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Abstract
The sharp range of L p-estimates for the class ofHörmander-type oscillatory integral operators
is established in all dimensions under a general signature assumption on the phase. This
simultaneously generalises earlier work of the authors and Guth, which treats the maximal
signature case, and alsowork of Stein andBourgain–Guth, which treats theminimal signature
case.
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1 Introduction

1.1 Main results

This article concerns L p bounds for oscillatory integral operators that are natural variable
coefficient generalisations of the Fourier extension operator associated to surfaces of non-
vanishing Gaussian curvature. To describe the basic setup, for d ≥ 1 let Bd denote the
unit ball in R

d and fix a dimension n ≥ 2. Suppose a ∈ C∞
c (Rn × R

n−1) is supported in
Bn×Bn−1 and consider a smooth function φ : Bn×Bn−1 → Rwhich satisfies the following
conditions:

(H1) rank ∂2ωxφ(x;ω) = n − 1 for all (x;ω) ∈ Bn × Bn−1.
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(H2) Defining the map G : Bn × Bn−1 → Sn−1 by G(x;ω) := G0(x;ω)
|G0(x;ω)| where

G0(x;ω) :=
n−1∧

j=1

∂ω j ∂xφ(x;ω),

the curvature condition

det ∂2ωω〈∂xφ(x;ω), G(x;ω0)〉|ω=ω0 �= 0 (1.1)

holds for all (x;ω0) ∈ supp a.

For any λ > 1 let aλ(x;ω) := a(x/λ;ω) and φλ(x;ω) := λφ(x/λ;ω) and define the
operator T λ by

T λ f (x) :=
ˆ

Bn−1
e2π iφλ(x;ω)aλ(x;ω) f (ω) dω (1.2)

for all integrable f : Bn−1 → C. In this case T λ is said to be a Hörmander-type operator.
A prototypical example is given by the choice of phase

φell(x;ω) := 〈x ′, ω〉 + xn · 1
2
|ω|2, x = (x ′, xn) ∈ R

n−1 × R;
in this case (1.2) is thewell-known extension operator Eell associated to the elliptic paraboloid
(with the additional cutoff function aλ localising the operator to a spatial ball of radius λ):
see Example 1.4 below.

Operators of the form (1.2) were introduced by Hörmander [24] as a simultaneous gen-
eralisation of Fourier extension operators and operators which arise in the Carleson–Sjölin
approach to the study of Bochner–Riesz means [17]. The L p theory of Hörmander-type oper-
ators has been investigated in a number of articles over the last few decades: see, for instance,
[5–7,9,12,21,24,26,27,32,40] and references therein. A recent survey of the history of the
problem can be found in the introductory section of [21].

It has been observed that, in general, the L p mapping properties of T λ are determined by
finer geometric conditions on the phase than (H1) and (H2) above [7,9,27,40]. In particular,
in addition to the Hessian in (1.1) having full rank, the behaviour of the operator can often
depend on the signature of the matrix.

Definition 1.1 Suppose φ is a phase which satisfies (H1) and (H2) above. The eigenvalues
of the symmetric matrix

∂2ωω〈∂xφ(x;ω), G(x;ω0)〉|ω=ω0

can be defined as continuous functions on Bn × Bn−1 which are bounded away from 0. The
signature of φ is defined to be the quantity sgn(φ) := |σ+ − σ−| where σ+ and σ− are,
respectively, the number of positive and the number of negative eigenvalue functions.

The aim of this article is to prove L p estimates for general Hörmander-type operators,
with a range of p determined by the signature of the phase.

Theorem 1.2 Suppose T λ is a Hörmander-type operator. For all ε > 0 the a priori estimate1

‖T λ f ‖L p(Rn) �ε,φ,a λε‖ f ‖L p(Bn−1) (1.3)

1 Given a (possibly empty) list of objects L , for real numbers A p, Bp ≥ 0 depending on some Lebesgue
exponent p the notation A p �L Bp or Bp �L A p signifies that A p ≤ C Bp for some constantC = CL,n,p ≥
0 depending on the objects in the list, n and p. In addition, A p ∼L Bp is used to signify that A p �L Bp and
A p �L Bp .
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Sharp Lp estimates for oscillatory integral operators… 1145

holds whenever p satisfies

p ≥

⎧
⎪⎨

⎪⎩

2 · sgn(φ)+ 2(n + 1)

sgn(φ)+ 2(n − 1)
if n is odd

2 · sgn(φ)+ 2n + 3

sgn(φ)+ 2n − 1
if n is even

. (1.4)

The ‘extreme’ cases of this result already appear in the literature:

Minimal σ Stein [32] and Bourgain–Guth [12] showed that all Hörmander-type operators
satisfy (1.3) for2

p ≥

⎧
⎪⎪⎨

⎪⎪⎩

2 · n + 1

n − 1
if n is odd

2 · n + 2

n
if n is even

. (1.5)

This yields Theorem1.2 in the special casewhere the signature isminimal (so that sgn(φ) = 0
if n is odd and sgn(φ) = 1 if n is even).

Maximal σ. On the other hand, if sgn(φ) = n − 1, then it was shown by Lee [26] for
n = 3 (see also [12]) and by Guth and the authors [21] for n ≥ 4 that (1.3) holds for

p ≥

⎧
⎪⎪⎨

⎪⎪⎩

2 · 3n + 1

3n − 3
if n is odd

2 · 3n + 2

3n − 2
if n is even

,

agreeing with the range of exponents in (1.4).
Theorem 1.2 gives new bounds away from these extremes. In particular, in all other cases

the previous best known range of exponents is (1.5), arising from the work of Stein [32] and
Bourgain–Guth [12]. If 0 < sgn(φ) < n − 1 for n odd or 1 < sgn(φ) < n − 1 for n even,
then (1.4) provides a strictly larger range than (1.5).

1.2 Sharpness

An interesting feature of the result is that it is sharp for specific choices of operator, in the
following sense.

Proposition 1.3 For every dimension n ≥ 2 and every 0 ≤ σ ≤ n − 1 such that n − 1− σ is
even, there exists a Hörmander-type operator with sgn(φ) = σ for which (1.3) fails whenever
p does not satisfy (1.4).

These examples are given by essentially taking tensor products of existent examples for
the σ = 0 and σ = n − 1 cases, which are due to Bourgain [7,9] and Bourgain–Guth [12]
(see also [27,40]). The details are discussed in Sect. 2 below.

2 More precisely, Stein [32] proved a stronger L2 → L p bound with no ε-loss in all dimensions for p ≥
2 · n+1

n−1 . The larger range of exponents in the even dimensional case was later obtained by Bourgain–Guth
[12].
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1146 J. Hickman, M. Iliopoulou

1.3 Non-sharpness

It is also important to note that there exist examples of operators for which (1.3) is known
to hold for a wider range of exponents than (1.4). For instance, the extension operator Eell

associated to the elliptic paraboloid, which is a prototypical example in themaximal signature
case, has been shown to satisfy a wider range of L p estimates than (1.4) in all but a finite
number of dimensions (see [12,19,23,39]). More generally, one may consider extension
operators associated to arbitrary paraboloids.

Example 1.4 Given a non-degenerate quadratic form Q : Rn−1 → R, define the associated
extension operator

EQ f (x) :=
ˆ

Bn−1
e2π i(〈x ′,ω〉+xn Q(ω)) f (ω) dω, x = (x ′, xn) ∈ R

n−1 × R. (1.6)

Let 0 ≤ σ ≤ n − 1 be such that n − 1 − σ is even. Affine invariance typically reduces the
study of these operators to that of the prototypical examples where

Qσ (ω) := 1

2
〈In−1,σ ω, ω〉 = 1

2

n−1+σ
2∑

j=1

ω2
j −

1

2

n−1∑

j= n+1+σ
2

ω2
j .

Here, writing Id for a d × d identity matrix, the (n − 1)× (n − 1) matrix In−1,σ is given in
block form by

In−1,σ :=
[
I n−1+σ

2
0

0 −I n−1−σ
2

]
.

In this case, the corresponding phase in (1.6) has signature σ and Eσ := EQσ is the extension
operator associated to (a compact piece of) the hyperbolic paraboloid

H
n−1,σ := {(ω, Qσ (ω)) : ω ∈ R

n−1}.
As discussed in Sect. 4.3 below, at a local level all Hörmander-type operators are smooth
perturbations of the prototypical operators Eσ .

It is conjectured [33] that the operators EQ (and, in fact, extension operators associated
to any surface of non-vanishing Gaussian curvature) are L p(Bn−1) → L p(Rn) bounded
for p > 2 · n

n−1 , regardless of the signature. Restriction theory for hyperbolic parabolæ
involves a number of novel considerations compared with that of the elliptic case, and has
been investigated in a variety of works [1,12,18,25,35,38]. There has also been a recent
programme [13–16] to investigate L p-boundedness of extension operators associated to
negatively-curved surfaces given by smooth perturbations of the hyperbolic paraboloidH2,0

from Example 1.4; this turns out to be a rather subtle problem for p < 4.

1.4 Relation to other problems

It is well-known that L p estimates for the Fourier extension operators are related to many
central questions in harmonic analysis such as the Kakeya conjecture, the Bochner–Riesz
conjecture and the local smoothing conjecture for the wave equation (see, for instance, [37]).
In the maximal signature case, L p estimates for Hörmander-type operators imply Bochner–
Riesz estimates and are further connected to curved variants of the above problems defined
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Sharp Lp estimates for oscillatory integral operators… 1147

over manifolds (see, for instance, [4,30,31]), although some of the implications are not as
strong as in the Euclidean setting (see3 [21, §1.2] for results and further details). For operators
with general signature, Theorem 1.2 relates to further generalisations of the Kakeya and
local smoothing problems, the latter now defined with respect to a class of Fourier integral
operators. The connections with FIO theory are discussed in detail in [3,4]; see [40] and [12]
for further details of the underlying Kakeya-type problems.

1.5 The rôle of the signature

The proof of Theorem 1.2 follows the argument used to establish the sgn(φ) = n − 1 case
from [21], with a number ofmodifications to take account of the relaxed signature hypothesis.
There are two significant points of departure from [21], where the signature plays a critical
rôle in the argument (also reflected in the sharp examples in Sects. 2 and 3). In both cases,
to illustrate the underlying ideas it suffices only to consider the prototypical operators EQ

introduced in Example 1.4.
Partial transverse equidistribution.Transverse equidistribution estimates were introduced

in [20] in relation to the elliptic extension operator Eell and play a significant rôle here. In order
to describe the setup, it is necessary to briefly review the notion ofwave packet decomposition
(see Sect. 4.4 for further details). Decompose Bn−1 into a family of finitely-overlapping
R−1/2 discs θ = B(ωθ , R−1/2). By means of a partition of unity, for f : Bn−1 → C write
f = ∑

θ fθ where each fθ is supported in θ . Forming a Fourier series decomposition, one
may further decompose fθ = ∑

v fθ,v where the frequencies v lie in the lattice R1/2
Z

n−1

and the f̂θ,v are essentially supported in disjoint balls of radius R1/2. The functions EQ fθ,v

satisfy the following key properties:

(i) On B(0, R), each EQ fθ,v is essentially supported in a tube Tθ,v of length R and diameter
R1/2 which is parallel to the normal direction G(ωθ ) := (−∂ω Q(ωθ ), 1)
 and has
position dictated by v.

(ii) The Fourier transform
(
EQ fθ,v

)
̂ has (distributional) support on the cap


(θ) := {
(ω, Q(ω)) : ω ∈ θ

}
.

For general Hörmander-type operators T λ a similar setup holds, with the exception that the
tubes Tθ,v carrying the functions T λ fθ,v may be curved (see Sect. 4.4).

The incidence geometry of the tubes Tθ,v is a major consideration in the L p-theory of
Hörmander-type operators. A critical case occurs when f is chosen so that the Tθ,v for
which E fθ,v /≡ 04 are aligned along a lower dimensional manifold Z (or, more precisely,
a lower dimensional algebraic variety) inside B(0, R); indeed, analogous situations appear
when considering extremal configurations in classical incidence geometry (see, for instance,
[22]), and in fact the (variable coefficient) sharp examples in Sect. 2 exhibit similar structure.
Under this hypothesis, by property i) above, EQ f is essentially supported in NR1/2 Z , the
R1/2-neighbourhood of Z . It is important to note, however, that the E fθ,v each carry some
oscillation. If there is sufficient constructive/destructive interference between the wave pack-
ets, then it could be the case that the mass of EQ f is concentrated in a much thinner subset
of NR1/2 Z .

3 Note the statements of Corollary 1.4 and Corollary 1.5 in [21] contain an unwanted λ(n−1)/2 factor. The
authors thank Pierre Germain for pointing out this typographical error.
4 Or for which E fθ,v is “non-negligiable”.
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V = Aell × R

Aell

V ⊥

V

V ⊥

Fig. 1 Transverse equidistribution in the elliptic case. On the spatial side (right-hand figure) the wave packets
are aligned along a plane V . On the frequency side (left-hand figure), the frequency support is aligned along
V = Aell × R

The signature influences theway inwhich thewave packets EQ fθ,v can interferewith each
other. The reason behind this, as explained below, is that the signature largely determines the
relationship between the direction G(ωθ ) of each tube Tθ,v on the spatial side and the position
of the cap
(θ) on the frequency side. In themaximal signature case this relationship, together
with the uncertainty principle, ensures that the mass of EQ f cannot concentrate in a thinner
neighbourhood of the variety, but must be evenly spread across NR1/2 Z . For general maximal
signature Hörmander-type operators, this property can be formally realised via transverse
equidistribution estimates, which roughly take the form5

 
N

ρ1/2 Z∩B(0,R)

|T λ f |2 �
 

NR1/2 Z∩B(0,R)

|T λ f |2, ρ ≤ R. (1.7)

These estimates play an important rôle in the proof of the maximal signature case of Theo-
rem 1.2 by efficiently relating the wave packet geometry at different scales (see [20,21]). If
the maximal signature hypothesis is dropped, however, then (1.7) no longer holds in general.
Nevertheless, there is a spectrum of weaker variants of (1.7), involving additional powers of
(R/ρ), which do hold in the general case. The relevant strength of these partial transverse
equidistribution estimates depends on the signature of the underlying operator. The precise
form of these inequalities is discussed in Sect. 5 below.

It remains to explain how the signature affects the localisation properties of EQ f . Here
an elliptic case is contrasted with a hyperbolic case in R

3, for wave packets aligned along
the subspace V := 〈�e1〉⊥, the 2-dimensional plane orthogonal to �e1.

In particular, consider the elliptic extension operator Eell in R
3 given by the signature

2 form Qell(ω) := 1
2

(
ω2
1 + ω2

2

)
. The situation is depicted in Fig. 1. The directions G(ωθ )

all lie inside V , thus the ωθ lie along the line Aell = {ω1 = 0} in R
2. The Fourier support

of Eell f thus lies in a union of caps 
(θ) over θ centred along Aell, so supp
(
Eell f

)
̂ ⊆

NR−1/2(Aell × R). Owing to this localisation, the uncertainty principle implies that Eell f is
essentially constant at scale R1/2 in the direction transverse (that is, normal) to Aell × R.
Crucially, Aell × R = V , thus the mass of Eell f must be equidistributed across the slab

5 Here
ffl

E F := 1
|E |

´
E F denotes the integral average.
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V

Ahyp = V ⊥

V

V ⊥

Fig. 2 Failure of transverse equidistribution in the hyperbolic case. On the spatial side (right-hand figure)
the wave packets are aligned along the same plane V as in the elliptic case. However, on the frequency side
(left-hand figure), the frequency support is aligned along V ′ = Ahyp × R where Ahyp = V⊥

NR1/2(V ) in the transverse direction to V . This observation can be used to prove (a suitably
rigorous formulation of) the transverse equidistribution estimate (1.7) in this case: see [20].

The above case is somewhat special since V equals Aell × R, the plane along which the
Fourier support of Eell f is aligned. For general 2-planes V , the Fourier support is aligned
along a (possibly) different 2-plane V ′. However, a key observation is that, in the elliptic
case, V and V ′ only ever differ by a small angle, so again equidistribution of Eell f holds
at scale R1/2 in the direction transverse to V . Moreover, the argument generalises to higher
dimensions: if the tubes Tθ,v lie along a k-plane V in R

n , then Eell f is equidistributed in
directions belonging to V⊥. Variants also holdwhen V is replaced by amore general algebraic
variety Z (see [20]).

