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Abstract
Let g(z) = ∫ z

0 p(t) exp(q(t)) dt + c where p, q are polynomials and c ∈ C, and let f be the
function from Newton’s method for g. We show that under suitable assumptions on the zeros
of g′′ the Julia set of f has Lebesgue measure zero. Together with a theorem by Bergweiler,
our result implies that f n(z) converges to zeros of g almost everywhere in C if this is the
case for each zero of g′′ that is not a zero of g or g′. In order to prove our result, we establish
general conditions ensuring that Julia sets have Lebesgue measure zero.
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1 Introduction and results

For a rational function f : Ĉ → Ĉ that is not constant and not a Möbius transformation,
or a transcendental meromorphic function f : C → Ĉ, let f n denote the nth iterate of
f . The Fatou set, F( f ), is the set of all z such that all iterates f n are defined and form a
normal family in a neighbourhood of z. Its complement, J ( f ), is called the Julia set. For
an introduction to the iteration theory of meromorphic functions, see, for example, [23] for
rational functions and [2] for transcendental functions.

Let g be a non-constant meromorphic function. Newton’s root finding method for g con-
sists of iterating the function

f (z) = z − g(z)

g′(z)
. (1.1)

We also call f theNewton map corresponding to g. The zeros of g are precisely the attracting
fixed points of f , and the simple zeros of g are even superattracting fixed points. Recall
that, more generally, a periodic point z0 of period p of a meromorphic function f is called
attracting, indifferent or repelling depending on whether |( f p)′(z0)| < 1, |( f p)′(z0)| = 1
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or |( f p)′(z0)| > 1. The periodic point z0 is called superattracting if ( f p)′(z0) = 0. An
indifferent periodic point z0 is called rationally indifferent if ( f p)′(z0) is a qth root of unity
for some q ∈ N, otherwise it is called irrationally indifferent.

We will investigate the Lebesgue measure of Julia sets of Newton maps corresponding to
functions of the form

g(z) =
∫ z

0
p(t)eq(t) dt + c (1.2)

where p is a polynomial with p �≡ 0, q is a non-constant polynomial and c ∈ C.

In the following, we will assume that g is not of the form

g(z) = p̃(z)eq̃(z) (1.3)

with polynomials p̃ and q̃. Then g has infinitelymany zeros and f is transcendental. Newton’s
method for functions of the form (1.3) has been studied by Haruta [9].

Let dist(·, ·) denote the Euclidean distance in C. We will prove the following result.

Theorem 1.1 Let g beof the form (1.2)but not of the form (1.3),and let f be the corresponding
Newton map. Denote the zeros of g′′ which are not zeros of g or g′ by z1, . . . , zN . Suppose
that for all j ∈ {1, . . . , N }, the point z j is attracted by a periodic cycle, that is, there exists
a periodic cycle C of f such that limn→∞ dist( f n(z j ), C) = 0. Then the Lebesgue measure
of J ( f ) is zero.

Jankowski [11, §3] proved that if f is the Newton map corresponding to a function g of
the form g(z) = r(z)eaz + b where r is a rational function and a, b ∈ C\{0}, and if for each
of the zeros, z1, . . . , zN , of g′′ that are not zeros of g or g′, the iterates f n(z j ) converge to a
finite limit as n → ∞, then the Julia set of f has Lebesgue measure zero. Note that if r is a
polynomial, then g can be written in the form (1.2) with q(t) = at and p(t) = ar(t)+ r ′(t).
Also, under the assumptions of Jankowski’s result, f n(z j ) is attracted by a cycle of period
1 for all j ∈ {1, . . . , N }. So Jankowski’s theorem for polynomial r is a special case of
Theorem 1.1. The essential new difficulties we have to deal with in our proof come from the
fact that we allow q to have degree greater than one.

Bergweiler [3, Theorem 3] also investigated Newton’s method for functions of the form
(1.2). He proved the following result.

Theorem (Bergweiler) Let g be of the form (1.2) but not of the form eaz+b with a, b ∈ C,

and let f be the corresponding Newton map. Denote the zeros of g′′ which are not zeros of g
or g′ by z1, . . . , zN . If f n(z j ) converges to a finite limit for all j ∈ {1, . . . , N }, then f n(z)
converges to zeros of g on an open dense subset of C.

It is not difficult to see that under the assumptions of Bergweiler’s theorem, f n(z j ) con-
verges to an attracting fixed point of f and hence a zero of g for all j ∈ {1, . . . , N }. So the
theorem says that f n(z) converges to zeros of g on an open dense subset of C, provided this
is the case for each zero z of g′′ that is not a zero of g or g′.

A componentU of the Fatou setF( f ) is called periodic if there is p ∈ Nwith f p(U) ⊂ U ,
the component U is called preperiodic if there is l ∈ N such that f l(U) is contained in a
periodic Fatou component, and U is called a wandering domain if it is not (pre)periodic. It
is known (see, e.g., [2, §4]) that if U is a periodic Fatou component of period p of f , then
either f np|U converges to an attracting periodic point in U (immediate basin of attraction),
f np|U converges to a rationally indifferent periodic point in ∂U (parabolic domain), f np|U
converges to some z0 ∈ ∂U and f p(z0) is not defined (Baker domain), or f np|U is conjugate
to a rotation of a disk (Siegel disk) or an annulus (Herman ring).
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A class of Newton maps with Julia sets… 667

Bergweiler’s theorem is proved by showing that under the given assumptions, f has neither
wandering domains nor parabolic domains, Baker domains, Siegel disks or Herman rings.

The following corollary is a direct consequence of Theorem 1.1 andBergweiler’s theorem.

Corollary 1.2 Let g be of the form (1.2) but not of the form (1.3), and let f be the corre-
sponding Newton map. Denote the zeros of g′′ which are not zeros of g or g′ by z1, . . . , zN .
If f n(z j ) converges to a finite limit for all j ∈ {1, . . . , N }, then f n(z) converges to zeros of
g for almost all z ∈ C.

For example, the assumptions ofCorollary 1.2 and hence those of Theorem1.1 are satisfied
for g(z) = ∫ z

0 e−t2 dt + c with −√
π/2 < c <

√
π/2, see [3, §8]. Clearly, the conclusion

of Corollary 1.2 cannot be true if there exists a cycle of period at least two in F( f ).
In order to prove Theorem 1.1, we will first prove a general theorem giving conditions

ensuring that the Julia set of a meromorphic function has Lebesgue measure zero. This may
be of independent interest. For a meromorphic function f , we denote by sing( f −1) the set
of singular values of f , that is, the set of critical and asymptotic values of f and limit points
of those. For n ≥ 0, let Nn = {z : f n(z) is not defined}. Let

P( f ) :=
∞⋃

n=0

f n(sing( f −1)\Nn)

denote the postsingular set of f . For z0 ∈ C and r > 0, let D(z0, r) denote the open disk
centred at z0 with radius r . Also, let meas(·) denote Lebesgue measure, and for measurable
A,B ⊂ C with 0 < meas(B) < ∞, let

dens(A,B) = meas(A ∩ B)

meas(B)

denote the density of A in B.
Following [15], we call a measurable set A ⊂ C thin at ∞ if there exist R0, ε0 > 0 such

that for all z ∈ C, we have

dens(A,D(z, R0)) < 1 − ε0.

Additionally, we introduce the concept that A is thin at z0 ∈ C if there exist δ1, ε1 > 0 such
that for all z ∈ D(z0, δ1), we have

dens(A,D(z, |z − z0|)) < 1 − ε1. (1.4)

We callA uniformly thin at B ⊂ C if there are δ1, ε1 > 0 such that (1.4) holds for all z0 ∈ B.

Theorem 1.3 Let f be a meromorphic function that is not constant and not a Möbius trans-
formation. Suppose that there exists R1 > 0 such that

(i) P( f ) ∩ J ( f ) ∩ D(0, R1) is a finite set;
(ii) J ( f ) is thin at ∞;
(iii) J ( f ) is uniformly thin at (P( f ) ∩ C)\D(0, R1).

Then the Lebesgue measure of J ( f ) is zero.

McMullen [15, Proposition7.3] proved that if f is entire,P( f ) is compact,P( f )∩J ( f ) =
∅ and J ( f ) is thin at ∞, then meas(J ( f )) = 0. A meromorphic function f for which P( f )
is compact and does not intersect J ( f ) is called hyperbolic. There are various results on
iteration of hyperbolic meromorphic functions; see, for example, [4,19,20,22,25]. Stallard
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[21] extendedMcMullen’s result to entire functions f with possibly unbounded postsingular
set such that dist(P( f ),J ( f )) > 0 and J ( f ) is thin at ∞. Meromorphic functions f with
dist(P( f ),J ( f )) > 0 are sometimes called topologically hyperbolic, and have also been
considered in [1,14].

Jankowski [11,12] extended Stallard’s result by allowing that f is meromorphic and
that there are certain exceptions to the condition dist(P( f ),J ( f )) > 0. A more general
result was later obtained by Zheng [24, Theorem 5] who proved that if f is a meromorphic
function such that the set P( f ) ∩ J ( f ) is finite, there exists R > 0 such that dist((J ( f ) ∩
C)\D(0, R),P( f )) > 0 and J ( f ) is thin at ∞, then meas(J ( f )) = 0.

The results by McMullen, Stallard, Jankowki and Zheng mentioned above are special
cases of Theorem 1.3 since the condition that dist((J ( f )∩C)\D(0, R),P( f )) > 0 implies
that J ( f ) is uniformly thin at (P( f ) ∩ C)\D(0, R′) for R′ > R. Our theorem is the first
of this kind to allow infinitely many postsingular values in the Julia set or an unbounded
sequence of postsingular values whose distance to the Julia set tends to zero.

In general, the condition thatJ ( f ) is thin at∞ cannot be dropped. If |α| is small, then the
postsingular set of f (z) = sin(αz) is a compact subset of F( f ), and McMullen [15] showed
that J ( f ) has positive measure. However, there are results where instead of assuming that
J ( f ) is thin at∞ other conditions are imposed, see [5, Theorem 8], [24, Theorems 3 and 4].

This article is structured as follows. In Sect. 2, we prove Theorem1.3. In the remaining part
of this paper, we prove Theorem 1.1. First, in Sect. 3, we introduce the change of variables
w = q(z). In Sect. 4, we give asymptotic representations of g and f . In Sect. 5, we introduce
a class of subsets of C whose preimages under q are connected to the asymptotic behaviour
of f . In Sect. 6, we investigate the postsingular set of f . In Sects. 7–10, we investigate
the location and size of the set q(F( f )). Finally, in Sect. 11, we complete the proof of
Theorem 1.1.

2 Julia sets of zeromeasure

In this section, we prove Theorem 1.3. The following lemma is an easy consequence of
the well-known Koebe 1/4-theorem and Koebe distortion theorem (see, e.g., [18, Corol-
lary 1.4, Theorem 1.6]).

Lemma 2.1 Let z0 ∈ C and r > 0, and let f : D(z0, r) → C be holomorphic and injective.
Then

f (D(z0, r)) ⊃ D
(

f (z0),
1

4
| f ′(z0)|r

)

.

Moreover, for ρ ∈ (0, 1),

f (D(z0, ρr)) ⊂ D
(

f (z0),
ρ

(1 − ρ)2
| f ′(z0)|r

)

and

minz∈D(z0,ρr) | f ′(z)|
maxz∈D(z0,ρr) | f ′(z)| ≥

(
1 − ρ

1 + ρ

)4

.

For A ⊂ C, denote the forward orbit of A by

O+(A) :=
∞⋃

n=0

f n(A\Nn)
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A class of Newton maps with Julia sets… 669

where Nn = {z : f n(z) is not defined}, and for B ⊂ Ĉ, let

O−(B) :=
∞⋃

n=1

f −n(B)

be the backward orbit of B. For z ∈ Ĉ, write

O+(z) := O+({z}) and O−(z) := O−({z}).
We call z ∈ Ĉ an exceptional point of the meromorphic function f if O−(z) is finite. It

is not difficult to see that any meromorphic function that is not constant and not a Möbius
transformation has at most two exceptional points.

Lemma 2.2 Let f be a meromorphic function that is not constant and not a Möbius trans-
formation. If f is transcendental, in addition suppose that O−(∞) is finite. Let K be a
compact subset of C that contains no exceptional point of f , and let U ⊂ C be open with
U ∩ J ( f ) �= ∅. Then there is n0 ∈ N such that K ⊂ f n(U) for all n ≥ n0.

This is due to Fatou for rational [7, p.39] and entire functions [8, p.356]. His proof for
entire functions alsoworks for transcendentalmeromorphic functionswhereO−(∞) is finite.
We also require the following result.

Lemma 2.3 Let f be a meromorphic function that is not constant and not a Möbius
transformation, and let C = {z0, f (z0), . . . , f p(z0) = z0} be a periodic cycle of f . Suppose
that z ∈ J ( f ) is attracted by C. Then there exists n ∈ N such that f n(z) ∈ C.

Clearly, the hypotheses imply that C ⊂ J ( f ). It is not difficult to see that the conclusion
of Lemma 2.3 is true for repelling cycles. For rationally indifferent cycles, the result follows
from the Leau flower theorem [16, §10], and for irrationally indifferent cycles, it was shown
by Pérez Marco [17].

In Lemma 2.4, we give conditions ensuring that a point z ∈ J ( f ) is not a point of
density of J ( f ). We will then use Lemma 2.4 and the Lebesgue density theorem to prove
Theorem 1.3.

Lemma 2.4 Let f be a meromorphic function that is not constant and not a Möbius
transformation, and let z ∈ J ( f )\O−(P( f ) ∪ {∞}). Suppose that there exist sequences
(nk) of positive integers with limk→∞ nk = ∞ and (rk) of positive real numbers satisfying
the following conditions:
(i) D( f nk (z), rk) ∩ P( f ) = ∅ for all k ∈ N;
(ii) there is ε > 0 such that dens(F( f ),D( f nk (z), rk)) ≥ ε for all k ∈ N.

Then z is not a point of density of J ( f ).

Proof Let

ω :=
√

1 − ε

2
.

For k ∈ N, let

zk := f nk (z), Dk := D(zk, rk) and D′
k := D (zk, ωrk) .
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Since Dk ∩ P( f ) = ∅, there is a branch ϕk of f −nk defined in Dk with ϕk(zk) = z. By
Koebe’s theorems (see Lemma 2.1),

D
(
z,

ω

4
rk |ϕ′

k(zk)|
)

⊂ ϕk(D′
k) ⊂ D

(

z,
ω

(1 − ω)2
rk |ϕ′

k(zk)|
)

. (2.1)

We claim that
lim
k→∞

∣
∣ϕ′

k(zk)
∣
∣ rk = 0. (2.2)

If this was not true, there would be δ > 0 such that D(z, δ) ⊂ ϕk(D′
k) for infinitely many

k, and hence f nk (D(z, δ)) ⊂ D′
k for infinitely many k. If f is transcendental and O−(∞) is

infinite, this is impossible because O−(∞) is dense in J ( f ). Suppose that f is rational or
O−(∞) is finite. Fix v ∈ P( f ) ∩ C and let K be of the form K = {z : |z − v| = ρ} where
ρ is chosen such that K does not contain any exceptional point of f . Then by Lemma 2.2,
K ⊂ f nk (D(z, δ)) ⊂ D′

k ⊂ Dk for all large k. But this implies v ∈ Dk , contradicting (i).
This proves (2.2).

