4.3) we get

0 = 2g(γ ∗
g (u)X , X) = �gu − g(du, ϑ) + (

(d∗ϑ) − φ
m

)
u . (4.4)
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Since k ≥ m + 2, by (2.1) the coefficients of (4.4) are of class C1. We then apply [11, Thm
1.17]: it follows that u ≡ 0 or there exists an open dense subset U ⊂ M such that u(x) �= 0
for any x ∈ U and the complement M \ U has zero measure. Assume by contradiction that
u �≡ 0. Then, by (4.3) and (4.4), we obtain

0 = γ ∗
g (u) = u(−S(g) + φ

2m Id)

and so

S(g) = φ
2m Id for any x ∈ U .

In particular, this implies that φ = λ and that g is first-Chern-Einstein on the whole manifold
M , which is not possible by assumption. Then, (i) implies that γ ∗

g is injective.

On the other hand, assume that S(g) = λ
2m Id. Then, the equation γ ∗

g (u) = 0 is equivalent
to

�gu − g(du, ϑ) + ((d∗ϑ) − λ
m )u = 0 .

If (ii) holds true, then the Strong Maximum Principle (see e.g. [18, Thm 4.2]) implies that
u ≡ 0. ��

From Proposition 4.2, we get the proofs of Theorem A and Theorem B.

Proof of Theorem A Let g ∈ MH, set λ := scalCh(g) ∈ C∞(M,R) and assume that either g
is not first-Chern-Einstein, or g is first-Chern-Einstein with λ

m < d∗ϑ . Thanks to Proposition
4.2 and the Implicit Function Theorem,we know that, for any integer k ≥ m+2, the extension
of scalCh onMk+2

H is linearization stable at g and maps any neighborhood of g inMk+2
H onto

a neighborhood of λ in Wk,2(M,R). Moreover, by means of Theorem 2.2,

Wk,2(M,Sym1,1(T M)) = ker(γg) ⊕ Im(γ ∗
g ) .

It remains to prove the following claim: if h ∈ Im(γ ∗
g ) ⊂ Wk,2(M,Sym1,1(T M)) and

gt := g((Id+th) ·, ··), then scalCh(gt ) ∈ C∞(M,R) only if h ∈ C∞(M,Sym1,1(T M)).
So, takeh ∈ Im(γ ∗

g ) ⊂ Wk,2(M,Sym1,1(T M)) and assume that scalCh(gt ) ∈ C∞(M,R).
By differentiating with respect to t , it follows that γg(h) ∈ C∞(M,R). By hypothesis,
there exists u ∈ Wk+2,2(M,R) such that h = γ ∗

g (u). Since γgγ
∗
g has injective symbol and

γgγ
∗
g (u) ∈ C∞(M,R), it follows that u ∈ C∞(M,R). Therefore h ∈ C∞(M,Sym1,1(T M))

and the claim follows. ��
Proof of Theorem B Let us observe that, if one of the conditions stated in Theorem B is
satisfied, then (M, J ) does not admit any smooth first-Chern-Einstein metric (see [3, Thm
5]). Take g ∈ MH(λ). Then, for any k ≥ m+2, by means of Proposition 4.2 and the Implicit
Function Theorem, the preimage (scalCh)−1(λ) inside Mk+2

H is a smooth submanifold in a
neighborhood of g with tangent space at g given by ker(γg) ⊂ Wk+2,2(M,Sym1,1(T M)).
This gives rise to a structure of smooth ILH-submanifold on the spaceMH(λ) = {g ∈ MH :
scalCh(g) = λ} insideMH. ��
Remark 4.3 First, we recall that, by [14, Thm 1], in any conformal class of Hermitianmetrics,
there is a unique Gauduchon metric with volume 1, where being Gauduchon means that the
associated (1, 1)-form η satisfies ddc ηm−1 = 0. The Gauduchon degree of the conformal
class {η} is then defined as

�({η}) :=
∫

M
cBC1 (K−1

M ) ∧ ηm−1 =
∫

M
scalCh(η) ηm ,
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and it is equal to the volume of the divisor associated to any meromorphic section of the anti-
canonical line bundle K−1

M by means of the Gauduchon metric, see [15, Sect I.17]. We can
now recall the following known facts concerning the condition forMH(λ) to be non-empty.