For contrast, now consider the case of the hyperbolic extension operator Ehyp inR3 given
by the signature 0 form Q(ω) := ω1ω2. This situation is depicted in Fig. 2. The ωθ must
lie along Ahyp = {ω2 = 0}, so supp

(
Ehyp f

)
̂ is contained in NR−1/2(Ahyp × R). This

localisation of the Fourier support guarantees that Ehyp f is equidistributed at scale R1/2 in
directions transverse to Ahyp × R. However, this time, these directions are not transverse
to V ; instead, they lie along V . Indeed, not only are Ahyp × R and V different, but in fact
V⊥ ⊆ Ahyp × R. Consequently, the transverse equidistribution estimate (1.7) no longer
holds, and the constructive/destructive interference patterns between the Tθ,v can in fact lead
to the concentration of the mass of EQ f in a tiny O(1)-neighbourhood of V . The variable
coefficient counterexamples of Bourgain [7,9] for Hörmander-type operators of signature 0
exhibit destructive interference of this kind (see [21] for further details).

In the mixed signature case in R
n , in general only partial equidistribution occurs as a

fusion of the above two situations. Specifically, consider an operator EQ associated to some
Q with signature σ and let V be a k-dimensional subspace of Rn . In general, if the Tθ,v are
aligned along V , then the Fourier support of EQ f will be aligned along a k-dimensional
affine subspace V ′ := A × R, where A = {ω ∈ Bn−1 : G(ω) ∈ V }. The problem is to
understand the relationship between V and V ′. In particular, if V and V ′ are close to one
another (that is, the angle between them is small), then this mirrors the situation in the elliptic
case and transverse equidistribution holds. If V and V ′ are far from one another (that is, the
angle between them is large), then this mirrors the above hyperbolic case and transverse
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1150 J. Hickman, M. Iliopoulou

equidistribution can fail. It transpires that, in general, a hybrid of these two situations occurs:
a partial transverse equidistribution holds for EQ f inside NR1/2V , where the equidistribution
property holds only for directions lying in a certain subspace W of V⊥. The dimension of
W can be bounded as a function of n, k and, importantly, σ . If σ is large then W has large
dimension and one is close to guaranteeing the full transverse equidistribution property (1.7)
enjoyed by the elliptic case. If σ is small, then the dimension of W is small and only a weak
version of (1.7) holds. For instance, if σ ≤ 2k − n − 1, then the subspace W can be zero
dimensional, in which case no non-trivial transverse equidistribution estimates hold: see Sect.
5 for details.

Decoupling. Although both elliptic and hyperbolic paraboloids have non-vanishing Gaus-
sian curvature, hyperbolic paraboloids contain linear subspaces. The existence of such
subspaces precludes certain bilinear estimates for extension operators associated to hyper-
bolic paraboloids [25,38] and means only weak �2-decoupling inequalities hold for such
operators [11]. In the present paper, the norm ‖T λ f ‖L p(Rn) is studied via a broad/narrow
analysis, as introduced in [12] (see also [20,21]). This analysis involves certain �p-decoupling
estimates, the strength of which also depends on the signature. Similar observations have
appeared previously in [11] and the recent paper [1].

In particular, the broad/narrow analysis requires analysing the so-called “narrow” contri-
butions to ‖T λ f ‖L p(Rn), which arisewhen the support of f is localised close to a submanifold
of Rn−1. Consequently, one is led to consider certain slices of the (variable) hypersurfaces
defined with respect to the phase φ. These contributions are dealt with using a combination of
a decoupling inequality and a rescaling argument. The efficiency of the decoupling inequality
depends on how curved these slices are, which in turn depends on the signature.

More concretely, for the extension operator Eσ f from Example 1.4, the narrow contri-
butions occur when the support of f is localised close to an affine subspace A of Rn−1. In
this case, as in the earlier discussion on transverse equidistribution, the Fourier transform(
Eσ f

)
̂ is supported in a neighbourhood of the slice 
A of Hn−1,σ formed by intersecting

H
n−1,σ with the plane A × R. The favourable situation occurs when 
A is well-curved,

in the sense that the principal curvatures of this surface (viewed as a hypersurface lying in
A×R) are all bounded away from zero. This is always the case for the elliptic paraboloid. For
well-curved 
A one may use the strong decoupling inequalities from [11] (or [8,10] in the
elliptic case) to study the narrow contribution. For hyperbolic paraboloids, however, it can
happen that a given slice coincides with a linear subspace of Hn−1,σ : for instance, Hn−1,σ

contains the n−1−σ
2 -dimensional linear subspace of all (ξ1, . . . , ξn) ∈ R̂

n satisfying

ξ j =
{

ξ j+ n−1+σ
2

for 1 ≤ j ≤ n−1−σ
2 ,

0 for n+1−σ
2 ≤ j ≤ n−1+σ

2 or j = n
.

In this case, owing to the lack of curvature, no non-trivial decoupling inequalities exist to
control the narrow contribution and, consequently, much poorer estimates hold. In general,
to obtain the best possible decoupling inequalities for a slice 
A, one needs to rely on
the principal curvatures of 
A which are bounded away from zero. The number of these
curvatures can be estimated in terms of the signature σ . If σ is large, then typically there will
be many large principal curvatures and strong decoupling estimates will hold. If σ is small,
then for certain slices there will be few large principal curvatures and only weak decoupling
estimates are available. This discussion is made precise in Proposition 7.3 and Corollary 7.7
below.
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1.6 Methodology: k-broad estimates

As in [20,21], the main ingredient in the proof of Theorem 1.2 is a k-broad estimate.

Theorem 1.5 Let T λ be a Hörmander-type operator of reduced phase φ. For all 2 ≤ k ≤ n
and ε > 0 the k-broad estimate

‖T λ f ‖BLp
k,A(Rn) �ε λε‖ f ‖L2(Bn−1)

holds for some integer A ≥ 1 whenever p satisfies p ≥ p̄(n, sgn(φ), k) for

p̄(n, σ, k) :=

⎧
⎪⎪⎨

⎪⎪⎩

2 · n+1
n−1 for 1 ≤ k ≤ n+1−σ

2

2 · n+2k+1+σ
n+2k−3+σ

for n+1−σ
2 ≤ k ≤ n+1+σ

2

2 · k
k−1 for n+1+σ

2 ≤ k ≤ n

.

For the definition of the k-broad norm, see [20,21]. For technical reasons, the theorem is
stated for the slightly restrictive class of reduced phases, which are defined in Sect. 4.3. Once
Theorem 1.5 is established, Theorem 1.2 follows by a now-standard argument originating in
[12]: see Sect. 8 for further details.

Aswith Theorem1.2, certain ‘extreme’ cases of Theorem1.5 can be deduced from existent
results:

• For 1 ≤ k ≤ n+1−sgn(φ)
2 the result follows from Stein’s oscillatory integral estimate [32].

• For n+1+sgn(φ)
2 ≤ k ≤ n the result follows from the multilinear oscillatory integral

estimates of Bennett–Carbery–Tao [6].6

• If sgn(φ) = n − 1, then the k = 2 case follows from the bilinear estimates of Lee [26]
and all remaining values of k (under the maximal signature assumption) are treated in
[21].

In all other cases Theorem 1.5 is new. It is also sharp in the sense that the range of p cannot
be extended. This can be shown by considering extension operators of the type discussed in
Example 1.4 above. The range of L p is then given by testing the estimate against functions
formed by tensor products of the standard test functions appearing in, for instance, [38]. The
sharpness of Theorem 1.5 is discussed in detail in Sect. 3 below.

Theorem 1.5 has a multilinear flavour, and serves as a substitute for the stronger k-linear
Conjecture 1.7 below.

Definition 1.6 Let 1 ≤ k ≤ n and T = (T1, . . . , Tk) be a k-tuple of Hörmander-type opera-
tors of the same signature, where Tj has associated phase φ j , amplitude a j and generalised
Gauss map G j for 1 ≤ j ≤ k. Then Tλ is said to be ν-transverse for some 0 < ν ≤ 1 (and
all λ ≥ 1) if

∣∣∣∣∣∣

k∧

j=1

G j (x;ω j )

∣∣∣∣∣∣
≥ ν for all (x;ω j ) ∈ supp a j for 1 ≤ j ≤ k.

6 The oscillatory integral estimates in [6] are stated only at the n-linear level but the argument adapts to give
results at all levels of linearity: see [12, §5] for an explicit statement of the k-linear estimates. The passage
from multilinear to k-broad inequalities is described in detail in [21, §6].
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1152 J. Hickman, M. Iliopoulou

Conjecture 1.7 Let (T1, . . . , Tk) be a ν-transverse k-tuple of Hörmander-type operators of
the same signature σ . For any λ ≥ 1 and 1 ≤ k ≤ n the k-linear estimate

∥∥∥∥∥∥

k∏

j=1

|T λ
j f j |1/k

∥∥∥∥∥∥
L p(Rn)

�ν,φ

k∏

j=1

‖ f j‖1/k
L2(Bn−1)

holds whenever p satisfies p ≥ p̄(n, σ, k).

This conjecture is a natural generalisation of a conjecture of Bennett [5] concerning the
elliptic case. It formally implies Theorem 1.5 (see [21, §6.2]).

1.7 Structure of the article

The layout of the article is as follows:

• In Sect. 2 the sharpness of Theorem 1.2 is demonstrated and, in particular, the proof of
Proposition 1.3 is presented.

• In Sect. 3 the sharpness of Theorem 1.5 and Conjecture 1.7 is discussed.

The remainder of the article deals with the proofs of Theorems 1.2 and 1.5. The pre-
sentation is not self-contained. In particular, the sister paper [21], which treats the maximal
signature case, is heavily referenced. The argument in [21] is fairly modular in nature and,
as discussed in Sect. 1.5, the signature hypothesis plays a crucial rôle only in two places in
the argument:

(i) The transverse equidistribution estimates, which are used to prove the bounds for the
k-broad norms.

(ii) The decoupling estimates, used in the passage from k-broad to linear estimates as part
of the Bourgain–Guth method [12].

These two isolated steps are treated in detail in the present paper.Many other parts of the proof
are merely sketched or even omitted entirely, since they are either minor modifications of
or identical to corresponding arguments in [21]. Indeed, once the transverse equidistribution
and decoupling theory is established in the general signature setting, the rest of the argument
from [21] carries through with only changes to the numerology. In particular, the remainder
of the article proceeds as follows:

• In Sect. 4 various preliminaries for the proofs of Theorems 1.2 and 1.5 are recalled from
the literature. This includes the definition of the k-broad norms and operators of reduced
phase.

• In Sect. 5 the crucial transverse equidistribution estimates are stated and proved.
• In Sect. 6 there is a brief description of how to adapt the argument from [20,21], using

the transverse equidistribution results from the previous section, to prove Theorem 1.5.
• In Sect. 7 the relevant decoupling theory is discussed.
• InSect. 8Theorem1.5 is combinedwith the decoupling estimates fromSect. 7 to complete

the proof Theorem 1.2.
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2 Necessary conditions: linear bounds

2.1 Overview

In this section sharp examples for Theorem 1.2 are obtained, thereby proving Proposition 1.3.
They arise simply by tensoring existing examples for the extremal cases of minimal and
maximal signatures.

All of the phases considered below are of the following basic form: given a smooth 1-
parameter family of symmetric matricesA : R → Mat(n−1,R), define φ : Rn×R

n−1 → R

by

φ(x;ω) := 〈x ′, ω〉 + 1

2
〈A(xn) ω, ω〉. (2.1)

In order for this phase function to satisfy the conditions (H1) and (H2) from the introduction,
the component-wise derivative A′ of A must be invertible on a neighbourhood of the origin.
In this case, the signature of the phase function φ corresponds to the common signature of
the matrices A′(xn) for xn near 0.

In the forthcoming examples T λ is taken to be a Hörmander-type operator defined with
respect to the phase φλ for some φ as in (2.1), and an amplitude with sufficiently small
support so that the conditions (H1) and (H2) are satisfied. The analysis pivots on finding
suitable choices of A and test functions f so that T λ f is highly concentrated near a low
degree algebraic variety. In particular, the varieties in question will be hyperbolic paraboloids
of the form

Zd :=
{

x ∈ R
d : x2 j−1xd = λx2 j for all 1 ≤ j ≤ � d−1

2 �
}

. (2.2)

Note that each Zd is of dimension md := � d+2
2 �. This corresponds to the minimal dimension

for ‘Kakeya sets of curves’ in R
d : see [7,12,40]. For further details on the rôle of algebraic

varieties in the study of oscillatory integral operators see, for instance, the introductory
discussions in [20] or [21].

2.2 Hyperbolic example

The first example is due to Bourgain [7] (see also [9]) and corresponds to the minimal
signature case.

For d ≥ 3 odd let Hd : R → Mat(d − 1,R) be given by

Hd(t) :=
(
0 t
t t2

)
⊕ · · · ⊕

(
0 t
t t2

)

︸ ︷︷ ︸
d−1
2 -fold

Near the origin the derivative matrix H′
d(t) is a perturbation of

(
0 1
1 0

)
⊕ · · · ⊕

(
0 1
1 0

)
(2.3)

and is therefore invertible with signature 0. Note that (2.3) corresponds to the matrix Id−1,σ

from Example 1.4 after a coordinate rotation.
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1154 J. Hickman, M. Iliopoulou

Taking A = Hd , let T λ
hyp be a Hörmander-type operator with phase φλ for φ as defined in

(2.1). A key observation of Bourgain [7] is that there exists7 a smooth function h : Rd−1 → C

satisfying:

• |h(ω)| ∼ 1 for all ω ∈ Bd−1.
• There exists a dimensional constant c > 0 such that

|T λ
hyph(x)| � λ−

d−1
4 for all x ∈ Nc Zd ∩ B(0, λ), (2.4)

where the variety Zd is as in (2.2).

This bound follows from a simple stationary phase computation. In addition to [7,9], see the
expositions in [21,31,40] for further details.

2.3 Elliptic example

The second example is due to Bourgain–Guth [12] and corresponds to the maximal signature
case.

For d ≥ 2 let Ed : R → Mat(d − 1,R) be given by

Ed(t) :=
(

t t2

t2 t + t3

)
⊕ · · · ⊕

(
t t2

t2 t + t3

)

︸ ︷︷ ︸
� d−1

2 �-fold

⊕ (
t
)∗

where the ∗ indicates that the final (t) block appears if and only if d is even. Near the origin the
derivative matrix E′

n is a perturbation of the identity and is therefore invertible with maximal
signature d − 1.

Taking A = Ed , let T λ
ell be a Hörmander-type operator with phase φλ for φ as defined in

(2.1). Roughly speaking, in [12] it is shown that there exists a smooth function g : Rd−1 → C

satisfying:

• |g(ω)| ∼ 1 for all ω ∈ Bd−1.
• There exists a dimensional constant c > 0 such that

|T λ
ell g(x)| � λ−(d+md−2)/4 for all x ∈ Ncλ1/2 Zd ∩ B(0, λ), (2.5)

where the variety Zd is as in (2.2) and md = dim Zd = � d+2
2 �.

The estimate (2.5) is not quite precise since the example in [12] is randomised and the
pointwise bound (2.5) holds only in expectation. However, there exists a function g for
which the weaker substitute

‖T λ
ell g‖L p(Rd ) � λ−(d+md−2)/4λ(d+md )/2p (2.5′)

does hold, and this suffices for the present purpose. In addition to [12], see the exposition in
[21] for further details.

2.4 Tensored examples

To prove Proposition 1.3, the linear estimates are tested against examples formed by tensoring
the hyperbolic and elliptic examples described above. To this end, fix 1 ≤ σ ≤ n − 1 with

7 In fact, one may take h ≡ 1.
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n − 1− σ even and let

An,σ := Hn−σ ⊕ Eσ+1 : R → Mat(n − 1,R).

Taking A = An,σ , let T λ be a Hörmander-type operator with phase φλ for φ as defined in
(2.1). Let f denote the tensor product f := h ⊗ g : Rn−1 → C where

• h : Rn−σ−1 → C is a hyperbolic example as in Sect. 2.2 in dimension n − σ ,
• g : :Rσ → C is an elliptic example as in Sect. 2.3 in dimension σ + 1.

If the amplitudes are suitably defined, then it follows that

T λ f (x) = T λ
hyph(x ′, xn)T λ

ell g(x ′′, xn) for x = (x ′, x ′′, xn) ∈ R
n−σ−1 × R

σ × R, (2.6)

where T λ
hyp is defined with respect to Hn−σ and T λ

ell is defined with respect to Eσ+1.
Suppose that for all ε > 0 the estimate

‖T λ f ‖L p(Rn) �ε λε‖ f ‖L p(Bn−1)

holds for T λ and f as above, uniformly in λ. The construction ensures that ‖ f ‖L p(Bn−1) ∼ 1
and so

‖T λ f ‖L p(Rn) �ε λε. (2.7)

Thus, to obtain the desired p constraints, the problem is to bound the left-hand side of (2.7)
from below.

