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Abstract
In this paper the class of Brauer graph algebras is proved to be closed under derived equiva-
lence. For that we use the rank of the maximal torus of the identity component Out0(A) of
the group of outer automorphisms of a symmetric stably biserial algebra A.

Keywords Brauer graph algebras · Symmetric special biserial algebras · Group of outer
automorphisms · Derived invariants · Derived equivalence
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1 Introduction

Brauer graph algebras or equivalently symmetric special biserial algebras, originating from
modular representation theory, are studied quite extensively. They appear in classifications
of various classes of algebras including blocks with cyclic or dihedral defect groups [14,15],
blocks of Hecke algebras [9,10] and others. Brauer tree algebras, the subclass of Brauer graph
algebras of finite representation type, contain all blocks with cyclic defect group.

In this paper we make a final step in the proof of the fact that Brauer graph algebras
are closed under derived equivalence. This fact was believed to be true, based on the work
of Pogorzały [27]. In [11], counterexamples to some of the statements of [27] were given.
In [8], we revised the proof of the fact that the only algebras possibly stably (and thus
derived) equivalent to self-injective special biserial algebras (a class containing Brauer graph
algebras) are self-injective stably biserial (seeSect. 2).As afinite-dimensional algebra derived
equivalent to a symmetric algebra is itself symmetric [31], we can restrict our attention
to symmetric stably biserial algebras. It turns out that in odd characteristic the class of
symmetric stably biserial algebras coincides with the class of Brauer graph algebras, whereas
in characteristic 2 this is not the case [8].

The general strategy of the proof of the fact that Brauer graph algebras are closed under
derived equivalence follows the classical proof for Brauer tree algebras. The fact that Brauer
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tree algebras are closed under stable equivalence was proved in [19]. Since by [30] derived
equivalence for self-injective algebras implies stable equivalence, it follows that this class is
closed under derived equivalence as well. It turns out that the proof for the whole class of
Brauer graph algebras is much more involved and requires an extra step in characteristic 2,
which is provided in this paper.

A symmetric stably biserial algebra can be given by the same combinatorial data as the
Brauer graph algebra, that is a graph on a surface and a number attached to each vertex of this
graph, called the multiplicity. Additionally, one needs to fix a distinguished class of loops
in the quiver, satisfying certain conditions, which we call deformed loops (see Sect. 2). In
case the number of deformed loops is 0 we recover the usual definition of a Brauer graph
algebra. Since for local algebras derived equivalence implies Morita equivalence [34], we
will sometimes assume that A has at least 2 simple modules. For further reference, let us
denote by V (�), E(�) and F(�) the vertices, edges and faces of the Brauer graph �.

The main technique, used in this paper, is the computation of the rank of the maximal
torus T (A) of the identity component Out0(A) of the group of outer automorphisms for a
symmetric stably biserial algebra A. The group Out0(A) is a derived invariant [23,33] used
quite seldom. The only previous systematic application we know of is the proof of the fact
that the number of arrows in the quiver of a gentle algebra is a derived invariant [1].

Theorem 1.1 Let k be an algebraically closed field. Let A be a symmetric stably biserial
algebra over k (char(k) = 2) or a symmetric special biserial algebra over k (char(k) �= 2)
with at least two non-isomorphic simple modules, which is not a caterpillar (see Sect. 3). Let
� be the Brauer graph of A and let d be the number of deformed loops in A (d = 0 for the
symmetric special biserial case). The rank of T (A) is |E(�)| − |V (�)| − d + 2.

In Sect. 4, we revisit the known derived invariants for Brauer graph algebras [3–6] in
arbitrary characteristic, providing simpler proofs of their invariance for the larger class of
symmetric stably biserial algebras and correcting some inaccuracies in the existing literature.

Theorem 1.2 Let A be a symmetric stably biserial algebra with a Brauer graph � and with
at least two simple modules. The following are invariants of A under a derived equivalence
of symmetric stably biserial algebras: |V (�)|, |E(�)|, |F(�)|, the multiset of perimeters of
faces, the multiset of multiplicities, and bipartivity of �.

As a corollary of Theorems 1.1 and 1.2 and the fact that Brauer graph algebras can be
derived equivalent only to symmetric stably biserial algebras [8] we obtain the following:

Corollary 1.3 The class of Brauer graph algebras is closed under derived equivalence.
Namely, if A is an algebra Morita equivalent to a Brauer graph algebra and B is an algebra
such that Db(A) � Db(B), then B is Morita equivalent to a Brauer graph algebra.

In forthcoming work [21], among other results, W. Gnedin independently obtains Corol-
lary 1.3 in characteristic 2 and for bipartite Brauer graphs by different methods. Note that
the list of invariants from Theorem 1.2 is crucial to the forthcoming joint work [26] of Opper
and the second named author, where a complete classification of Brauer graph algebras up
to derived equivalence will be provided.

2 Preliminaries

Throughout this paper, A is a basic, connected, finite dimensional algebra over an alge-
braically closed field k and mod-A is the category of finite dimensional right A-modules.
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The stable category of mod-A will be denoted by mod-A and � : mod-A → mod-A will
denote the syzygy functor. The bounded derived category of the category mod-A will be
denoted by Db(A). A quiver Q consists of a set of vertices Q0 and a set of arrows Q1. The
map s : Q1 → Q0 will denote the start of an arrow, the map e : Q1 → Q0 will denote the
end of an arrow. In the path algebra kQ the multiplication of arrows α and β is αβ �= 0,
provided e(α) = s(β), by ev we will denote the primitive idempotent corresponding to the
vertex v ∈ Q0, by J (A) we will denote the Jacobson radical of the algebra A, which is the
ideal generated by the arrows of the quiver Q in case A � kQ/I . By K0(C) we are going to
denote the Grothendieck group of an Abelian or a triangulated category C.

In this paper we are going to be interested in symmetric special biserial and symmetric
stably biserial algebras.

Definition 2.1 Let Q be a quiver, I an admissible ideal of kQ. A self-injective algebra
A = kQ/I is called special biserial if the following conditions are satisfied.

(1) For each vertex v ∈ Q, the number of outgoing arrows and the number of incoming
arrows are less than or equal to 2.

(2) For each arrow α ∈ Q, there is at most one arrow β ∈ Q such that αβ /∈ I .
(3) For each arrow α ∈ Q, there is at most one arrow β ∈ Q such that βα /∈ I .

Definition 2.2 Let Q be a quiver, I an admissible ideal of kQ. A self-injective algebra
A = kQ/I is called stably biserial if the following conditions are satisfied.

(1) For each vertex v ∈ Q, the number of outgoing arrows and the number of incoming
arrows are less than or equal to 2.

(2) For each arrow α ∈ Q, there is at most one arrow β ∈ Q such that αβ /∈ αrad(A)β +
soc(A).

(3) For each arrow α ∈ Q, there is at most one arrow β ∈ Q such that βα /∈ βrad(A)α +
soc(A).

The following description of stably biserial algebras was provided in [11]:

Proposition 2.3 (Proposition 7.5 [11]) If A = kQ/I is stably biserial then we can choose a
presentation of A in such a way that the following conditions hold.

(1) If αβ �= 0, αγ �= 0, β �= γ , for arrows α, β, γ then either αβ ∈ soc(A) or αγ ∈ soc(A).
(2) If βα �= 0, γα �= 0, β �= γ , for arrows α, β, γ then either βα ∈ soc(A) or γα ∈ soc(A).

Self-injective special biserial algebras are a subclass of stably biserial algebras. We will
call an algebra symmetric special biserial (SSB for short) or symmetric stably biserial, if
in addition to being special biserial or stably biserial it is symmetric.