• If there exists a conformal class {η} on (M, J )with�({η}) = 0, thenMH(λ) is non-empty
for λ = 0 constant (see [2, Thm 3.1]). Moreover, if η is balanced (that is, dηm−1 = 0)
with scalCh(η) = 0, then MH(λ) is non-empty if λ ∈ C∞(M,R) changes sign and∫
M λ ηm < 0 (see [13, Thm 2.11]).

• If there exists a conformal class {η} on (M, J ) with �({η}) < 0, then MH(λ) is non-
empty for any negative constant λ < 0 (see [2, Thm 4.1]) and for any non-identically
zero λ ∈ C∞(M,R) such that λ ≤ 0 (see [13, Thm 2.5]). This happens, in particular,
when the Kodaira dimension Kod(M, J ) is positive (see [15, Sect I.17]).

• If M = N × �, where N is a compact complex manifold admitting a conformal class
{η} with �({η}) > 0 and � is a compact Riemann surface with χ(�) < 0, then MH(λ)

is non-empty for any positive constant λ > 0 (see [2, Prop 5.7]).
• If the Chern-Yamabe conjecture [2, Conj 2.1] has an affirmative answer, then MH(λ)

is non-empty for λ ∈ I ⊂ R constant as follows: I = R when neither KM nor K−1
M

is pseudo-effective; I = (0,+∞) when K−1
M is pseudo-effective and non-unitary flat;

I = (−∞, 0) when KM is pseudo-effective and non-unitary flat; I = {0} when KM is
unitary flat (see [30], [32, Thms 1.1, 3.4]).

• Further examples of compact manifolds admitting Hermitian metrics with positive con-
stant Chern-scalar curvature are given by the Hopf surface [17], the homogeneous
non-Kähler C-spaces [29], the Hirzebruch surfaces [26], the Bérard-Bergery standard
cohomogeneity one complex manifolds [4].

4.2 Linearization instability and infinitesimal isometries

We conclude by providing an example of linearization instability. To this aim, we first
need the following result due to Fischer-Marsden. For the convenience of the reader, we
recall the argument here below.

Lemma 4.4 ([12, Lemma 7.1]) Fix go ∈ MH. If scalCh is linearization stable at go, then

∫

M
u (scalCh)′′go(h, h) νgo = 0 (4.5)

for any h ∈ ker(γgo), for any u ∈ ker(γ ∗
go).

Proof Fix h ∈ ker(γgo) and u ∈ ker(γ ∗
go). Since scalCh is linearization stable at go, there

exists a smooth path g : (−ε, ε) → MH such that g(0) = go, ġ(0) = h and scalCh(g(t)) =
scalCh(go) for any −ε < t < ε. Differentiating this last equation twice, we get

0 = d2

dt2
scalCh(g(t))

∣∣
t=0 = (scalCh)′′g(h, h) + (scalCh)′g(g′′(0))
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and so, since γ ∗
go(u), we get

0 =
∫

M
u (scalCh)′′g(h, h) νgo +

∫

M
u (scalCh)′g(g′′(0)) νgo

=
∫

M
u (scalCh)′′g(h, h) νgo + 〈u, γgo(g

′′(0))〉L2

=
∫

M
u (scalCh)′′g(h, h) νgo

which concludes the proof. ��
In the Theorem C, we consider a Kähler-Einstein metric with positive scalar curvature.

Notice that Kähler-Einstein metrics with negative scalar curvature do satisfy the hypothesis
of Theorem A, and so they are necessarily linearization stable.