We will now show that

lim sup
r→0

dens(F( f ),D(z, r)) > 0,

that is, z is not a point of density of J ( f ). We have

dens(F( f ), ϕk(D′
k)) ≥

(
minζ∈D′

k
|ϕ′

k(ζ )|
maxζ∈D′

k
|ϕ′

k(ζ )|

)2

dens(F( f ),D′
k)

=
(
minζ∈D′

k
|ϕ′

k(ζ )|
maxζ∈D′

k
|ϕ′

k(ζ )|

)2
meas(D′

k ∩ F( f ))

measD′
k

≥
(
minζ∈D′

k
|ϕ′

k(ζ )|
maxζ∈D′

k
|ϕ′

k(ζ )|

)2

· meas(Dk ∩ F( f )) − meas(Dk\D′
k)

measDk
.

Hence, by the Koebe distortion theorem and (ii),

dens(F( f ), ϕk(D′
k)) ≥

(
1 − ω

1 + ω

)8

·
(

ε − πr2k − πr2k ω2

πr2k

)

=
(
1 − ω

1 + ω

)8

· ε

2
. (2.3)

By (2.3) and (2.1),

dens

(

F( f ),D
(

z,
ω

(1 − ω)2
|ϕ′

k(zk)|rk
))

≥ dens(F( f ), ϕk(D′
k)) · dens

(

ϕk(D′
k),D

(

z,
ω

(1 − ω)2
|ϕ′

k(zk)|rk
))

≥
(
1 − ω

1 + ω

)8
ε

2
· 1

16
(1 − ω)4 .

��

Proof of Theorem 1.3 We first show that meas(P( f )∩J ( f )) is zero. In order to do so, write
P( f ) ∩ J ( f ) ∩ C = P1 ∪ P2 with P1 := P( f ) ∩ J ( f ) ∩ D(0, R1) and P2 := (P( f ) ∩
J ( f ) ∩ C)\D(0, R1). Since P1 is a finite set, we only have to show that meas(P2) = 0.
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Since J ( f ) is uniformly thin at (P( f ) ∩ C)\D(0, R1), there are δ1, ε1 > 0 such that for
all v ∈ P( f ) ∩ C with |v| > R1 and all ζ ∈ D(v, δ1), we have

dens(F( f ),D(ζ, |ζ − v|)) > ε1. (2.4)

Let z ∈ P2 and r ∈ (0, 2δ1). Then D(z + r/2, r/2) ⊂ D(z, r) and dens(F( f ),D(z +
r/2, r/2)) > ε1. Thus,

dens(F( f ),D(z, r)) ≥ dens
(
F( f ),D

(
z + r

2
,
r

2

))
· dens

(
D

(
z + r

2
,
r

2

)
,D(z, r)

)

>
ε1

4
.

Hence, z is not a point of density of J ( f ). By the Lebesgue density theorem (see, e.g., [13,
Corollary 2.14]), the Lebesgue measure of P2 is zero. So meas(P( f ) ∩J ( f ) ∩C) = 0 and
hence also meas(O−(P( f ) ∩ J ( f ) ∩ C)) = 0. Since O−(∞) is countable, we obtain that
meas(O−((P( f ) ∩ J ( f )) ∪ {∞})) = 0.

Next, we show that each z ∈ J ( f )\O−(P( f ) ∪ {∞}) satisfies
lim sup
n→∞

dist( f n(z),P1) > 0. (2.5)

In order to do so, suppose that limn→∞ dist( f n(z),P1) = 0.We show that then z ∈ O−(P1),
contradicting our assumption.

Because P1 is finite, there is a subsequence, ( f nk (z)), that converges to some w ∈ P1.
For all j ∈ N, we have f j (w) = limk→∞ f nk+ j (z) ∈ P1. Thus, w is preperiodic, that is,
f l(w) is periodic for some l ∈ N. Assume without loss of generality that l = 0, that is, there
is p ∈ N with f p(w) = w.

Let α > 0 such that the disks D(ζ, α) with ζ ∈ P1 are pairwise disjoint, and let β ∈
(0, α) such that f (D( f j (w), β)) ⊂ D( f j+1(w), α) for all j ∈ {0, . . . , p − 1}. Then by
periodicity, this is true for all j ≥ 0. For large k, we have dist( f nk+ j (z),P1) < β for all
j ≥ 0 and f nk (z) ∈ D(w, β). Then f nk+1(z) ∈ D( f (w), α). Since the disks D(ζ, α) with
ζ ∈ P1 are disjoint, we have | f nk+1(z) − ζ | > α > β for all ζ ∈ P1\{ f (w)}. Thus,
| f nk+1(z)− f (w)| < β. Inductively, we obtain that f nk+ j (z) ∈ D( f j (w), β) for all j ∈ N.
Thus, f n(z) is attracted by the cycle {w, f (w), . . . , f p−1(w), f p(w) = w}. By Lemma 2.3,
z is eventually mapped to this cycle, so z ∈ O−(P1).

Now let z ∈ J ( f )\O−(P( f ) ∪ {∞}). By (2.5), there exist a subsequence ( f nk (z)) and
η > 0 such that

dist( f nk (z),P1) > η (2.6)

for all k ∈ N. We will show that z satisfies the assumptions of Lemma 2.4 and hence is not a
point of density of J ( f ). Let

dk := dist( f nk (z),P( f )),

and let ak ∈ P( f ) with

| f nk (z) − ak | = dk .

First suppose that the sequence (dk) is bounded, say dk ≤ γ for all k. We distinguish three
cases.

1st case: |ak | ≤ R1 for infinitely many k. By passing to a subsequence if necessary, we
can assume that |ak | ≤ R1 for all k. Then ( f nk (z)) is bounded, and by again passing to a
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672 M. Wolff

subsequence, we can assume that f nk (z) converges to some w ∈ J ( f ). By (2.6), we have
w /∈ P1. If |w| > R1, then for large k, we have

dk = | f nk (z) − ak | ≥ | f nk (z)| − |ak | ≥ | f nk (z)| − R1 > | f nk (z) − w|.
Thus, w /∈ P( f ), so ν := dist(w,P( f )) > 0. For large k,

D
(
w,

ν

4

)
⊂ D

(
f nk (z),

ν

2

)
⊂ D(w, ν).

Thus, D( f nk (z), ν/2) ∩ P( f ) = ∅, and
dens

(
F( f ),D

(
f nk (z),

ν

2

))

≥ dens
(
D

(
w,

ν

4

)
,D

(
f nk (z),

ν

2

))
· dens

(
F( f ),D

(
w,

ν

4

))

= 1

4
dens

(
F( f ),D

(
w,

ν

4

))
> 0.

By Lemma 2.4, z is not a point of density of J ( f ).
2nd case: |ak | > R1 and dk ≤ δ1 for infinitely many k, without loss of generality for all

k. Then by (2.4),

dens(F( f ),D( f nk (z), dk)) > ε1.

By Lemma 2.4, z is not a point of density of J ( f ).
3rd case: |ak | > R1 and dk > δ1 for infinitely many k, without loss of generality for all

k. Let

wk := ak + δ1

dk
( f nk (z) − ak).

Then

| f nk (z) − wk | =
(

1 − δ1

dk

)

| f nk (z) − ak | = dk − δ1

and hence

D(wk, δ1) ⊂ D( f nk (z), dk).

Also, |wk − ak | = δ1. By the hypotheses,

dens(F( f ),D( f nk (z), dk)) ≥ dens(D(wk, δ1),D( f nk (z), dk)) · dens(F( f ),D(wk, δ1))

≥ δ21

d2k
ε1 ≥ δ21

γ 2 ε1.

By Lemma 2.4, z is not a point of density of J ( f ).
Now suppose that the sequence (dk) is unbounded. Since J ( f ) is thin at ∞, there are

R0, ε0 > 0 such that for all v ∈ C, we have

dens(F( f ),D(v, R0)) > ε0.

By passing to a subsequence if necessary, we can assume that dk ≥ R0 for all k. Then
D( f nk (z), R0) ∩ P( f ) = ∅ for all k. Also,

dens(F( f ),D( f nk (z), R0)) > ε0.

By Lemma 2.4, z is not a point of density of J ( f ).
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A class of Newton maps with Julia sets… 673

Altogether, it follows that the set of density points of J ( f ) has Lebesgue measure zero.
By the Lebesgue density theorem, the Lebesgue measure of J ( f ) is zero. ��

3 A change of variables

Throughout the remaining part of the paper, let g be defined by (1.2), that is,

g(z) =
∫ z

0
p(t)eq(t) dt + c.

Remark 3.1 Suppose that q(t) = atd + O(td−1) as t → ∞, where a ∈ C\{0} and d ≥ 1.
Let α ∈ C with αd = a. Then q(t/α) = td + O(td−1) as t → ∞,

g(z/α) =
∫ z/α

0
p(t)eq(t) dt + c =

∫ z

0

1

α
p

(
t

α

)

eq(t/α) dt + c,

and Newton’s method for g(z/α) is conjugate to Newton’s method for g via z �→ αz. Thus,
we can and will assume without loss of generality that a = 1, that is,

q(t) = td + O(td−1)

as t → ∞.

Also, since the functions g and b · g for b ∈ C\{0} have the same zeros and Newton’s
methods for g and b · g coincide, we can and will assume without loss of generality that p
has the form

p(t) = dtm + O(tm−1)

as t → ∞, where d = deg(q).

Let f be defined by (1.1), that is, f is the Newton map corresponding to g. In order to
prove Theorem 1.1, it will be useful to consider the change of variablesw = q(z). Let R > 0
such that all critical values of q are contained in D(0, R) and such that for |z| ≥ (1/2)R1/d ,
we have

1

2d
|z|d ≤ |q(z)| ≤ 2d |z|d . (3.1)

Define

G := C\(D(0, R) ∪ [0,∞)).

Lemma 3.2 There exists c > 0 such that the set q−1(G) consists of d components,S1, . . . ,Sd ,
satisfying

S j ⊂
{

z : |z| >
1

2
R1/d ,

2( j − 1)π

d
− c

|z| < arg(z) <
2 jπ

d
+ c

|z|
}

and

S j ⊃
{

z : |z| > 2R1/d ,
2( j − 1)π

d
+ c

|z| < arg(z) <
2 jπ

d
− c

|z|
}

for all j ∈ {1, . . . , d}. Moreover, q maps each S j conformally onto G.
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Proof Since G is simply connected and contains no critical values of q , its preimage q−1(G)

consists of d components, and q maps each of them conformally onto G. By (3.1),

q

(

D
(

0,
1

2
R1/d

))

⊂ D(0, R)

and

q
(
C\D

(
0, 2R1/d

))
⊂ C\D(0, R).

Also, for z ∈ C, we have

arg(q(z)) = arg

[

zd
(

1 + O
(
1

z

))]

≡ d arg(z) + arg

(

1 + O
(
1

z

))

≡ d arg(z) + O
(
1

z

)

mod 2π

as z → ∞. Thus,

arg(z) ≡ arg(q(z))

d
+ O

(
1

z

)

mod
2π

d

as z → ∞. Using that q is surjective, we obtain the desired conclusion. ��
For j ∈ {1, . . . , d}, let ϕ j be the branch of q−1 defined in G with ϕ j (G) = S j .

4 The asymptotics of g and f

In this section, we give asymptotic representations for g(ϕ j (w)), g(z), f (ϕ j (w)), f (z). Let

λ := d − 1 − m

d
.

Then
p(z)

q ′(z)
= z−λd

(

1 + O

(
1

z

))

(4.1)

as z → ∞ and, for j ∈ {1, . . . , d},
∣
∣
∣
∣
p(ϕ j (w))

q ′(ϕ j (w))

∣
∣
∣
∣ = |w|−λ

(

1 + O

(
1

|w|1/d
))

(4.2)

as w → ∞ in G.

Lemma 4.1 Let j ∈ {1, . . . , d}. Then there exists c j ∈ C such that

g(ϕ j (w)) = c j + p(ϕ j (w))

q ′(ϕ j (w))

(

1 + λ

w
+ O

(
1

|w|1+1/d

))

ew

as w → ∞ in G.

In terms of z = ϕ j (w), Lemma 4.1 says the following.

Corollary 4.2 For j ∈ {1, . . . , d}, we have

g(z) = c j + p(z)

q ′(z)

(

1 + λ

zd
+ O

(
1

zd+1

))

eq(z)

as z → ∞ in S j .
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Proof of Lemma 4.1 Let x0 ∈ (−∞,−R) = G ∩ (−∞, 0] and w ∈ G. Then

g(ϕ j (w)) =
∫ ϕ j (w)

0
p(t)eq(t) dt + c

=
∫ ϕ j (w)

ϕ j (x0)
p(t)eq(t) dt +

∫ ϕ j (x0)

0
p(t)eq(t) dt + c

=
∫ ϕ j (w)

ϕ j (x0)
p(t)eq(t) dt + g(ϕ j (x0))

=
∫ w

x0
ϕ′
j (s)p(ϕ j (s))e

s ds + g(ϕ j (x0)).

Let

r(s) := ϕ′
j (s)p(ϕ j (s)) = p(ϕ j (s))

q ′(ϕ j (s))
.

Repeated integration by parts yields
∫ w

x0
r(s)es ds = (

r(s) − r ′(s) + r ′′(s)
)
es

∣
∣
∣
w

x0
−

∫ w

x0
r ′′′(s)es ds.

We have

r ′(s) = ϕ′
j (s)

q ′(ϕ j (s))p′(ϕ j (s)) − q ′′(ϕ j (s))p(ϕ j (s))

q ′(ϕ j (s))2

=
(

1

q ′(ϕ j (s))
· p(ϕ j (s))

q(ϕ j (s))

)

·
(
q(ϕ j (s))

p(ϕ j (s))
· q

′(ϕ j (s))p′(ϕ j (s)) − q ′′(ϕ j (s))p(ϕ j (s))

q ′(ϕ j (s))2

)

= p(ϕ j (s))

q ′(ϕ j (s))s
· q(ϕ j (s))q ′(ϕ j (s))p′(ϕ j (s))/p(ϕ j (s)) − q(ϕ j (s))q ′′(ϕ j (s))

q ′(ϕ j (s))2

= r(s)

s
· m − (d − 1)

d

(

1 + O

(
1

|s|1/d
))

= −λ

s
r(s)

(

1 + O

(
1

|s|1/d
))

.

Also, a computation shows that

r ′′(s) = r(s)O

(
1

s2

)

and r ′′′(s) = r(s)O

(
1

s3

)

as s → ∞. With h(x0) := (r(x0) − r ′(x0) + r ′′(x0))ex0 , we obtain
∫ w

x0
r(s)es ds = r(w)ew

(

1 + λ

w
+ O

(
1

|w|1+1/d

))

− h(x0) −
∫ w

x0
r ′′′(s)es ds.

We have
∫ w

x0
r ′′′(s)es ds =

∫ w

−|w|
r ′′′(s)es ds +

∫ −|w|

−∞
r ′′′(s)es ds −

∫ x0

−∞
r ′′′(s)es ds.