Consider the following set-up:

(1) A quiver Q such that every vertex has two incoming and two outgoing arrows.
(2) A permutation π on Q1 with e(α) = s(π(α)) for all α ∈ Q1.
(3) A function m : C(π) → N, where C(π) is the set of cycles of π and N denotes the set

of natural numbers without zero. We will denote by C(α) := απ(α)π2(α) . . . π |C(α)|−1

the cycle, containing α ∈ Q1 and call m(C(α)) the multiplicity of the cycle C(α).
(4) A set L = {αi1 , . . . , αid } of loops, such that π(αi j ) �= αi j and a set of elements

{tαi1 , . . . , tαid }, with tαi j ∈ k∗.

In [8] the following description of symmetric stably biserial algebras in terms of generators
and relations was obtained:
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Theorem 2.4 Any symmetric stably biserial algebra has a presentation A = kQ/I , where
Q is a quiver as in the set-up above and the ideal of relations I is generated by

(1) αβ for all α, β ∈ Q1, β �= π(α), α /∈ L,
(2) C(α)m(C(α)) − C(β)m(C(β)) for all α, β ∈ Q1 with s(α) = s(β),
(3) α2 − tαC(α)m(C(α)) for each α ∈ L,
(4) C(α)m(C(α))β for all α, β ∈ Q1.

Moreover, any symmetric stably biserial algebra over an algebraically closed field k with
char(k) �= 2 is isomorphic to an algebra kQ/I as above with L = ∅.
Remark 2.5 Note that the relations of the form (2) appearing inTheorem2.4 are not admissible
in the case where there is a cycle of π consisting of one arrow and having multiplicity 1. In
[8] we considered quivers Q such that every vertex has either two incoming and two outgoing
arrows or one incoming and one outgoing arrow, and an admissible ideal of relations I . To
pass to this equivalent description from the description in Theorem 2.4 one needs to delete
loops α such that π(α) = α, m(α) = 1 and modify the ideal of relations accordingly. In the
case where the algebra has only two loops αi such that π(αi ) = αi , m(αi ) = 1, one needs
to delete only one loop to get the algebra isomorphic to k[x]/(x2).

Finally, note that in case L = ∅, the algebras appearing in Theorem 2.4 are symmetric
special biserial independent of the characteristic of the field by construction.

The loops from the set L will be called deformed loops. It is well known that any SSB-
algebra can be given in the above form with the empty set of deformed loops.

Note also that for the description of stably biserial algebras from Theorem 2.4 the number
of arrows |Q1| = 2|Q0| is invariant under derived equivalence, since |Q0| is the rank of
K0(Db(A)).

By [7,32,35] the class of SSB-algebras coincide with the class of Brauer graph algebras.
Brauer graph is a graph with a cyclic ordering of (half-)edges around each vertex and a
number assigned to each vertex. This graph � can be constructed using the data (Q, π,m)

as follows: the vertices of � correspond to the cycles of π , the edges of � correspond to the
vertices of Q, an edge connects two vertices of � if the corresponding π-cycles have the
corresponding vertex of Q in common. The cyclic ordering of edges around a vertex comes
from the order in which vertices of Q appear in the π -cycle, the multiplicities come from the
function m. Along the same lines, to each Brauer graph one can assign the data (Q, π,m)

and the corresponding SSB-algebra.
In [4] each Brauer graphwas considered together with aminimal compact oriented surface

S, into which it is embedded, in such a way that its complement is a union of disks (see also
[24]). The ordering of the edges around the vertices of � comes from the orientation of the
surface (we will assume that the edges are ordered clockwise if the graph � is drawn on the
plane, representing part of a sphere). Now it makes sense to consider not only vertices and
edges of � but also faces of �. Using the edges of the graph � the surface S can be cut into
polygons, by a perimeter of a face F we mean the number of edges in the corresponding
polygon, thus, for example, the perimeter of a self-folded triangle is 3. The setL corresponds
to a subset of faces of perimeter 1 of �. We will use the terms SSB-algebra and Brauer graph
algebra interchangeably.

From the discussion above it follows that to any symmetric stably biserial algebra given
as a path algebra of a quiver with relations as in Theorem 2.4 we can associate a Brauer graph
� together with a subset of its faces of perimeter 1. We will prove in Lemma 3.1 below that,
with one exception, � does not depend on the choice of the presentation of the algebra.
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Example 2.6 Let us consider the Brauer graph � and the corresponding quiver Q

1 2α
β

γQ :
1

2� : ··

the multiplicities of both vertices are assumed to be 1. By construction we get π(α) = γ,

π(γ ) = β, and π(β) = α. To that Brauer graph we can associate a Brauer graph algebra
A = kQ/I , where I is the ideal generated by relations

αβ = 0, γ 2 = 0, βαγ = γβα and αγβα = 0.

On the other hand, we can consider the symmetric stably biserial algebra Adef = kQ/I ′,
where I ′ is the ideal generated by relations

αβ = 0, γ 2 = βαγ = γβα and αγβα = 0.

This corresponds to deforming the loop γ , associated to the face of � of perimeter 1, and
taking tγ = 1. The fact that the algebra Adef is indeed symmetric stably biserial will follow
from Proposition 3.3.

In case, char(k) �= 2 one can use the following change of basis α′ = α, β ′ = β and
γ ′ = γ − βα

2 of the algebra Adef to see that Adef � A. In case, char(k) = 2 the algebras
Adef and A are not isomorphic and are not even derived equivalent, which will become
apparent from Theorem 1.1.

3 Stably biserial algebras

In this section we are going to investigate basic properties of symmetric stably biserial
algebras. As stated in Theorem 2.4, any symmetric stably biserial algebra A can be given
as a certain deformation of a Brauer graph algebra with a Brauer graph �. We are going to
show that with one exception the Brauer graph � does not depend on the presentation of A
and that any deformation from Theorem 2.4 is indeed symmetric.

Let us introduce a special class of algebras, called caterpillar in this paper. This class of
algebras behaves differently from other symmetric special biserial algebras and has to be
excluded from some considerations.

The algebra kQ/I will be called a caterpillar of length n > 1 if Q is of the form

1

2 3 n-1

n.

α

α

α

α

β
β

ββ

In this case, the ideal of relations can be either of the form I1 or of the form I2. The
ideal I1 is generated by relations αeiβ = 0 = βeiα, for i �= 1, αe1α = 0 = βe1β,
(αke1βnαn−k)mα = (βke1αnβn−k)mα , thus there is one π-cycle with multiplicity mα . The
ideal I2 is generated by relations αβ = 0 = βα, αnmα = βnmβ , thus there are two π-cycles
with multiplicities mα and mβ . The Brauer graphs of these algebras are:
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· · · · · ·

The following Lemma is most likely known for Brauer graph algebras, but we could not
find a proof in the literature, so we include it for the larger class of symmetric stably biserial
algebras.

Lemma 3.1 Let A be a symmetric stably biserial algebra with a presentation kQ/I as in
Theorem 2.4 and the associated Brauer graph �. If � is not a loop with 1 as the multiplicity
of the unique vertex, or an edge with 2 as the multiplicity of both vertices, then � does not
depend on the choice of the presentation kQ/I .

Proof Let A be a symmetric stably biserial algebra with a presentation kQ/I as in Theo-
rem 2.4 and the associated Brauer graph �. The structure of projective modules over A can
be easily deduced from the Brauer graph � of kQ/I . We will show that the structure of
the Brauer graph � can be deduced from the structure of projective modules in the category
mod-A and thus does not depend on the choice of the presentation kQ/I .