Proof of Theorem C Let λo := scal(go) > 0 be the scalar curvature of go. By (3.6), (4.3),
(3.12) and by hypothesis, we have

γgo(h) = 1
2

(
�go(tr

R h) − λo
m (trR h)

)
, γ ∗

go(u) = 1
2

(
�gou − λo

m u
)
Id ,

(scalCh)′′go(h, h) = go(Hessgo(tr
R h), h) + λo

2m |h|2go .

It is known that the vector space of Killing vector fields is isomorphic to the space of smooth
functions f such that �go f = λo

m f , see e.g. [25, p 96]. Therefore, by hypothesis, λo
m is an

eigenvalue of the Laplace-Beltrami operator �go , so that ker(γ ∗
go) �= {0}. Assume also by

contradiction that scalCh is linearization stable at go. Then, by means of (4.5), it follows that
∫

M
u |h|2go νgo = 0 for any u ∈ ker(γ ∗

go) , h ∈ C∞(M,Sym1,1
0 (T M)) , (4.6)

where Sym1,1
0 (T M) denotes the subbundle of elements in Sym1,1(T M) with zero trace. Fix

u ∈ C∞(M,R) such that �gou = λo
m u and u �≡ 0. By means of the Stokes’ Theorem, it

follows that
∫

M
u νgo = 0

and so there exists an open ball B ⊂ M such that u(x) > 0 for any x ∈ B. Fix h ∈
C∞(M,Sym1,1

0 (T M)) and, up to shrinking B, assume that |h|2go > 0 on the whole B. Pick
a smaller ball B ′ ⊂ B and a function ψ ∈ C∞(M,R) with supp(ψ) ⊂ B and such that
ψ(x) = 1 for any x ∈ B ′. Then, since trR(ψh) = 0, by (4.6) we get

0 =
∫

M
u |ψh|2go νgo ≥

∫

B′
u |h|2go νgo > 0 ,

which is not possible. ��
Acknowledgements The authors are warmly grateful to Matteo Focardi and Fabio Podestà for useful discus-
sions and to the anonymous referee for the careful reading of the manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


1692 D. Angella, F. Pediconi

References

1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces, second edition. Pure and applied mathematics, vol. 140.
Elsevier/Academic Press, Amsterdam (2003)

2. Angella, D., Calamai, S., Spotti, C.: On the Chern-Yamabe problem. Math. Res. Lett. 24(3), 645–677
(2017)

3. Angella, D., Calamai, S., Spotti, C.: Remarks on Chern-Einstein Hermitian metrics. Math. Z. 295(3–4),
1707–1722 (2020)

4. Angella, D., Pediconi, F.: On cohomogeneity one Hermitian non-Kähler metrics, preprint version:
arXiv:2010.08475

5. Aubin, Th.: Some nonlinear problems in Riemannian geometry, Springer Monographs in mathematics.
Springer-Verlag, Berlin (1998)

6. Bérard-Bergery, L.: La courbure scalaire des variétés riemanniennes. Bourbaki seminar, vol. 1979/80,
lecture notes in math, vol. 842, pp. 225–245. Springer, Berlin-New York (1981)

7. Berger, M., Ebin, D.: Some decompositions of the space of symmetric tensors on a Riemannian manifold.
J. Differ. Geom 3, 379–392 (1969)

8. Berger, M., Gauduchon, P., Mazet, E.: Le spectre d’une variété riemannienne. Lecture notes in mathe-
matics, vol. 194. Springer-Verlag, Berlin-New York (1971)

9. Besse, A.L.: Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 10. Springer-
Verlag, Berlin (1987)

10. Bourguignon, J.-P.: Une stratification de l’espace des structures riemanniennes. Compositio Math. 30,
1–41 (1975)

11. Cheeger, J., Naber, A., Valtorta, D.: Daniele critical sets of elliptic equations. Comm. Pure Appl. Math.
68(2), 173–209 (2015)

12. Fischer, A.E., Marsden, J.E.: Deformations of the scalar curvature. Duke Math. J. 42(3), 519–547 (1975)
13. Fusi, E.: The prescribed Chern scalar curvature problem, arXiv:2105.10220
14. Gauduchon, P.: Le théorème de l’excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B 285(5), A387–A390

(1977)
15. Gauduchon, P.: La 1-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267(4), 495–518

(1984)
16. Gauduchon, P.: Hermitian connections and Dirac operators. Boll. Un. Mat. Ital. B 11(7), 257–288 (1997).