Before proceeding, it is helpful to make a few simple geometric observations regarding
the varieties Zd . Given xd ∈ R let

Zd [xd ] := Zd ∩ (Rd−1 × {xd})
denote the xd -slice of Zd . It is clear from the definition that the slices Zd [xd ] are affine
subspaces of dimension md − 1. Thus, for c ∼ 1, one has the volume bound

|Nc Zd [xd ] ∩ B(0, λ)| � λmd−1 for all |xd | ≤ λ/2, (2.8)

where, for each xd , the neighbourhood Nc Zd [xd ] is considered inside the affine space
R

n−σ−1 × {0}σ × {xd}. By (2.6) and Fubini’s theorem,

‖T λ f ‖p
L p(Rn)

=
ˆ
R

‖T λ
hyph‖p

L p(Rn−σ−1×{xn})‖T λ
ell g‖p

L p(Rσ×{xn}) dxn .

At the expense of an inequality, one may restrict the L p(Rn−σ−1×{xn}) norm integration to
the slice Nc Zn−σ [xn] ∩ B(0, λ) for the constant c as in Sect. 2.2. In view of (2.4) and (2.8),
it follows that

‖T λ f ‖L p(Rn) � λ−(n−1−σ)/4λ(mn−σ−1)/p‖T λ
ell g‖L p(Rσ×[−λ/2,λ/2])

If the amplitude of T λ
ell has suitably small xd -support, then the right-hand norm coincides

with the global L p-norm and one may apply (2.5′) to conclude that

‖T λ f ‖L p(Rn) � λ−(n−1−σ)/4λ(mn−σ−1)/pλ−(σ+mσ+1−1)/4λ(σ+mσ+1+1)/2p. (2.9)

In order for (2.7) to hold uniformly in λ, the exponent on the right-hand side of (2.9) must
be non-positive. Note that the parities of n and σ + 1 agree and so

mn−σ = n − σ + 1

2
and mσ+1 =

{
σ+2
2 if n is odd

σ+3
2 if n is even

.
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1156 J. Hickman, M. Iliopoulou

Thus, a little algebra shows that the non-positivity of the right-hand exponent in (2.9) is
equivalent to

2(n − 1) + σ

2
− 2(n + 1) + σ

p
≥ 0 if n is odd,

2n − 1+ σ

2
− 2n + 3+ σ

p
≥ 0 if n is even,

which yields the desired condition (1.4) after rearranging.

3 Necessary conditions: multilinear bounds

Here examples of Hörmander-type operators are constructed which demonstrate that the
range of exponents in Conjecture 1.7 cannot be extended.

Proposition 3.1 Conjecture 1.7 is sharp, in the sense that the conditions on p are necessary.

The proof of Proposition 3.1 can be slightly modified to demonstrate the sharpness of
Theorem 1.5, up to ε-loss. The details of this simple modification are omitted; see [20] for a
discussion of the elliptic case.

Similarly to the examples for Theorem 1.2 discussed in the previous section, the sharp-
ness of the multilinear estimates may be deduced by tensoring appropriate examples from
extremal signature regimes. In the multilinear case, however, one may simply work with the
prototypical extension operators associated to hyperbolic parabolæ from Example 1.4.

3.1 Hyperbolic example

The first example exploits the fact that hyperbolic parabolæ contain affine subspaces and
is a direct generalisation of the bilinear example from [38]. The example is applied in the
extreme case where the signature of the underlying quadratic form is zero. In particular, let
d ∈ N be odd and consider the zero signature quadratic form

Q(ω) :=
d−1∑

j=1

ω2 j−1ω2 j for ω ∈ R
d−1.

Note that this agrees with the form Q0 from Example 1.4 after an orthogonal coordinate
transformation.

Let ψ ∈ C∞(R(d−1)/2) be non-negative, supported in the unit ball and equal to 1 in a
neighbourhood of the origin. Fix ai ∈ R

(d−1)/2 for 0 ≤ i ≤ (d − 1)/2 such that a0 = 0,
|ai | ≤ 1/2 and

|a1 ∧ · · · ∧ a(d−1)/2| � 1. (3.1)

For λ ≥ 1 and 1 ≤ � ≤ (d + 1)/2 define the �-linear hyperbolic example in R
d as the

�-tuple of functions H(d, �) := (h1, . . . , h�) where each h j ∈ C∞
c (Rd−1) is given by

h j (ω) := ψ(10(ωodd − a j−1))ψ(λωeven),

where ωodd ∈ R
(d−1)/2 (respectively, ωeven ∈ R

(d−1)/2) is the vector formed from the odd
(respectively, even) components of ω; see Fig. 3.
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Sharp Lp estimates for oscillatory integral operators… 1157

Fig. 3 The hyperbolic (left) and elliptic (right) examples. In the hyperbolic case, slabs of thickness λ−1 and
width 1 are placed in relation to a linear subspace contained in the hyperbolic paraboloid (in this case the
horizontal axis). In the elliptic case (which is also applied in the case of hyperbolic Q) a family of λ−1/2 balls
are placed around centres spanning a non-degenerate simplex. Since there is more freedom to place the balls
in the elliptic case, it applies at higher levels of multilinearity

Clearly, for any such H(d, �) one may bound

‖h j‖L2(Rd−1) � λ−(d−1)/4 for 1 ≤ j ≤ �. (3.2)

On the other hand, if ω ∈ supp h j , then |ωodd| ≤ 2, |ωeven| ≤ λ−1 and |Q(ω)| ≤ λ−1. Thus,

|EQh j (x, t)| � λ−(d−1)/2 for (x, t) ∈ �d(λ) (3.3)

where �d(λ) is the rectangular region

�d(λ) := [−c, c](d−1)/2 × [−cλ, cλ](d+1)/2

for c > 0 a sufficiently small dimensional constant.

3.2 Elliptic example

The second example corresponds to the sharp example for L2-based multilinear restriction
for the elliptic paraboloid. It is a direct generalisation of the bilinear example described,
for instance, in [36]. This example will be applied in both elliptic and hyperbolic cases,
but nevertheless is referred to as the elliptic example to distinguish it from the hyperbolic
example described above.

For 1 ≤ σ ≤ d − 1 let

Q(ω) :=
d−1−σ

2∑

j=1

ω2 j−1ω2 j + 1

2

d−1∑

j=d−σ

ω2
j .

be a quadratic form in d − 1 variables of signature σ . In contrast with the hyperbolic case,
here the choice of σ is not relevant to the numerology arising from the elliptic example. Note
that this form agrees with the form Qσ from Example 1.4 after an orthogonal coordinate
transformation.

Let G Q,0 : Rd−1 → R
d denote the (non-normalised) Gauss map G Q,0(ω) :=

(−∂ω Q(ω), 1)
 associated to Q. Fix b j ∈ R
d−1 for 0 ≤ j ≤ d − 1 satisfying b0 = 0,

|b j | ≤ 1/2 and

|b1 ∧ · · · ∧ bd−1| � 1. (3.4)
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1158 J. Hickman, M. Iliopoulou

For 1 ≤ � ≤ d let V� denote the �-dimensional subspace of Rd given by

V� :=
〈
G Q,0(b j ) : 0 ≤ j ≤ � − 1

〉
.

For C ≥ 1 a suitably large dimensional constant and given λ ≥ 1, define V� to be a maximal
Cλ1/2-separated set in V� ∩ R

n−1 × {0} ∩ B(0, λ).
The �-linear elliptic example in R

d is the �-tuple of functions G(d, �) := (g1, . . . , g�)

where each g j ∈ C∞
c (Rd−1) is given by

g j :=
∑

v∈V�

g j,v where g j,v(ω) := e−2π i〈v,ω−b j−1〉ψ(λ1/2(ω − b j−1))

for ψ ∈ C∞(Rd−1) a fixed function which is non-negative, supported in the unit ball and
equal to 1 in a neighbourhood of the origin; see Fig. 3.

For any such G(d, �), using Plancherel, one may bound

‖g j‖L2(Rd−1) �
( ∑

v∈V�

‖g j,v‖2L2(Rd−1)

)1/2
� λ−(d−�)/4 for 1 ≤ j ≤ �. (3.5)

On the other hand, (non)-stationary phase shows that, on B(0, λ), the function EQ g j,v is
rapidly decaying away from the ‘tube’

Tj,v :=
{
(x, t) ∈ B(0, λ) : |x − v + t∂ω Q(b j−1)| ≤ cλ1/2, |t | ≤ λ},

where c > 0 is a suitable choice of small dimensional constant, and satisfies

|EQ g j,v(x, t)| � λ−(d−1)/2χTj,v (x, t). (3.6)

In particular, provided C is chosen appropriately in the definition of V�, it follows that

|EQ g j (x, t)| � λ−(d−1)/2
∑

v∈V�

χTj,v (x, t). (3.7)

The tubes in each family (Tj,v)v∈V�
are pairwise disjoint and their union can be thought of

as the intersection of a fixed (that is, independent of j) �-plane slab formed around V� of
thickness λ1/2 with B(0, λ). More precisely, using the transversality condition (3.4), it is not
difficult to show that

∣∣∣∣∣∣

⋃

v1∈V�

· · ·
⋃

v�∈V�

�⋂

j=1

Tj,v j

∣∣∣∣∣∣
� λ(d+�)/2;

in particular, the left-hand set contains a union of roughly λ�/2 disjoint balls in Rd of radius
roughly λ1/2.

3.3 Tensored examples

To prove Proposition 3.1, the multilinear estimates are tested against examples formed by
tensoring the hyperbolic and elliptic examples described above. To this end, fix 1 ≤ σ ≤ n−1
with n − 1− σ even and let

Q(ω) :=
n−1−σ

2∑

j=1

ω2 j−1ω2 j + 1

2

n−1∑

j=n−σ

ω2
j . (3.8)
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be a quadratic form in n−1 variables of signature σ . The multilinear examples subsequently
constructed will prove the sharpness of Conjecture 1.7 when tested against the extension
operator EQ , irrespective of the level k of multilinearity.

Fix d satisfying

d odd, 1 ≤ d ≤ n − σ (3.9)

and split the variables ω and x by writing

ω = (ω′, ω′′), x = (x ′, x ′′) ∈ R
d−1 × R

n−d .

The quadratic form is decomposed accordingly by writing

Q(ω) = Q′(ω′) + Q′′(ω′′), Q′(ω′) := Q(ω′, 0) and Q′′(ω′′) := Q(0, ω′′).

The condition (3.9) implies that Q′ has zero signature, and therefore it makes sense to
consider the hyperbolic examples h(d, �) defined in Sect. 3.1 applied to this form. Note that,
for h ∈ C(Rd−1) and g ∈ C(Rn−d), the tensor product f := h ⊗ g ∈ C(Rn−1) satisfies

EQ f (x, t) = EQ′h(x ′, t)EQ′′g(x ′′, t),

where EQ , EQ′ and EQ′′ are the extension operators associated to the respective quadratic
forms, as defined in Example 1.4.

Fix 1 ≤ k ≤ n and for 1 ≤ � ≤ k satisfying

1 ≤ � ≤ d + 1

2
and k − �+ 1 ≤ n − d + 1 (3.10)

and λ ≥ 1 a large parameter let

H(�, d) = (h1, . . . , h�), G(k − � + 1, n − d + 1) = (g1, . . . , gk−�+1)

be hyperbolic and elliptic examples as defined above. For every level of multilinearity k,
appropriate d and � will be chosen so that tensor products of functions from H(�, d) and
G(k−�+1, n−d+1) demonstrate the sharpness of Conjecture 1.7 for this k. The constraints
on the parameters in (3.10) are important:

• The first constraint is required in order to carry out the construction of the hyperbolic
exampleH(�, d) fromSect. 3.1.Combinedwith (3.9), it implies that � ≤ (n−σ−1)/2+1,
which corresponds to the fact that maximal linear subspaces contained in the graph 
Q

of the form (3.8) have dimension (n−σ −1)/2. Furthermore, this constraint will account
for the transition in the numerology of Proposition 3.1 at k = (n − σ + 1)/2.

• The second constraint is required in order to carry out the construction of the elliptic
example G(k − � + 1, n − d + 1) from Sect. 3.2. This constraint will account for the
transition in the numerology of Proposition 3.1 at k = (n + σ + 1)/2.

Define k functions

hi := hi ⊗ g1 : Rn−1 → C for 1 ≤ i ≤ �,

g j := h1 ⊗ g j : Rn−1 → C for 2 ≤ j ≤ k − � + 1.

In order to apply these examples in the proof of Proposition 3.1, the supports of the hi and g j
functions must satisfy the transversality hypothesis. Since the supports of these functions are
well-separated, it suffices to check the transversality condition at the centres of the supports
only. Given ω = (ω1, . . . , ω(d−1)/2) ∈ R

(d−1)/2, let ↑ω ∈ R
d−1 denote the vector

↑ω := (ω1, 0, ω2, 0, . . . , ω(d−1)/2, 0)
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Fig. 4 The value of q(n, k, �) is obtained by substituting the corresponding � value into the formula in (3.12).
In all cases, � and d are chosen so as to satisfy (3.9) and (3.10)

and note that

• supp hi is centred around (↑ai−1, 0)
 ∈ R
d−1 × R

n−d ,
• supp g j is centred around (0, b j−1)


 ∈ R
d−1 × R

n−d .

Computing the values of the Gauss map applied to these vectors, forming the relevant matrix
and rearranging the rows, it suffices to show that the n × k matrix8

⎡

⎢⎣

⎤

⎥⎦

0 0 0 d−1
2

0 A 0 d−1
2

0 0 B n−d

1 1 1 1

1 �−1 k−�

has full rank, where

A ∈ Mat
( d−1

2 , � − 1
)

and B ∈ Mat(n − d, k − �)

are the matrices whose columns are formed by the vectors (−a1, . . . ,−al−1) and
(−b1, . . . ,−bk−�), respectively. The desired rank condition is immediate from the choices
of ai and b j and, in particular, (3.1) and (3.4).

For now, suppose that the k-linear inequality
∥∥∥∥∥∥

�∏

i=1

|EQhi |1/k
k−�+1∏

j=2

|EQgi |1/k

∥∥∥∥∥∥
L p(B(0,λ))

�
�∏

i=1

‖hi‖1/k
L2(Rn−1)

k−�+1∏

j=2

‖gi‖1/k
L2(Rn−1)

(3.11)

holds uniformly in λ. Presently, it is shown that, for appropriately chosen d , this forces

p ≥ q(n, k, �) where q(n, k, �) := 2 · n + k − � + 1

n + k − � − 1
. (3.12)

Plugging the optimal values of � into the formula for q(n, k, �) yields the desired range of
p described in Proposition 3.1. In particular, to maximise q(n, k, �) one should choose �

as large as possible, under the condition that (3.9) and (3.10) should hold for some d . The
correct choices of � and d , which depend on the k regime, are tabulated in Fig. 4.

8 The numbers outside the matrix represent the numbers of columns or rows in each block.
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The first step is to obtain a lower bound for the expression on the left-hand side of (3.11).
One may write the function appearing in the p-norm as a product of two functions

H(x ′, t) := |EQ′h1(x ′, t)|(k−�+1)/k
�∏

i=2

|EQ′hi (x ′, t)|1/k for (x ′, t) ∈ R
d ,

G(x ′′, t) := |EQ′′g1(x ′′, t)|�/k
k−�+1∏

j=2

|EQ′′g j (x ′′, t)|1/k for (x ′′, t) ∈ R
n−d+1.

Apply (3.3) at multilinearity � and dimension d to each factor in H to deduce that

H(x ′, t) � λ−(d−1)/2χ�d (λ)(x ′, t). (3.13)

On the other hand, apply (3.6) at multilinearity k − � + 1 and dimension n − d + 1 to each
factor in G to deduce that

G(x ′′, t) � λ−(n−d)/2
k−�+1∏

j=1

∑

v∈V�

χTj,v (x ′′, t), (3.14)

using the fact that the tubes Tj,v are pairwise disjoint as v varies over V�. Combining these
observations,

∥∥∥∥∥∥

�∏

i=1

|EQhi |1/k
k−�+1∏

j=2

|EQgi |1/k

∥∥∥∥∥∥
L p(B(0,λ))

� λ−(n−1)/2λ(d−1)/2p+(n+k−d−�+2)/2p,

(3.15)

where:

• the λ−(n−1)/2 factor is the product of the coefficients from (3.13) and (3.14),
• the λ(d−1)/2p factor corresponds to the L p

x ′ -norm of the characteristic function in (3.13),
• the λ(n+k−d−�+2)/2p factor arises from (3.14) owing to (3.7).

