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Abstract
We give an asymptotic formula for the number of weak Campana points of bounded height
on a family of orbifolds associated to norm forms for Galois extensions of number fields.
From this formula we derive an asymptotic for the number of elements withm-full norm over
a given Galois extension of Q. We also provide an asymptotic for Campana points on these
orbifolds which illustrates the vast difference between the two notions, and we compare this
to the Manin-type conjecture of Pieropan, Smeets, Tanimoto and Várilly-Alvarado.
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1 Introduction

The theory of Campana points is of growing interest in arithmetic geometry due to its ability
to interpolate between rational and integral points. Two competing notions of Campana
points can be found in the literature, both extending a definition of “orbifold rational points”
for curves within Campana’s theory of “orbifoldes géométriques” in [7–10]. They capture
the idea of rational points which are integral with respect to a weighted boundary divisor.
These two notions have been termed Campana points and weak Campana points in the
recent paper [27] of Pieropan, Smeets, Tanimoto and Várilly-Alvarado, in which the authors
initiate a systematic quantitative study of points of the former type on smooth Campana
orbifolds and prove a logarithmic version ofManin’s conjecture for Campana points on vector
group compactifications. The only other quantitative results in the literature are found in
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628 S. Streeter

[5,6,26,32,33], and the former four of these indicate the close relationship between Campana
points andm-full solutions of equations.We recall that, givenm ∈ Z≥2,we say thatn ∈ Z\{0}
is m-full if all primes in the prime decomposition of n have multiplicity at least m.

In this paper, we bring together the perspectives in the above papers and provide the first
result for Campana points on singular orbifolds. As observed in [27, Sect. 1.1], the study
of weak Campana points of bounded height is challenging and requires new ideas for the
regularisation of certain Fourier transforms, and these ideas for the orbifolds in consideration
are the main innovation of this paper. We adopt a height zeta function approach, similar to
the one employed in [27] and modelled on the work of Loughran in [19] and Batyrev and
Tschinkel in [3] on toric varieties, in order to prove log Manin conjecture-type results for

both types of Campana points on
(
Pd−1
K ,

(
1 − 1

m

)
Z (Nω)

)
, where Z (Nω) is the zero locus

of a norm form Nω associated to a K -basis ω of a Galois extension of number fields E/K
of degree d ≥ 2 coprime to m ∈ Z≥2 if d is not prime. Although toric varieties also play a
prominent role in [26], the tori there are split, whereas we shall work with anisotropic tori.
When K = Q, we derive from the result for weak Campana points an asymptotic for the
number of elements of E of bounded height withm-full norm over Q. We compare the result
for Campana points to a conjecture of Pieropan, Smeets, Tanimoto and Várilly-Alvarado
[27, Conj. 1.1, p. 3].

1.1 Results

Theorem 1.1 Let E/K be a Galois extension of number fields of degree d ≥ 2, and let m ≥ 2
be an integer which is coprime to d if d is not prime. Let ω be a K -basis of E. Denote by
�ω

m the Q-divisor
(
1 − 1

m

)
Z (Nω) of Pd−1

K for Nω the norm form corresponding to ω. Let H

denote the anticanonical height function on Pd−1
K from Definition 4.5. Then there exists an

explicit finite set S (ω) ⊂ Val (K ) such that, for any finite set of places S ⊃ S (ω), the number

N
((

Pd−1
K ,�ω

m

)
, H , B, S

)
of weak CampanaOK ,S-points of height at most B ∈ R≥1 on the

orbifold
(
Pd−1
K ,�ω

m

)
with respect to the model Pd−1

OK ,S
of Pd−1

K has the asymptotic formula

N
((

Pd−1
K ,�ω

m

)
, H , B, S

)
∼ c (ω,m, S) B

1
m (log B)b(d,m)−1

as B → ∞ for some explicit positive constant c (ω,m, S), where

b (d,m) = 1

d

((
d + m − 1

d − 1

)
−

(
m − 1

d − 1

))
.