To estimate
∫ w

−|w| r
′′′(s)es ds, let γ be the part of the circle with centre 0 and radius |w| that

connects −|w| and w in G. Then Re s ≤ Rew for s ∈ γ . We obtain
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∣
∣
∣
∣

∫ w

−|w|
r ′′′(s)es ds

∣
∣
∣
∣ ≤ length(γ ) · max

s∈γ

∣
∣r ′′′(s)es

∣
∣ ≤ O(|w|)|r(w)|O

(
1

|w|3
)

eRew

= |r(w)|O
(

1

|w|2
)

|ew|.

Let us now estimate
∫ −|w|
−∞ r ′′′(s)es ds. By (4.2), we have |r(s)| ∼ |s|−λ as |s| → ∞. First

suppose that λ ≥ 0. Using that r ′′′(s) = r(s)O(1/s3), we obtain
∣
∣
∣
∣

∫ −|w|

−∞
r ′′′(s)es ds

∣
∣
∣
∣ ≤ |r(w)|e−|w|O

(
1

|w|3
) ∫ −|w|

−∞
es+|w| ds

≤ |r(w)ew|O
(

1

|w|3
) ∫ 0

−∞
es ds = |r(w)ew|O

(
1

|w|3
)

.

Now suppose that λ < 0. Then
∣
∣
∣
∣

∫ −|w|

−∞
r ′′′(s)es ds

∣
∣
∣
∣ ≤ O

(
1

|w|3
) ∫ −|w|

−∞
|s|−λes ds.

Integration by parts yields

∫ −|w|

−∞
|s|−λes ds = O(|w|−λe−|w|) ≤ O(|r(w)ew|)

and hence
∫ −|w|

−∞
r ′′′(s)es ds = r(w)ewO

(
1

|w|3
)

.

Altogether, we obtain the desired conclusion with

c j = g(ϕ j (x0)) − h(x0) +
∫ x0

−∞
r ′′′(s)es ds.

��

For the function f from Newton’s method for g, Lemma 4.1 yields the following.

Corollary 4.3 For j ∈ {1, . . . , d}, we have

f (ϕ j (w)) = ϕ j (w) − 1

q ′(ϕ j (w))

(

1 + λ

w
+ O

(
1

|w|1+1/d

))

− c j e−w

p(ϕ j (w))

as w → ∞ in G.

In terms of z, Corollary 4.3 says the following.

Corollary 4.4 For j ∈ {1, . . . , d}, we have

f (z) = z − 1

q ′(z)

(

1 + λ

zd
+ O

(
1

|z|d+1

))

− c j e−q(z)

p(z)

as z → ∞ in S j .
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5 Partitioning the plane

For a more detailed study of the behaviour of f ◦ ϕ j , we will divide the complex plane into
several sets depending on how large |e−w| is compared to some power of |w|. More precisely,
we consider sets whose boundary points satisfy

Rew = μ log |w| − logα (5.1)

for certain μ ∈ R and α > 0. Such sets were also considered by Jankowski [11]. In this
section, we will show that given μ ∈ R, α > 0 and y ∈ R of sufficiently large modulus,
there is a unique xy ∈ R such thatw = xy + iy satisfies (5.1). We also give a proof of several
properties of the mapping y �→ xy which in part are also shown in [11, §3.3.4].

Lemma 5.1 Let μ ∈ R, α > 0 and y ∈ R with |y| ≥ 2|μ|. Then there exists a unique xy ∈ R

with
xy = μ log |xy + iy| − logα. (5.2)

If x > xy, then
x > μ log |x + iy| − logα. (5.3)

If x < xy, then
x < μ log |x + iy| − logα. (5.4)

Proof Let ϕ : R → R,

ϕ(x) = x − μ log |x + iy| = x − μ

2
log(x2 + y2).

Then ϕ(x) → ∞ as x → ∞, and ϕ(x) → −∞ as x → −∞. Thus, ϕ is surjective, so there
exists xy satisfying (5.2).

Also,

ϕ′(x) = 1 − μx

x2 + y2
.

Since

|μx |
x2 + y2

≤ |μ|max{|x |, |y|}
max{x2, y2} = |μ|

max{|x |, |y|} ≤ 1

2
,

we have

ϕ′(x) ≥ 1

2
.

Thus, ϕ is strictly increasing, which implies (5.3) and (5.4). In particular, ϕ is injective, so
xy is unique. ��

For μ ∈ R and α > 0, let

γμ,α : (−∞,−2|μ|] ∪ [2|μ|,∞) → R, γμ,α(y) = xy .

Lemma 5.2 Let μ ∈ R and α > 0.

(i) The function γμ,α is continuously differentiable.
(ii) If μ > 0, then lim|y|→∞ γμ,α(y) = ∞. If μ < 0, then lim|y|→∞ γμ,α(y) = −∞. For

μ = 0, γμ,α ≡ − logα.

(iii) |γ ′
μ,α(y)| ≤ 2|μ|/|y|. In particular, lim|y|→∞ γ ′

μ,α(y) = 0 uniformly in α.
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(iv) For α > β > 0, we have

2

3
log

α

β
≤ γμ,β(y) − γμ,α(y) ≤ 2 log

α

β

and

lim|y|→∞(γμ,β(y) − γμ,α(y)) = log
α

β
.

Proof For μ = 0, the results are obvious. We will prove the lemma for μ > 0, the proof for
μ < 0 is analogous. To prove (i)-(iii), note that the condition

x = μ log |x + iy| − logα

is equivalent to

y2 = α2/μe(2/μ)x − x2.

The function

ψ(x) = α2/μe(2/μ)x − x2

satisfies
lim

x→−∞ ψ(x) = −∞ and lim
x→∞ ψ(x) = ∞. (5.5)

Let x0 := max{x : ψ(x) = 4μ2}. Then ψ(x) > 4μ2 for x > x0. Also,

ψ ′(x) = 2

μ
α2/μe(2/μ)x − 2x = 2

μ
(ψ(x) + x2 − μx).

It is not difficult to see that x2 − μx ≥ −μ2/4 for all x ∈ R. Thus,

ψ ′(x) ≥ 2

μ

(

ψ(x) − μ2

4

)

> 0 (5.6)

for x > x0. In particular, ψ : [x0,∞) → [4μ2,∞) is bijective. This implies that

γμ,α(y) = ψ−1(y2)

is a continuously differentiable function. By (5.5), (ii) is satisfied. Also, by (5.6) and since
y2 ≥ 4μ2, we have

|γ ′
μ,α(y)| =

∣
∣
∣
∣

2y

ψ ′(ψ−1(y2))

∣
∣
∣
∣ ≤ 2|y|

(2/μ)(ψ(ψ−1(y2)) − μ2/4)
= μ|y|

y2 − μ2/4
≤ 2μ

|y| ,

that is, (iii) is satisfied. To prove (iv), let y ∈ R with |y| ≥ 2μ be fixed, and let ϕ be as in
the proof of Lemma 5.1. Let x1 := γμ,α(y) and x2 := γμ,β(y). Then by the mean value
theorem,

log
α

β
= ϕ(x2) − ϕ(x1) = ϕ′(ξ)(x2 − x1)

for some ξ ∈ [x2, x1]. In the proof of Lemma 5.1, we have seen that ϕ′(ξ) ≥ 1/2, and the
same arguments show that ϕ′(ξ) ≤ 3/2. Also, ϕ′(ξ) → 1 as |y| → ∞. ��
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For μ ∈ R, α > 0 and ν ≥ 2|μ|, define
H(μ, α, ν) := {w : Rew ≥ μ log |w| − log(α), | Imw| ≥ ν}

= {x + iy : |y| ≥ ν, x ≥ γμ,α(y)}.
Also, let

�(μ, α) := {w : | Imw| ≥ 2|μ|, Rew = μ log |w| − logα}
= {γμ,α(y) + iy : |y| ≥ 2|μ|}.

Remark 5.3 Note that if w ∈ �(μ, α), then

|e−w| = e−Rew = α|w|−μ;
if w ∈ H(μ, α, ν), then

|e−w| ≤ α|w|−μ;
and if w ∈ C\H(μ, α, ν) with | Imw| ≥ ν, then

|e−w| > α|w|−μ.

6 The singular values of f

Recall that

g(z) =
∫ z

0
p(t)eq(t) dt + c

where p(t) = td + O(td−1) and q(t) = dtm + O(tm−1) as t → ∞, and f is the Newton
map corresponding to g. Let us assume throughout the rest of the paper that g and f satisfy
the assumptions of Theorem 1.1.

In this section, we determine the location of the singular values of f .

Lemma 6.1 [3, §7, p.238]The function f does not have finite asymptotic values.

So each singular value of f in Cmust be a critical value or a limit point of critical values.
We have

f ′(z) = g(z)g′′(z)
g′(z)2

.

Thus, the critical points of f are:

1. the zeros of g that are not zeros of g′. These are superattracting fixed points of f and
form a discrete subset of C.

2. the zeros of g′′ that are not zeros of g or g′. There are only finitely many of these,
z1, . . . , zN , and by assumption, each z j is attracted by a periodic cycle.

In particular, the set of critical values of f does not have limit points in C. So every singular
value of f in C is a critical value, and all but finitely many of them are superattracting fixed
points.

Lemma 6.2 The set P( f ) ∩ J ( f ) is finite.
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Proof Since the superattracting fixed points of f form a discrete subset of C, the set P( f ) ∩
J ( f ) is contained in the closure ofO+({z1, . . . , zN }). Each z j is attracted by a periodic cycle
C. In particular, O+(z j ) is bounded and has only finitely many limit points. If z j ∈ J ( f ),
then Lemma 2.3 yields that z j is eventually mapped to C, so the forward orbit of z j is finite.

By Corollary 4.2,

g(z) = c j + p(z)

q ′(z)

(

1 + λ

zd
+ O

(
1

zd+1

))

eq(z)

as z → ∞ in S j , for j ∈ {1, . . . , d}. We will see later that if c j �= 0, then g has infinitely
many zeros in S j . It is easy to see that this cannot be the case for c j = 0. However, we will
show now that under the assumptions of Theorem 1.1, the case c j = 0 does not occur.

Lemma 6.3 If c j = 0 for some j ∈ {1, . . . , d}, then f has a Baker domain.

Proof If c j = 0, then Corollary 4.4 yields that

f (z) = z − 1

dzd−1 + O

(
1

zd

)

as z → ∞ in S j . The claim now follows from [6, §8, §11] (see also [10, Theorem 2]). ��
Corollary 6.4 If the assumptions of Theorem 1.1 are satisfied, then c j �= 0 for all j ∈
{1, . . . , d}.
Proof A theorem by Bergweiler [3, Theorem 2] says that if g and f are defined by (1.2) and
(1.1), then every cycle of Baker domains of f contains a singularity of f −1. This cannot be
true under the assumptions of Theorem 1.1. ��

We now investigate the location of the zeros of g. It turns out that the images under q of
all but finitely many of them are close to the curves �(λ, 1/|c j |) defined in Sect. 5. More
precisely, we have the following.

Lemma 6.5 For j ∈ {1, . . . , d} and k ∈ Z, let v j,k ∈ �(λ, 1/|c j |) such that

Im v j,k =
{
arg(−c j ) + λ(π/2 + 2π( j − 1)) + 2kπ if k ≥ 0

arg(−c j ) + λ(−π/2 + 2π j) + 2kπ if k < 0.

If z ∈ S j is a zero of g and |z| is large, then there exists k ∈ Z such that

q(z) = v j,k + o(1) (6.1)

as |z| → ∞. Vice versa, if j ∈ {1, . . . , d} and |k| is large, then g has a zero z ∈ S j satisfying
(6.1).

Proof First suppose that z ∈ S j is a zero of g. By Corollary 4.2 and (4.1),

g(z) = c j + z−dλ(1 + o(1))eq(z)

as z → ∞, and hence
eq(z) = −c j z

dλ(1 + o(1)). (6.2)

Thus,

Re q(z) = log
∣
∣
∣eq(z)

∣
∣
∣ = log |c j | + dλ log |z| + o(1)
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= log |c j | + λ log |q(z)| + o(1)

= λ log |q(z)| − log
1

|c j | + o(1).

In particular, Re q(z) = o(|q(z)|) as z → ∞ and hence

arg q(z) = ±π

2
+ o(1). (6.3)

Let us now assume that Im q(z) > 0 and hence arg q(z) = π/2+o(1). The proof in the case
where Im q(z) < 0 is analogous. By (6.2),

Im q(z) ≡ arg(−c j ) + dλ arg(z) + o(1) mod 2π. (6.4)

We have

arg q(z) = arg(zd(1 + o(1))) ≡ d arg z + o(1) mod 2π

and hence

arg z ≡ 1

d
arg q(z) + o(1) ≡ π

2d
+ o(1) mod

2π

d
.

Since z ∈ S j , this implies

arg z ≡ π

2d
+ 2π( j − 1)

d
+ o(1) mod 2π. (6.5)

Inserting (6.5) into (6.4) yields

Im q(z) ≡ arg(−c j ) + λ
(π

2
+ 2π( j − 1)

)
+ o(1) mod 2π.

This completes the proof of the first part of Lemma 6.5.
Let us nowprove the second part.As before,wewill give the proof only for k > 0, the proof

for k < 0 is analogous. Recall that ϕ j is the branch of q−1 that maps C\(D(0, R) ∪ [0,∞))

onto S j . For small ε > 0, let G j,k be the interior of the set of all

v ∈ H
(

λ,
1 + ε

|c j | , 2|λ|
)

\H
(

λ,
1 − ε

|c j | , 2|λ|
)

satisfying

| Im v − Im v j,k | < π.

We will use the minimum principle to show that g ◦ ϕ j has a zero in G j,k . For v ∈ G j,k , we
have Re(v) = o(|v|), and hence

arg(v) = π

2
+ o(1)

as |v| → ∞. Similar arguments as above and the definition of v j,k yield

arg(ϕ j (v)) ≡ π

2d
+ 2π( j − 1)

d
+ o(1) ≡ arg(−c j ) − Im(v j,k)

−dλ
+ o(1) mod

2π

dλ
.

(6.6)
In particular, this is true for v = v j,k . Also, since v j,k ∈ �(λ, 1/|c j |), we have

e−Re v j,k = 1

|c j | |v j,k |−λ = 1

|c j | |ϕ j (v j,k)|−dλ(1 + o(1)),
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that is,

|ϕ j (v j,k)|−dλ = |c j |e−Re v j,k (1 + o(1)).

Using Lemma 4.1 and (4.1), we obtain

(g ◦ ϕ j )(v j,k) = c j + ϕ j (v j,k)
−dλ(1 + o(1)) exp(v j,k)

= c j + |ϕ j (v j,k)|−dλ exp(−idλ arg(ϕ j (v j,k)))(1 + o(1)) exp(v j,k)

= c j + |c j | exp(−Re v j,k) exp(i(arg(−c j ) − Im v j,k))(1 + o(1)) exp(v j,k)

= c j − c j (1 + o(1)) = o(1).