Assume that the algebra A has two presentations kQ/I � kQ′/I ′ as in Theorem 2.4. Let
us delete loops α such thatπ(α) = α,m(α) = 1 andmodify the ideal of relations accordingly
in both presentations, we still have an isomorphism between the modified presentations, this
isomorphism induces an equivalence between the categories mod-kQ/I and mod-kQ′/I ′.
The deleted loops correspond to the leaves with multiplicity 1 in the Brauer graph and can
always be reconstructed from the valency of the vertices in the quiver. Since the ideals of
relations I and I ′ are admissible after the deletion of extra loops, we can assume that Q and Q′
coincide, thus there is a bijection between primitive idempotents for these two presentations
and between simple modules over kQ/I and kQ′/I ′. This bijection between the simple
modules coincides with the bijection induces by the equivalence of the categories of modules.
Simple modules identified under the bijection will be denoted by Si . This bijection extends
to a bijection between the edges of the Brauer graphs � and �′, constructed from these two
presentations, since the edges of the Brauer graph correspond to simple modules.

Next we will reconstruct the Brauer graphs � and �′ from the module categories
mod-kQ/I and mod-kQ′/I ′ and deduce that the graphs coincide, since the categories are
equivalent. Let us consider kQ/I , kQ′/I ′ is analogous. For the projective cover Pi of Si
we can consider the module radPi/socPi which has either one or two indecomposable sum-
mands Mi and Ni . These modules are uniserial and each of them gives a unique sequence
of simple modules, corresponding to it’s radical series (Si1 , . . . , Sin ), where Si1 is the top of
Mi or Ni respectively. Adding Si to this sequence (Si0 = Si , Si1 , . . . , Sin ) and numbering
the sequence by the elements of Z/(n + 1)Z we get a collection of cycles of simple modules
(coming from each Pi for all i’s), which we identify up to a cyclic permutation ofZ/(n+1)Z.
If for some Pi the modules Mi and Ni are both zero, then A � k[x]/(x2). The radical series
of the modules Mi , Ni do not depend on the presentation of the algebra, so in this case the
Brauer graph is determined uniquely and is an edge with both vertices of multiplicity 1.

Note that by construction of the permutation π the cyclic ordering of the simples in the
sequences constructed above coincides with the cyclic ordering of edges in the Brauer graph.

If the module Si appears in two different cyclic sequences, then the edge, corresponding
to Si is not a loop and we can reconstruct the cyclic ordering around the ends of the edge, cor-
responding to Si from the subsequence of the form (Si , Si1 , . . . , Sil , Si ), where (Si1 , . . . , Sil )
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does not contain Si . Themultiplicities of the vertices is the number of times the subsequences
(Si , Si1 , . . . , Sil ) has to be repeated to get the whole sequences.

If Si appears in only one cyclic sequence, but this cyclic sequence has a subsequence of
the form σ = (Si , Si1 , . . . , Sil , Si , Sil+2 , . . . , Sim , Si ), where the subsequences (Si1 , . . . , Sil )
and (Sil+2 , . . . , Sim ) do not contain Si , are different and at least one of them is not empty,
then the edge corresponding to Si is a loop and we can reconstruct the cyclic ordering of the
edges around the vertex adjacent to this loop and the multiplicity is the number of times the
subsequence (Si , Si1 , . . . , Sil , Si , Sil+2 , . . . , Sim )has to be repeated to get thewhole sequence.

If Si appears in only one cyclic sequence and this sequence does not have a subsequence
of the form σ , and the projective module Pi is uniserial then we can reconstruct the cyclic
ordering of the edges around one vertex incident to the edge corresponding to Si and its
multiplicity as before, the other end of this edge has no other edges incident to it and has
multiplicity 1.

The only case left to consider is when Si appears in only one cyclic sequence and this
sequence does not have a subsequence of the form σ , but the projective module Pi is not
uniserial. In this case themodulesMi and Ni have the same radical series but are both nonzero.
If the cyclic sequence containing Si is of the form (Si , Si1 , . . . , Sil , Si ), where (Si1 , . . . , Sil )
does not contain Si , then the edge, corresponding to Si is not a loop andwe can reconstruct the
cyclic ordering around each end of this edge, the multiplicities of the ends are 1. Assume that
(Si , Si1 , . . . , Sil , Si ), where (Si1 , . . . , Sil ) does not contain Si is a subsequence of the cyclic
sequence and it has to be repeatedm > 1 times to get the whole sequence. If (Si1 , . . . , Sil ) is
empty, then |Q0| = 1, this situation will be considered later. If the edge corresponding to Si
is a loop, then all edges corresponding to (Si1 , . . . , Sil ) are loops and we get a caterpillar with
one vertex in the Brauer graph with multiplicitym/2 (this can happen only for evenm). If the
edge corresponding to Si is not a loop, then all edges corresponding to (Si1 , . . . , Sil ) are not
loops and we get a caterpillar with two vertices in the Brauer graph, both with multiplicity
m. The two algebras we get for even m are not isomorphic, since they are not even derived
equivalent by Proposition 4.5. Note that the proof of Proposition 4.5 does not rely on the
results of this section.

Let us consider the case |Q0| = 1. The Brauer graph is either an edge or a loop. If it
is an edge, there are no deformed loops and A � Ak,l = k[x, y]/〈xy, xk − yl〉, k, l ≥ 1,
which is a commutative algebra. If it is a loop, then for multiplicity greater than one, A is
non-commutative. So it is sufficient to consider the algebra Btx ,ty = k[x, y]/〈x2y, y2x, x2−
tx xy, y2− ty xy〉, which is 4-dimensional. If it is isomorphic to Ak,l , then either k = 1, l = 3,
which is not possible, or k = l = 2. In the last case the algebras can, indeed, be isomorphic,
even when tx = ty = 0, char(k) �= 2. �

Remark 3.2 The cyclic ordering of edges in the Brauer graph played an important role in the
proof of Theorem 2.4. Namely, for a symmetric stably biserial algebra A with an arbitrary
presentation as in Proposition 2.3, with an admissible ideal of relations, we first fixed the
permutation π and then using the change of basis produced a presentation as in Theorem 2.4.
We would like to note here that the change of basis from [8, Lemma 10] does not work for
the algebras At and Bt,s (see below), which was not noted in the proof of Lemma 10. This
does not effect the result, since these algebras turn out not to be symmetric. For the algebra
At the element α − tβ belongs to the socle of At , for the algebra Bt,s the element γ0 − sγ1
belongs to the socle of Bt,s , which is not possible for symmetric algebras. Here
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1 2

β1

β0 γ0

γ1

Q :

I = J(kQ)3, γ0β0 − γ1β1,
β0γ0 − β1γ1, β0γ1 − tβ0γ0,
γ1β0 − tγ1β1, β1γ0 − sβ1γ1,

γ0β1 − sγ0β0 , st = 1
Bt,s = kQ/I, π(γi) = βi, π(βi) = γi

Q : 1

I = J(kQ)3, α2 − β2,
αβ − tα2, βα − tβ2 , t2 = 1

At = kQ/I, π(α) = β, π(β) = α

α β

Let us denote by A∞ an algebra isomorphic to any symmetric stably biserial algebra with
one vertex, two loops and one π -cycle of multiplicity 1.

Proposition 3.3 Let us consider any data of the form (Q, π,m,L, {tα}α∈L), and A � kQ/I ,
where I is the ideal of relations described in Theorem 2.4. If A is not isomorphic to A∞ with
both loops deformed, then the algebra A is symmetric.

Proof Recall that an algebra A is symmetric if and only if there exists a non-degenerate
symmetric k-bilinear form 〈a, b〉 : A×A → k such that 〈ab, c〉 = 〈a, bc〉 for all a, b, c ∈ A.