Note 1.2 If ω is a relative integral basis of E/K , then S (ω) = S∞, the set of archimedean
places of K , in Theorem 1.1 (see Remark 4.4).

Each rational point P ∈ Pd−1 (Q) possesses precisely two sets of coordinates in Zd
prim =

{(x0, . . . , xd−1) ∈ Zd : gcd (x0, . . . , xd−1) = 1}. Interpreting H and Nω as functions on this
set, we immediately obtain the following result.

Corollary 1.3 Taking K = Q and lettingω be an integral basis with the notation and hypothe-
ses of Theorem 1.1, we have

#{x ∈ Zd
prim : H (x) ≤ B, Nω (x) is m-full} ∼ 2c (ω,m, S∞) B

1
m (log B)b(d,m)−1 .
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Campana points and powerful values… 629

Arithmetically special (e.g. prime, square-free) values of norm forms are a topic of long-
standing interest in number theory (see e.g. [13,20]).

Campana points are only defined and studied for smooth orbifolds (i.e. smooth varieties
for which the orbifold divisor has strict normal crossings support) in [27]. In order to study the

Campana points of
(
Pd−1
K ,�ω

m

)
, which is smooth only when d = 2, we must first generalise

the definition of Campana points, whichwe do in Sect. 2.1. Using the same strategy employed
in the proof of Theorem 1.1, we then derive an asymptotic for the number of Campana points

on
(
Pd−1
K ,�ω

m

)
.

Theorem 1.4 With the notation and hypotheses of Theorem 1.1, denote by Ñ
((

Pd−1
K ,�ω

m

)
,

H , B, S
)
the number of Campana OK ,S-points on

(
Pd−1
K ,�ω

m

)
of height at most B ∈ R≥1

with respect to H. Then there exists an explicit positive constant c̃ (ω,m, S) such that, as
B → ∞, we have

Ñ
((

Pd−1
K ,�ω

m

)
, H , B, S

)
∼ c̃ (ω,m, S) B

1
m .

Remark 1.5 It is not clear if the exponent of the logarithm in Theorem 1.1 admits a geometric
interpretation as it does in Theorem 1.4 (cf. [27, Conj. 1.1, p. 3]).

Conventions

Algebra

We takeN = Z≥1.We denote by R∗ the group of units of a ring R. Given a groupG, we denote
by 1G the identity element of G, and for any n ∈ N, we set G[n] = {g ∈ G : gn = 1G}.
For any perfect field F , we fix an algebraic closure F and set GF = Gal

(
F/F

)
. Given a

topological group G, we denote by G∧ = Hom
(
G, S1

)
its group of continuous characters,

where S1 = {z ∈ C : zz = 1} ⊂ C∗ is the circle group. A monomial in the variables
x1, . . . , xn is a product x

a1
1 · · · xann , (a1, . . . , an) ∈ Zn≥0. For any n ∈ N, we denote by μn the

group of nth roots of unity and by Sn the symmetric group of order n.

Geometry

We denote by Pn
R the projective n-space over the ring R. We omit the subscript if the ring

R is clear. Given a homogeneous polynomial f ∈ R[x0, . . . , xn], we denote by Z ( f ) =
Proj R[x0, . . . , xn]/ ( f ) the zero locus of f viewed as a closed subscheme of Pn

R . A variety
over a field F is a geometrically integral separated scheme of finite type over F . Given a
variety X defined over F and an extension E/F , we denote by XE = V ×Spec F Spec E the
base change of X over E , and we write X = X ×Spec F Spec F . When F = K and E = Kv

for a number field K and a place v of K , we write Xv = XKv . Given a field F , we define
Gm,F = Spec F[x0, x1]/ (x0x1 − 1). We omit the subscript F if the field is clear.