Next, we will show that g ◦ ϕ j is bounded below on ∂G j,k .
If v ∈ �(λ, (1 + ε)/|c j |), then

|(g ◦ ϕ j )(v)| = |c j + ϕ j (v)−dλ(1 + o(1))ev| ≥ ||c j | − |v|−λeRe v(1 + o(1))|
=

∣
∣
∣
∣|c j | − |c j |

1 + ε
(1 + o(1))

∣
∣
∣
∣ =

∣
∣
∣
∣
ε|c j |
1 + ε

− o(1)

∣
∣
∣
∣ ≥ ε|c j |

2
,

provided ε is sufficiently small and k is sufficiently large. An analogous estimate yields that
if v ∈ �(λ, (1 − ε)/|c j |), then

|(g ◦ ϕ j )(v)| ≥
∣
∣
∣
∣

|c j |
1 − ε

(1 + o(1)) − |c j |
∣
∣
∣
∣ ≥ ε|c j |,

provided ε is sufficiently small and k is sufficiently large. If Im(v) = Im(v j,k) ± π , then by
(6.6),

arg(ϕ j (v)−dλev) ≡ arg(−c j ) ± π + o(1) ≡ arg(c j ) + o(1) mod 2π.

Thus, for v ∈ G j,k with Im v = Im v j,k ± π , we have

|(g ◦ ϕ j )(v)| =
∣
∣
∣c j + ϕ j (v)−dλ(1 + o(1))ev

∣
∣
∣

= ∣
∣|c j | exp(i arg(c j )) + |v|−λ|ev| exp(i arg c j + o(1))(1 + o(1))

∣
∣

= ∣
∣|c j | + |v|−λ|ev|(1 + o(1))

∣
∣ ≥ |c j |.

We obtain that if k is sufficiently large, then

|(g ◦ ϕ j )(v j,k)| = o(1) < min
v∈∂G j,k

|v|.

By the minimum principle, g ◦ ϕ j has a zero w ∈ G j,k . The first part of the lemma yields
that z := ϕ j (w) satisfies (6.1). ��
Corollary 6.6 Let j ∈ {1, . . . , d} and let z ∈ S j be a zero of g. Then

arg(z) =
{

π/(2d) + 2π( j − 1)/d + o(1) if Im q(z) > 0

−π/(2d) + 2π j/d + o(1) if Im q(z) < 0

as |z| → ∞. In particular,

dist(z, ∂S j ) ≥
(
1

d
+ o(1)

)

|z|

as |z| → ∞.
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Proof The first part is stated in (6.5) in the case where Im q(z) > 0, and follows from (6.3)
with similar arguments in the case where Im q(z) < 0. We obtain

dist(z, ∂S j ) = sin
( π

2d
+ o(1)

)
|z| ≥

(
1

d
+ o(1)

)

|z|.
��

7 The set q(F(f )): first part

For j ∈ {1, . . . , d}, let
F j := F( f ) ∩ S j .

In Sects. 7–9, we will investigate the location and size of q(F j ) in three different subsets
of C, using the sets H(μ, α, ν) introduced in Sect. 5. The first subset is H(λ, 1/|c j |, ν), the
second one isH(λ− 1, α1/|c j |, ν)\H(λ, β1/|c j |, ν) for small α1 > 0 and large β1 > 0, and
the third set is {w : | Imw| ≥ ν}\H(λ − 1, β2/|c j |, ν) for large β2 > 0. See Fig. 1 for an
illustration of these sets.

In this section, we investigate the location and size of q(F j ) in H(λ, 1/|c j |, ν) for j ∈
{1, . . . , d} and large ν > 0. Recall that the branch ϕ j of q−1 mapsH(λ, 1/|c j |, ν) to a subset
of S j .

Lemma 7.1 Let j ∈ {1, . . . , d}. There exists ν0 > 0 such that

( f ◦ ϕ j )(H(λ, 1/|c j |, ν0)) ⊂ S j .

0

{w : | Im w| ≥ ν}\

H
(

λ − 1,
β2

|cj |
, ν

) H
(

λ − 1,
α1

|cj |
, ν

)
\

H
(

λ,
β1

|cj |
, ν

) H
(

λ,
1

|cj |
, ν

)

{w : | Im w| ≥ ν}\

H
(

λ − 1,
β2

|cj |
, ν

) H
(

λ − 1,
α1

|cj |
, ν

)
\

H
(

λ,
β1

|cj |
, ν

) H
(

λ,
1

|cj |
, ν

)

Fig. 1 An illustration of the setsH(λ, 1/|c j |, ν),H(λ − 1, α1/|c j |, ν)\H(λ, β1/|c j |, ν) and {w : | Imw| ≥
ν}\H(λ − 1, β2/|c j |, ν) in the case where λ > 0
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In particular, if (q ◦ f ◦ ϕ j )
k(w) ∈ H(λ, 1/|c j |, ν0) for all k ∈ {0, . . . , n − 1}, then

( f n ◦ ϕ j )(w) ∈ S j and (q ◦ f ◦ ϕ j )
n(w) = (q ◦ f n ◦ ϕ j )(w).

Proof Let w ∈ H(λ, 1/|c j |, ν0). By Corollary 4.3, (4.2) and Remark 5.3,

|( f ◦ ϕ j )(w) − ϕ j (w)|
≤ 1

|q ′(ϕ j (w))|
(

1 + O

(
1

|w|
)

+ |q ′(ϕ j (w))c j e−w|
|p(ϕ j (w))|

)

= 1

|q ′(ϕ j (w))|
(

1 + O

(
1

|w|
)

+ |w|λ|c j e−w|
(

1 + O

(
1

|w|1/d
)))

≤ 3

|q ′(ϕ j (w))| = 3|ϕ′
j (w)|

if |w| is sufficiently large. For ν0 ≥ 12 + R, with R as in Sect. 3, we obtain

f (ϕ j (w)) ∈ D(ϕ j (w), 3|ϕ′
j (w)|) ⊂ D

(

ϕ j (w),
ν0 − R

4
|ϕ′

j (w)|
)

.

On the other hand, by Koebe’s 1/4-theorem,

S j ⊃ ϕ j (D (w, ν0 − R)) ⊃ D
(

ϕ j (w),
ν0 − R

4
|ϕ′

j (w)|
)

,

whence the claim follows. ��
Next, we derive an asymptotic expression for

h j (w) = (q ◦ f ◦ ϕ j )(w)

in H(λ, 2/|c j |, ν1) for large ν1 > 0.

Lemma 7.2 Let j ∈ {1, . . . , d}. There exists ν1 > 0 such that

h j (w) = w−1+ 2m + 1 − d

2d
· 1
w

+O

(
1

|w|1+1/d

)

−c j e
−wϕ j (w)dλ

(

1 + O

(
1

|w|1/d
))

(7.1)
as w → ∞ in H(λ, 2/|c j |, ν1).
Remark 7.3 In fact, for any α > 0, there exists ν > 0 such that h j has an asymp-
totic expression of the form (7.1) in H(λ, α/|c j |, ν). We will need that α > 1 so that
H(λ, α/|c j |, ν) ⊃ H(λ, 1/|c j |, ν).

Proof of Lemma 7.2 By Corollary 4.3, we have

f (ϕ j (w)) = ϕ j (w) − η(w)

q ′(ϕ j (w))

where

η(w) = 1 + λ

w
+ O

(
1

|w|1+1/d

)

+ c j e
−w q ′(ϕ j (w))

p(ϕ j (w))

as |w| → ∞. Note that η is bounded in H(λ, 2/|c j |, ν1). Taylor expansion of q around
ϕ j (w) yields

h j (w) = q( f (ϕ j (w))) =
d∑

k=0

1

k!q
(k)(ϕ j (w))( f (ϕ j (w)) − ϕ j (w))k
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=
d∑

k=0

(−1)k

k!
q(k)(ϕ j (w))

q ′(ϕ j (w))k
η(w)k

= w − η(w) + 1

2

q ′′(ϕ j (w))

q ′(ϕ j (w))2
η(w)2 +

d∑

k=3

(−1)k

k! O

(
1

wk−1

)

η(w)k

= w − η(w) + 1

2

q ′′(ϕ j (w))

q ′(ϕ j (w))2
η(w)2 + O

(
1

w2

)

(7.2)

as w → ∞ in H(λ, 2/|c j |, ν1). Using that λ = (d − 1 − m)/d , we have

− η(w)

= −1 + m + 1 − d

d
· 1

w
+ O

(
1

|w|1+1/d

)

− c j e
−wϕ j (w)d−1−m

(

1 + O

(
1

|w|1/d
))

.

(7.3)

Moreover,

q ′′(ϕ j (w))

q ′(ϕ j (w))2
= d − 1

d
· 1

w

(

1 + O

(
1

|w|1/d
))

and

η(w)2 =
(

1 + O

(
1

w

)

+ c j e
−wϕ j (w)dλ

(

1 + O

(
1

|w|1/d
)))2

= 1 + O

(
1

w

)

+ c j e
−wϕ j (w)dλ · O(1).

Hence,

1

2

q ′′(ϕ j (w))

q ′(ϕ j (w))2
η(w)2 = d − 1

2d

1

w
+ O

(
1

|w|1+1/d

)

+ c j e
−wϕ j (w)dλO

(
1

w

)

. (7.4)

Combining (7.2), (7.3) and (7.4) yields the desired conclusion. ��
For the derivative of h j , we obtain the following.

Lemma 7.4 Let j ∈ {1, . . . , d}. There exists ν2 > 0 such that

h′
j (w) = 1 + O

(
1

|w|1+1/d

)

+ c j e
−wϕ j (w)dλ

(

1 + O

(
1

|w|1/d
))

as w → ∞ in H(λ, 1/|c j |, ν2).
Proof Suppose ν2 ≥ ν1 + 1. By Lemma 7.2, there are holomorphic functions, a1, a2, satis-
fying a1(w) = O(1/|w|1+1/d) and a2(w) = O(1/|w|1/d) as w → ∞ such that

h j (w) = w − 1 + 2m + 1 − d

2d
· 1

w
+ a1(w) − c j e

−wϕ j (w)dλ (1 + a2(w))

for w ∈ H(λ, 2/|c j |, ν2 − 1). By Lemma 5.2 and Cauchy’s inequality, we have a′
1(w) =

O(1/|w|1+1/d) and a′
2(w) = O(1/|w|1/d) as w → ∞ in H(λ, 1/|c j |, ν2). Also,

d

dw
e−wϕ j (w)dλ = −e−wϕ j (w)dλ

(

1 − dλ

ϕ j (w)
ϕ′
j (w)

)
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= −e−wϕ j (w)dλ

(

1 + O

(
1

w

))

.

Thus,

d

dw

(
c j e

−wϕ j (w)dλ(1 + a2(w))
)

= −c j e
−wϕ j (w)dλ

(

1 + O

(
1

|w|1/d
))

.

We obtain

h′
j (w) = 1 − 2m + 1 − d

2d

1

w2 + a′
1(w) + c j e

−wϕ j (w)dλ

(

1 + O

(
1

|w|1/d
))

= 1 + O

(
1

|w|1+1/d

)

+ c j e
−wϕ j (w)dλ

(

1 + O

(
1

|w|1/d
))

as w → ∞ in H(λ, 1/|c j |, ν2). ��
We will now proceed as follows. Recall that if z0 ∈ S j is a superattracting fixed point

of f , then q(z0) lies close to the curve �(λ, 1/|c j |). Also, every horizontal strip of width
2π + ε with ε > 0 that is sufficiently far from the real axis contains such an image of a
superattracting fixed point. We will show that if z0 is a superattracting fixed point of f and
A∗(z0) is its immediate basin of attraction, then q(A∗(z0)) contains a disk of a fixed radius
around q(z0). We then consider preimages of this disk under iterates of h j = q ◦ f ◦ ϕ j .
The function h j is not locally invertible at q(z0), but if α is slightly smaller than 1, then
h j has a local inverse function, ψ j , defined in H(λ, α/|c j |, ν). If α is sufficiently close to
1, then H(λ, α/|c j |, ν) intersects the disks contained in q(A∗(z0)). We then show that the
images of this intersection underψ j have a certain size and aremore or less evenly distributed
in H(λ, 1/|c j |, ν). The idea here is that if w ∈ H(λ, 1/|c j |, ν) is sufficiently far from the
boundary, then Lemma 7.2 yields h j (w) ≈ w − 1, and hence ψ j (w) ≈ w + 1. See Fig. 2
for an illustration of the abovementioned approach.

Lemma 7.5 If z0 is a zero of g but not a zero of g′ and |z0| is sufficiently large, then

A∗(z0) ⊃ D
(

z0,
1

3d|z0|d−1

)

.

For the proof, we require the following theorem which essentially says that under suitable
assumptions the solution of Böttcher’s functional equation in a neighbourhood of a super-
attracting fixed point extends to a conformal map defined in the entire immediate basin of
attraction.

Theorem 7.6 Let h be a meromorphic function, and let z0 be a superattracting fixed point
of multiplicity k of h. Suppose that A∗(z0) contains no critical point other than z0 and no
asymptotic value of h. Then there is a conformal map � : D(0, 1) → A∗(z0) satisfying
�(0) = z0 and

h(�(z)) = �(zk)

for all z ∈ D(0, 1).

A proof of this theorem can be found, for example, in [23, p. 65, Theorem 4]. There, the
result is stated for rational functions, but the proof also works for meromorphic functions
without asymptotic values in A∗(z0).
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ψj
ψj

ψj

ψj ψj ψj

Fig. 2 The images of superattracting fixed points of f under q lie close to the dashed line. The white disks
around them are contained in the images of the basins of attraction of the superattracting fixed points. To the
right of the solid line, the inverse ψ j of h j is defined. The grey disks lie in the intersection of the images of
the basins of attraction under q and the domain of definition of ψ j , and their images under iteration of ψ j are
contained in q(F j )

Proof of Lemma 7.5 Let z0 be a zero of g that is not a zero of g′, and assume that none of the
finitely many zeros of g′′ lies in A∗(z0). Then z0 is a superattracting fixed point of f , and
there are no other critical points of f in A∗(z0). Also,

f ′′(z) = g′(z)2g′′(z) + g(z)g′(z)g′′′(z) − 2g(z)g′′(z)2

g′(z)3
,

and hence

f ′′(z0) = g′′(z0)
g′(z0)

�= 0.

By Theorem 7.6, there is a conformal map � : D(0, 1) → A∗(z0) satisfying f (�(z)) =
�(z2) and �(0) = z0. Differentiating the equation f (�(z)) = �(z2) twice yields

f ′′(�(z))�′(z)2 + f ′(�(z))�′′(z) = 2�′(z2) + 4z2�′′(z2).

For z = 0, we obtain

f ′′(z0)�′(0)2 = 2�′(0)

and hence

|�′(0)| = 2

| f ′′(z0)| .

We have

f ′′(z0) = g′′(z0)
g′(z0)

= (p(z0)q ′(z0) + p′(z0))eq(z0)

p(z0)eq(z0)
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= q ′(z0) + p′(z0)
p(z0)

= dzd−1
0

(

1 + O

(
1

z0

))

.