Let us define the standard bilinear form 〈a, b〉 := φ(ab), where the value of φ on the
path basis of A is defined as follows: φ(C(α)m(C(α))) = 1 for any arrow α, thus φ(γ 2) = tγ
for any deformed loop γ , and φ(p) = 0 for any path p /∈ socA. The values of φ on other
elements of A is defined by linearity.

The defined form is bilinear, symmetric and satisfies the property 〈ab, c〉 = 〈a, bc〉 for
all a, b, c ∈ A. Let us check that it is non-degenerate.

Let us assume that φ is degenerate, that is φ((
∑

ci pi )a) = 0 for some
∑

ci pi �= 0 and
for all a ∈ A, where ci ∈ k∗ and pi are paths, by the symmetry of φ, for all a ∈ A we have
φ(a(

∑
ci pi )) = 0. We can assume that all pi start at the same vertex i and end at the same

vertex j (multiplying by two idempotents and keeping
∑

ci pi non-zero). All pi ’s can be
written as subpaths of the standard socle paths of the formC(α)m(C(α)), we will consider only
this presentation of pi ’s. Since there are at most two such standard socle paths starting at i , all
pi ’s can be divided into two groups depending on the socle path. Let us choose the shortest
path from one of these two groups p1 (by the shortest path we mean the path containing the
least number of arrows). Let p̄1 p1 be the standard socle path containing p1 (that is not γ 2

for a deformed loop γ ), then p̄1(
∑

ci pi ) = c1 p̄1 p1 + c2 p̄1 p2, where p̄1 p2 is non-zero only
in case when the shortest path from the second group is an arrow p2 and p̄1 is also an arrow.
In this case p2 must be a deformed loop p2 = p̄1. If p̄1 p2 = 0, then φ( p̄1(

∑
ci pi )) = 0 iff

c1 = 0 and we are done.
Let us do the same exchanging p1 and p2. Then p̄2(

∑
ci pi ) = c2 p̄2 p2 + c1 p̄2 p1, where

p̄2 p1 appears only in case when the shortest path from the first group is an arrow p1 and p̄2
is also an arrow. In this case p1 must be a deformed loop p1 = p̄2. Thus we get exactly the
excluded case of 2 deformed loops at one vertex. �


4 Combinatorial derived invariants

The aim of this section is to show that the following combinatorial data are invariant under
derived equivalences of stably biserial algebras: number of vertices, edges and faces of
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the Brauer graph, multisets of perimeters of faces, multisets of multiplicities of vertices,
bipartivity. Note that the corresponding results were shown to be true for Brauer graph
algebras with some minor inaccuracies in [2–4,6], the proofs are identical or rely on the
corresponding results for Brauer graph algebras, except for some simplifications. From here
on we are going to exclude the case |Q0| = 1 from some considerations, since by [34] a local
algebra can be derived equivalent only to itself.

4.1 The centre of a symmetric stably biserial algebra

In this subsectionwe compute the centre Z(A) of a symmetric stably biserial algebra A, which
is known to be invariant under derived equivalence, see [29]. We will use this to establish,
that the number of π-cycles, or the vertices of the Brauer graph, is invariant under derived
equivalence. This will also gives us an opportunity to correct the above-mentioned inaccura-
cies in the description of the centre of an SSB-algebra made in [4]. Let {C1,C2, . . . ,Cr } be
the set of π-cycles. For each i = 1, . . . , r consider a cyclic sequence (αi,1, αi,2, . . . , αi,li )

of arrows of the cycle Ci , where π(αi, j ) = αi, j+1 and li denotes the length of the cycle Ci .
Let m(C1),m(C2), . . . ,m(Cr ) denote the multiplicities of the π-cycles and let r ′ ≤ r be
an integer such that m(Ci ) > 1, i = 0, . . . , r ′ and m(Ci ) = 1, i = r ′ + 1, . . . , r . For each
loop γ such that π(γ ) �= γ there are i and j such that γ = αi, j . For each such loop γ set
qγ = qαi, j = (αi, j+1αi, j+2 . . . αi,li αi,1 . . . αi, j )

m(Ci )−1αi, j+1αi, j+2 . . . αi,li αi,1 . . . αi, j−1.

Proposition 4.1 Let A be a symmetric stably biserial algebra corresponding to the data
(Q, π,m,L) and let � be its Brauer graph. As a vector space over k the centre Z(A) is
generated by 1 and by the elements of the following form:

a) Elements mi,t = (αi,1αi,2 . . . αi,li )
t + (αi,2αi,3 . . . αi,1)

t + . . .+ (αi,li αi,1 . . . αi,li−1)
t ,

for i = 1, 2, . . . , r ′ and t = 1, . . . ,m(Ci ) − 1.
b) Elements qγ for each loop γ such that π(γ ) �= γ .
c) Elements sv for each vertex v ∈ Q0, where sv is a socle element corresponding to the

vertex v.
Moreover, if A is not isomorphic to some A∞, then considered as an algebra,

Z(A)/(soc(Z(A)) � k[x1, x2, . . . , xr ′ ]/〈xm(Ci )
i , (xi x j )i �= j 〉. So the multiset {m(C1),

m(C2), . . . ,m(Cr ′)} is invariant under derived equivalence. The number of loops γ such
that π(γ ) �= γ , or equivalently, the number of faces of � of perimeter 1 is a derived invariant
as well.

Proof It is clear that all the listed elements belong to the centre of A. Let us prove that any
element in the centre is a linear combination of elements of the form 1, (a)-(c).

Each z ∈ Z(A) has the form z = ∑N
i=1 ai pi + z′, where pi are the elements of the

path basis of A which do not belong to the socle of A and z′ ∈ soc(A). Without loss of
generality, we can assume z′ = 0. All elements pi with ai �= 0 are necessarily closed paths,
that is pi = ev pi ev for some idempotent ev , corresponding to a vertex v. Multiplying z
with various arrows, we get that the coefficients before ev are equal for all vertices v, so
we can assume z ∈ J (A). Fix pi = β1β2 . . . βm with β j ∈ Q1, let βm+1 = π(βm), then
piβm+1 �= 0. Assume that piβm+1 does not belong to the socle of A, then β1β2 . . . βmβm+1

has coefficient ai in the sum βm+1z, hence βm+1 = β1 and the coefficient of β2 . . . βmβm+1

in z is ai , so pi = (α j,sα j,s+1 . . . α j,s−1)
t for some π-cycle, and z contains aim j,t as a

summand, z − aim j,t contains less summands, then z. If β1β2 . . . βmβm+1 belongs to the
socle of A, then βm+1 is a loop, since pi is a closed path. Then pi is either m j,m(C j )−1 for a
cycle C j , consisting of a single loop (if π(βm+1) = βm+1) or qβm+1 (if π(βm+1) �= βm+1).
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Either z − aiqβm+1 or z − aim j,m(C j )−1 has less summands then z and we can proceed by

induction on the number of nonzero coefficients ai in the sum z = ∑N
i=1 ai pi . By induction

we get that z is a linear combination of elements of the form (a)-(c).
In case A �� A∞, soc(Z(A)) is generated by the elements of type (b) and (c). More-

over, mi,t1m j,t2 = δi, jmi,t1+t2 and mm(Ci )
i,1 ∈ socZ(A). Hence Z(A)/(soc(Z(A))) �

k[x1, x2, . . . , x ′
r ]/〈xm(Ci )

i , (xi x j )i �= j 〉. Since Z(A) is invariant under derived equivalence
as an algebra, the multiset {m(C1),m(C2), ...,m(Cr ′)} is invariant under derived equiva-
lence. The socle of Z(A) is spanned by the elements of the form sv , v ∈ Q0 and qγ for loops
γ such that π(γ ) �= γ . Since the number of the elements sv is a derived invariant, so is the
number of loops γ such that π(γ ) �= γ . �

Corollary 4.2 Let A1, A2 be derived equivalent symmetric stably biserial algebras, where A1

is a caterpillar. Then A2 is special biserial.