The right-hand side of (3.11) is now bounded from above. In particular, by exploiting the
tensor structure and applying the bounds (3.2) and (3.5),

�∏

i=1

‖hi‖1/k
2

k−�+1∏

j=2

‖gi‖1/k
2 = ‖h1‖(k−�+1)/k

2

(
�∏

i=2

‖hi‖1/k
2

)
‖g1‖�/k

2

⎛

⎝
k−�+1∏

j=2

‖g j‖1/k
2

⎞

⎠

� λ−(d−1)/4λ−(n−k−d+�)/4. (3.16)

Note that, as before, (3.2) is applied at multilinearity � and dimension d whilst (3.5) is applied
with multilinear k − � + 1 and dimension n − d + 1.

Plugging (3.16) and (3.15) into (3.11) one concludes that

λ−(n−1)/2λ(n+k−�+1)/2p � λ−(n−1)/4λ(k−�)/4.

Since the inequality is assumed to hold for all large λ, this forces the condition described in
(3.12).

123



1162 J. Hickman, M. Iliopoulou

4 Proof of Theorems 1.2 and 1.5: preliminaries

4.1 Overview

The remainder of the article deals with the proof of the k-broad estimates from Theorem 1.5
and the passage from k-broad to linear estimates used to establish Theorem 1.2. In this section
a variety of definitions and basic results are recalled from the literature (primarily [20] and
[21]), which will be used throughout the remainder of the paper. In particular:

• In Sect. 4.2 the underlying geometry of Hörmander-type operators is discussed.
• In Sect. 4.3 the notation of a reduced phase is introduced, and various technical reductions

are described.
• In Sect. 4.4 the wave packet decomposition for Hörmander-type operators is recounted.

The treatment here is rather brief and readers new to these concepts are encouraged to consult
[20] or [21] for further details.

4.2 Variable coefficient operators: basic geometry

Consider a smooth phase function φ : Bn × Bn−1 → R satisfying H1) and H2) from the
introduction. Fixing x̄ ∈ Bn , the condition H1) implies that the mapping


x̄ :=
{
∂xφ(x̄;ω) : (x̄;ω) ∈ supp a}

is a (compact piece of) a smooth hypersurface inRn . Furthermore, the condition H2) implies
that for each x̄ the corresponding hypersurface has non-vanishing Gaussian curvature. After
further localisation and a suitable coordinate transformation, the condition H1) ensures the
existence of a local diffeomorphism �x̄ on Rn−1 such that

∂x ′φ(x̄;�x̄ (u)) = u for all u ∈ Domain(�x̄ ).

In particular, the map �x̄ corresponds to a graph reparametrisation of the hypersurface 
x̄ ,
with graphing function

hx̄ (u) := ∂xn φ(x̄;�x̄ (u)).

Throughout the remainder of the paper, it is always assumed that any Hörmander-type oper-
ator with phase φ is suitably localised and that coordinates are chosen so that the above
functions are defined globally on the support of the amplitude.

In view of the rescaled phase and amplitude functions appearing in the definition of T λ,
given λ ≥ 1 and x̄ ∈ B(0, λ) define 
λ

x̄ := 
x̄/λ, �λ
x̄ := �x̄/λ and hλ

x̄ := hx̄/λ. Similarly,
define the rescaled generalised Gauss map

Gλ(x;ω) := G(x/λ;ω) for (x;ω) ∈ supp aλ,

taking G to be as defined in condition H2) from the introduction. Since the mapping �λ
x̄

corresponds only to a change of coordinates, it follows that Gλ(x̄;ω) is parallel to the vector
(−∂uhλ

x̄ (u)

1

)

for u satisfying �λ
x̄ (u) = ω.
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Sharp Lp estimates for oscillatory integral operators… 1163

4.3 Reductions

To prove Theorem 1.2 for all Hörmander-type operators with phases of a given signature σ ,
one needs only to consider operators which are perturbations of the prototypical extension
operators Eσ fromExample 1.4. In particular, recall that the Hörmander-type operators under
consideration are those of the form

T λ f (x) =
ˆ

Bn−1
e2π iφλ(x;ω)aλ(x;ω) f (ω)dω,

where the phase φ satisfies the general conditions H1) and H2). For any 0 ≤ σ ≤ n − 1
with n − 1 − σ even, let In−1,σ denote the (n − 1) × (n − 1) matrix of signature σ from
Example 1.4.

Lemma 4.1 Let 0 ≤ σ ≤ n with n − 1 − σ even and ε > 0. To prove Theorem 1.2 for this
fixed ε > 0 for all Hörmander-type operators with phase function of signature σ , it suffices
to consider the case where the amplitude a is supported on X × �, where X := X ′ × Xn

and X ′ ⊂ Bn−1, Xn ⊂ B1 and � ⊂ Bn−1 are small balls centred at 0 upon which the phase
φ has the form

φ(x;ω) = 〈x ′, ω〉 + xnh(ω) + E(x;ω).

Here h and E are smooth functions, h is quadratic in ω and E is quadratic in x and ω.9

Furthermore, letting cex > 0 be a small constant, which may depend on the admissible
parameters n, p and ε, one may assume that the phase function φ satisfies

‖∂2ωx ′φ(x;ω) − In−1‖op < cex, |∂ω∂xn φ(x;ω)| < cex,

‖∂2ωω∂xk φ(x;ω) − δknIn−1,σ ‖op < cex

for all (x;ω) ∈ X ×� and 1 ≤ k ≤ n. In addition,

‖∂β
ω∂α

x φ‖L∞(X×�) < cex for 1 ≤ |α| ≤ Nex, 3 ≤ |β| ≤ Nex, (4.1)

for some large integer Nex ∈ N, which can be chosen to depend on n, p and ε. If |α| ≥ 2,
then the lower bound on |β| can be relaxed to 0 in (4.1). Finally, it may be assumed that the
amplitude a satisfies

‖∂β
ω∂α

x a‖L∞(X×�) �β 1 for all 0 ≤ |α|, |β| ≤ Nex.

The proof of Lemma 4.1 is a simple adaptation of the proofs of Lemma 4.1 and Lemma
4.3 in [21] (which describe the case σ = n − 1) and is thus omitted here.

Definition 4.2 Henceforth cex > 0 and Nex ∈ N are assumed to be fixed constants (which
are allowed to depend only on admissible parameters), chosen to satisfy the requirements of
the forthcoming arguments. A phase of signature σ satisfying the properties of Lemma 4.1
for this choice of σ , cex and Nex is said to be reduced.

9 Explicitly, if (α, β) ∈ N0 × N
n−1
0 is a pair of multi-indices, then:

(i) ∂
β
ωh(0) = ∂

β
ω∂α

x E(x; 0) = 0 whenever x ∈ X and |β| ≤ 1;

(ii) ∂
β
ω∂α

x E(0;ω) = 0 whenever ω ∈ � and |α| ≤ 1.
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1164 J. Hickman, M. Iliopoulou

4.4 Wave packet decomposition

The wave packet decomposition from [21] is now reviewed and some notation is established.
All statements in this subsection are proved in [21].

Throughout the following sections ε > 0 is a fixed small parameter and δ > 0 is a tiny
number satisfying10 δ � ε and δ ∼ε 1. For any spatial parameter satisfying 1 � R � λ,
a wave packet decomposition at scale R is carried out as follows. Cover Bn−1 by finitely-
overlapping balls θ of radius R−1/2 and let ψθ be a smooth partition of unity adapted to
this cover. These θ are referred to as R−1/2-caps. Cover Rn−1 by finitely-overlapping balls
of radius C R(1+δ)/2 centred on points belonging to the lattice R(1+δ)/2

Z
n−1. By Poisson

summation one may find a bump function adapted to B(0, R(1+δ)/2) so that the functions
ηv(z) := η(z − v) for v ∈ R(1+δ)/2

Z
n−1 form a partition of unity for this cover. Let T

denote the collection of all pairs (θ, v). Thus, for f : Rn−1 → C with support in Bn−1 and
belonging to some suitable a priori class one has

f =
∑

(θ,v)∈T
(ηv(ψθ f )q)̂ =

∑

(θ,v)∈T
η̂v ∗ (ψθ f ).

For each R−1/2-cap θ let ωθ ∈ Bn−1 denote its centre. Choose a real-valued smooth function
ψ̃ so that the function ψ̃θ (ω) := ψ̃(R1/2(ω−ωθ)) is supported in θ and ψ̃θ (ω) = 1whenever
ω belongs to a cR−1/2 neighbourhood of the support of ψθ for some small constant c > 0.
Finally, define

fθ,v := ψ̃θ · [η̂v ∗ (ψθ f )].
It is not difficult to show

∥∥∥∥∥∥
f −

∑

(θ,v)∈T
fθ,v

∥∥∥∥∥∥
L∞(Rn−1)

≤ RapDec(R)‖ f ‖L2(Bn−1),

whilst the functions fθ,v are also almost orthogonal: if S ⊆ T, then

∥∥∥∥∥∥

∑

(θ,v)∈S
fθ,v

∥∥∥∥∥∥

2

L2(Rn−1)

∼
∑

(θ,v)∈S
‖ fθ,v‖2L2(Rn−1)

.

A precise description of the rapidly decaying term RapDec(R), frequently used in forthcom-
ing sections, is inserted here.

Definition 4.3 The notation RapDec(R) is used to denote any quantity CR which is rapidly
decaying in R. More precisely, CR = RapDec(R) if

|CR | �ε R−N for all N ≤ √
Nex,

where Nex is the large integer appearing in the definition of reduced phase from Sect. 4.3.
Note that Nex may be chosen as large as desired, under the condition that it depends only on
n and ε.

10 For A, B ≥ 0 the notation A � B or B � A is used to denote that A is ‘much smaller’ than B; a more
precise interpretation of this is that A ≤ C−1

ε B for some constant Cε ≥ 1 which can be chosen to be large
depending on n and ε.
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Sharp Lp estimates for oscillatory integral operators… 1165

Let T λ be an operator with reduced phase φ and amplitude a supported in X × � as in
Lemma 4.1. For (θ, v) ∈ T, within B(0, R) the function T λ fθ,v is essentially supported
inside a curved R1/2+δ-tube Tθ,v determined by φ, θ and v. More precisely, there exists a
curve

�λ
θ,v = (γ λ

θ,v( · ), · ) : I λ
θ,v → R

n,

for some I λ
θ,v ⊂ [−λ, λ], that parametrises the set

{x ∈ X : ∂ωφ(x;ωθ) = v}.
This curve �λ

θ,v forms the core of the tube Tθ,v . In particular, for

Tθ,v :=
{
(x ′, xn) ∈ B(0, R) : xn ∈ I λ

θ,v and |x ′ − γ λ
θ,v(xn)| ≤ R1/2+δ

}

the following concentration estimate holds.

Lemma 4.4 If 1 � R � λ and x ∈ B(0, R)\Tθ,v , then

|T λ fθ,v(x)| ≤ (1+ R−1/2|∂ωφλ(x;ωθ) − v|)−(n+1)RapDec(R)‖ f ‖L2(Bn−1).

The geometry of the core curve of Tθ,v is related to the generalised Gauss map Gλ asso-
ciated to the operator T λ: the tangent line T�λ

θ,v(t)�
λ
θ,v lies in the direction of the unit vector

Gλ(�λ
θ,v(t);ωθ) for all t ∈ I λ

θ,v . For instance, if φλ(x;ω) is of the form 〈x ′, ω〉 + xnh(ω),
giving rise to an extension operator, then the Tθ,v are straight tubes.

5 Partial transverse equidistribution estimates

5.1 Overview

In this section the key tool required for the proof of Theorem 1.5 is introduced and proved.
This is a ‘partial’ transverse equidistribution estimate, which bounds the L2 norm of T λg
under certain geometric hypotheses on the wave packets of g: see Lemma 5.4 below. This
lemma generalises the transverse equidistribution estimates for the elliptic case in [20] and
[21]. It is a key step in the argument where the signature sgn(φ) plays a rôle. Indeed, once
Lemma 5.4 is in place, the remainder of the proof of Theorem 1.5 follows as in the elliptic
case, with only minor numerological changes, as discussed in the following section.

5.2 Tangential wave packets and transverse equidistribution

Throughout this section let T λ be a Hörmander-type operator with reduced phase φ of sig-
nature σ and for some 1 � R � λ define the (curved) tubes Tθ,v as in Sect. 4.4. Here
a special situation is considered where T λg is made up of a sum of wave packets which
are tangential to some algebraic variety, in a sense described below. To begin, the relevant
algebraic preliminaries are recounted.

Definition 5.1 Given any collection of polynomials P1, . . . , Pn−m : Rn → R, the common
zero set

Z(P1, . . . , Pn−m) := {
x ∈ R

n : P1(x) = · · · = Pn−m(x) = 0
}
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1166 J. Hickman, M. Iliopoulou

will be referred to as a variety.11 Given a variety Z = Z(P1, . . . , Pn−m), define its (maximum)
degree to be the number

deg Z := max{deg P1, . . . , deg Pn−m}.
It will often be convenient to work with varieties which satisfy the additional property

that

n−m∧

j=1

∇Pj (z) �= 0 for all z ∈ Z = Z(P1, . . . , Pn−m). (5.1)

In this case the zero set forms a smooth m-dimensional submanifold of Rn with a (classical)
tangent space Tz Z at every point z ∈ Z . A variety Z which satisfies (5.1) is said to be an
m-dimensional transverse complete intersection.

Let δm denote a small parameter satisfying 0 < δ � δm � 1 (here δ is the same parameter
as that which appears in the definition of the wave packets).

Definition 5.2 Suppose Z = Z(P1, . . . , Pn−m) is a transverse complete intersection. A tube
Tθ,v is R−1/2+δm -tangent to Z in B(0, R) if

Tθ,v ⊆ NR1/2+δm (Z)

and

�(Gλ(x;ωθ), Tz Z) ≤ c̄tangR−1/2+δm

for any x ∈ Tθ,v and z ∈ Z ∩ B(0, 2R) with |x − z| ≤ C̄tangR1/2+δm .

Here c̄tang > 0 (respectively, C̄tang ≥ 1) is a dimensional constant, chosen to be sufficiently
small (respectively, large) for the purposes of the following arguments.

Definition 5.3 If S ⊆ T, then f is said to be concentrated on wave packets from S if

f =
∑

(θ,v)∈S
fθ,v + RapDec(R)‖ f ‖L2(Bn−1).

One wishes to study functions concentrated on wave packets from the collection

TZ := {
(θ, v) ∈ T : Tθ,v is R−1/2+δm -tangent to Z in B(0, R)

}
.

Let B ⊆ R
n be a fixed ball of radius R1/2+δm with centre x̄ ∈ B(0, R). Throughout this

section the analysis will be essentially confined to a spatially localised operator ηB · T λg
where ηB is a suitable choice of Schwartz function concentrated on B. It is remarked that, for
any (θ, v) ∈ T, a stationary phase argument shows that the Fourier transform of ηB · T λgθ,v

is concentrated near the surface


 := {
(ω) : ω ∈ �} where 
(ω) := ∂xφ
λ(x̄;ω). (5.2)

Now consider the refined set of wave packets

TZ ,B := {
(θ, v) ∈ TZ : Tθ,v ∩ B �= ∅}.

11 The ideal generated by the Pj is not required to be irreducible.
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Sharp Lp estimates for oscillatory integral operators… 1167

Let R1/2 < ρ � R and throughout this subsection let τ ⊂ R
n−1 be a fixed cap of radius

O(ρ−1/2+δm ) centred at a point in Bn−1. Now define

TZ ,B,τ :=
{
(θ, v) ∈ TZ : θ ∩ τ �= ∅ and Tθ,v ∩ B �= ∅}.

For 1 ≤ m ≤ n denote

μ(n, σ, m) := max
{

n − 2m + 1,
n + 1+ σ

2
− m, 0

}

so that

μ(n, σ, m) =
⎧
⎨

⎩

n − 2m + 1 if 1 ≤ m ≤ n−σ+1
2

n+σ+1
2 − m if n−σ+1

2 ≤ m ≤ n+σ+1
2

0 if n+σ+1
2 ≤ m ≤ n

.

With these definitions, the key partial transverse equidistribution result is as follows.

Lemma 5.4 With the above setup, if dim Z = m and deg Z �ε 1 and g is concentrated on
wave packets from TZ ,B,τ , thenˆ

N
ρ1/2+δm (Z)∩B

|T λg|2 �ε,δ R1/2+O(δm )(ρ/R)μ(n,σ,m)/2‖g‖2L2(Bn−1)
.