Number theory

Given an extension of number fields L/K with K -basis ω = {ω0, . . . , ωd−1}, we write
Nω (x0, . . . , xd−1) = NL/K (x0ω0 + · · · + xd−1ωd−1) for the associated norm form. We
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630 S. Streeter

denote by Val (K ) the set of valuations of a number field K , and we denote by S∞ the
set of archimedean valuations. For v ∈ Val (K ), we denote by Ov the maximal compact
subgroup of Kv . For a finite set of places S containing S∞, we denote by OK ,S = {α ∈
K : α ∈ Ov for all v /∈ S} the ring of algebraic S-integers of K . We write OK = OK ,S∞ .
For v ∈ Val (K ) non-archimedean, we denote by πv and qv a uniformiser for the residue
field of Kv and the size of the residue field of Kv respectively. If v | ∞, then we set
log qv = 1. For each v ∈ Val (K ), we choose the absolute value |x |v = |NKv/Qp (x) |p for
the unique p ∈ Val (Q) with v | p and the usual absolute value | · |p on Qp . We denote by

AK = ∏̂Ov

v∈Val(K )Kv the adele ring of K with the restricted product topology.

2 Background

2.1 Campana points

In this section we define Campana orbifolds, Campana points and weak Campana points,
generalising the definitions in [27, Sect. 3.2] in such a way that the exponents in Theorem
1.4 match those in [27, Conj. 1.1, p. 3].

Definition 2.1 A Campana orbifold over a field F is a pair (X , Dε) consisting of a proper,
normal variety X over F and an effective Cartier Q-divisor

Dε =
∑
α∈A

εαDα

on X , where the Dα are prime divisors and εα = 1 − 1
mα

for some mα ∈ Z≥2 ∪ {∞} (by
convention, we take 1

∞ = 0). We define the support of the Q-divisor Dε to be

Dred =
∑
α∈A

Dα.

We say that (X , Dε) is smooth if X is smooth and Dred has strict normal crossings (see [31,
Sect. 41.21] for the definition of strict normal crossings divisors).

Let (X , Dε) be a Campana orbifold over a number field K . Let S ⊂ Val (K ) be a finite
set containing S∞.

Definition 2.2 A model of (X , Dε) over OK ,S is a pair (X ,Dε), where X is a flat proper
model of X overOK ,S (i.e. a flat properOK ,S-schemewithX(0) ∼= X ) andDε = ∑

α∈A εαDα

for Dα the Zariski closure of Dα in X .
Define Dred = ∑

α∈A Dα . Denote by Dαv , αv ∈ Av the irreducible components of Dred

over SpecOv . We write αv | α if Dαv ⊂ Dα .

Let (X ,Dε) be a model for (X , Dε) overOK ,S . For v /∈ S, any P ∈ X (K ) induces some
Pv ∈ X (Ov) by the valuative criterion of properness [14, Thm. II.4.7, p. 101].

Definition 2.3 Let P ∈ X (K ) and take a place v /∈ S. For each αv ∈ Av , we define the
local intersection multiplicity nv

(Dαv , P
)
of Dαv and P at v to be ∞ if Pv ⊂ Dαv , and the

colength of the ideal P∗
vDαv ⊂ Ov otherwise. We then define the quantities

nv (Dα, P) =
∑
αv |α

nv

(Dαv , P
)
, nv (Dε, P) =

∑
α∈A

εαnv (Dα, P) .
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Campana points and powerful values… 631

We are now ready to define weak Campana points and Campana points. Both notions arise
from [1], with the former appearing in its current form in [2, Sect. 1].

Definition 2.4 We say that P ∈ X (K ) is a weak Campana OK ,S-point of (X ,Dε) if the
following implications hold for all places v /∈ S of K and for all α ∈ A:

(1) If εα = 1 (meaning mα = ∞), then nv (Dα, P) = 0.
(2) If nv (Dε, P) > 0, then

∑
α∈A

1

mα

nv (Dα, P) ≥ 1.

We denote the set of weak Campana OK ,S-points of (X ,Dε) by (X ,Dε)w
(OK ,S

)
.

Definition 2.5 We say that P ∈ X (K ) is aCampana OK ,S-point of (X ,Dε) if the following
implications hold for all places v /∈ S of K and for all α ∈ A.