Proof The algebra A1 has no loops γ such that π(γ ) �= γ , so, by Proposition 4.1, A2 has no
such loops as well, hence, A2 is symmetric special biserial. �


4.2 Number and perimeters of faces

Let A be a symmetric stably biserial algebra with the corresponding Brauer graph �, let
p1, p2, . . . , pm be the perimeters of faces of �. Note that the perimeter of a face F coincides
with the length of the corresponding Green walk (see [16,32]). The aim of this section is
to prove that the multiset {p1, . . . , pm} (and, in particular, the number m of faces of �) is
an invariant of the derived category of A. For this we are going to use the structure of the
Auslander-Reiten quiver of the stable category of mod-A. Note that by [30] for self-injective
and in particular for symmetric algebras derived equivalence implies stable equivalence, so
any invariant of stable equivalence is automatically a derived invariant.

Indecomposable modules over special biserial algebras are classified in terms of strings
and bands, the description of the Auslander-Reiten sequences and of the Auslander-Reiten
quiver for such algebras is well understood [13,17,18,20,36]. Let us consider the AR-quiver
�mod-A of mod-A. If A is SSB, then each periodic component of �mod-A is a tube. Moreover,
all tubes are either tubes of rank 1, consisting of band modules, or tubes consisting of string
modules, the latter tubes are called exceptional. Exceptional tubes correspond to faces of �:
if a face has an even perimeter p, then it produces two tubes of rank p/2, which are permuted
by �; if a face has an odd perimeter, then it produces one tube of rank p, which is stable
under the action of �. For a detailed exposition see [16, Sect. 4]. For a face F let us denote
byMF the set of modules in the mouth of the tube or tubes, corresponding to F . They can be
constructed as follows: take two consecutive edges v andw from the face F , they correspond
to two vertices v and w in the quiver of A and an arrow v

α−→ w; the modules in MF are of
the form Pv/αPw . Thus, the modules which appear in the mouths of exceptional tubes are
simple modules whose projective covers are uniserial and all maximal uniserial quotients of
indecomposable projective modules, which are not projective. Let us denote the set of these
modules by M. This set of modules is stable under �.

In case A is symmetric stably biserial algebra with the data (Q, π,m,L), the AR-quiver
�mod-A of mod-A coincides with the same quiver for the SSB-algebra A′ constructed from
the data (Q, π,m). Indeed, A/soc(A) � A′/soc(A′) is a string algebra, so the classification
of indecomposable non-projective modules is the same. The AR-sequences not ending at the
module P/soc(P) for a projectivemodule P coincide for A and A/soc(A) by [12, Proposition
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4.5], the fact that the sequences 0 → radP → radP/socP ⊕ P → P/socP → 0 give the
same in �mod-A and �mod-A′ can be checked by hand.

The set ofmodulesM in themouths of exceptional tubes for A and A′ is the same under the
identification from the previous paragraph. Let us compare the behaviour of these modules
under the action of �. The modules of the form Pv/γ Pv for a deformed loop γ at a vertex
v are now sent by � to band modules. All other modules from M are permuted by � in the
same manner for A and A′. If there is an exceptional tube of rank at least 2 (corresponding to
a face of perimeter at least 3), then the modules in its mouth are not of the form Pv/γ Pv for
a deformed loop γ (such modules belong to tubes of rank 1), hence, the modules from M
which lie in the mouths of the tubes of rank at least 2 are permuted by � in the same manner
for A and A′. This means that � permutes exceptional tubes of rank at least 2 for A′ in the
same manner as for A.

Consequently, we get that the number of faces of a given perimeter p > 2 is the number
of tubes of rank p, stable under �, in case p is odd and the number of tubes of rank p/2, not
stable under �, divided by 2, in case p is even for both A and A′. In both cases the perimeter
can also be reconstructed from the stable category. By Proposition 4.1 the number of faces of
perimeter 1 is a derived invariant. The number of faces of perimeter 2 can be reconstructed
as follows: (2|E(�)| − ∑

pi �=2 pi )/2. Thus, the following holds:

Proposition 4.3 Let A1, A2 be two symmetric stably biserial algebras with Brauer graphs�1

and �2, such that neither �1 nor �2 is a loop with multiplicity 1 or an edge with multiplicity
of both vertices 2. If Db(A1) � Db(A2), then the number of faces and the multisets of
perimeters of faces of �1 and �2 coincide.

Remark 4.4 The proof of the fact that the number of faces and the multisets of perimeters
of faces of � is invariant under an equivalence of stable categories of SSB-algebras was
provided in [3] with a mistake, which was corrected in [5]. Note that the proof is much more
involved, since one can not use the centre of the algebra Z(A) (as in Proposition 4.1), so one
has to deal with the tubes coming from the faces of perimeter 1 and 2 and with the tubes
containing band modules.

4.3 Number of vertices and their multiplicities

Let Z|Q0| be the Grothendieck group of a self-injective algebra A with the Cartan matrix
C(A). ThenC(A) defines a group homomorphism φA fromZ

|Q0| to itself and K0(mod-A) �
Z

|Q0|/Im(φA). To obtain the standard description of this Abelian group one can use Smith’s
normal form of C(A), which can be obtained by computing the greatest common divisors
of all t × t minors of C(A), this was done for SSB-algebras in [2,6]. Let Q1/π be the set
of orbits of Q1 under the action of π . We are going to use only the rank of C(A), which is
equal to |Q1/π | − 1 if the Brauer graph � of A is bipartite and to |Q1/π |, otherwise. Note
that by construction |Q1/π | is the number of vertices of �.

Proposition 4.5 Let A1, A2 be stably biserial algebras with Brauer graphs �1 and �2, such
that neither �1 nor �2 is a loop with multiplicity 1 or an edge with multiplicity 2 at both
vertices. If Db(A1) � Db(A2), then |V (�1)| = |V (�2)|. Moreover, the multisets of multi-
plicities of the vertices and the bipartivity of �1 and �2 coincide.

Proof Let A′
i be the special biserial algebras corresponding to the data given by the Brauer

graphs �i , for i = 1, 2. As Ai and A′
i have the same Cartan matrices, we can use the

description of the structure of theGrothendieck groupof A′
i for Ai . Since derived equivalences
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of self-injective algebras imply stable equivalences, K0(mod-A1) � K0(mod-A2), thus the
ranks of C(A1) and C(A2) coincide.

By [6], rk(C(Ai )) is equal to |V (�i )| − 1 if the Brauer graph �(Ai ) of Ai is bipar-
tite and to |V (�i )| otherwise. By Proposition 4.3 |F(�1)| = |F(�2)|, the same holds for
|E(�1)| = |E(�2)|. Since |V (�i )| − |E(�i )| + |F(�i )| is even, as the Euler character-
istic of the corresponding surface Si , we see that |V (�i )|’s can not differ by 1, hence,
|V (�1)| = |V (�2)|. Since the ranks of the Cartan matrices of A1 and A2 coincide, �i

are either simultaneously bipartite or simultaneously not bipartite.
The multiplicities of vertices m(Ci ) > 1 can be detected by the centre of the algebra, see

Proposition 4.1. The invariance of the number of vertices with multiplicity 1 follows from
the invariance of the number of all vertices. �

Proof of Theorem 1.2 Combining the results of Propositions 4.3 and 4.5 we get that the
following are derived invariants of a symmetric stably biserial algebra Awith at least two non-
isomorphic simple modules and the corresponding Brauer graph �: |V (�)|, |E(�)|, |F(�)|,
the multiset of perimeters of faces, the multiset of multiplicities of vertices, bipartivity
of �. �

Example 4.6 Let A and Adef be the algebras considered in Example 2.6. Recall that the
Brauer graph corresponding to both A and Adef is

Γ :
where � is embedded into a sphere. Theorem 1.2 provides the following list of derided
invariants for A and Adef , which all coincide: |V (�)| = 2, |E(�)| = 2, |F(�)| = 2, the
multiset of perimeters of faces of � is {1, 3}, the multiset of multiplicities of vertices of � is
{1, 1}, � is not bipartite.