Hence, by Koebe’s 1/4-theorem,

A∗(z0) = �(D(0, 1)) ⊃ D
(

z0,
1

4
|�′(0)|

)

= D
(

z0,
1

2| f ′′(z0)|
)

⊃ D
(

z0,
1

3d|z0|d−1

)

if |z0| is sufficiently large. ��
Corollary 7.7 Let z0 ∈ C be a zero of g that is not a zero of g′. If |z0| is sufficiently large,
then

q(A∗(z0)) ⊃ D
(

q(z0),
1

13

)

.

Proof If |z0| is sufficiently large, then by Lemma 7.5,

A∗(z0) ⊃ D
(

z0,
1

3d|z0|d−1

)

,

and q is injective in this disk. Koebe’s 1/4-theorem yields

q(A∗(z0)) ⊃ q

(

D
(

z0,
1

3d|z0|d−1

))

⊃ D
(

q(z0),
|q ′(z0)|

12d|z0|d−1

)

.

Since q ′(z) = dzd−1(1 + O(1/z)) as z → ∞, the claim follows. ��
The next lemma deals with preimages under h j .

Lemma 7.8 Let α ∈ (0, 1), ε ∈ (0, 1−α) and j ∈ {1, . . . , d}. There exists ν3 > 0 such that
for eachw0 ∈ H(λ, α/|c j |, ν3), there is a uniquew ∈ H(λ, α/|c j |, ν3−1)with h j (w) = w0.

More precisely, w ∈ D(w0 + 1, α + ε).

Proof Let w ∈ H(λ, α/|c j |, ν3 − 1). By Lemma 7.2 and Remark 5.3,

|h j (w) − (w − 1)| ≤ O

(
1

|w|
)

+ |c j e−w||w|λ
(

1 + O

(
1

|w|1/d
))

≤ O

(
1

|w|
)

+ α

(

1 + O

(
1

|w|1/d
))

< α + ε,

provided ν3 and hence |w| is sufficiently large. If h j (w) = w0, we obtain

|w − (w0 + 1)| = |w0 − (w − 1)| = |h j (w) − (w − 1)| < α + ε,

that is, w ∈ D(w0 + 1, α + ε). On the other hand, Lemma 5.2 yields that

D(w0 + 1, α + ε) ⊂ H(λ, α/|c j |, ν3 − 1)

if ν3 is sufficiently large. Thus, for w ∈ ∂D(w0 + 1, α + ε),

|(h j (w) − w0) − (w − 1 − w0)| = |h j (w) − (w − 1)| < α + ε = |w − 1 − w0|.
By Rouché’s theorem, there is a unique w ∈ D(w0 + 1, α + ε) satisfying h j (w) = w0. ��

By Lemma 7.8, there is a subset H j ⊂ H(λ, α/|c j |, ν3 − 1) such that h j maps H j

conformally onto H(λ, α/|c j |, ν3). Let ψ j : H(λ, α/|c j |, ν3) → H j be the corresponding
inverse function. The next lemma yields that if | Imw| is sufficiently large, then all iterates
ψn

j (w) are defined and tend to ∞ as n → ∞ in a horizontal strip whose width is bounded
independent of w.
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Lemma 7.9 Let α ∈ (0, 1), ε ∈ (0, 1 − α) and j ∈ {1, . . . , d}. Then there exist ν4 > 0 and
C > 0 such that ψn

j (w) is defined for all w ∈ H(λ, α/|c j |, ν4) and all n ∈ N, and satisfies

(i) Reψn
j (w) ≥ Rew + n(1 − α − ε);

(ii) |ψn
j (w)| ≥ max{n, |w|} · 1 − α − ε

4
;

(iii) | Imψn
j (w) − Imw| ≤ C;

(iv) e−Reψn
j (w)|ψn

j (w)|λ = O(e−n(1−α−ε)/2).

For the proof, we require the following lemma.

Lemma 7.10 For all n0 ∈ N, we have

∞∑

n=n0

1

k2
≤ 2

n0
.

Proof We have
∞∑

n=n0

1

k2
≤ 1

n20
+

∞∑

k=n0+1

∫ k

k−1

1

t2
dt = 1

n20
+

∫ ∞

n0

1

t2
dt = 1

n20
+ 1

n0
≤ 2

n0
.

��
Proof of Lemma 7.9 Let

δ := 1 − α − ε.

First note that if ψn
j (w) is defined, then Lemma 7.8 yields that ψk

j (w) ∈ D(ψk−1
j (w) +

1, α + ε) for all k ∈ {1, . . . , n}, and hence
Reψn

j (w) ≥ Rew + nδ.

So ψn
j (w) satisfies (i). Also, if n ≤ |w|/2, then

|ψn
j (w)| ≥ |w| − n(1 + α + ε) ≥ |w| − |w|

2
(1 + α + ε) = |w| δ

2
≥ nδ.

If n > |w|/2, then

|ψn
j (w)| ≥ Reψn

j (w) ≥ Rew + nδ ≥ λ log |w| − log
α

|c j | + nδ ≥ nδ

2
≥ |w|δ

4
,

provided |w| and hence also n is sufficiently large. In particular, ψn
j (w) satisfies (ii).

Let

nw := �|w|�.
We will show by induction that if w ∈ H(λ, α/|c j |, ν4) for sufficiently large ν4 > 0, then
ψn

j (w) is defined for all n ∈ N and

| Imψn
j (w) − Imw| ≤ C ′

⎛

⎝min

{
n

|w| , 1
}

+ nw

n∑

k=nw

1

k2
+

n∑

k=1

1

k1+1/d +
n∑

k=1

e−kδ/2

⎞

⎠

(7.5)
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where C ′ does not depend on w or n. Note that by Lemma 7.10,

C ′
⎛

⎝min

{
n

|w| , 1
}

+ nw

n∑

k=nw

1

k2
+

n∑

k=1

1

k1+1/d +
n∑

k=1

e−kδ/2

⎞

⎠

≤ C ′
(

3 +
∞∑

k=1

1

k1+1/d +
∞∑

k=1

e−kδ/2

)

=: C < ∞.

So (7.5) implies (iii). Clearly, (7.5) is true for n = 0. Now suppose that (7.5) holds with
n replaced by n − 1. By Lemma 7.8, ψn

j (w) is defined if and only if | Imψn−1
j (w)| > ν3.

This is satisfied if | Imw| > ν3 + C . By Lemma 7.2,

| Imψn
j (w) − Imψn−1

j (w)| = | Imψn
j (w) − Im h j (ψ

n
j (w))|

≤
∣
∣
∣
∣
∣
2m + 1 − d

2d
Im

(
1

ψn
j (w)

)∣
∣
∣
∣
∣
+ O

(
1

|ψn
j (w)|1+1/d

)

+ 2|c j |e−Reψn
j (w)|ψn

j (w)|λ,

provided |w| is sufficiently large. By (ii),

1

|ψn
j (w)|1+1/d = O

(
1

n1+1/d

)

.

If n ≤ |w|, then we estimate the first summand by
∣
∣
∣
∣
∣
Im

(
1

ψn
j (w)

)∣
∣
∣
∣
∣
≤ 1

|ψn
j (w)| = O

(
1

|w|
)

.

If n > |w|, then by Lemma 7.8, (ii) and the induction hypothesis,
∣
∣
∣
∣
∣
Im

(
1

ψn
j (w)

)∣
∣
∣
∣
∣
= | Imψn

j (w)|
|ψn

j (w)|2 ≤ | Imψn−1
j (w)| + α + ε

|ψn
j (w)|2

≤ 16(| Imw| + C + α + ε)

δ2n2
≤ 17|w|

δ2n2
= nw · O

(
1

n2

)

,

provided |w| is sufficiently large.
Moreover, if λ ≥ 0, then by (i), Lemma 7.8 and Remark 5.3,

|c j |e−Reψn
j (w)|ψn

j (w)|λ ≤ |c j |e−Rew(|w| + n(1 + α + ε))λe−nδ

≤ α|w|−λ(|w| + n(1 + α + ε))λe−nδ

= α

(

1 + n

|w| (1 + α + ε)

)λ

e−nδ

≤ α(1 + n(1 + α + ε))λe−nδ = O(e−nδ/2),

provided |w| ≥ 1. If λ < 0, then by (i), (ii) and Remark 5.3,

|c j |e−Reψn
j (w)|ψn

j (w)|λ ≤
(

δ

4

)λ

|w|λ|c j |e−Rewe−nδ ≤
(

δ

4

)λ

αe−nδ.

In particular, (iv) is satisfied. Also, if n ≤ |w|, then

Imψn
j (w) − Imψn−1

j (w) = O

(
1

|w|
)

+ O

(
1

n1+1/d

)

+ O
(
e−nδ/2) ,
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and if n > |w|, then

Imψn
j (w) − Imψn−1

j (w) = nwO

(
1

n2

)

+ O

(
1

n1+1/d

)

+ O(e−nδ/2).

Thus, ψn
j (w) satisfies (7.5), and hence also (iii). ��

We now estimate the derivative of ψn
j .

Lemma 7.11 Let α ∈ (0, 1) and j ∈ {1, . . . , d}. There are ν5 > 0 and B > 0 such that

|(ψn
j )

′(w)| ≥ B

for all w ∈ H(λ, α/|c j |, ν5) and all n ∈ N.

Proof We have

(ψn
j )

′ =
n−1∏

k=0

ψ ′
j ◦ ψk

j = 1
∏n−1

k=0 h
′
j ◦ ψk+1

j

= 1
∏n

k=1 h
′
j ◦ ψk

j

.

By Lemmas 7.4 and 7.9,

|h′
j (ψ

k
j (w))|

≤ 1 + O

(
1

|ψk
j (w)|1+1/d

)

+ |c j |e−Reψk
j (w)|ψk

j (w)|λ
(

1 + O

(
1

|ψk
j (w)|1/d

))

≤ 1 + O

(
1

k1+1/d

)

+ O
(
e−k(1−α−ε)/2

)
.

Since the infinite product
∏∞

k=1(1+O(1/k1+1/d)+O(e−k(1−α−ε)/2)) converges, we obtain
the desired conclusion. ��

Recall that F j = F( f ) ∩ S j .

Lemma 7.12 For j ∈ {1, . . . , d} and k ∈ Z, let v j,k be as in Lemma 6.5 and w j,k :=
v j,k+1/26. There isϑ > 0 such that if |k| is sufficiently large, thenD(ψn

j (w j,k), ϑ) ⊂ q(F j )

for all n ∈ N.

Remark 7.13 For sufficiently large |k|, the point v j,k is close to q(z0) for some attracting fixed
point z0 of f . The function ψ j is not defined in q(z0) and v j,k . Therefore, we introduce the
point w j,k which is in the domain of definition of ψ j for large |k| and also lies in q(A∗(z0)).

Proof of Lemma 7.12 By Lemma 6.5, there is a zero z0 of g satisfying q(z0) = v j,k + o(1).
Thus, w j,k = q(z0) + 1/26 + o(1). If |k| is sufficiently large, we obtain

D
(

w j,k,
1

27

)

⊂ D
(

q(z0) + 1

26
,
1

26

)

⊂ D
(

q(z0),
1

13

)

.

By Corollary 7.7, this yields

D
(

w j,k,
1

27

)

⊂ q(A∗(z0)).

Let ν > 0 be large and exp(−1/2(1/26 − 1/27)) < α < 1. Then

2 log
1

α
<

1

26
− 1

27
. (7.6)
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Since v j,k ∈ �(λ, 1/|c j |), by (7.6) and Lemma 5.2(iv) and (iii), we get

D
(

w j,k,
1

27

)

⊂ H
(

λ,
α

|c j | , ν5
)

if |k| is sufficiently large. By Koebe’s 1/4-theorem and Lemma 7.11,

ψn
j

(

D
(

w j,k,
1

27

))

⊃ D
(

ψn
j (w j,k),

|(ψn
j )

′(w j,k)|
4 · 27

)

⊃ D
(

ψn
j (w j,k),

B

4 · 27
)

.

With ϑ := B/(4 · 27) we thus have

hnj (D(ψn
j (w j,k), ϑ)) ⊂ D

(

w j,k,
1

27

)

⊂ q(F j ).

Since by Lemma 7.1,

hnj (w) = (q ◦ f ◦ ϕ j )
n(w) = (q ◦ f n ◦ ϕ j )(w)

for w ∈ H(λ, α/|c j |, ν0), this implies

D(ψn
j (w j,k), ϑ) ⊂ q(F j ),

provided |k| is sufficiently large. ��
The final result of this section says that q(F j ) has positive density in rectangles of suffi-

ciently large side lengths that are contained in H(λ, 1/|c j |, ν).

Lemma 7.14 There are D0, ν, η0 > 0 such that for all j ∈ {1, . . . , d} and any rectangle
R ⊂ H(λ, 1/|c j |, ν) with sides parallel to the real and imaginary axis whose vertical and
horizontal side lengths are both at least D0, we have

dens(q(F j ),R) ≥ η0.

Proof First suppose that

R = {w : x1 ≤ Rew ≤ x2, y1 ≤ Im ≤ y2} (7.7)

where
2π + 2(C + ϑ) ≤ x2 − x1, y2 − y1 ≤ 2(2π + 2(C + ϑ)), (7.8)

with C as in Lemma 7.9 and ϑ as in Lemma 7.12. Let v j,k be as in Lemma 6.5 and w j,k =
v j,k + 1/26. There is k ∈ Z such that y1 +C +ϑ ≤ Imw j,k = Im v j,k ≤ y2 −C −ϑ . Also,
by Lemma 7.8, there is n ∈ N such that x1 + ϑ < Reψn

j (w j,k) < x2 − ϑ . By Lemma 7.9,
we have y1 + ϑ ≤ Imψn

j (w j,k) ≤ y2 − ϑ . Thus,

D(ψn
j (w j,k), ϑ) ⊂ R.

Also, by Lemma 7.12,

D(ψn
j (w j,k), ϑ) ⊂ q(F j ).

We obtain

dens(q(F j ),R) ≥ meas(D(ψn
j (w j,k), ϑ))

measR
≥ πϑ2

4(2π + 2(C + ϑ))2
=: η0.

Now, ifR ⊂ H(λ, 1/|c j |, ν) is any rectangle whose horizontal and vertical side length both
exceed D0 := 2π + 2(C + ϑ), then R can be written as the union of rectangles of the form
(7.7) that satisfy (7.8) and have pairwise disjoint interior, whence the claim follows. ��
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8 The set q(F(f )): second part

In this section, we investigate the density of q(F( f )) in subsets of H(λ − 1, α1/|c j |, ν)\
H(λ, β1/|c j |, ν) for small α1 > 0 and large β1 > 0.

We first give an approximate expression for h j inH(λ − 1, α1/|c j |, ν)\H(λ, β1/|c j |, ν).

Lemma 8.1 Let ε > 0 and j ∈ {1, . . . , d}. Then there are α1, β1, ν > 0 such that for all
w ∈ H(λ − 1, α1/|c j |, ν)\H(λ, β1/|c j |, ν), we have

∣
∣
∣
∣

h j (w) − w

−c j e−wϕ j (w)dλ
− 1

∣
∣
∣
∣ < ε.

Proof Taylor expansion of q around ϕ j (w) yields

h j (w) = q( f (ϕ j (w))) = w +
d∑

k=1

q(k)(ϕ j (w))

k! ( f (ϕ j (w)) − ϕ j (w))k .