(3) If εα = 1 (meaning mα = ∞), then nv (Dα, P) = 0.
(4) If εα = 1 and nv

(Dαv , P
)

> 0 for some αv | α, then nv

(Dαv , P
) ≥ mα.

We denote the set of Campana OK ,S-points of (X ,Dε) by (X ,Dε)
(OK ,S

)
.

Remark 2.6 Informally, weak Campana points are rational points P ∈ X (K ) avoiding
∪εα=1Dα which, upon reduction modulo any place v /∈ S, either do not lie on Dred or lie on
Dα with multiplicity at least mα on average over α. Similarly, Campana points are rational
points P ∈ X (K ) avoiding ∪εα=1Dα which, upon reduction modulo any place v /∈ S, either
do not lie on Dred or lie on each v-adic irreducible component of each Dα with multiplicity
either 0 or at least mα .

Remark 2.7 Our definition of Campana points differs from the one in [27, Sect. 3.2], in
which one requires simply that nv (Dα, P) ≥ mα instead of nv

(Dαv , P
) ≥ mα in the second

implication. If one were to apply this definition to the orbifold
(
Pd−1
K ,�ω

m

)
of Theorem 1.1,

which is singular for all d ≥ 3 as Z (Nω) is not a strict normal crossings divisor in this
case, then the weak Campana points and the Campana points would be the same, but the
asymptotic of Theorem 1.1 differs to [27, Conj. 1.1, p. 3] for d ≥ 3 (at least if one takes the
thin set there to be the empty set). Using the definitions above, we obtain the asymptotic for
Campana points in Theorem 1.4, whose exponents match this conjecture.

Lemma 2.8 Let (X , Dε) be a smooth Campana orbifold over a number field K which is
Kawamata log terminal (i.e. εα < 1 for all α ∈ A), and let (X ,Dε) be a model of (X , Dε)

over OK ,S with X smooth over OK ,S and Dred a relative strict normal crossings divisor in
X/OK ,S as defined in [17, Sect. 2]. Then the definition of Campana points on (X ,Dε) above
coincides with the one in [27, Sect. 3.2].

Proof Since Dred is a relative strict normal crossings divisor, each irreducible component
Dα is smooth over OK ,S . In particular, its base change over SpecOv is smooth for any
v /∈ S, so the divisors Dαv , αv | α are disjoint. Then, for any rational point P ∈ X (K ),
the reduction of P at the place v can lie on at most one of the divisors Dαv , αv | α, so
nv (Dα, P) = ∑

αv |α nv

(Dαv , P
)
is either 0 or at least mα if and only if each nv

(Dαv , P
)
,

αv | α, is either 0 or at least mα .
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632 S. Streeter

2.2 Toric varieties

Definition 2.9 An (algebraic) torus over a field F is an algebraic group T over F such that
T ∼= Gn

m for some n ∈ N. The splitting field of a torus T over a field F is defined to be the
smallest Galois field extension E of F for which TE ∼= Gn

m .

Definition 2.10 A toric variety is a smooth projective variety X equipped with a faithful
action of an algebraic torus T such that there is an open dense orbit containing a rational
point.

Definition 2.11 Let T be a torus over a field F . The character group of T is X∗ (
T

) =
Hom

(
T , Gm

)
, and we have X∗ (T ) = X∗ (

T
)GF . The cocharacter group of T is X∗

(
T

) =
Hom

(
X∗ (

T
)
, Z

)
, and we have X∗ (T ) = X∗

(
T

)GF . We let X∗ (T )R = X∗ (T ) ⊗Z R and
X∗ (T )R = X∗ (T ) ⊗Z R.

Definition 2.12 An algebraic torus T over a field F is anisotropic if it has trivial character
group over F , i.e. X∗ (T ) = 0.

Let T be a torus over a number field K with splitting field E . Set T∞ = ∏
v|∞ Tv . For

v ∈ Val (K ), let T (Ov) denote the maximal compact subgroup of T (Kv).