Remark 4.7 We consider algebras over an algebraically closed field in Theorem 1.2, simply
because its proof relies on the existence of a presentation of any symmetric stably biserial
algebra in the form from Theorem 2.4, which was shown only for algebraically closed fields.
If we restrict only to derived equivalences between Brauer graph algebras, with at least two
non-isomorphic simple modules, then |V (�)|, |E(�)|, |F(�)|, the multiset of perimeters
of faces, the multiset of multiplicities of vertices and the bipartivity of � are still derived
invariants, where � as usual denotes the corresponding Brauer graph. Indeed, the proof of
Theorem 1.2 uses only the computation of the center of the algebra, the description and
behaviour of tubes of rank at least 2 in the stable category (these tubes do not contain any
band modules, which are all contained in tubes of rank 1) and the rank of the Grothendieck
group of the stable category. All these invariants do not depend on the assumption that the
field is algebraically closed. Note that this assumption is essential in the next section.

5 The group of outer automorphisms

Throughout this section we are going to assume that either char(k) = 2 or that char(k) �= 2
and the number of deformed loops is zero, i.e. d = 0 (A is symmetric special biserial);
additionally we are going to assume that A is not a caterpillar and that A has at least two non-
isomorphic simple modules. We are going to show that derived equivalent symmetric stably
biserial algebras have the same number of deformed loops using the identity component
Out0(A) of the group of outer automorphisms. By [23,33], the group Out0(A) is invariant
under derived equivalence as an algebraic group, for a finite dimensional algebra A over an
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algebraically closed field.We are going to use the necessary notions and facts about algebraic
groups freely, for more details see [25].

5.1 H′ is trigonalizable

Let A = kQ/I be a symmetric stably biserial algebra in the standard form given in The-
orem 2.4, i.e. the ideal of relations is not necessarily admissible. Let L ⊂ Q1 be the
set of deformed loops. Let A = B ⊕ J (A) be a Wedderburn-Malcev decomposition of
A with a semisimple subalgebra B. It is known that Out(A) = H/H ∩ I nn(A), where
H = { f ∈ Aut(A)| f (B) ⊂ B} [22,28]. If {ev}v∈Q0 is a set of primitive idempotents cor-
responding to the vertices of Q and B = 〈{ev}v∈Q0〉, then for any v ∈ Q0 and f ∈ H ,
f (ev) = ev′ for some v′ ∈ Q0. Therefore H ′ = { f ∈ H | f |B = I d} is a closed
subgroup of finite index in H , i.e. it is a union of connected components of H . Since
H ∩ I nn(A) = H ′ ∩ I nn(A) acts on each component of H , the identity component of
Out(A) = H/H ∩ I nn(A) and of H ′/H ′ ∩ I nn(A) coincide. So, without loss of generality,
we can consider H ′/H ′ ∩ I nn(A) instead of Out(A).

Lemma 5.1 If A is not a caterpillar and rkK0(A) ≥ 2, then there is an embedding i : H ′ →
T (l,k) of algebraic groups over k, where T (l,k) is the group of lower triangular matrices
and l = dim A.

Proof Let P be a set of paths in Q which forms a basis for kQ/I , such that α2 /∈ P for
α ∈ L and all primitive idempotents {ev}v∈Q0 and all arrows of Q are in P . For each p ∈ P
let l p = max{k : p ∈ J (A)k}, with the convention that lev = 0, v ∈ Q0 (so l p is the length
of the longest path equal to p). A pair (β, β ′) ∈ Q1 × Q1 with s(β) = s(β ′), e(β) = e(β ′)
(β, β ′ are parallel arrows) and π2(β) �= β, π2(β ′) = β ′ will be called an exceptional pair.

Let us consider some linear extension of the following partial order on P:
1)If l p < lq , then p < q .
2)If (β, β ′) is an exceptional pair, then β < β ′. Note that since |Q0| > 1, lβ = lβ ′ = 1.
We are going to express the matrix of an automorphisms of A in the basis P with respect

to this linear order and show that, it is lower triangular, i.e, for f ∈ H ′ and p ∈ P we have
f (p) = kp p + ∑

p′>p kp,p′ p′.
Let us consider p = β ∈ Q1, such that lβ = 1. If β has no arrows parallel to it, then

f (β) = kββ + r where r ∈ J (A)2 and we are done. Now suppose that β and β ′ are two
parallel arrows, in this casewe can have f (β) = kββ+kβ,β ′β ′+r with kβ,β ′ �= 0, r ∈ J (A)2.
Note that since |Q0| �= 1, β is not a loop. There are three possible cases:

1) π(β), π(β ′) are not parallel. In this case f (π(β ′)) = kπ(β ′)π(β ′) + r1, r1 ∈ J (A)2.
Then 0 = f (βπ(β ′)) = f (β) f (π(β ′)) = kβ,β ′kπ(β ′)β ′π(β ′) + r ′, r ′ ∈ J (A)3. A path of
length two β ′π(β ′) belongs to J (A)3, hence β ′π(β ′) ∈ soc(A). Since π(β), π(β ′) are not
parallel, (β, β ′) is an exceptional pair and β < β ′. The same argument for (β ′, β) gives
kβ ′,βkπ(β)βπ(β) ∈ soc(A), hence kβ ′,βkπ(β) = 0, thus kβ ′,β = 0, so f (β ′) = kβ ′β ′ + r ′′,
r ′′ ∈ J (A)2. In particular, this means that kβ ∈ k∗, since β belongs to the image of f .

2) π(β), π(β ′) are parallel arrows but π l(β), π l(β ′) are not parallel for some l (we
take the minimal l). In this case (π l−1(β), π l−1(β ′)) is not an exceptional pair (otherwise
s(π l−1(β)) has 3 incoming arrows) and f (π l(β ′)) = kπ l (β ′)π

l(β ′) + r ′, r ′ ∈ J (A)2. So
0 = f (π l−1(β)) f (π l(β ′)) implies f (π l−1(β)) = kπ l−1(β)π

l−1(β) + r , r ∈ J (A)2 and
the same holds for β ′. Then by decreasing induction on i we obtain in the same way that
f (π i (β ′)) = kπ i (β ′)π

i (β ′) + r ′, r ′ ∈ J (A)2, f (π i (β)) = kπ i (β)π
i (β) + r , r ∈ J (A)2 for

all 0 ≤ i ≤ l, in particular, for i = 0.
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3) π l(β), π l(β ′) are parallel for all l. In this case A = kQ/I is a caterpillar.
For an arbitrary pi ∈ P , choose a presentation pi = β1 . . . βn with n maximal. Then

f (pi ) = f (β1) . . . f (βn) = ∏
i kβi β1 . . . βn + ∑

k j p j , where p j > β1 . . . βn . Indeed,
β1 . . . βn is of the form β1π(β1) . . . πn(β1), and since for an exceptional pair (β, β ′)we have
β ′π(β) = 0, π−1(β)β ′ = 0, the sum

∑
k j p j belongs to J (A)n+1. �


5.2 Decomposition with the unipotent subgroup

Computation of the groups Out0(A) for all symmetric stably biserial algebras might turn out
to be quite technical, sowewant to use some invariant ofOut0(A)preserved by isomorphisms
of algebraic groups, which we would be able to compute quite easily. This invariant is the
rank of the maximal torus of Out0(A).