Thus,

h j (w) − w

−c j e−wϕ j (w)dλ
− 1

= q ′(ϕ j (w))( f (ϕ j (w)) − ϕ j (w))

−c j e−wϕ j (w)dλ
− 1 +

d∑

k=2

q(k)(ϕ j (w))

k!
( f (ϕ j (w)) − ϕ j (w))k

−c j e−wϕ j (w)dλ
.

(8.1)

By Corollary 4.3,

f (ϕ j (w))

= ϕ j (w) − 1

q ′(ϕ j (w))

(

1 + O

(
1

|w|
)

+ c j e
−wϕ j (w)dλ

(

1 + O

(
1

|w|1/d
)))

(8.2)

as w → ∞. Hence,

q ′(ϕ j (w))( f (ϕ j (w)) − ϕ j (w))

−c j e−wϕ j (w)dλ
− 1 = 1 + O(1/|w|)

c j e−wϕ j (w)dλ
+ O

(
1

|w|1/d
)

. (8.3)

For w ∈ C\H(λ, β1/|c j |, ν) with | Imw| ≥ ν, we have
∣
∣
∣c j e

−wϕ j (w)dλ
∣
∣
∣ ≥ β1

2
,

provided ν is sufficiently large. Inserting this into (8.3) yields
∣
∣
∣
∣
q ′(ϕ j (w))( f (ϕ j (w)) − ϕ j (w))

−c j e−wϕ j (w)dλ
− 1

∣
∣
∣
∣ ≤ 3

β1
+ O

(
1

|w|1/d
)

<
ε

d
(8.4)

if β1 and |w| are sufficiently large.
Also, for w ∈ H(λ − 1, α1/|c j |, ν), we have

∣
∣
∣c j e

−wϕ j (w)d(λ−1)
∣
∣
∣ ≤ 2α1,

provided ν is sufficiently large. By (8.2), this yields

| f (ϕ j (w)) − ϕ j (w)| ≤ 1

|q ′(ϕ j (w))|
(

1 + O

(
1

|w|
)

+ 3α1ϕ j (w)d
)

≤ 4

d
α1|ϕ j (w)|,

(8.5)
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provided |w| is sufficiently large. If k ≥ 2, then by (8.4) and (8.5), we have
∣
∣
∣
∣
∣
q(k)(ϕ j (w))

k! · ( f (ϕ j (w)) − ϕ j (w))k

−c j e−wϕ j (w)dλ

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
q ′(ϕ j (w))( f (ϕ j (w)) − ϕ j (w))

−c j e−wϕ j (w)dλ

∣
∣
∣
∣ ·

∣
∣
∣
∣
∣
q(k)(ϕ j (w))

k!q ′(ϕ j (w))

∣
∣
∣
∣
∣
· | f (ϕ j (w)) − ϕ j (w)|k−1

≤
(
1 + ε

d

)
·
∣
∣
∣
∣
∣
q(k)(ϕ j (w))

k!q ′(ϕ j (w))

∣
∣
∣
∣
∣
·
(
4

d
α1|ϕ j (w)|

)k−1

≤
(
1 + ε

d

) (
d

k

)
2

d
|ϕ j (w)|−k+1

(
4

d
α1|ϕ j (w)|

)k−1

=
(
1 + ε

d

)(
d

k

)
2 · 4k−1

dk
αk−1
1 <

ε

d
(8.6)

if |w| is sufficiently large and α1 is sufficiently small. Inserting (8.4) and (8.6) into (8.1)
yields the desired conclusion. ��

We will now proceed as follows. First, we show that h j maps the intersection of
certain horizontal strips with H(λ − 1, α1/|c j |, ν)\H(λ, β1/|c j |, ν) into H(λ, 1/c∗, ν)

where c∗ = maxl |cl |. The idea is that if Imw lies in certain intervals, then the argu-
ment of −c j e−wϕ j (w)dλ is small, and using that h j (w) ≈ w − c j e−wϕ j (w)dλ by
Lemma 8.1, one can deduce that Re h j (w) is large. By Sect. 7, the set q(F( f )) has pos-
itive density in large bounded subsets of H(λ, 1/c∗, ν). Together with the invariance of
F( f ) under f , we deduce that q(F( f )) has positive density in large bounded subsets of
H(λ − 1, α1/|c j |, ν)\H(λ, β1/|c j |, ν).

The next lemma deals with the mapping behaviour of f in certain horizontal strips in
H(λ − 1, α1/|c j |, ν)\H(λ, β1/|c j |, ν). For j ∈ {1, . . . , d} and n ∈ Z, let

y j
n :=

{
arg(−c j ) + λ(π/2 + 2π( j − 1)) + 2nπ if n ≥ 0

arg(−c j ) + λ(−π/2 + 2π j) + 2nπ if n < 0.

Lemma 8.2 Let ε ∈ (0, π/4). Then there are α1, β1, ν > 0 such that the following holds. Let
j ∈ {1, . . . , d}. Suppose that w lies in the closure of H(λ − 1, α1/|c j |, ν)\H(λ, β1/|c j |, ν)

and there exists n ∈ Z with | Imw − y j
n | ≤ π/4. Let β ≥ β1 such that w ∈ �(λ, β/|c j |),

and let θ := Imw − y j
n . Then,

|h j (w) − w| ≤ (1 + ε)β,

(1 − ε)β cos(|θ | + ε) ≤ Re(h j (w) − w) ≤ (1 + ε)β

and

(1 − ε)β sin(|θ | − ε) ≤ | Im(h j (w) − w)| ≤ (1 + ε)β sin(|θ | + ε).

Proof By Lemma 8.1, ∣
∣
∣
∣

h j (w) − w

−c j e−wϕ j (w)dλ
− 1

∣
∣
∣
∣ ≤ ε

2
, (8.7)

provided α1 is sufficiently small and β1 and ν are sufficiently large. Thus,
(
1 − ε

2

) ∣
∣
∣c j e

−wϕ j (w)dλ
∣
∣
∣ ≤ |h j (w) − w| ≤

(
1 + ε

2

) ∣
∣
∣c j e

−wϕ j (w)dλ
∣
∣
∣ .
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Since w ∈ �(λ, β/|c j |), this yields
(1 − ε)β ≤ |h j (w) − w| ≤ (1 + ε)β

if ν is sufficiently large. Also, by (8.7),
∣
∣
∣
∣arg

(
h j (w) − w

−c j e−wϕ j (w)dλ

)∣
∣
∣
∣ ≤ arcsin

( ε

2

)
≤ π

4
ε. (8.8)

We have

argw = arg q(ϕ j (w)) ≡ arg(ϕ j (w)d(1 + o(1))) ≡ d argϕ j (w) + o(1) mod 2π

as w → ∞. Since w lies in the closure of H(λ − 1, α1/|c j |, ν)\H(λ, β1/|c j |, ν), we have

argw = sgn(Im(w))
π

2
+ o(1) = sgn(n)

π

2
+ o(1)

if |n| is sufficiently large. Hence,

argϕ j (w) ≡ sgn(n)
π

2d
+ o(1) mod

2π

d
.

Since ϕ j (w) ∈ S j , we obtain

argϕ j (w) ≡
{

π/(2d) + 2π( j − 1)/d + o(1) if n > 0

−π/(2d) + 2π j/d + o(1) if n < 0
mod 2π.

Thus,

arg
(
−c j e

−wϕ j (w)dλ
)

≡ arg(−c j ) − Im(w) + dλ argϕ j (w)

≡ −θ − 2nπ + o(1) ≡ −θ + o(1) mod 2π.

By (8.8), this implies

|θ | − ε ≤ | arg(h j (w) − w)| ≤ |θ | + ε

if |w| is sufficiently large. We obtain

Re(h j (w) − w) ≤ |h j (w) − w| ≤ (1 + ε)β,

Re(h j (w) − w) = |h j (w) − w| cos(arg(h j (w) − w)) ≥ (1 − ε)β cos(|θ | + ε),

| Im(h j (w) − w)| = |h j (w) − w| · | sin(arg(h j (w) − w))| ≤ (1 + ε)β sin(|θ | + ε),

| Im(h j (w) − w)| = |h j (w) − w| · | sin(arg(h j (w) − w))| ≥ (1 − ε)β sin(|θ | − ε).

��
Let

c∗ := max
1≤l≤d

|cl |. (8.9)

The following lemma says that h j maps the intersection of H(λ − 1, α1/|c j |, ν)\
H(λ, β1/|c j |, ν) with certain horizontal strips into H(λ, 1/c∗, ν).

Lemma 8.3 There are α1, β1, ν > 0 such that for all j ∈ {1, . . . , d}, n ∈ Z and all w in
the closure of H(λ − 1, α1/|c j |, ν)\H(λ, β1/|c j |, ν) with | Imw − y j

n | ≤ π/4, we have
h j (w) ∈ H(λ, 1/c∗, ν).
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Proof We have w ∈ �(λ, β/|c j |) for some β ≥ β1. Since also w ∈ H(λ − 1, α1/|c j |, ν),
we have

λ log |w| − logβ = Rew ≥ (λ − 1) log |w| − logα1

and hence
β ≤ α1|w|. (8.10)

Let ε ∈ (0, π/4), θ := Imw − y j
n , and suppose that α1, β1, ν are chosen such that the

conclusion of Lemma 8.2 holds. Then

| Im h j (w) − Imw| ≤ (1 + ε)β sin(|θ | + ε) ≤ 2β.

By (8.10) and since | Imw| = (1 + o(1))|w| for w in the closure of H(λ − 1, α1/|c j |, ν)\
H(λ, β1/|c j |, ν), this yields

| Im h j (w)| ≥ | Imw| − 2β = (1 + o(1))|w| − 2β ≥ (1 + o(1))|w| − 2α1|w| > ν,

provided |w| is sufficiently large and α1 is sufficiently small.
Also, by Lemma 8.2 and (8.10),

|h j (w) − w| ≤ (1 + ε)β ≤ (1 + ε)α1|w|.
If α1 is sufficiently small, we obtain

1

2
|w| ≤ |h j (w)| ≤ 2|w|

and hence
1

2
|h j (w)| ≤ |w| ≤ 2|h j (w)|. (8.11)

By Lemma 8.2 and (8.11),

Re h j (w) ≥ Rew + (1 − ε)β cos
(π

4
+ ε

)

= λ log |w| − logβ + (1 − ε)β cos
(π

4
+ ε

)

≥ λ log |h j (w)| − |λ| log 2 − logβ + (1 − ε)β cos
(π

4
+ ε

)

≥ λ log |h j (w)| − log
1

c∗

if β1 and hence β is sufficiently large. Thus, h j (w) ∈ H(λ, 1/c∗, ν). ��

Let us now define several sets. We start with subsets Q j
n,k, Q̃

j
n,k ⊂ C\H(λ, β1/|c j |, ν)

for j ∈ {1, . . . , d}, k ∈ N and n ∈ Z.
Let 0 < θ1 < 1/(6π) arccos(5/6). For j ∈ {1, . . . , d}, k ∈ N and n ∈ Z, let Q j

n,k be the
set of all

w ∈ H
(

λ,
2k+1β1

|c j | , ν

)

\H
(

λ,
2kβ1

|c j | , ν

)

such that

| Imw − y j
n | ≤ θ1.
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Γ
(

λ,
2k+2β1

|cj |

)
Γ

(
λ,

2k+1β1

|cj |

)
Γ

(
λ,

2kβ1

|cj |

)
Γ

(
λ,

2k−1β1

|cj |

)

Im w = yj
n

Q̃j
n,k

Qj
n,k

Fig. 3 An illustration of the sets Q j
n,k and Q̃ j

n,k

Also, let Q̃ j
n,k be the set of all

w ∈ H
(

λ,
2k+2β1

|c j | , ν

)

\H
(

λ,
2k−1β1

|c j | , ν

)

such that

| Imw − y j
n | ≤ 5πθ1.

See Fig. 3 for an illustration of these sets. Note that Q j
n,k ⊂ Q̃ j

n,k . If Q̃
j
n,k ⊂ H(λ −

1, α1/|c j |, ν), then by Lemma 8.3, we have h j (Q̃
j
n,k) ⊂ H(λ, 1/c∗, ν).

Moreover, let R j
n,k be the rectangle containing all v ∈ C satisfying

3

4
2kβ1 < Re v − λ log |n| <

5

2
2kβ1

and

| Im v − y j
n | < 3 · 2kβ1θ1.

Also, let R̃ j
n,k be the rectangle containing all v ∈ C satisfying

5

8
2kβ1 < Re v − λ log |n| < 3 · 2kβ1

and

| Im v − y j
n | < 4 · 2kβ1θ1.

Note that R j
n,k ⊂ R̃ j

n,k .

Lemma 8.4 There are α1, β1, ν, n0 > 0 such that the following holds. If j ∈ {1, . . . , d},
n ∈ Z with |n| ≥ n0 and k ∈ N are such that Q̃ j

n,k ⊂ H(λ− 1, α1/|c j |, ν), then h j (Q j
n,k) ⊂

R j
n,k and h j (Q̃ j

n,k) ⊃ R̃ j
n,k .

Proof For w ∈ H(λ − 1, α1/|c j |, ν)\H(λ, β1/|c j |, ν), we have Rew = o(|w|) and hence

|w| = (1+ o(1))| Imw| as w → ∞. If | Imw − y j
n | ≤ 5πθ1 and |n| is sufficiently large, we

obtain
|n| ≤ |w| ≤ e2|n|.
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For w ∈ Q̃ j
n,k , this implies that

Rew ≥ λ log |w| − log
2k+2β1

|c j | ≥ λ log |n| − 2|λ| − log
2k+2β1

|c j | (8.12)

and

Rew ≤ λ log |w| − log
2k−1β1

|c j | ≤ λ log |n| + 2|λ| − log
2k−1β1

|c j | . (8.13)

Let ε > 0 be small and let w ∈ Q j
n,k ⊂ Q̃ j

n,k . By Lemma 8.2 and (8.12), and since
0 < θ1 < 1/(6π) arccos(5/6) < (1/2) arccos(5/6), we have

Re h j (w) ≥ Rew + (1 − ε)2kβ1 cos(θ1 + ε)

≥ Rew + (1 − ε)2kβ1 cos(2θ1)

> λ log |n| − 2|λ| − log
2k+2β1

|c j | + (1 − ε)2kβ1 · 5
6

> λ log |n| + 3

4
2kβ1

if ε is sufficiently small and β1 is sufficiently large. Analogously,

Re h j (w) ≤ Rew + (1 + ε)2k+1β1

≤ λ log |n| + 2|λ| − log
2k−1β1

|c j | + (1 + ε)2k+1β1

< λ log |n| + 5

2
2kβ1

if ε is sufficiently small and β1 is sufficiently large. Moreover, by Lemma 8.2,

| Im h j (w) − y j
n | ≤ | Im h j (w) − Imw| + | Imw − y j

n |
≤ (1 + ε)2k+1β1 sin(θ1 + ε) + | Imw − y j

n |
≤ (1 + ε)2k+1β1(θ1 + ε) + θ1

< 3 · 2kβ1θ1

if ε is sufficiently small and β1 is sufficiently large. Thus, h j (Q j
n,k) ⊂ R j

n,k .