The remainder of the section is dedicated to the proof of this lemma. For a discussion
of the philosophy and heuristics behind estimates of this kind, see [20, §6] or [21, §8], as
well as Sect. 1.5. It is noted that in the maximum signature case μ(n, n − 1, m) = n − m
for all 1 ≤ m ≤ n, so this lemma recovers the previous elliptic case result in [21, Lemma
8.4] (see also [20, Lemma 6.2]). On the other hand, in the range n+σ+1

2 ≤ m ≤ n where
μ(n, σ, m) = 0 the result follows from a classical L2 bound of Hörmander and does not
depend on any geometric considerations regarding the wave packets.

5.3 Wave packets tangential to linear subspaces

Here, as a step towards Lemma 5.4, transverse equidistribution estimates are proven for
functions concentrated on wave packets tangential to some fixed linear subspace V ⊆ R

n .
As before, let B be a ball of radius R1/2+δm with centre x̄ ∈ R

n and define

TV ,B := {
(θ, v) ∈ T : �(Gλ(x̄, ωθ ), V ) � R−1/2+δm and Tθ,v ∩ B �= ∅}.

Let R1/2 < ρ < R and for τ ⊂ R
n−1 a ball of radius O(ρ−1/2+δm ) centred at a point in

Bn−1 define

TV ,B,τ :=
{
(θ, v) ∈ TV ,B : θ ∩ ( 1

10 · τ) �= ∅}

where ( 1
10 · τ) is the cap concentric to τ but with 1/10th of the radius.

The key estimate is the following.

Lemma 5.5 If V ⊆ R
n is a linear subspace, then there exists a linear subspace V ′ with the

following properties:

(1) μ(n, σ, dim V ) ≤ dim V ′ ≤ n − dim V .
(2) V , V ′ are quantitatively transverse in the sense that there exists a uniform constant

ctrans > 0 such that

�(v, v′) ≥ 2ctrans for all non-zero vectors v ∈ V and v′ ∈ V ′.
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1168 J. Hickman, M. Iliopoulou

(3) If g is concentrated on wave packets from TV ,B,τ , � is any plane parallel to V ′ and
x0 ∈ � ∩ B, then the inequality

ˆ

�∩B(x0,ρ1/2+δm )

|T λg|2 �δ RO(δm )(ρ/R)dim V ′/2‖g‖2δ/(1+δ)

L2(Bn−1)

⎛

⎝
ˆ

�∩2B

|T λg|2
⎞

⎠
1/(1+δ)

holds up to the inclusion of a RapDec(R)‖g‖L2(Bn−1) term on the right-hand side.

Proof of Lemma 5.5 Many of the steps of the proof are similar to the proof of Lemma 8.7 from
[21], although the construction of V ′ itself is different from that used in the positive-definite
case.

Constructing the subspace V′
aux

The first step in the argument is to construct an auxiliary space V ′
aux; the desired subspace

V ′ is then obtained by rotating V ′
aux.

One may assume without loss of generality that

�(V , e⊥n ) := max
v∈V∩Sn−1

�(v, e⊥n ) � 1 (5.3)

since otherwise the family of tubes TV ,B is empty and there is nothing to prove. Consider the
horizontal slice Vsl := projRn−1(V ∩R

n−1×{0}) ⊆ R
n−1. The angle condition (5.3) ensures

that dim Vsl = dim V − 1. Let Ṽsl denote the preimage of Vsl (which also corresponds to the
image) under the linear mapping induced by the matrix In−1,σ ; recall, In−1,σ is the matrix
appearing in Example 1.4 and in the definition of reduced form from Sect. 4.3. The auxiliary
space is defined to be

V ′
aux := V⊥

sl ∩ Ṽ⊥
sl ,

where the orthogonal complements are taken inside Rn−1. The following example partially
motivates the above definition.

Example 5.6 Consider the prototypical case of the extension operator Eσ from Example 1.4.
Here the unnormalised Gauss map G0 is an affine map, and so

Aω := {ω ∈ R
n−1 : G0(ω) ∈ V }

is an affine subspace. A simple computation shows that Aω is parallel to Ṽsl.

Dimension bounds for V′
aux

The next step of the proof is to show that the auxiliary space satisfies the dimension bounds
described in part 1) of the lemma. It is clear that dim V ′

aux ≤ n − dim V since V ′
aux ⊆ V⊥

sl
and the latter subspace has dimension equal to

n − 1− dim Vsl = n − 1− (dim V − 1) = n − dim V .

It remains to show that dim V ′
aux ≥ μ(n, σ, dim V ). Since V⊥

sl ∩ Ṽ⊥
sl = (Vsl + Ṽsl)

⊥ and
dim Vsl = dim Ṽsl = dim V − 1, it follows that

dim V ′
aux = n − 1− dim

(
Vsl + Ṽsl

)
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Sharp Lp estimates for oscillatory integral operators… 1169

= n − 1− dim Vsl − dim Ṽsl + dim Vsl ∩ Ṽsl

= n − 2 dim V + 1+ dim Vsl ∩ Ṽsl,

from which the estimate dim V ′
aux ≥ n − 2 dim V + 1 directly follows. It thus suffices to

prove that dim V ′
aux ≥ (n + σ + 1)/2− dim V , or equivalently

codim Vsl ∩ Ṽsl ≤ n − dim V + n − 1− σ

2
.

Fix an orthonormal basis {N1, . . . , Nn−dim V } for V⊥ so that

V = {
ξ ∈ R̂

n : 〈ξ, Nk〉 = 0 for 1 ≤ k ≤ n − dim V
}
.

The angle condition (5.3) implies that {N ′
1, . . . , N ′

n−dim V } is a linearly independent set of
vectors, where Nk = (N ′

k, Nk,n) ∈ R
n−1 × R and, clearly,12

Vsl =
{
u ∈ R

n−1 : 〈u, N ′
k〉 = 0 for 1 ≤ k ≤ n − dim V

}
.

On the other hand,

Ṽsl =
{
u ∈ R

n−1 : 〈u, Ñk〉 = 0 for 1 ≤ k ≤ n − dim V
}

where the vectors Ñk := In−1,σ (N ′
k) ∈ R

n−1 satisfy

Ñk =
(

Nk,+
−Nk,−

)
for N ′

k =
(

Nk,+
Nk,−

)
∈ R

σ × R
n−1−σ .

Combining the observations of the previous paragraph,

Vsl ∩ Ṽsl =
{
u ∈ R

n−1 : 〈u, N ′
k〉 = 〈u, Ñk〉 = 0 for 1 ≤ k ≤ n − dim V

}

and, consequently,

codim Vsl ∩ Ṽsl = rank
(
N ′
1 . . . N ′

n−dim V Ñ1 · · · Ñn−dim V
)
.

Note that

1

2
· (N ′

k − Ñk
) =

(
0

Nk,−

)

and, since matrix rank is preserved under elementary column operations,

codim Vsl ∩ Ṽsl = rank

(
N1,+ . . . Nn−dim V ,+ 0 · · · 0
N1,− . . . Nn−dim V ,− N1,− · · · Nn−dim V ,−

)
.

The left (n− 1)× (n− dim V ) block is made up of n− dim V linearly independent columns
N ′
1, . . . , N ′

n−dim V . For the right-hand block, the number of linearly independent columns
can be at most the number of non-zero rows, which is equal to (n − 1 − σ)/2. Altogether,
this bounds the matrix rank above by

n − dim V + n − 1− σ

2
,

as desired.

12 To establish the desired dimensional bounds, the only required property of the vectors N ′
k is that they form

a basis of V⊥
sl , not that they arise from a basis for V⊥ in the above manner. However, the vectors Nk are

introduced as they will be used in subsequent parts of the proof.
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Constructing the subspace V′

One may assume without loss of generality that Sω ∩ τ �= ∅ where

Sω := {
ω ∈ � : Gλ(x̄;ω) ∈ V

}
,

since otherwise the family of tubes TV ,B,τ is empty and there is nothing to prove. Recalling
(5.3), it follows that Sω is a smooth surface in R

n−1 of dimension dim V − 1; indeed, this
can be verified as a simple calculus exercise, but it is also treated explicitly as Claim 1 in
the proof of Lemma 8.7 from [21] (the claim is stated in the positive-definite case, but the
argument does not depend on the signature). For notational convenience, write

�(u) := �λ
x̄ (u) and h̄(u) := hλ

x̄ (u) = ∂xn φ
λ(x̄;�(u)) (5.4)

for the functions as defined in Sect. 4.2. Consider the surface

Su := �−1(Sω) = {u ∈ U : Gλ
0(x̄;�(u)) ∈ V },

given by the diffeomorphic image of Sω under themap�. Fix some u0 ∈ Su∩�−1(τ ) and let
Au denote the tangent plane to Su at u0. Here, the tangent plane is interpreted as a (dim V−1)-
dimensional affine subspace of Rn−1 through u0. Now define Aξ := Au × R ⊆ R

n , so that
dim Aξ = dim V , and letVu andVξ be the linear subspaces parallel to Au and Aξ , respectively.

The spaces Ṽsl ⊂ R
n−1 and Vu ⊂ R

n−1 both have dimension dim V − 1. Moreover, the
localisation to the cap τ and ball B implies that Ṽsl and Vu are close to one another in the
following sense.

Claim Let cex be the constant defined in Sect. 4.3. Then

max
v∗∈Ṽsl∩Sn−2

�(v∗, Vu) = O(cex).

The proof of the claim is temporarily postponed. Assuming its validity, it follows that
there exists a choice of OV ∈ SO(n − 1,R) mapping Ṽsl to Vu which satisfies

‖OV − In−1‖op = O(cex).

Indeed, if {v∗1 , . . . , v∗dim V−1} is a choice of orthonormal basis for Ṽsl, then the claim implies
that there exists a basis {v1, . . . , vdim V−1} for Vu satisfying

�(v∗k , vk) = O(cex) for 1 ≤ k ≤ dim V − 1.

Applying theGram–Schmidt process, onemay further assume {v1, . . . , vdim V−1} is orthonor-
mal, at the expense of a larger implied constant. A rotation OV with the desired properties is
given by stipulating that it maps v∗k to vk for 1 ≤ k ≤ n.

Fixing a rotation OV which satisfies the above property,

V ′ := (
OV (V⊥

sl ) ∩ V⊥
u

)× {0} = OV (V⊥
sl ) × {0} ∩ V⊥

ξ .

Since V⊥
u = OV (Ṽ⊥

sl ), clearly V ′ = OV (V ′
aux)× {0}. In particular, the space V ′ inherits the

dimension bounds from V ′
aux and therefore the dimension condition (1) from the lemma is

immediately verified.
It remains to prove the claim. The argument is almost identical to that used to prove Claim

4 in the proof of Lemma 8.7 of [21]. Nevertheless, here the signature of the phase plays a
rôle and therefore the details are sketched.
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Proof of Claim Fixing v∗ ∈ Ṽsl ∩ Sn−2, elementary linear geometry considerations reduce
the problem to showing

|projV⊥
u

v∗| = O(cex).

For h̄ as in (5.4), recall that u !→ (u, h̄(u)) is a graph parametrisation of the surface 
λ
x̄

from Sect. 4.2 and u !→ Gλ
0(x̄;�(u)) is the unnormalised Gauss map associated to this

parametrisation. It follows that

Su = {
u ∈ U : −〈∂u h̄(u), N ′

k〉 + Nk,n = 0 for 1 ≤ k ≤ n − dim V
}
.

Differentiating the defining equations in the above expression and recalling that u0 is a
fixed point featured in the definition of Au , one deduces that a basis for V⊥

u is given by
{M1, . . . , Mn−dim V } where

Mk := ∂2uu h̄(u0)N ′
k for 1 ≤ k ≤ n − dim V .

Lemma 4.1 together with some calculus (see [21, Lemma 4.5] for a similar computation)
imply that

‖∂2uu h̄(u0)− In−1,σ ‖op = O(cex).

Since 〈v∗, Ñk〉 = 0 for 1 ≤ k ≤ n − dim V and Ñk = In−1,σ (N ′
k), it follows that

|〈v∗, Mk〉| = |〈v∗, Mk − Ñk〉| ≤ |Mk − Ñk | = O(cex). (5.5)

LetM be the (n − 1)× (n − dim V ) matrix whose kth column is given by the vector Mk .
The orthogonal projection of v∗ onto the subspace V⊥

u can be expressed in terms of M via
the formula

projV⊥
u

v∗ := M(M
M)−1M
v∗.

By (5.5), the components of the vector M
v∗ are all O(cex). Furthermore, it is not difficult
to show that ‖M(M
M)−1‖op � 1, and combining these observations establishes the claim.

"#

Verifying the transversality condition in (2)

Provided cex is chosen to be sufficiently small, the transversality condition holds for the
subspace V ′. To see this, first consider the auxiliary space V ′

aux. By elementary geometric
considerations,

min
v∈V∩Sn−1

v′∈V⊥
sl ×{0}∩Sn−1

�(v, v′) = �(V , e⊥n ) � 1,

where the latter inequality is by (5.3); this computation is discussed in detail in [20, Sublemma
6.6] and is represented diagrammatically in Fig. 5. The above inequality implies that V and
V ′
aux are quantitatively transverse, since V ′

aux is a subspace of V⊥
sl .

It remains to pass from the auxiliary space V ′
aux to V ′.
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1172 J. Hickman, M. Iliopoulou

Fig. 5 The transversality condition
θ := min

v∈V∩Sn−1

v′∈V⊥
sl ∩Sn−1

�(v, v′) =

�(V , e⊥n ) � 1; see [20,
Sublemma 6.6] for a formal proof
of this fact

Verifying the transverse equidistribution estimate in (3)

The remaining steps of the proof closely follow the argument used to prove Lemma 8.7 of
[21]. The localisation to τ implies that the tangent space Au is a good approximation for the
surface Su . In particular, the key observation is that if (θ, v) ∈ TV ,B,τ , then

dist(ξθ , Aξ ) � R−1/2+δm for ξθ := 
(ωθ ). (5.6)

As in Sect. 4.4, hereωθ ∈ Bn−1 denotes the centre of the cap θ whilst
 is the parametrisation
of the smooth hypersurface from (5.2).

The inequality (5.6) follows from the proof of Claim 3 in the proof of Lemma 8.7 of [21].
Since Vξ is the linear subspace parallel to the affine subspace Aξ , the above inequality implies
that projV⊥

ξ
ξθ lies in some fixed ball of radius O(R−1/2+δm ) whenever (θ, v) ∈ TV ,B,τ .

As in [21] and [20], the desired transverse equidistribution estimate (3) follows as a
consequence of the localisation of the projV⊥

ξ
ξθ described above. Indeed, since each ηB ·

T λgθ,v is essentially Fourier supported in a small ball around ξθ , this implies the projection
of the Fourier support of ηB · T λgθ,v onto V⊥

ξ is also localised to a O(R−1/2+δm )-ball.
The transverse equidistribution property now follows as a manifestation of the uncertainty
principle (see, in particular, [21, Lemma 8.5]). The reader is referred to [21] for the full
details. "#

5.4 The proof of the transverse equidistribution estimate

Using ideas from [20,21], one may easily pass from Lemma 5.5 to Lemma 5.4. Much of the
proof is essentially identical to the proof of [21, Lemma 8.4] therefore only a sketch of the
argument is provided.