Let us consider maximal unipotent subgroups in H ′ and I = H ′ ∩ I nn(A), denoted
respectively by UH ′ and UI . These groups are given by the intersection of H ′ (respectively
I ) with U (l,k) the group of (lower) unitriangular matrices. We can consider the following
diagram of algebraic groups:

1 UI I DI 1

1 UH ′ H ′ DH ′ 1

1 UH ′/UI H ′/I DH ′/DI 1

An easy diagram chasing shows that the map DI → DH ′ is an embedding. As a quotient
of a trigonalizable group H ′/I is trigonalizable, DH ′/DI is diagonalizable and UH ′/UI is
the maximal unipotent subgroup of H ′/I , it contains all unipotent subgroups of H ′/I [25,
Theorem 16.6]. Thus we can consider another diagram:

1 1 X

1 (UH ′/UI )
0 (H ′/I )0 T (A) 1

1 UH ′/UI H ′/I DH ′/DI 1

Y Z W 1

Since (H ′/I )0 is connected and solvable its maximal unipotent subgroup is connected
and thus coincides with (UH ′/UI )

0. Note also that all maximal tori of (H ′/I )0 are conjugate.
The groups DI , DH ′ , DH ′/DI are diagonalizable. We also get the following exact sequence
1 → X → Y → Z → W → 1, where Y , Z are finite, then X ,W are finite as well. Hence
the rank of T (A) and DH ′/DI coincide. We have proved the following lemma.
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Lemma 5.2 In the notation of the previous construction, the rank of DH ′/DI coincides with
the rank of the maximal torus T (A) of Out0(A) = (H ′/I )0 and so is a derived invariant
of A.

5.3 Computation of the rank of DH′/DI

Both DH ′ and DI are induced by the projection map from the group of lower triangular
matrices to the group of diagonal matrices. So we are going to find out what elements
can appear on the diagonal of the matrices from H ′ and I . Clearly the diagonal entries
corresponding to the arrows of the quiver determine all other diagonal entries, so we are
going to restrict our attention to them. Let k∗ and A∗ be the multiplicative groups of k and
A respectively.

Lemma 5.3 Let A = kQ/I be a symmetric stably biserial algebra. There is an isomorphism
of affine algebraic groups DI � (k∗)|Q0|−1.

Proof Recall that I nn(A) = { fa |a ∈ A∗}, where fa(x) = axa−1. Each a ∈ A∗ can
be uniquely written as a = ∑

i∈Q0
ai ei + r , where ai ∈ k∗, r ∈ J (A). Then a−1 =

∑
i∈Q0

a−1
i ei + r ′, r ′ ∈ J (A) and the action of fa on J (A)/J (A)2 depends only on ai ’s. For

c ∈ k∗, fa clearly coincides with fca .
Let fa be an element of H ′ ∩ I nn(A) and let fa := fa (mod UI ) be the class of

fa . Fix any spanning tree � of Q (ignoring the orientation of the arrows of Q), let
{αi }1≤i≤Q0−1 be the corresponding set of arrows, that is αi ∈ �. For each arrow αi we have

fa(αi ) = aαi a−1 = as(αi )a
−1
e(αi )

αi (mod J (A)2). Let us define the map DI
η−→ (k∗)|Q0|−1

as fa → (as(α1)a
−1
e(α1)

, . . . , as(α|Q0 |−1)a
−1
e(α|Q0 |−1)

). The equality fa(αi ) = αi (mod J (A)2)

for the elements of UI guarantees that the map is well defined.
Conversely, consider (k1, . . . , k|Q0|−1) ∈ (k∗)|Q0|−1. Since αi ’s form a spanning tree, one

can find {ai }i∈Q0 such that ki = as(α1)a
−1
e(α1)

for all i . Moreover, any other tuple {a′
i }i∈Q0 ,

which corresponds to the same (k1, . . . , k|Q0|−1) differs from {ai }i∈Q0 by some multiple
c ∈ k∗ such that a′

i = cai for 1 ≤ i ≤ |Q0| − 1. This gives rise to a well-defined map

(k∗)|Q0|−1 θ−→ DI , (k1, . . . , k|Q0|−1) �→ fa , wherea = ∑
ai ei (note that fa ∈ H ′∩I nn(A)).

Clearly ηθ((k1, . . . , k|Q0|−1)) = (k1, . . . , k|Q0|−1).
The element θη( fa) is given by fa′ , for some a′ ∈ A∗ such that a − ca′ ∈ J (A) for

some c ∈ k∗. For a − ca′ ∈ J (A) we have a(ca)−1 = 1 + r ′ for r ′ ∈ J (A), so for any
path p = β1β2 . . . βk we have fa f

−1
ca′ (p) = fa(ca)−1(p) = p + r ′′, r ′′ ∈ J (A)k+1. As the

order on the basis P agrees with the path length fa f
−1
ca′ = 1 and fa = fca′ = fa′ . Thus,

θη( fa) = fa and we get the desired bijection. �

Let us consider an algebraic group D� , which can be constructed from the data

(Q, π,m,L), here � stands for the Brauer graph corresponding to the data (Q, π,m,L).
The set L is assumed to be empty in case char(k) �= 2. The group D� is a subgroup of
(k∗)2|E(�)|+1. The first 2|E(�)| entries kα are labelled by the arrows of Q, the last entry
is denoted by k. The subgroup is given by the following equations: (kα)2 = tαk for each
deformed loop α and

∏
α∈C km(C)

α = k for each C ∈ Q1/π , the multiplicity of C is denoted
by m(C).

Proposition 5.4 Let A be a symmetric stably biserial algebra corresponding to the data
(Q, π,m,L). Then DH ′ � D� .
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Proof First assume that the characteristic of the field k is arbitrary. Any f ∈ H ′ is defined
by its action on the arrows of Q: f (α) = kαα + ∑

p>α kα,p p. We need to show that there
exists an automorphism f ∈ H ′ with the tuple (kα) as the coefficients of α in f (α) =
kαα + ∑

p>α kα,p p if and only if there exists k ∈ k∗ such that the equations from the
description of the group D� are satisfied.

Assume that for (kα) ∈ (k∗)2|E(�)| there exists k ∈ k∗ such that (kα, k) ∈ D� , then we
can define f ∈ H ′ by f (α) = kαα. This formula clearly gives an automorphism of A in H ′.

Let us prove that for any f ∈ H ′ the tuple of coefficients (kα) of α in f (α) is an element
of D� for some k ∈ k∗. For that we need to better understand which coefficients kα,p can be
non-zero. For an arrow α, let us denote by C̄(α) := C(α)m(C(α)) the maximal power of the
cycle passing through α. Let us show that if kα,p �= 0 and p is not a subpath of C̄(π i (α)) for
any i , then p = β−1C̄(β) for some arrow β with s(β) = e(α) and e(β) = s(α). Assume this
is not the case and let us take p = β1 . . . βt with t minimal, since s(p) = s(α), e(p) = e(α)

and p is not a subpath of C̄(α), p /∈ soc(A). Since there are at most two maximal paths going
through any vertex, p is a subpath of some C̄(δ) with δ ∈ Q1, δ �= α, and thus p is unique.
Let β be the arrow such that β p ∈ C̄(β), such β exists and e(β) = s(α) but α �= π(β).
Note that β is not a loop with π(β) �= β, otherwise α = π(β) and p is a subpath of C̄(α).
The relation f (β) f (α) = 0 implies that the coefficient before β p, which contains kβkα,p

should be 0. Assume β p /∈ socA, then by the minimality of the length of p, kα,p = 0. So
β p ∈ socA as desired.