In the following, we show that h j (∂Q̃ j
n,k) ∩ R̃ j

n,k = ∅. Since we have already shown that
h j (Q̃ j

n,k) ∩ R̃ j
n,k �= ∅, this implies that h j (Q̃ j

n,k) ⊃ R̃ j
n,k .

If w ∈ �(λ, 2k−1β1/|c j |) and β1 is large, then by Lemma 8.2 and (8.13),

Re h j (w) ≤ Rew + (1 + ε)2k−1β1

≤ λ log |n| + 2|λ| − log
2k−1β1

|c j | + (1 + ε)2k−1β1

< λ log |n| + 5

8
2kβ1.

If w ∈ �(λ, 2k+2β1/|c j |) and | Imw − y j
n | ≤ 5πθ1, then by Lemma 8.2 and (8.12), and

since 0 < θ1 < 1/(6π) arccos(5/6), we have

Re h j (w) ≥ Rew + (1 − ε)2k+2β1 cos(5πθ1 + ε)
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≥ λ log |n| − 2|λ| − log
2k+2β1

|c j | + (1 − ε)2k+2β1 cos(6πθ1)

> λ log |n| − 2|λ| − log
2k+2β1

|c j | + (1 − ε)2k+2β1 · 5
6

> λ log |n| + 3 · 2kβ1,

provided ε is sufficiently small and β1 is sufficiently large.
If | Imw − y j

n | = 5πθ1 and w ∈ H(λ, 2k+2β1/|c j |, ν)\H(λ, 2k−1β1/|c j |, ν), then by
Lemma 8.2,

| Im h j (w) − y j
n | ≥ | Im h j (w) − Im(w)| − | Imw − y j

n |
≥ (1 − ε)2k−1β1 sin(5πθ1 − ε) − 5πθ1

≥ (1 − ε)2k−1β1
2

π
(5πθ1 − ε) − 5πθ1

> 4 · 2kβ1θ1,

provided ε is sufficiently small and β1 is sufficiently large. Thus, h j (∂Q̃ j
n,k) ⊂ C\R̃ j

n,k . ��
Next, we prove that the density of q(F j ) in Q̃ j

n,k is bounded below by a positive constant.

Lemma 8.5 There are α1, β1, ν, δ, n1 > 0 such that for all j ∈ {1, . . . , d}, n ∈ Z with
|n| ≥ n1 and k ∈ N with Q̃ j

n,k ⊂ H(λ − 1, α1/|c j |, ν), we have

dens(q(F j ), Q̃ j
n,k) ≥ δ.

Proof BySect. 6, in particular Lemma6.5, the function h j = q◦ f ◦ϕ j has no critical points in

Q̃ j
n,k if ν andβ1 are sufficiently large.ByLemma8.4,h j (Q̃ j

n,k) ⊃ R̃ j
n,k andh j (Q j

n,k) ⊂ R j
n,k .

Let U be the component of h−1
j (R̃ j

n,k) containing Q j
n,k . Then Q j

n,k ⊂ U ⊂ Q̃ j
n,k . Since

R̃ j
n,k is simply connected, h j maps U conformally onto R̃ j

n,k . Let ψ : R̃ j
n,k → U be the

corresponding inverse function. By Lemma 8.3,

h j (Q̃ j
n,k) ⊂ H

(

λ,
1

c∗ , ν

)

⊂ C\(D(0, R) ∪ [0,∞)) = q(Sl)

for all l ∈ {1, . . . , d}. Hence, there exists l ∈ {1, . . . , d} such that ( f ◦ ϕ j )(Q̃ j
n,k) ⊂ Sl .

We have ψ(q(Fl) ∩ R̃ j
n,k) = q(F j ) ∩ U . By the Koebe distortion theorem, ψ has bounded

distortion in R j
n,k independent of n, k and j . We obtain

dens(q(F j ), Q̃ j
n,k) ≥ dens(q(F j ), ψ(R j

n,k)) · dens(ψ(R j
n,k), Q̃

j
n,k)

= dens(ψ(q(Fl) ∩ R j
n,k), ψ(R j

n,k)) · dens(ψ(R j
n,k), Q̃

j
n,k)

≥ c dens(q(Fl),R j
n,k) · dens(Q j

n,k, Q̃
j
n,k)

for some c > 0 independent of n, k and j . If β1 is sufficiently large, then by Lemma 7.14,

dens(q(Fl),R j
n,k) ≥ η0.

Moreover, by Lemma 5.2,

measQ j
n,k ≥ 2

3
log 2 · 2θ1 and meas Q̃ j

n,k ≤ 2 log 8 · 10πθ1.
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Hence,

dens(q(F j ), Q̃ j
n,k) ≥ cη0

log 2

15π log 8
=: δ.

��
The last lemma of this section says that there is a positive lower bound for the density of

q(F j ) in any sufficiently large rectangle contained inH(λ−1, α1/|c j |, ν)\H(λ, β1/|c j |, ν).

Lemma 8.6 There are α1, β1, ν, D1, η1 > 0 such that for all j ∈ {1, . . . , d} and any rectan-
gleR ⊂ H(λ−1, α1/|c j |, ν)\H(λ, β1/|c j |, ν) with sides parallel to the real and imaginary
axis and side lengths at least D1, we have

dens(q(F j ),R) ≥ η1.

Proof Suppose that

D1 ≥ 5 log 8,

D1 ≥ yln1 + 2π + 10πθ1 and D1 ≥ |yl−n1 | + 2π + 10πθ1 for all l ∈ {1, . . . , d},
with n1 as in Lemma 8.5. LetR ⊂ H(λ−1, α1/|c j |, ν)\H(λ, β1/|c j |, ν) be a rectangle with
sides parallel to the real and imaginary axis and side lengths at least D1. By the definition of
Q̃ j

n,k and Lemma 5.2, there are k ∈ N and n ∈ Z with |n| ≥ n1 such that

Q̃ j
n,k ⊂ R.

If, in addition, the side lengths of R do not exceed 2D1, then by Lemmas 8.5 and 5.2,

dens(q(F j ),R) ≥ dens(q(F j ), Q̃ j
n,k) · dens(Q̃ j

n,k,R) ≥ δ
2/3 log 8 · 10πθ1

4D2
1

.

Since any general rectangle with side lengths at least D1 can be written as the union of
rectangles with side lengths between D1 and 2D1 which are disjoint up to the boundary, the
claim follows. ��

9 The set q(F(f )): third part

For ν > 0, let

Gν := {w : | Imw| ≥ ν}.
In this section, we investigate the density of q(F( f )) in subsets of Gν\H(λ − 1, β2/|c j |, ν)

for large β2 > 0. First, we give an approximation for h j in Gν\H(λ − 1, β2/|c j |, ν).

Lemma 9.1 Let ε > 0 and j ∈ {1, . . . , d}. Then there are β2, ν > 0 such that for all
w ∈ Gν\H(λ − 1, β2/|c j |, ν), we have

∣
∣
∣
∣

h j (w)

(−c j/d)de−dww−m
− 1

∣
∣
∣
∣ < ε.

Proof By Corollary 4.3,

f (ϕ j (w)) = ϕ j (w) − 1

q ′(ϕ j (w))

(

1 + O

(
1

|w|
))

− c j e−w

p(ϕ j (w))
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= O(|w|1/d) − c j
d
e−wϕ j (w)−m

(

1 + O

(
1

|w|1/d
))

(9.1)

asw → ∞. Note that the O(·)-terms do not depend on β2. Forw ∈ Gν\H(λ−1, β2/|c j |, ν),
we have

∣
∣
∣
c j
d
e−wϕ j (w)−m

∣
∣
∣ =

∣
∣
∣
c j
d
e−w

∣
∣
∣ · |w|λ−1+1/d(1 + o(1)) ≥ β2|w|1/d

2d
(9.2)

if |w| is sufficiently large. In particular,

| f (ϕ j (w))| ≥ β2

4d
|w|1/d

if β2 and |w| are sufficiently large, and hence

h j (w) = q( f (ϕ j (w))) = f (ϕ j (w))d
(

1 + O

(
1

|w|1/d
))

as w → ∞ in Gν\H(λ − 1, β2/|c j |, ν). Also, by (9.1) and (9.2),
∣
∣
∣
∣

f (ϕ j (w))

(−c j/d)e−wϕ j (w)−m
− 1

∣
∣
∣
∣ =

∣
∣
∣
∣

O(|w|1/d)
(−c j/d)e−wϕ j (w)−m

+ O

(
1

|w|1/d
)∣

∣
∣
∣

≤ 2d

β2
O(1) + O

(
1

|w|1/d
)

,

where the O(·)-terms do not depend on β2. Hence, we can achieve that
∣
∣
∣
∣
∣

f (ϕ j (w))d

((−c j/d)e−wϕ j (w)−m)d
− 1

∣
∣
∣
∣
∣
≤ ε

2

by taking β2 and ν sufficiently large. Also,
(
−c j

d
e−wϕ j (w)−m

)d =
(
−c j

d

)d
e−dww−m

(

1 + O

(
1

|w|1/d
))

as w → ∞, whence the claim follows. ��
We proceed similarly as in Sect. 8, that is, we show that h j maps certain subsets of

Gν\H(λ−1, β2/|c j |, ν) intoH(λ, 1/c∗, ν). We then apply the results of Sect. 7 to show that
q(F( f )) has positive density in large bounded subsets of Gν\H(λ − 1, β2/|c j |, ν).

For n ∈ Z, k ∈ N and j ∈ {1, . . . , d}, let P j
n,k be the set of all

w ∈ H
(

λ − 1,
2k+2β2

|c j | , ν

)

\H
(

λ − 1,
2k−1β2

|c j | , ν

)

satisfying

(2n − 1)π

d
≤ Imw ≤ 2(n + 1)π

d
.

There are θ
j
n,k ∈ [−π, π) and r j

n,k > 0 such that for all w ∈ P j
n,k , we have

|w| = r j
n,k(1 + o(1)) and arg(w) = θ

j
n,k + o(1)

as |n| → ∞. Let t jn,k ∈ [2nπ/d, 2(n + 1)π/d) with

t jn,k ≡ arg(−c j ) − m

d
θ
j
n,k mod

2π

d
.
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Lemma 9.2 Let θ∗ ∈ (0, π/(4d)). Then there are β2, ν > 0 such that the following holds.
Let j ∈ {1, . . . , d}, k ∈ N andw ∈ H(λ−1, 2k+2β2/|c j |, ν)\H(λ−1, 2k−1β2/|c j |, ν) such

that there exists n ∈ Z with t jn,k − π/(4d) ≤ Imw ≤ t jn,k − θ∗. Let β ∈ [2k−1β2, 2k+2β2]
such that w ∈ �(λ − 1, β/|c j |) and let θ := t jn,k − Imw. Then

3

4

(
β

d

)d

r j
n,k cos(2dθ) < Re h j (w) <

5

4

(
β

d

)d

r j
n,k

and
3

4π

(
β

d

)d

r j
n,kdθ < Im h j (w) <

5

2

(
β

d

)d

r j
n,kdθ.

Proof Let ε > 0 be small. By Lemma 9.1,
∣
∣
∣
∣

h j (w)

(−c j/d)de−dww−m
− 1

∣
∣
∣
∣ < ε

if β2 and ν are sufficiently large. Thus,

(1 − ε)

( |c j |
d

)d

e−d Rew|w|−m ≤ |h j (w)| ≤ (1 + ε)

( |c j |
d

)d

e−d Rew|w|−m . (9.3)

Since w ∈ �(λ − 1, β/|c j |), we have

|w|−1−me−d Rew = |w|d(λ−1)e−d Rew =
(

β

|c j |
)d

.

Thus,
( |c j |

d

)d

e−d Rew|w|−m =
(

β

d

)d

|w| =
(

β

d

)d

r j
n,k(1 + o(1))

as |n| → ∞. Inserting the last equation into (9.3) yields

3

4

(
β

d

)d

r j
n,k < |h j (w)| <

5

4

(
β

d

)d

r j
n,k (9.4)

if ε is sufficiently small and |n| is sufficiently large. Also, by Lemma 9.1,
∣
∣
∣
∣arg(h j (w)) − arg

((
−c j

d

)d
e−dww−m

)∣
∣
∣
∣ < arcsin(ε) ≤ π

2
ε. (9.5)

We have

arg

((
−c j

d

)d
e−dww−m

)

≡ d arg(−c j ) − d Imw − m argw

≡ d arg(−c j ) − dt jn,k + dθ − mθ
j
n,k + o(1)

≡ dθ + o(1) mod 2π

as |n| → ∞. By (9.5), this yields

dθ

2
< arg h j (w) < 2dθ (9.6)
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if ε is sufficiently small compared to θ∗. By (9.4), (9.6) and the fact that (2/π)x ≤ sin x ≤ x
for 0 ≤ x ≤ π/2, we obtain

Re h j (w) ≤ |h j (w)| <
5

4

(
β

d

)d

r j
n,k,

Re h j (w) = |h j (w)| cos(arg h j (w)) >
3

4

(
β

d

)d

r j
n,k cos(2dθ),

Im h j (w) = |h j (w)| sin(arg h j (w)) <
5

4

(
β

d

)d

r j
n,k sin(2dθ) ≤ 5

2

(
β

d

)d

r j
n,kdθ,

Im h j (w) = |h j (w)| sin(arg h j (w)) >
3

4

(
β

d

)d

r j
n,k sin

(
dθ

2

)

≥ 3

4π

(
β

d

)d

r j
n,kdθ.

��
Let us now define several sets.We start with subsets T j

n,k, T̃
j
n,k ⊂ Gν\H(λ−1, β2/|c j |, ν).

Let

0 < θ2 <
1

2 · 4d+1dπ
arccos

(
11

12

)

.

For n ∈ Z, k ∈ N and j ∈ {1, . . . , d}, let T j
n,k be the set of all

w ∈ H
(

λ − 1,
2k+1β2

|c j | , ν

)

\H
(

λ − 1,
2kβ2

|c j | , ν

)

satisfying

t jn,k − θ2 ≤ Imw ≤ t jn,k − θ2

2
.

Also, let T̃ j
n,k be the set of all

w ∈ H
(

λ − 1,
2k+2β2

|c j | , ν

)

\H
(

λ − 1,
2k−1β2

|c j | , ν

)

satisfying

t jn,k − 4d+1πθ2 ≤ Imw ≤ t jn,k − 1

10 · 4dπ θ2.

Note that T j
n,k ⊂ T̃ j

n,k . See Fig. 4 for an illustration of T j
n,k and T̃ j

n,k .

Moreover, let U j
n,k be the rectangle containing all v ∈ C satisfying

11

16

(
2kβ2

d

)d

r j
n,k < Re v <

5

4

(
2k+1β2

d

)d

r j
n,k

and

3

8π

(
2kβ2

d

)d

r j
n,kdθ2 < Im v <

5

2

(
2k+1β2

d

)d

r j
n,kdθ2.