It suffices to prove Lemma 5.4 in the case 1 ≤ m = dim Z ≤ (n+σ + 1)/2, as otherwise
μ(n, σ, m) = 0 and the statement is a simple consequence of Hörmander’s classical L2

bound (see the discussion around (5.11) below).
Consider Z , B, τ and g as in the statement of Lemma 5.4. It may be assumed that g is con-

centrated on thosewave packets (θ, v) fromTZ ,B,τ forwhich Tθ,v intersects NR1/2+δm (Z)∩B,
as for all other (θ, v) the function |T λ

θ,vg| is very small on Nρ1/2+δm (Z)∩ B. By the R1/2+δm -
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Sharp Lp estimates for oscillatory integral operators… 1173

tangent condition, it follows that there exists z ∈ Z ∩ 2B such that

�(Gλ(x̄, θ), Tz Z) � R−1/2+δm

for all such (θ, v). Therefore, there exists a subspace V ⊂ R
n ofminimal dimension dim V ≤

dim Z such that

�(Gλ(x̄, θ), V ) � R−1/2+δm

for all wave packets (θ, v) upon which g is concentrated. This implies that g is concentrated
on wave packets TV ,B,τ , as defined in Sect. 5.2. By Lemma 5.5 there exists a linear subspace
V ′ ⊆ R

n satisfying

μ(n, σ, dim V ) ≤ dim V ′ ≤ n − dim V , (5.7)

�(v, v′) ≥ 2ctrans for all non-zero vectors v ∈ V and v′ ∈ V ′

and the transverse equidistribution estimate

ˆ

�′∩B(x0,ρ1/2+δm )

|T λg|2 �δ RO(δm )(ρ/R)dim V ′/2‖g‖2δ/(1+δ)

L2(Bn−1)

⎛

⎝
ˆ

�′∩2B

|T λg|2
⎞

⎠
1/(1+δ)

(5.8)

for every affine subspace �′ parallel to V ′ and x0 ∈ B.
In contrast to the positive-definite case in [21], where one may ensure that dim V +

dim V ′ = n, only the generally weaker dimension bounds (5.7) hold here. However, the
subspace Ṽ := V ′⊕(V+V ′)⊥ satisfies dim V+dim Ṽ = n and the quantitative transversality
condition

�(v, ṽ) ≥ 2ctrans for all non-zero vectors v ∈ V and ṽ ∈ Ṽ ,

as well the transverse equidistribution estimate

ˆ

�∩B(x0,ρ1/2+δm )

|T λg|2 �δ RO(δm )(ρ/R)dim V ′/2‖g‖2δ/(1+δ)

L2(Bn−1)

⎛

⎝
ˆ

�∩2B

|T λg|2
⎞

⎠
1/(1+δ)

(5.9)

for every affine subspace� parallel to Ṽ and x0 ∈ �∩B, which follows from (5.8) by Fubini
and Hölder’s inequality (as well as the fact that δ � δm). Following closely the proof of
Lemma 8.4 in [21], one may further prove that for each z ∈ Z ∩ 2B the pair Tz Z , Ṽ satisfies
the quantitative transversality condition

�(v, ṽ) ≥ ctrans

for all non-zero vectors v ∈ Tz Z ∩ (Tz Z ∩ Ṽ )⊥ and ṽ ∈ Ṽ ∩ (Tz Z ∩ Ṽ )⊥. Since in addition
dim Tz Z + dim Ṽ ≥ n, Lemma 8.13 in [21] implies that

� ∩ Nρ1/2+δm (Z) ∩ B ⊆ NCρ1/2+δm (� ∩ Z) ∩ 2B

for every plane � parallel to Ṽ . As � ∩ Z is a complete transverse intersection of dimen-
sion dim Z + dim Ṽ − n = m − dim V , it follows by Wongkew’s theorem [41] that
� ∩ Nρ1/2+δm (Z) ∩ B can be covered by

Oε

(
RO(δm )(R/ρ)(m−dim V )/2

)
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1174 J. Hickman, M. Iliopoulou

balls of radius ρ1/2+δm . Applying the estimate (5.9) in each of these balls and summing, one
obtains

ˆ

�∩N
ρ1/2+δm (Z)∩B

|T λg|2 �ε,δ RO(δm )(ρ/R)(dim V+dim V ′−m)/2‖g‖2δ/(1+δ)

L2(Bn−1)

⎛

⎝
ˆ

�∩2B

|T λg|2
⎞

⎠
1/(1+δ)

for all planes� parallel to Ṽ . Integrating over all such planes and applying Hölder’s inequal-
ity, one deduces that

ˆ

N
ρ1/2+δm (Z)∩B

|T λg|2 �ε,δ RO(δm )(ρ/R)(dim V+dim V ′−m)/2‖g‖2δ/(1+δ)

L2(Bn−1)

⎛

⎝
ˆ

2B

|T λg|2
⎞

⎠
1/(1+δ)

.(5.10)

By Hörmander’s L2 bound [24] (see also [34, Chapter IX] or [21, Lemma 5.5]),

⎛

⎝
ˆ

2B

|T λg|2
⎞

⎠
1/(1+δ)

� R1/2+O(δm )

⎛

⎜⎝
ˆ

Bn−1

|g|2
⎞

⎟⎠

1/(1+δ)

. (5.11)

Substituting this into (5.10), the desired estimate in Lemma 5.4 follows provided

dim V + dim V ′ − m ≥ μ(n, σ, m). (5.12)

It remains to show (5.12) holds. In view of (5.7), this would follow from

dim V + μ(n, σ, dim V ) − m ≥ μ(n, σ, m).

By the initial reduction at the beginning of the subsection, dim V ≤ m ≤ (n + σ + 1)/2. If
0 ≤ dim V ≤ (n − σ + 1)/2, then μ(n, σ, dim V ) = n − 2 dim V + 1 and

dim V + μ(n, σ, dim V )− m = n − m − dim V + 1

≥ max

{
n − 2m + 1, n − m − n − σ + 1

2
+ 1

}

= μ(n, σ, m).

On the other hand, if (n − σ + 1)/2 ≤ dim V ≤ (n + σ + 1)/2, then μ(n, σ, dim V ) =
(n + σ + 1)/2− dim V and

dim V + μ(n, σ, dim V ) − m = n + σ + 1

2
− m = μ(n, σ, m).

This concludes the proof of Lemma 5.4.

6 Proof of Theorem 1.5

Theorem 1.5 is a special case of the following inductive proposition (in place of Proposition
10.1 from [21]). Define

ek,n,σ (p) := 1

2

(
1

2
− 1

p

)
n + 1+ σ + 2k

2
.
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Proposition 6.1 Given ε > 0 sufficiently small and 1 ≤ m ≤ n there exist

0 < δ � δn−1 � δn−2 � · · · � δ1 � ε

and constants C̄ε, Āε dyadic, Dm,ε �ε 1 and ϑm < ε such that the following holds.
Suppose Z = Z(P1, . . . , Pn−m) is a transverse complete intersection with deg Z ≤ Dm,ε.

For all 0 ≤ σ ≤ n − 1, 2 ≤ k ≤ n, 1 ≤ A ≤ Āε dyadic and 1 ≤ K ≤ R ≤ λ the inequality

‖T λ f ‖BLp
k,A(B(0,R)) �ε K C̄ε Rϑm+δ(log Āε−log A)−ek,n,σ (p)+1/2‖ f ‖L2(Bn−1)

holds for all translates T λ of Hörmander-type operators with reduced phase of signature σ ,
whenever f is concentrated on wave packets from TZ and

2 ≤ p ≤ p̄0(m, σ, k) :=
{

p̄(m, σ, k) if k < m
p̄(m, σ, m) + δ if k = m

.

Here, TZ is defined as in Sect. 5; that is,

TZ := {(θ, v) ∈ T : Tθ,v is R−1/2+δm -tangent to Z in B(0, R)}
and the parameters Dm,ε , θm , Āε , δ, δ1, . . . , δn−1, as well as translates of Hörmander-type
operators, are defined as in [21].

Proof The proof is the same as that of Proposition 10.1 in [21], with the exception that the
exponent n−m in inequality (10.30) of [21], which is due to equidistribution under a positive
definite assumption on the phase, is here replaced by μ(n, σ, m), the exponent appearing in
the equidistribution Lemma 5.4. This exponent is carried through to the end of the inductive
proof, and the induction closes due to the above definition of ek,n,σ (p). "#

7 Proof of Theorem 1.2: narrow decoupling

7.1 Overview

It remains to pass from the k-broad estimates of Theorem 1.5 to linear estimates for the
oscillatory integral operators T λ. As in [20,21], this is achieved via the Bourgain–Guth
method from [12], which recursively partitions the norm ‖T λ f ‖L p(BR) into two pieces:

Broad part. This is the part of the norm which can be estimated using the k-broad inequal-
ities from Theorem 1.5.

Narrow part. This consists of the remaining contributions to the norm, which cannot be
controlled using the k-broad estimates.

In this section the tools for analysing the narrow part are reviewed. Themain ingredient is a
Wolff-type �p-decoupling inequality: see Proposition 7.3 below. In the next section, a sketch
of theBourgain–Guth argument is providedwhich combines Theorem1.5 andProposition 7.3
(or, more precisely, Corollary 7.7) in order to deduce Theorem 1.2.

7.2 Decoupling regions

Let h : Bn−1 → R be a smooth function such that

h(0) = 0 and ∂uh(0) = 0
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1176 J. Hickman, M. Iliopoulou

and such that the Hessian ∂2uuh(u) is non-degenerate for all u ∈ Bn−1 with fixed signature
0 ≤ σ ≤ n − 1. In such cases h is said to be of signature σ . Consider the surface


[h] := {
�h(u) : u ∈ Bn−1}, where �h(u) :=

(
u

h(u)

)
,

which is of non-vanishing Gaussian curvature and has second fundamental form of constant
signature σ . Note that the Gauss map Gh : Bn−1 → Sn−1 associated to this surface is given
by

Gh(u) := 1

(1+ |∂uh(u)|2)1/2 Gh,0(u) where Gh,0(u) :=
(−∂uh(u)

1

)
.

In particular, Gh(0) = �en and the image set Gh(Bn−1) is contained in a spherical cap in the
northern hemisphere, centred around the north pole.

Given ū ∈ Bn−1 and δ > 0 define the matrices

[h]ū :=
[

In−1 0
∂uh(ū)
 1

]
and [h]ū,δ := [h]ū ◦ Dδ

where Dδ = diag[δ1/2, . . . , δ1/2, δ] corresponds to an anisotropic (parabolic) scaling of
the coordinates. This definition may be partially motivated by considering a quadratic form
Q(u) := 1

2 〈Lu, u〉 for L : Rn−1 → R
n−1 an invertible, self-adjoint linear mapping. By

forming the Taylor expansion of �Q , it follows that

�Q(ū + δ1/2u) = [Q]ū,δ · �Q(u) + �Q(ū). (7.1)

In particular, the above identity shows that the surface
[Q] can be diffeomorphicallymapped
to a δ1/2-cap13 via an affine transformation of the ambient space.Moreover, the matrix [Q]ū,δ

corresponds to the linear part of this affine transformation.

Definition 7.1 A δ1/2-slab on 
[h] is a set of the form
θ(ū; δ) := {

ξ ∈ R̂
n : ξ = [h]ū,δ · η + �h(ū) for some η ∈ [−1, 1]n}.

If θ = θ(ū; δ) is a δ1/2-slab, then ū is referred to as the centre of the slab and in such cases
the notation ū = uθ is used. It will also be convenient to write [h]θ for [h]uθ ,δ whenever
θ = θ(uθ ; δ).

These regions are defined in view of the scaling considerations discussed above. In partic-
ular, in the quadratic case, where h = Q as above, the slabs inherit a scaling structure from
(7.1), as described in the proof of Lemma 7.5 below.

Definition 7.2 Given V a subspace of Rn , a δ1/2-slab decomposition on 
[h] along V is a
family �(V , δ) of δ1/2-slabs satisfying:

(i) The δ1/2-slabs belonging to �(V , δ) are finitely-overlapping, and in particular the max-
imum number of overlapping slabs is bounded by a dimensional constant.

(ii) �(Gh(uθ ), V ) ≤ δ1/2 for all θ ∈ �(V , δ).

As in Sect. 5 (see (5.3)), to avoid degenerate situations it is assumed that

�(V , e⊥n ) := max
v∈V∩Sn−1

�(v, e⊥n ) � 1. (7.2)

13 In particular, the set �Q
(
B(ū, δ1/2)

)
.
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Thus, any maximal δ1/2-slab decomposition �(V , δ) essentially forms a decomposition of
the neighbourhood of the (d − 1)-dimensional submanifold


[h; V ] := {
�h(u) ∈ 
[h] : Gh(u) ∈ V }

of height δ in the normal direction to 
[h] and of width δ1/2 in the tangential directions to

[h].

7.3 Constant coefficient decoupling: quadratic case

For n ≥ d ≥ 2 and 0 ≤ σ ≤ n − 1 such that n − 1− σ is even, define the exponents

pdec(n, σ, d) :=
⎧
⎨

⎩

∞ if 2 ≤ d ≤ n−σ+1
2

2 · 2d−n+σ+3
2d−n+σ−1 if n−σ+1

2 ≤ d ≤ n+σ+1
2

2 · 2d−n+1
2d−n−1 if n+σ+1

2 ≤ d ≤ n
, (7.3)

e(n, σ, d) :=

⎧
⎪⎨

⎪⎩

d − 1 if 2 ≤ d ≤ n−σ+1
2

d−1
2 + n−1−σ

4 if n−σ+1
2 ≤ d ≤ n+σ+1

2
n−1
2 if n+σ+1

2 ≤ d ≤ n

. (7.4)

With this and the definitions from the previous subsection, the main decoupling inequality
reads as follows.

Proposition 7.3 Let 2 ≤ d ≤ n, 0 ≤ σ ≤ n−1 with n−1−σ even and δ > 0. Suppose that
h : Bn−1 → R is of signature σ , that V ⊆ R

n is a vector subspace of dimension d satisfying
(7.2) and �(V , δ) is δ1/2-slab decomposition on 
[h] along V . For all 2 ≤ p ≤ pdec(n, σ, d)

and ε > 0, the inequality
∥∥∥∥∥∥

∑

θ∈�(V ,δ)

Fθ

∥∥∥∥∥∥
L p(Rn)

�ε,h δ−e(n,σ,d)(1/2−1/p)−ε

⎛

⎝
∑

θ∈�(V ,δ)

‖Fθ‖p
L p(Rn)

⎞

⎠
1/p

holds whenever (Fθ )θ∈�(V ,δ) is a tuple of functions satisfying supp F̂θ ⊆ θ for all θ ∈
�(V , δ).

For the 2 ≤ d ≤ n−σ+1
2 range the decoupling is elementary, but for the remaining d

values Proposition 7.3 relies on the Bourgain–Demeter decoupling theorem for surfaces of
non-vanishing Gaussian curvature [11].

In this subsection the proof of Proposition 7.3 (or, more precisely, the reduction of this
proposition to the main theorem in [11]) is described in the special case where the surface
under consideration is quadratic. In particular, here h := Q for some quadratic form

Q(u) := 1

2
〈Lu, u〉 (7.5)

where L : Rn−1 → R
n−1 is an invertible, self-adjoint linear mapping of signature σ . This

prototypical case is essentially treated in [2] (see also [11]) but, for completeness, the details
are given.

Slice geometry. Fix Q as in (7.5) and a d-dimensional subspace V satisfying (7.2). The first
step is to understand the basic geometry of 
[Q; V ]. This is a quadratic surface, associated
to some potentially degenerate quadratic form. The key is to determine the possible degree
of degeneracy, which depends on the signature σ of the original matrix L.
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1178 J. Hickman, M. Iliopoulou

For Q as in (7.5), the unnormalised Gauss map G Q,0 is an affine function. Thus, the
preimage

Au := {
u ∈ R

n−1 : G Q(u) ∈ V
}

(7.6)

is an affine subspace of dimension d − 1 (see also Example 5.6 above) and


[Q; V ] = 
[Q] ∩ Aξ , where Aξ := Au × R.

In particular,
[Q; V ] is the graph of the form Q restricted to the subspace Au . Furthermore,
if Vu denotes the (d − 1)-dimensional linear subspace parallel to Au , then 
[Q; V ] is the
image of the graph of Q over Vu under an invertible affine transformation.

Restrictions of quadratic forms. Given a linear subspace U ⊆ R
n−1 of dimensions d − 1,

consider the restriction Q|U of the quadratic form Q to U , which is a (possibly degenerate)
quadratic form on U . In particular, there exists a self-adjoint linear map LU : U → U such
that Q|U (u) = 1

2 〈LU (u), u〉 for all u ∈ U . For ρ > 0 let N(LU ; ρ) denote the number
of eigenvalues of LU inside the interval (−ρ, ρ) and let ρ(L) > 0 denote the minimum
modulus of the eigenvalues of L.

The following lemma is a minor modification of [2, Lemma 3.3], which in turn is adapted
from the proof of Proposition 3.2 in [11].

Lemma 7.4 [2,11] Let 2 ≤ d ≤ n, 0 ≤ σ ≤ n−1 with n−1−σ even and L : Rn−1 → R
n−1

be an invertible, self-adjoint linear mapping of signature σ . If U is a vector space of dimension
d − 1, then

N
(
LU ; ρ(L)

) ≤ ν(n, σ, d) :=

⎧
⎪⎨

⎪⎩

d − 1 if 1 ≤ d ≤ n−σ+1
2

n−σ−1
2 if n−σ+1

2 ≤ d ≤ n+σ+1
2

n − d if n+σ+1
2 ≤ d ≤ n

,

where LU is the linear mapping obtained by restricting to U the quadratic form associated
to L, as described above.