Let us now check that for any f ∈ H ′ the set (kα) satisfies the equations
∏

α∈C km(C)
α =

k for some k ∈ k. Fix α ∈ Q1 and let us compute f (C̄(α)). It has a summand
∏

α′∈C(α) k
m(C(α))

α′ C̄(α), if it has any other summands, then this summands can only appear
in one of the following 3 situations:

1) as a product of the elements of the form kπ i (α),p p, where p is not a subpath of C̄(π j (α))

for any j . This situation is possible only in the case of a caterpillar with two simple modules
or in the case |Q0| = 1, we do not consider any of these cases.

2) as a product of subpaths of C̄(π i (α)) and paths, which are not subpaths of C̄(π j (α))

for any j , this is possible only in the situation |Q0| = 1 and A has a deformed loop, which
we also do not consider.

3) as a product of subpaths of C̄(π j (α)), at least one of which comes from f (π i (α)) and
is not π i (α). Note that all these subpaths are arrows, otherwise the product is zero. Since
at least one of the subpaths comes from f (π i (α)) and is not π i (α) all of them come from
f (π j (α)) but are notπ j (α), otherwise we are in the situation |Q0| = 1 and A has a deformed
loop again. Hence every π i (α) has a parallel arrow and A is a caterpillar, which we do not
consider.

So f (C̄(α)) = ∏
α′∈C(α) k

m(C(α))

α′ C̄(α). Since the relation C̄(α) = C̄(β) holds for any
α, β ∈ Q1 with s(α) = s(β) and the graph � is connected, we can denote by k the product
∏

α′∈C(α) k
m(C(α))

α′ for some fixed α and get that
∏

β∈C km(C)
β = k for any π-cycle C . This

finishes the proof in the situation, when the number of deformed loops d is zero. Indeed, for
any tuple (kα) coming from f ∈ H ′ we have found k such that (kα, k) ∈ D� . In particular,
the proof is finished for char(k) �= 2.

From here on we assume char(k) = 2. Let us deal with the equations (kα)2 = tαk, for
each deformed loop α. For a deformed loop α let wα be the path that makes αwα into a
π-cycle. Let m be the multiplicity of this cycle. Then f (α) = kαα + ∑

p kp p, where p is of

the form: (wαα)i , i = 1, . . .m − 1, α(wαα)i , i = 0, . . .m − 1, (wαα)iwα, i = 0, . . .m − 1,
α(wαα)iwα, i = 0, . . .m − 1. Since α is a deformed loop it appears only in socle relations
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and there are no restrictions on kp coming from zero relations of the form βγ = 0 for
γ �= π(β) in the algebra.

Let us consider f (α)2.Assume thatm > 1: the coefficient beforeαwαα in f (α)2 should be
zero, since the socle of A is preserved by any automorphism. This gives kαkwαα+kαkαwα = 0,
so since kα ∈ k∗, kwαα + kαwα = 0. Let us assume k(wαα)i + k(αwα)i = 0, for i < j < m and
prove the same for j . Let us consider the coefficient of α(wαα) j in f (α)2. For any entry of
the form k(αwα)i k(αwα) j−iα there is an entry of the form k(αwα) j−iαk(wαα)i and by induction
hypothesis they cancel out. The only entries left are kαk(wαα) j + k(αwα) j kα = 0, so we are
done.

Let us now consider the coefficient of α2 = (αwα)m = (wαα)m in f (α)2. For any entry
of the form k(wαα)iwα

k(αwα)m−i−1α there is an entry k(αwα)m−i−1αk(wαα)iwα
, they cancel out

since char(k) = 2, the entries k(wαα)i k(wαα)m−i and k(αwα)i k(αwα)m−i cancel out because of
the previous paragraph (which we need only for m even, otherwise they cancel out anyway).
So we are left with f (α)2 = k2αα2 and k2α = tαk, as desired, because of the relations
α2 = tαC̄(α) and the fact that f (C̄(α)) = kC̄(α). �

Lemma 5.5 Let A be a stably biserial algebra corresponding to the data (Q, π,m,L). The
rank of DH ′ is |Q1|− |Q1/π |− d + 1, where d = |L| is the number of deformed loops in A.

Proof Let us construct an epimorphism j : DH ′ → (k∗)|Q1|−|Q1/π |−d+1 such that the kernel
ker( j) is finite.

Each π-cycle contains an arrow, which is not a deformed loop. Let us fix one such arrow
in each cycle and denote the collection of these arrows by F . Let us label the elements of
(k∗)|Q1|−|Q1/π |−d+1 by xα , α ∈ Q1, α /∈ F ∪L and by an additional indeterminant x . Define
the map j as follows: j((kα, k)) := ((xα, x)), where xα = kα, α /∈ F ∪ L, x = k. The
map j is surjective, since for any tuple (xα, x) we can define kγ = √

tγ x for γ ∈ L and

kβ = m(C(β))

√
x/

∏
α′∈C(β),α′ �=β,α′ /∈L xm(C(β))

α′
∏

α′∈C(β),α′∈L(
√
tα′x)m(C(β)) for β ∈ F .

Let us compute the kernel of j . The tuple (kα, k) ∈ ker( j) if and only if k = 1, kα = 1
for α /∈ F ∪ L, k2γ = tγ for γ ∈ L, k2m(C(β))

β = 1/
∏

α′∈C(β),α′∈L tm(C(β))

α′ for β ∈ F . This
clearly defines a finite group.

Passing to the groups of characters, if necessary, and using the equivalence between the
category of diagonalizable groups and finitely generated commutative groups [25, Theorem
12.9], we see that the rank of DH ′ is |Q1| − |Q1/π | − d + 1. �

Proof of Theorem 1.1 Since DI is connected, its image belongs to the maximal torus in DH ′
and passing to the groups of characters again, the exact sequence 1 → DI → DH ′ →
DH ′/DI → 1, gives that the rank of DH ′/DI is |Q1| − |Q1/π | − d + 1 − |Q0| + 1 =
|Q0| − |Q1/π | − d + 2 = |E(�)| − |V (�)| − d + 2. �

Example 5.6 Let char(k) = 2 and let A and Adef be the algebras from Example 2.6. Recall
that the Brauer graph � and the quiver Q associated to both A and Adef are

1 2α
β γQ :Γ : ··

A is a Brauer graph algebra and Adef is a symmetric stably biserial algebra with 1
deformed loop. Thus A corresponds to the data (Q, π,m,∅) and Adef corresponds to
the data (Q, π,m, {γ }) with |{γ }| = 1, where the permutation π is constructed from the
Brauer graph � for both algebras. The rank of the maximal torus T (A) of Out0(A) is
|E(�)| − |V (�)| − 0 + 2 = 2 − 2 − 0 + 2 = 2 and the rank of the maximal torus T (Adef )

of Out0(Adef ) is |E(�)| − |V (�)| − 1+ 2 = 2− 2− 1+ 2 = 1. Algebras A and Adef are
not derived equivalent.
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If char(k) �= 2 we have already seen that A � Adef and we need to use the description
of A in order to compute the rank. In that case the rank of T (A) is 2.

Using the fact that Brauer graph algebras can be stably (and hence derived) equivalent
only to symmetric stably biserial algebras [8, Theorems 1, 3], Corollary 1.3 can be deduced
from Theorems 1.1 and 1.2 and Corollary 4.2, as well as from the fact that for local algebras
derived equivalence implies Morita equivalence.
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