Also, let Ũ j
n,k be the rectangle containing all v ∈ C satisfying

5

8

(
2kβ2

d

)d

r j
n,k < Re v <

11

8

(
2k+1β2

d

)d

r j
n,k
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Γ
(

λ − 1,
2k−1β2

|cj |

)

Γ
(

λ − 1,
2kβ2

|cj |

)

Γ
(

λ − 1,
2k+1β2

|cj |

)

Γ
(

λ − 1,
2k+2β2

|cj |

)

Im w = tjn,k

T̃ j
n,k

T j
n,k

Fig. 4 An illustration of the sets T j
n,k and T̃ j

n,k

and

1

4π

(
2kβ2

d

)d

r j
n,kdθ2 < Im v < 3

(
2k+1β2

d

)d

r j
n,kdθ2.

Note that U j
n,k ⊂ Ũ j

n,k .

Lemma 9.3 There is n0 ∈ N such that for all n ∈ Zwith |n| ≥ n0, k ∈ N and j ∈ {1, . . . , d},
we have

Ũ j
n,k ⊂ H

(

λ,
1

c∗ , ν

)

with c∗ = maxl |cl | as defined in (8.9).

Proof Let v ∈ Ũ j
n,k . Note that r

j
n,k → ∞ as |n| → ∞ uniformly in k. In particular,

Im v >
1

4π

(
2kβ2

d

)d

r j
n,kdθ2 ≥ ν

if |n| is sufficiently large. Also,

Im v < 3

(
2k+1β2

d

)d

r j
n,kdθ2 = 24

5
2ddθ2 · 5

8

(
2kβ2

d

)d

r j
n,k <

24

5
2ddθ2 Re v,

and hence

|v| ≤ |Re v| + | Im v| <

(

1 + 24

5
2ddθ2

)

Re v.

Thus,

Re v ≥ 1

1 + (24/5)2ddθ2
|v| ≥ λ log |v| − log

1

c∗

if |n| and hence r j
n,k and |v| are sufficiently large. ��
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Lemma 9.4 There are β2, ν > 0 such that for all j ∈ {1, . . . , d}, k ∈ N and n ∈ Z with
|t jn,k | > ν + 4d+1πθ2, we have

h j (T j
n,k) ⊂ U j

n,k and h j (T̃ j
n,k) ⊃ Ũ j

n,k .

Proof First suppose that w ∈ T j
n,k . Then by Lemma 9.2 and the fact that θ2 < 1/(2 ·

4d+1dπ) arccos(11/12) < 1/(2d) arccos(11/12), we have

Re h j (w) >
3

4

(
2kβ2

d

)d

r j
n,k cos(2dθ2) >

11

16

(
2kβ2

d

)d

r j
n,k,

Re h j (w) <
5

4

(
2k+1β2

d

)d

r j
n,k,

Im h j (w) >
3

8π

(
2kβ2

d

)d

r j
n,kdθ2,

Im h j (w) <
5

2

(
2k+1β2

d

)d

r j
n,kdθ2.

Hence, h j (T j
n,k) ⊂ U j

n,k .

Also, Lemma9.2 yields the following. Ifw ∈ �(λ−1, 2k−1β2/|c j |)with t jn,k−4d+1πθ2 ≤
Imw ≤ t jn,k − 1/(10 · 4dπ)θ2, then

Re h j (w) <
5

4

(
2k−1β2

d

)d

r j
n,k ≤ 5

8

(
2kβ2

d

)d

r j
n,k .

If w ∈ �(λ − 1, 2k+2β2/|c j |) with t jn,k − 4d+1πθ2 ≤ Imw ≤ t jn,k − 1/(10 · 4dπ)θ2, then

using that θ2 < 1/(2 · 4d+1dπ) arccos(11/12), we get

Re h j (w) >
3

4

(
2k+2β2

d

)d

r j
n,k cos(2d4

d+1πθ2) >
11

8

(
2k+1β2

d

)d

r j
n,k .

If w ∈ H(λ − 1, 2k+2β2/|c j |, ν)\H(λ − 1, 2k−1β2/|c j |, ν) and Imw = t jn,k − 4d+1πθ2,
then

Im h j (w) > 3

(
2k+1β2

d

)d

r j
n,kdθ2.

Ifw ∈ H(λ−1, 2k+2β2/|c j |, ν)\H(λ−1, 2k−1β2/|c j |, ν) and Imw = t jn,k−1/(10·4dπ)θ2,
then

Im h j (w) <
1

4π

(
2kβ2

d

)d

r j
n,kdθ2.

Thus, h j (∂ T̃ j
n,k) ∩ Ũ j

n,k = ∅. Since T j
n,k ⊂ T̃ j

n,k and h j (T j
n,k) ⊂ U j

n,k ⊂ Ũ j
n,k , we obtain that

h j (T̃ j
n,k) ⊃ Ũ j

n,k . ��

Next, we show that the density of q(F j ) in T̃ j
n,k is bounded below by a positive constant.
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Lemma 9.5 There are δ > 0 and n1 ∈ N such that for all j ∈ {1, . . . , d}, k ∈ N and n ∈ Z

with |n| ≥ n1, we have

dens(q(F j ), T̃ j
n,k) ≥ δ.

Proof We only sketch the proof, since it is similar to the one of Lemma 8.5. By Lemma 9.3,

Ũ j
n,k ⊂ H

(

λ,
1

c∗ , ν

)

.

By Lemma 9.4, h j (T̃ j
n,k) ⊃ Ũ j

n,k and h j (T j
n,k) ⊂ U j

n,k . Let V ⊂ T̃ j
n,k be the component of

h−1
j (Ũ j

n,k) containing T j
n,k . As in the proof of Lemma 8.5, we get that f (ϕ j (V)) ⊂ Sl for

some l ∈ {1, . . . , d}, and that

dens(q(F j ), T̃ j
n,k) ≥ c dens(q(Fl),U j

n,k) · dens(T j
n,k, T̃

j
n,k)

for some c > 0 independent of n, k and j . If |n| and hence r j
n,k is sufficiently large, then by

Lemma 7.14,

dens(q(Fl),U j
n,k) ≥ η0.

Also, the density of T j
n,k in T̃ j

n,k is bounded below independent of n, k and j , whence the
claim follows. ��

Thefinal result of this section says that the density ofq(F j ) in large rectangles inGν\H(λ−
1, β2/|c j |, ν) is bounded below.

Lemma 9.6 There are β2, ν, D2, η2 > 0 such that for all j ∈ {1, . . . , d} and any rectangle
R ⊂ Gν\H(λ − 1, β2/|c j |, ν) with sides parallel to the real and imaginary axis and side
lengths at least D2, we have

dens(q(F j ),R) ≥ η2.

Proof This is proved the same way as Lemma 8.6, using Lemma 9.5. ��

10 The set q(F(f )): conclusions

In this section, we combine the results of Sects. 7–9 to show that q(F j ) has positive density
in large bounded subsets of C.

Lemma 10.1 There are D, η3 > 0 such that for all j ∈ {1, . . . , d} and any square R ⊂ C

with sides parallel to the real and imaginary axis and side lengths at least D, we have

dens(q(F j ),R) ≥ η3.

Proof Let

E1 := H
(

λ,
β1

|c j | , ν
)

\H
(

λ,
1

|c j | , ν
)

and

E2 := H
(

λ − 1,
β2

|c j | , ν
)

\H
(

λ − 1,
α1

|c j | , ν
)

.
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Fig. 5 The rectangle R1,
bounded by the solid line, is
divided into five smaller
rectangles by the dashed lines R1,1 R1,2 R1,3 R1,4 R1,5

R1

Also, let γ1 and γ2 be the left boundary curves of E1 and E2, respectively, parametrised by
y = Im z. Justified by Lemma 5.2, we suppose that ν is so large that

|γ ′
k(y)| <

1

10
for |y| ≥ ν and k ∈ {1, 2}. (10.1)

Using the notation of Lemmas 7.14, 8.6 and 9.6, suppose that

D > 2ν + 5max{D0, D1, D2} (10.2)

and

D > 20max

{

logβ1, log
β2

α1

}

. (10.3)

For S ⊂ C, let

diamx (S) := sup{|Re(z − w)| : z, w ∈ S}
and

diamy(S) := sup{| Im(z − w)| : z, w ∈ S}.
Define

R+ := R ∩ {z : Im z ≥ ν}, R− := R ∩ {z : Im z ≤ −ν},
and let

R1 :=
{
R+ if diamy(R+) ≥ diamy(R−)

R− otherwise.

By (10.2), diamy(R1) > max{D0, D1, D2}.
We now divide R1 into 5 rectangles, R1,1, . . . ,R1,5, with diamy(R1,k) = diamy(R1)

and diamx (R1,k) = 1
5 diamx (R1) for all k ∈ {1, . . . , 5} (see Fig. 5).

By (10.2), diamx (R1,k) > max{D0, D1, D2}. By (10.1), Lemma 5.2, (10.3) and the fact
that R is a square of side length at least D, we have

diamx (El ∩ R) <
1

10
diamy(R) + 2max

{

logβ1, log
β2

α1

}

<
1

10
diamy(R) + 1

10
D ≤ 1

5
diamx (R)

for l ∈ {1, 2}. Thus, E1 and E2 each intersect at most two of the rectanglesR1,k . Hence, there
exists l ∈ {1, . . . , 5} such thatR1,l does not intersect E1 ∪ E2. This implies thatR1,l satisfies
the hypothesis of one of Lemmas 7.14, 8.6 and 9.6. Hence,

dens(q(F j ),R1,l) ≥ min{η0, η1, η2}
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and

dens(q(F j ),R) ≥ dens(q(F j ),R1,l) · dens(R1,l ,R)

≥ min{η0, η1, η2} · 1

10

diamx (R)(diamy(R) − 2ν)

(diamx R)2

≥ min{η0, η1, η2} · 1

10

(

1 − 2ν

D

)

.

��
The following corollary is an immediate consequence of Lemma 10.1.

Corollary 10.2 There are r0, η > 0 such that for all z ∈ C, all r ≥ r0 and all j ∈ {1, . . . , d},
we have

dens(q(F j ),D(z, r)) ≥ η.

Remark 10.3 Corollary 10.2 says that C\q(F j ) is thin at ∞.

11 Proof of Theorem 1.1

Proof of Theorem 1.1 Wewill verify the assumptions of Theorem 1.3. By Lemma 6.2, the set
P( f ) ∩ J ( f ) is finite, so it remains to prove that there exists R1 > 0 such that J ( f ) is
uniformly thin at (P( f ) ∩C)\D(0, R1) and that J ( f ) is thin at ∞. In the previous sections
we have studied the function obtained from f by the change of variablesw = q(z) introduced
in Sect. 3, with the polynomial q(z) = zd + O(zd−1) from the definition of g. Now we use
this to draw conclusions about f .

Let r1 > 0 such that

(a) |q ′(z)| ≥ (d/2)|z|d−1 for all z ∈ C with |z| ≥ r1;
(b) each z0 ∈ P( f ) with |z0| ≥ r1 is a zero of g and hence a superattracting fixed point of

f . Justified by Corollary 6.6, we also assume that there is j ∈ {1, . . . , d} with z0 ∈ S j ,
and dist(z0, ∂S j ) ≥ 3. Moreover, suppose that the conclusion of Lemma 7.5 holds for
|z0| ≥ r1.

Let r0 be the constant from Corollary 10.2. First, we will show that there exists η4 > 0
such that for all j ∈ {1, . . . , d}, all z ∈ S j with |z| ≥ r1 and all r > 8r0/(d|z|d−1) with
D(z, 2r) ⊂ S j , we have

dens(F( f ),D(z, r)) ≥ η4. (11.1)

Recall that q is injective in S j . By Koebe’s theorems,

D
(

q(z),
1

4
|q ′(z)|r

)

⊂ q(D(z, r)) ⊂ D(q(z), 4|q ′(z)|r).

By (a) and the assumption on r , we have (1/4)|q ′(z)|r ≥ r0. Hence, by Corollary 10.2,

dens

(

q(F j ),D
(

q(z),
1

4
|q ′(z)|r

))

≥ η.

Thus,

dens(q(F j ), q(D(z, r)))
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≥ dens

(

D
(

q(z),
1

4
|q ′(z)|r

)

, q(D(z, r))

)

· dens
(

q(F j ),D
(

q(z),
1

4
|q ′(z)|r

))

≥ dens

(

D
(

q(z),
1

4
|q ′(z)|r

)

,D(q(z), 4|q ′(z)|r)
)

· η = 1

256
η.

By the Koebe distortion theorem,

dens(F( f ),D(z, r)) ≥
(
minζ∈D(z,r) |q ′(ζ )|
maxζ∈D(z,r) |q ′(ζ )|

)2

dens(q(F j ), q(D(z, r))) ≥ 1

38 · 256η.

This implies (11.1) with η4 = η/(38 · 256).
Let us now prove that there exists R1 > 0 such that J ( f ) is uniformly thin at (P( f ) ∩

C)\D(0, R1). Let δ1 ∈ (0, 1), z0 ∈ P( f ) with |z0| > r1 + 1 and z ∈ D(z0, δ1). By (b),
D(z, 2δ1) ⊂ S j . Also, |z| ≥ r1. If |z − z0| ≥ 8r0/(d|z|d−1), then by (11.1),

dens(F( f ),D(z, |z − z0|)) ≥ η4.

Now suppose that

|z − z0| <
8r0

d|z|d−1 . (11.2)

By Lemma 7.5, we have D(z0, 1/(3d|z0|d−1)) ⊂ F( f ). Hence,

dens(F( f ),D(z, |z − z0|)) ≥ dens

(

D
(

z0,
1

3d|z0|d−1

)

,D(z, |z − z0|)
)

.

The expression on the right hand side is bounded below independent of z0 and |z|, provided
(11.2) is satisfied. So J ( f ) is uniformly thin at (P( f ) ∩ C)\D(0, r1 + 1).

It remains to prove that J ( f ) is thin at ∞. Let R be as in Sect. 3 and let r2 >

max{2R1/d , r1}. If r2 is sufficiently large, then Lemma 3.2 yields that
⋃d

j=1 ∂S j\D(0, r2)
is contained in d pairwise disjoint halfstrips, T1, . . . , Td , of width 1. We can assume that r2
is so large that dist(Tk, Tl) ≥ 1 for k �= l. Then for |z| ≥ r2 + 3, the set D(z, 3)\ ⋃d

j=1 T j

contains a disk, D, of radius 1/2. There is j ∈ {1, . . . , d} with D ⊂ S j . Let D′ be the disk
with the same center as D and radius 1/4. If r2 is sufficiently large, then by (11.1), we have
dens(F( f ),D′) ≥ η4, and hence

dens(F( f ),D(z, 3)) ≥ dens(F( f ),D′) · dens(D′,D(z, 3)) ≥ η4

144
.

We now consider the case that |z| < r2 + 3. Let ζ1, . . . , ζn ∈ D(0, r2 + 3) such that

D(0, r2 + 3) ⊂
n⋃

k=1

D(ζk, 1).

Then

η5 := min
1≤k≤n

dens(F( f ),D(ζk, 1)) > 0.

For z ∈ D(0, r2 + 3), let k ∈ {1, . . . , n} such that z ∈ D(ζk, 1). Then D(ζk, 1) ⊂ D(z, 3)
and

dens(F( f ),D(z, 3)) ≥ 1

9
dens(F( f ),D(ζk , 1)) ≥ 1

9
η5.

Thus, J ( f ) is thin at ∞. Hence, Theorem 1.3 yields that J ( f ) has Lebesgue measure zero.
��
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