Applying Lemma 7.4 to the subspace U := Vu , it follows that the slice 
[Q; V ] has at
least d − 1− ν(n, σ, d) principal curvatures bounded away from zero.

Proof of Lemma 7.4 The desired inequality is equivalent to showing

N
(
LU ; ρ(L)

) ≤ min

{
d − 1,

n − σ − 1

2
, n − d

}
. (7.7)

The bound d−1 is obvious, since the total number of eigenvalues cannot exceed the dimension
of U .

In order to prove the remaining bounds, form the following orthogonal decompositions
of Rn−1 and U :

• Let X− and X+ denote the subspaces of Rn−1 spanned by the eigenvectors of L with
negative and positive eigenvalues, respectively.

• Let E−, E0 and E+ denote the subspaces of U spanned by the eigenvectors of LU

with eigenvalues lying in the intervals (−∞,−ρ(L)], (−ρ(L), ρ(L)) and [ρ(L),∞),
respectively.
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In this notation,

n − σ − 1

2
= min{dim X−, dim X+} and N

(
LU ; ρ(L)

) = dim E0. (7.8)

The key observation is that
(
E− ⊕ E0

) ∩ X+ = (
E+ ⊕ E0

) ∩ X− = {0},
which is a simple consequence of the definitions. Thus,

dim E− + dim E0 ≤ dim X−, (7.9a)

dim E+ + dim E0 ≤ dim X+, (7.9b)

and these inequalities together with (7.8) immediately imply the n−σ−1
2 bound in (7.7). The

remaining bound in (7.7) follows by summing together (7.9a) and (7.9b), using the fact that
dim E− + dim E+ = d − 1− dim E0 and dim X− + dim X+ = n − 1. "#

Trivial decoupling. Recall, Vu is the (d − 1)-dimensional linear subspace parallel to the
affine subspace Au defined in (7.6). Consider the eigenspace decomposition Vu = E− ⊕
E0 ⊕ E+ defined with respect to LVu as in the proof of Lemma 7.4. The eigenvectors
generating E0 have eigenvalues of small modulus and therefore correspond to the (relatively)
flat directions of
[Q; V ]. Note that E0 has dimension ν := N

(
LVu ; ρ(L)

)
, which is bounded

by Lemma 7.4. In these flat directions one applies a trivial decoupling inequality, based on
Plancherel’s theorem.

To make the above discussion precise, note that

supp F̂θ ⊆ Nδ1/2 Aξ ∩ B(0, 1) for all θ ∈ �(V ; δ),
where Aξ = Au ×R is the affine subspace introduced above. Since Au is parallel to Vu , one

may write Au = Vu + b for some b ∈ R
n−1. Thus, W (0)

u := E− ⊕ E+ + b is a subspace of
Au and Aξ may be foliated into translates of W (0)

ξ := W (0)
u × R by writing

Aξ =
⋃

a∈E0

W (a)
ξ for W (a)

ξ := W (a)
u × R and W (a)

u := W (0)
u + a.

Let A(V ; δ) denote a collection of sets α := Nδ1/2W (a)
ξ for a varying over a δ1/2-net in

E0 ∩ B(0, 1), so thatA(V ; δ) forms a cover of the support of the F̂θ by finitely-overlapping
sets. Note that #A(V ; δ) � δ−ν/2.

Fix a smooth partition of unity (ζα)α∈A(V ;δ). Thus, given any g ∈ L1(Rn−1) with Fourier
support in Nδ1/2 Aξ ∩ B(0, 1), one may write g = ∑

α∈A(V ;δ) gα where each gα is defined
via the Fourier transform by ĝα := ĝ · ζα . In particular,

F :=
∑

θ∈�(V ;δ)
Fθ may be written as F =

∑

α∈A(V ;δ)
Fα =

∑

α∈A(V ;δ)

∑

θ∈�(V ;δ)
(Fθ )α.

For all 2 ≤ p ≤ ∞, an elementary argument shows that
∥∥ ∑

θ∈�(V ;δ)
Fθ

∥∥
L p(Rn)

= ∥∥ ∑

α∈A(V ;δ)
Fα

∥∥
L p(Rn)

� δ−ν(1/2−1/p)

⎛

⎝
∑

α∈A(V ;δ)
‖

∑

θ∈�(V ;δ)
(Fθ )α‖p

L p(Rn)

⎞

⎠
1/p

. (7.10)
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1180 J. Hickman, M. Iliopoulou

Indeed, this follows by interpolation between the p = 2 and p = ∞ cases (first setting up
the estimate in a suitably general formulation, amenable to interpolation), which follow from
Plancherel’s theorem and the triangle inequality, respectively.

Applying the Bourgain–Demeter theorem. Now consider the (d − 1 − ν)-dimensional
eigenspace E := E− ⊕ E+. The eigenvectors generating E have eigenvalues of large
modulus and correspond to ‘curved’ directions. In particular, the restriction of Q to E is
a non-degenerate form. Owing to this, one may take advantage of the Bourgain–Demeter
theorem [11].

Fix α = Nδ1/2W (a)
ξ ∈ A(V ; δ) and consider the linear subspace

V (a) := 〈G Q(u) : u ∈ W (a)
u 〉 ⊆ V .

It is not difficult to show that V (a) is of dimension d − ν and

W (a)
u = {

u ∈ R
n−1 : G Q(u) ∈ V (a)

}
.

Choose coordinates x = (x ′, x ′′) for x ′ ∈ V (a) and x ′′ ∈ (V (a))⊥. Fix x ′′ ∈ (V (a))⊥ and
define

gx ′′,θ (x ′) := (Fθ )α(x ′, x ′′).

By elementary properties of the Fourier transform, it follows that

supp ĝθ ⊆ projV (a) θ.

Since the eigenvalues associated to eigenvectors in E are bounded away from zero, it
follows that Q restricts to a nondenegerate form on W (a)

u . Consequently:

(i) projV (a)
[Q; V (a)] is a smooth hypersurface in V (a) of non-vanishing Gaussian curva-
ture.

(ii) projV (a) θ are finitely-overlapping and appropriate neighbourhoods of the projV (a) θ form
a δ1/2-slab decomposition of the entire hypersurface projV (a)
[Q; V (a)].

For a proof of these observations see, for instance, [3, Lemma 3.4].
In light of the above, for each fixed x ′′ ∈ (V (a))⊥, the function gx ′′,θ satisfies the

hypotheses of the decoupling theorem for negatively-curved surfaces from [11]. Thus, for all
2 ≤ p ≤ 2 · d−ν+1

d−ν−1 and ε > 0 the inequality

∥∥∥∥∥∥

∑

θ∈�(V ;δ)
gx ′′,θ

∥∥∥∥∥∥
L p(V (a))

�ε,Q δ−(d−1−ν)(1/4−1/2p)−ε

⎛

⎝
∑

θ∈�(V ;δ)
‖gx ′′,θ‖p

L p(V (a))

⎞

⎠
1/p

holds uniformly in x ′′. Taking p powers, integrating over all x ′′ ∈ (V (a))⊥ and then taking
the p roots, one concludes that

∥∥∥∥∥∥

∑

θ∈�(V ;δ)
(Fθ )α

∥∥∥∥∥∥
L p(Rn)

�ε,Q δ−(d−1−ν)(1/4−1/2p)−ε

⎛

⎝
∑

θ∈�(V ;δ)
‖(Fθ )α‖p

L p(Rn)

⎞

⎠
1/p

.

(7.11)

This efficiently decouples the L p-norms on the right-hand side of (7.10).
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Sharp Lp estimates for oscillatory integral operators… 1181

Combining the decouplings. Finally, fix θ ∈ �(V ; δ) and observe that
⎛

⎝
∑

α∈A(V ;δ)
‖(Fθ )α‖p

L p(Rn)

⎞

⎠
1/p

≤

∥∥∥∥∥∥∥

⎛

⎝
∑

α∈A(V ;δ)
|(Fθ )α|2

⎞

⎠
1/2

∥∥∥∥∥∥∥
L p(Rn)

� ‖Fθ‖L p(Rn)

(7.12)

by an elementary square function estimate (see, for instance, [31, Lemma 2.4.6]). Combining
(7.10), (7.11) and (7.12), for all 2 ≤ p ≤ 2 · d−ν+1

d−ν−1 and ε > 0 the inequality
∥∥∥∥∥∥

∑

θ∈�(V ,δ)

Fθ

∥∥∥∥∥∥
L p(Rn)

�ε,Q δ−(d−1+ν)(1/4−1/2p)−ε

⎛

⎝
∑

θ∈�(V ,δ)

‖Fθ‖p
L p(Rn)

⎞

⎠
1/p

(7.13)

holds. By Lemma 7.4, the δ dependence in (7.13) is at least as good as that in Proposition 7.3.
However, Lemma 7.4, together with the definitions (7.4), (7.3) and (7.4), also implies that

2 · d − ν + 1

d − ν − 1
≤ pdec(n, σ, d), (7.14)

and so the range of p in (7.13) is potentially insufficient for the present purpose. To remedy
this, one may interpolate against the trivial inequality

∥∥∥∥∥∥

∑

θ∈�(V ;δ)
Fθ

∥∥∥∥∥∥
L∞(Rn)

� δ−(d−1)/2 max
θ∈�(V ;δ) ‖Fθ‖L∞(Rn). (7.15)

Indeed, the desired decoupling inequality in Proposition 7.3 follows by interpolating between
(7.13) and (7.15), in view of the exponent relation (7.14).

7.4 Constant coefficient decoupling: general case

To complete the proof of Proposition 7.3, it remains to extend the result from quadratic
surfaces to graphs of arbitrary smooth h of signature σ . This is achieved via a now standard
iteration argument originating in the work of Pramanik–Seeger [28]. The argument relies
on the fact that, locally, each such h is a small perturbation of a quadratic surface of the
same signature, and also on special scaling properties of the decoupling inequalities which
manifest in the proof of Lemma 7.5 below.

Consider the slight generalisation of the setup from the previous subsection where
h : Rn−1 → R is a quadratic of signature σ defined by

h(u) := 1

2
〈Lu, u〉 + 〈�b, u〉 + a (7.16)

where L : Rn−1 → R
n−1 is an invertible, self-adjoint linear mapping of signature σ , whilst

�b ∈ R
n−1 and a ∈ R. Fix V a d-dimensional subspace satisfying (7.2), a pair of scales

0 < δ < ρ < 1 and a ρ1/2-slab α on 
[h] with �(G(uα), V ) ≤ ρ1/2.

Lemma 7.5 With the above setup, suppose �(α) ⊆ �(V ; δ) is a collection of δ1/2-slabs θ

satisfying θ ⊆ α. For all 2 ≤ p ≤ pdec(n, σ, d) and ε > 0, the inequality
∥∥∥∥∥∥

∑

θ∈�(α)

Fθ

∥∥∥∥∥∥
L p(Rn)

�ε,h (δ/ρ)−e(n,σ,d)(1/2−1/p)−ε

⎛

⎝
∑

θ∈�(α)

‖Fθ‖p
L p(Rn)

⎞

⎠
1/p

(7.17)
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1182 J. Hickman, M. Iliopoulou

holds whenever (Fθ )θ∈�(α) is a tuple of functions satisfying supp F̂θ ⊆ θ for all θ ∈ �(α).

Proof Define functions F̃θ via the Fourier transform by
(
F̃θ

)
(̂ξ ) := F̂θ

([h]α · ξ + �h(uα)
)
,

and note that it suffices to prove the same inequality butwith each Fθ replacedwith F̃θ . Indeed,
this follows by applying an affine rescaling andmodulation to the functions appearing in both
sides of the inequality in (7.17).

By the Fourier support hypothesis on the Fθ , it follows that each F̃θ has Fourier support
in the set

{
ξ ∈ R̂

n : ξ = [h]−1
α ◦ [h]θ · η + [h]−1

α

(
�h(uθ ) − �h(uα)

)
for some η ∈ [−1, 1]n}.

Defining u θ̃ := ρ−1/2
(
uθ − uα

)
and θ̃ := θ(u θ̃ ; δ/ρ), a simple computation shows that

[h]−1
α ◦ [h]θ = [Q]θ̃ and [h]−1

α

(
�h(uθ ) − �h(uα)

) = �Q(u θ̃ ),

where Q is the leading homogeneous part of h, as defined in (7.5). In particular,

supp
(
F̃θ

)
̂⊆ θ̃ = θ(u θ̃ ; δ/ρ).

Let (N j )
n−d
j=1 be anorthonormal basis forV⊥ andwrite N j = (N ′

j , N j,n)where N ′
j ∈ R

n−1

is the vector formed by the first n − 1 components of N j . The angle condition (7.2) implies
that the vectors N ′

j are quantitatively transverse in the sense that |∧n−1
j=1 N ′

j | �h 1. Define

Ñ j := ρ1/2[h]−1
α N j

so that Ñ j = (N ′
j , Ñ j,n) where Ñ j,n := ρ−1/2〈Gh,0(uα), N j 〉. Recall, by hypothesis,

�(Gh(uα), V ) ≤ ρ1/2 and therefore the vectors Ñ j have magnitude Oh(1). The vectors
Ñ j also inherit quantitative transversality from the N ′

j .

Consider the d-dimensional subspace Ṽ := 〈Ñ1, . . . , Ñn−d〉⊥. A simple computation
shows that

〈G Q,0(u θ̃ ), Ñ j 〉 = ρ−1/2〈Gh,0(uθ ), N j 〉.
The condition �(Gh(uθ ), V ) ≤ δ1/2 implies |〈Gh,0(uθ ), N j 〉| �h δ1/2 for 1 ≤ j ≤ n − d
and, consequently, �(G Q(u θ̃ ), Ṽ ) �h (δ/ρ)1/2. Thus, the claim follows by applying the
decoupling inequality from the previous step to the function Q at scale ∼ δ/ρ. "#

Following [28], the general case of Proposition 7.3 may be deduced from the quadratic
case via an induction-on-scale procedure, using Lemma 7.5.

Proof of Proposition 7.3: general case Fix h : Bn−1 → R of signature σ , a vector subspace
V ⊆ R

n of dimension d satisfying (7.2) and aLebesgue exponent 2 ≤ p ≤ ∞. For 0 < δ < 1
define the decoupling constant Dh,V ,p(δ) to be the infimum over all constants C ≥ 1 for
which the inequality

∥∥∥∥∥∥

∑

θ∈�(V ,δ)

Fθ

∥∥∥∥∥∥
L p(Rn)

≤ Cδ−e(n,σ,d)(1/2−1/p)

⎛

⎝
∑

θ∈�(V ,δ)

‖Fθ‖p
L p(Rn)

⎞

⎠
1/p
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Sharp Lp estimates for oscillatory integral operators… 1183

holds for all δ1/2−slab decompositions �(V , δ) on 
[h] along V and all tuples of functions
(Fθ )θ∈�(V ,δ) satisfying supp F̂θ ⊆ θ for all θ ∈ �(V , δ). With this notation, given ε > 0
the problem is to show that

Dh,V ,p(δ) �h,ε δ−ε. (7.18)

Fixing ε > 0, the argument proceeds by induction on the scale δ, using the prototypical
cases proved above to facilitate the induction step. In particular, let δ◦ = δ◦(h, ε) > 0 be
a fixed small parameter, depending only on h and ε and chosen sufficiently small for the
purpose of the forthcoming argument. If 1 > δ ≥ δ◦, then the desired bound (7.18) follows
immediately from Hölder’s inequality. This serves as the base case for the induction.

Induction hypothesis: Fix 0 < δ < δ◦ and suppose

Dh,V ,p(δ
′) ≤ Ch,ε(δ

′)−ε (7.19)

holds whenever 2δ ≤ δ′ < 1.
HereCh,ε is a fixed constant, which depends only on the admissible objects h and ε, chosen

sufficiently large for the purpose of the forthcoming argument. In particular, it suffices to
take Ch,ε so that (7.19) holds in the base case 1 > δ′ ≥ δ◦ for the choice of δ◦ determined
below.

Fix �(V , δ) a δ1/2-slab decomposition on 
[h] along V . Let δ � ρ < 1 be a second
small parameter. Later in the argument ρ is fixed by taking ρ ∼h δ2/3, but for now it is
helpful to keep it a free parameter. Fix a ρ1/2-slab decomposition �(V , ρ) with the property
that every θ ∈ �(V , δ) lies in at least one α ∈ �(V , ρ).