(no. 2, suppl)
17. Gauduchon, P., Ivanov, S.: Einstein-Hermitian surfaces and Hermitian Einstein-Weyl structures in dimen-

sion 4. Math. Z. 226(2), 317–326 (1997)
18. Goffi, A., Pediconi, F.: A note on the strong maximum principle for fully nonlinear equations on Rieman-

nian manifolds. J. Geom. Anal. 31(8), 8641–8665 (2021)
19. Hebey, E.: Nonlinear analysis on manifolds: sobolev spaces and inequalities. New York University,

Courant Institute of Mathematical Sciences, American Mathematical Society, Providence, RI (1999)
20. Ho, P.T.: Results related to the Chern-Yamabe flow. J. Geom. Anal. 31(1), 187–220 (2021)
21. Kazdan, J.L., Warner, F.W.: Curvature functions for compact 2-manifolds. Ann. Math. 99(2), 14–47

(1974)
22. Kazdan, J.L., Warner, F.W.: Scalar curvature and conformal deformation of Riemannian structure. J.

Differ. Geom. 10, 113–134 (1975)
23. Kazdan, J.L., Warner, F.W.: Existence and conformal deformation of metrics with prescribed Gaussian

and scalar curvatures. Ann. Math. 101(2), 317–331 (1975)
24. Kazdan, J.L., Warner, F.W.: A direct approach to the determination of Gaussian and scalar curvature

functions. Invent. Math. 28, 227–230 (1975)
25. Kobayashi, S.: Transformation groups in differential geometry, reprint of the 1972 edition, classics in

mathematics. Springer-Verlag, Berlin (1995)
26. Koca, C., Lejmi, M.: Hermitian metrics of constant Chern scalar curvature on ruled surfaces. Kodai Math.

J. 3(3), 409–430 (2020)
27. Palais, R: Seminar on the Atiyah-Singer index theorem, with contributions by Atiyah, M.F., Borel, A.,

Floyd, E.E., Seeley, R.T., Shih, W., Solovay, R., Annals of Mathematics Studies, No. 57 Princeton Uni-
versity Press, Princeton, N.J. (1965)

28. Palais, R.: Seminar on the Atiyah-Singer index theorem. Princeton University Press, Princeton (1965)
29. Podestá, F.: Homogeneous Hermitian manifolds and special metrics. Transform. Groups 23(4), 1129–

1147 (2018)
30. Teleman, A.: The pseudo-effective cone of a non-Kählerian surface and applications. Math. Ann. 335(4),

965–989 (2006)

123

http://arxiv.org/abs/2010.08475
http://arxiv.org/abs/2105.10220


On the linearization stability of the Chern-scalar... 1693

31. Tosatti, V.: Non-Kähler Calabi-Yau manifolds, analysis, complex geometry, and mathematical physics:
in honor of Duong H. Phong. Contemp. Math. Amer. Math. Soc. Providence, RI 644, 261–277 (2015)

32. Yang, X.-K.: Scalar curvature on compact complex manifolds. Trans. Amer. Math. Soc. 371, 2073–2087
(2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	On the linearization stability of the Chern-scalar curvature
	Abstract
	1 Introduction
	2 Preliminaries and notation
	2.1 Basics on geometric analysis
	2.1.1 A consequence of the Implicit Function Theorem
	2.1.2 Sobolev spaces on Riemannian manifolds

	2.2 Complex linear algebra
	2.3 The Chern connection

	3 Variation formulas for the Chern-scalar curvature
	3.1 First variation of the Chern-scalar curvature
	3.2 Second variation of the Chern-scalar curvature

	4 Main results
	4.1 Submersion points for the Chern-scalar curvature
	4.2 Linearization instability and infinitesimal isometries

	Acknowledgements
	References