Given a tuple of functions (Fθ )θ∈�(V ,δ) as in the statement of the proposition, form a tuple
of functions (Fα)α∈�(V ,ρ) by partitioning the collection �(V , δ) into disjoint families �(α)

with θ ⊆ α for all θ ∈ �(α) and taking

Fα :=
∑

θ∈�(α)

Fθ for all α ∈ �(V , ρ).

Clearly, supp F̂α ⊆ α and so, applying the induction hypothesis (7.19) with δ′ = ρ ≥ 2δ,
one deduces that

∥∥∥∥∥∥

∑

θ∈�(V ,δ)

Fθ

∥∥∥∥∥∥
L p(Rn)

=
∥∥∥∥∥∥

∑

α∈�(V ,ρ)

Fα

∥∥∥∥∥∥
L p(Rn)

≤ Ch,ερ
−e(n,σ,d)(1/2−1/p)−ε

⎛

⎝
∑

α∈�(V ,ρ)

‖Fα‖p
L p(Rn)

⎞

⎠
1/p

. (7.20)

Fixing α ∈ �(V , ρ), the problem is now to decouple the norm

‖Fα‖L p(Rn) =
∥∥∥∥∥∥

∑

θ∈�(α)

Fθ

∥∥∥∥∥∥
L p(Rn)

.

To achieve this, h is locally approximated by a quadratic which facilitates application of the
decoupling for quadratic surfaces derived in the previous steps. Let uα ∈ Bn−1 denote the
centre of α and consider the second order approximation hα : Rn−1 → R to h around uα ,
given by

hα(u) := 1

2
〈∂2uuh(uα)(u − uα), u − uα〉 + 〈∂uh(uα), u − uα〉 + h(uα).
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1184 J. Hickman, M. Iliopoulou

Note that each of the mappings hα is of the form (7.16).
Let ξ ∈ θ = θ(uθ , δ) ∈ �(α) so that there exists η = (η′, ηn) ∈ [−1, 1]n−1 × [−1, 1]

such that

ξ = [h]θ · η + �h(uθ ).

A simple computation shows

ξ = [hα]θ · η̃ + �hα (uθ ),

where η̃ = (η′, η̃n) for

η̃n := ηn + δ−1/2〈∂uh(uθ ) − ∂uhα(uθ ), η
′〉 + δ−1(h(uθ ) − hα(uθ )

)
.

By Taylor’s theorem and the hypothesis θ ∈ �(α), one deduces that

|h(uθ ) − hα(uθ )| �h |uθ − uα|3 ≤ ρ3/2,

|∂uh(uθ ) − ∂uhα(uθ )| �h |uθ − uα|2 ≤ ρ.

Thus, taking ρ := chδ2/3 for a suitably small constant ch > 0, depending only on the
magnitude of the third order derivatives of h, one concludes that η̃n ∈ [−2, 2].

The previous observations show that each Fθ for θ ∈ �(α) has Fourier support in a
(2δ)1/2-slab defined with respect to the quadratic surface 
[hα]. One may therefore apply
the (rescaled version of the) decoupling inequality (7.17) to conclude that

‖Fα‖L p(Rn) �h,ε (δ/ρ)−e(n,σ,d)(1/2−1/p)−ε/2

⎛

⎝
∑

θ∈�(α)

‖Fθ

∥∥
L p(Rn)

⎞

⎠
1/p

. (7.21)

Combining (7.20) and (7.21) with the definition of the decoupling constant,

Dh,V ,ε(δ) ≤ Ch,ε(δ/ρ)ε/2Ch,εδ
−ε,

whereCh,ε is an amalgamation of the implicit constants arising in the above argument. Since,
δ/ρ ≤ c−1

h δ
1/3◦ , by choosing δ◦ from the outset to be sufficiently small, depending only on h

and ε, one may ensure that Ch,ε(δ/ρ)ε/2 ≤ 1 and so the induction closes. "#

7.5 Variable coefficient decoupling

Proposition 7.3 can be used to study Hörmander-type operators, provided that the operator is
sufficiently localised. In particular, given a reduced phase function φλ of signature σ , recall
from Sect. 4.2 that for a fixed vector x̄ ∈ B(0, λ) in the spatial domain,

hλ
x̄ (u) := ∂xn φ

λ
(
x̄;�λ

x̄ (u)
)

is a smooth function of signature σ on its domain. Moreover, if the corresponding operator
T λ f is localised to a small ball around x̄ , then the Fourier transform of this localised function
is supported in a neighbourhood of the surface 
[hλ

x̄ ]. This facilitates application of the
decoupling inequality from Proposition 7.3 in this setting.

To make the above discussion precise, fix a Hörmander-type operator T λ and a function
f ∈ L1(Bn−1). Let T be a decomposition of the domain Bn−1 into finitely-overlapping balls
τ ⊆ R

n−1 of radius K−1, each with some centre ωτ ∈ Bn−1, and fix a smooth partition
of unity {ψτ }τ∈T subordinate to T. Correspondingly, decompose f = ∑

τ∈T fτ where each
fτ = f · ψτ ; in particular, each fτ satisfies supp fτ ⊆ τ .
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Sharp Lp estimates for oscillatory integral operators… 1185

Thus, T λ f = ∑
τ∈T T λ fτ and one is interested in studying this function localised to

some ball BK 2 = B(x̄, K 2) of radius K 2. In view of this, let ζ ∈ C∞
c (Rn) satisfy ζ(x) = 1

for x ∈ [−1, 1]n and ζ(x) = 0 for x /∈ [−2, 2]n and define ζBK2 (x) := ζ(K−2(x − x̄)).

Let T λ
BK2

denote the localised operator given by replacing the amplitude function aλ(x;ω)

in T λ with aλ(x;ω) · ζBK2 (x). The key observation is that, provided K 2 ≤ λ, each function

T λ
BK2

fτ is essentially Fourier supported in a K−1-slab, defined with respect to the function

hλ
x̄ . In particular, given ε > 0, for each τ associate a K−(1−ε)-slab

θ(τ ) := θ
(
uτ ; K−2(1−ε)

)
(7.22)

defined as in Definition 7.1, taking h = hλ
x̄ and ū = uτ := (

�λ
x̄

)−1
(ωτ ). Let ζτ denote

the function obtained by precomposing ζ with the inverse of the affine transformation η !→
1
2 · [hλ

x̄ ]θ(τ ) · η + �(hλ
x̄ )(uτ ). Thus, supp ζτ ⊆ θ(τ ) for all ξ ∈ θ(τ ).

Lemma 7.6 Given ε > 0 and Rε �ε K 2 ≤ λ, with the above definitions,

T λ
BK2

fτ (x) = (
T λ

BK2
fτ
) ∗ ζ̌τ (x) + RapDec(R)(1+ |x − x̄ |)−(n+1)‖ fτ‖L2(Bn−1). (7.23)

Once this lemma is established, one may immediately apply Proposition 7.3 to deduce
the following (pseudo) variable coefficient decoupling inequality. For a strengthening of the
result see [29].

Corollary 7.7 Let 2 ≤ d ≤ n, 0 ≤ σ ≤ n−1 with n−1−σ even and λ ≥ 1. Suppose T λ is a
Hörmander-type operator with reduced phase of signature σ and V ⊆ R

n is a d-dimensional
linear subspace. For 2 ≤ p ≤ pdec(n, σ, d) and ε > 0 one has

∥∥∥∥∥
∑

τ∈V

T λgτ

∥∥∥∥∥
L p(BK2 )

�ε K 2e(n,σ,d)(1/2−1/p)+ε

(
∑

τ∈V

‖T λgτ‖p
L p(2·BK2 )

)1/p

+ RapDec(R)‖ f ‖L2(Bn−1)

whenever Rε �ε K 2 ≤ λ. Here the sums are over all caps τ for which �(Gλ(x̄, τ ), V ) ≤
K−1 where x̄ is the centre of BK 2 .

Proof Defining the slabs θ(τ ) with ε replaced with ε′ := ε/100n in (7.22), the functions

Fθ(τ ) :=
(
T λ

BK2
fτ
) ∗ ζ̌τ

satisfy supp F̂θ(τ ) ⊆ θ(τ ). Recalling the discussion in Sect. 4.2, the collection of slabs
{θ(τ ) : τ ∈ V } forms a K−(1−ε′)-slab decomposition on 
λ

x̄ = 
[hλ
x̄ ] along V .14 Thus, for

p in the stated range, one may apply Proposition 7.3 to deduce that
∥∥∥∥∥
∑

τ∈V

Fθ(τ )

∥∥∥∥∥
L p(Rn)

�ε K 2e(n,σ,d)(1/2−1/p)+ε

(
∑

τ∈V

‖Fθ(τ )‖p
L p(Rn)

)1/p

.

By transferring the BK 2 -localisation between the L p-norm and the operator and applying the
approximation from Lemma 7.6, the desired bound readily follows from the above display.

"#
14 Strictly speaking, this is not quite true since the slabs have overlap depending on K ε . However, since
the collection can be partitioned into O(K ε/10) finitely-overlapping subcollections, this only induces an
acceptable K ε/10 loss in the estimates.
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1186 J. Hickman, M. Iliopoulou

It remains to prove the Fourier localisation lemma.

Proof of Lemma 7.6 Taking the Fourier transform, one may write

(
T λ

BK2
fτ
)

(̂ξ ) = e−2π i〈x̄,ξ〉
ˆ
Rn−1

Bλ,K
x̄ (ξ ;ω) fτ (ω) dω

where the kernel Bλ,K
x̄ satisfies

∂
β
ξ Bλ,K

x̄ (ξ ;ω) := K 2(n+|β|)
ˆ
Rn

e2π i�λ,K
x̄ (x;ξ ;ω)aλ,K

x̄,β (x;ω) dx for all β ∈ N
n
0

for phase function �
λ,K
x̄ and amplitude aλ,K

x̄,β given by

�
λ,K
x̄ (x; ξ ;ω) := φλ(x̄ + K 2x;ω) − K 2〈x, ξ 〉,
aλ,K

x̄,β (x;ω) := (2π i x)β · ζ(x) · aλ(x̄ + K 2x;ω).

Note that aλ,K
x̄,β is supported in Bn × Bn−1 and, by the condition K 2 ≤ λ, has derivatives

uniformly bounded in K and λ. On the other hand,

∂x�
λ,K
x̄ (x; ξ ;ω) = K 2(∂xφ

λ(x̄;ω) − ξ
)+ (

∂xφ
λ
(
x̄ + K 2x;ω)− ∂xφ

λ(x̄;ω)
)
,(7.24)

where the second term on the right-hand side is bounded above in magnitude by a constant
depending only on the second derivatives of φ. The key claim is that

{
ξ ∈ R̂

n : ∣∣ξ − ∂xφ
λ(x̄;ω)

∣∣ ≤ K−2+ε for some ω ∈ τ
} ⊆ θ(τ ). (7.25)

Once this is established, one may bound the first term on the right-hand side of (7.24) under
appropriate hypotheses on ω and ξ and, in particular, show that

|∂x�
λ,K
x̄ (x; ξ ;ω)| � K ε for all ω ∈ τ and ξ /∈ θ(τ ).

On the other hand, |∂α
x �

λ,K
x̄ (x; ξ ;ω)| �α 1 for all α ∈ N

n with |α| ≥ 2 and, thus, repeated
integration-by-parts yields

sup
ω∈τ

∣∣∂β
ξ

[(
1− ζτ (ξ)

)
Bλ,K

x̄ (ξ ;ω)
]∣∣ �β,N K−N (1+ |ξ |)−(n+1) for all β ∈ N

n
0, N ∈ N.

From this it follows that
∣∣∂β

ξ

[
e2π i〈x̄,ξ〉(T λ

BK2
fτ − T λ

BK2
fτ ∗ ζ̌τ

)
(̂ξ )

]∣∣ �β,N K−N (1+ |ξ |)−(n+1)‖ f ‖L2(Bn−1)

and the desired identity (7.23) follows by taking inverse Fourier transforms and using repeated
integration-by-parts to obtain the desired decay in the spatial variable.

It remains to prove (7.25). Suppose ξ ∈ R̂
n and ω ∈ τ satisfy

|ξ − ∂xφ
λ(x̄;ω)| ≤ K−2+ε (7.26)

and let u := (
�λ

x̄

)−1
(ω). Since

(
�λ

x̄

)−1 is a diffeomorphism with bounded Jacobian, the
condition ω ∈ τ translates to |u − uτ | � K−1, whilst (7.26) implies that

|ξ ′ − u| ≤ K−2+ε and |ξn − hλ
x̄ (u)| ≤ K−2+ε. (7.27)

Let η = (η′, ηn) ∈ R̂
n be given by

η′ := K 1−ε
(
ξ ′ − uτ

)
, ηn := K 2(1−ε)

(
ξn − hλ

x̄ (uτ ) − K−1+ε〈∂uhλ
x̄ (uτ ), η

′〉),
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so that, in particular, η satisfies

ξ = [hλ
x̄ ]θ(τ ) · η + �(hλ

x̄ )(uτ ).

The last step is to show that η ∈ [−1, 1]n ; indeed, once this is established it follows from
the definitions that ξ ∈ θ(τ ), as required. It is clear from the earlier discussion that η′ ∈
[−1, 1]n−1 and so matters are further reduced to showing ηn ∈ [−1, 1]. By Taylor’s theorem,

ξn − hλ
x̄ (u) = ξn − hλ

x̄ (uτ ) − 〈∂uhλ
x̄ (uτ ), u − uτ 〉 + O(K−2)

= ξn − hλ
x̄ (uτ ) − K−1+ε〈∂uhλ

x̄ (uτ ), η
′〉 + O(K−2+ε),

where the second identity follows by writing u − uτ = u − ξ ′ + K−1+εη′ and using the first
inequality in (7.27). Provided K is sufficiently large, the result now follows by multiplying
through by K 2(1−ε) and applying the second inequality in (7.27). "#

8 Proof of Theorem 1.2: from k-broad to linear estimates

Theorem 1.2 may now be deduced as a consequence of the k-broad estimates from Theo-
rem 1.5 and the decoupling inequality from Corollary 7.7 via the method of [12]. For the
exponent e(n, σ, d) as defined in (7.4), the key proposition is as follows.

Proposition 8.1 Suppose that for all K ≥ 1 and all ε > 0 any Hörmander-type operator T λ

with reduced phase of signature σ obeys the k-broad inequality

‖T λ f ‖BLp
k,A(B(0,R)) �ε K Cε Rε‖ f ‖L p(Bn−1)

for some fixed k, A, p, Cε and all R ≥ 1. If

2 · n − e(n, σ, k − 1)

n − 1− e(n, σ, k − 1)
≤ p ≤ pdec(n, σ, k − 1), (8.1)

then any Hörmander-type operator T λ with reduced phase of signature σ satisfies

‖T λ f ‖L p(B(0,R)) �ε Rε‖ f ‖L p(Bn−1).

Here pdec(n, σ, d) denotes the decoupling exponent defined in (7.3).

Remark 8.2 In the positive-definite case, σ = n − 1 and

e(n, n − 1, k − 1) = k − 2

2
, pdec(n, n − 1, k − 1) = 2 · k

k − 2
.

Thus, the condition (8.1) becomes

2 · 2n − k + 2

2n − k
≤ p ≤ 2 · k

k − 2
.

This is consistent with [20, Proposition 9.1] and [21, Proposition 11.1].15

Theorem 1.2 is now a direct consequence of Proposition 8.1 and Theorem 1.5.

15 In the references a more restrictive upper bound of 2 · k−1
k−2 appears rather than 2 · k

k−2 . This is due to the
use of non-endpoint decoupling inequalities in [20,21], which are in fact sufficient for the present purpose.
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Proof of Theorem 1.2 For each k satisfying the constraint

2 · n − e(n, σ, k − 1)

n − 1− e(n, σ, k − 1)
≤ p̄(n, σ, k)

onemay apply Proposition 8.1with p̄(n, σ, k) ≤ p ≤ pdec(n, σ, k−1) to obtain a (potentially
empty) range of estimates for the linear problem. It is not difficult to check that the optimal
choice is given by

k∗ :=
{ n+2

2 for n even
n+1
2 for n odd

and one may readily verify that p̄(n, σ, k∗) ≤ pdec(n, σ, k∗ − 1). Thus, the linear estimate
holds for all p ≥ p̄(n, σ, k∗). This corresponds to the rangeof estimates stated inTheorem1.2.

"#
Proof of Proposition 8.1 The proof of Proposition 8.1 relies on the induction-on-scales argu-
ment originating in [12]. The details are identical to those of the proof of [21, Proposition
11.2] except that Corollary 7.7 is now used in place of [21, Theorem 11.5], and there are
corresponding changes to the numerology. The reader is therefore referred to [21] (see also
[20]) for the details. "#
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