Definition 2.13 Let v ∈ Val (K ) and w ∈ Val (E) with w | v.
For v � ∞ with ramification degree ev in E/K , define the maps

degT ,v : T (Kv) → X∗ (Tv) , tv �→ [χv �→ v (χv (tv))]
and degT ,E,v = ev degT ,v .

For v | ∞, define the maps

degT ,v : T (Kv) → X∗ (Tv)R , tv �→ [χv �→ log |χv (tv)|v]
and degT ,E,v = [Ew : Kv] degT ,v .

Finally, define the maps

degT =
∑

v∈Val(K )

(log qv) degT ,v, degT ,E =
∑

v∈Val(K )

(log qw) degT ,E,v .

Lemma 2.14 [4, Sect. 2.2], [19, Sect. 4.2] Let v ∈ Val (K ), and let f be either degT ,v or
degT ,E,v .

(i) If v is non-archimedean, then we have the exact sequence

0 → T (Ov) → T (Kv)
f−→ X∗ (Tv) .

The image of f is open and of finite index. Further, if v is unramified in E, then f is
surjective.

(ii) If v is archimedean, then we have the short exact sequence

0 → T (Ov) → T (Kv)
f−→ X∗ (Tv)R → 0.

Further, f admits a canonical section.
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Campana points and powerful values… 633

(iii) Letting g be either degT or degT ,E and denoting its kernel by T (AK )1, we have the
split short exact sequence

0 → T (AK )1 → T (AK )
g−→ X∗ (T )R → 0,

hence we have an isomorphism

T (AK ) ∼= T (AK )1 × X∗ (T )R . (2.1)

Definition 2.15 Let χ be a character of T (AK ). We say that χ is automorphic if it is trivial
on T (K ). We say that χ is unramified at v ∈ Val (K ) if χv is trivial on T (Ov), and we say
that it is unramified if it is unramified at every v ∈ Val (K ).

The canonical sections of the maps T (Kv)
degT ,v−−−→ X∗ (Tv)R for each v | ∞ from

Lemma 2.14(ii) induce a canonical section of the composition

T (AK ) →
∏
v|∞

T (Kv) → X∗ (T∞)R ,

which in turn induces a “type at infinity map”

T (AK )∧ → X∗ (T∞)R , χ �→ χ∞. (2.2)

Defining KT = ∏
v T (Ov), the splitting (2.1) for g = degT induces a map

(
T (AK )1 /T (K ) KT

) → X∗ (T∞)R

which has finite kernel and image a lattice of codimension rank X∗ (T ) (see
[4, Lem. 4.52, p. 96]).

Note 2.16 When T is anisotropic, we have T (AK )1 = T (AK ) by Lemma 2.14(iii), and
then we see from the above that there is a map

(T (AK ) /T (K ) KT ) → X∗ (T∞)R

with finite kernel and image a lattice of full rank.

2.3 Hecke characters

Definition 2.17 A Hecke character for K is an automorphic character of Gm,K .

Each Hecke character χ has a conductor q (χ) ∈ N (see [18, Sect. 5.10]), which measures
the ramification of χ at the non-archimedean places of K .

Definition 2.18 A Hecke character is principal if it is trivial on Gm,K (AK )1.

By Lemma 2.14(iii), χ is principal if and only if χ = ‖ · ‖iθ for some θ ∈ R, where ‖ · ‖
denotes the adelic norm map, i.e.

‖ · ‖ : A∗
K → S1, (xv)v �→

∏
v∈Val(K )

|xv|v.
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634 S. Streeter

Definition 2.19 The (Hecke) L-function L (χ, s) of a Hecke character χ is

L (χ, s) =
∏
v

(
1 − χv (πv)

qsv

)−1

,

where the product is taken over all places v � ∞ at which χ is unramified.
The Dedekind zeta function of K is

ζK (s) = L (1, s) .

Given a Hecke character χ for a number field L and w ∈ Val (L), we denote by Lw (χ, s)
the local factor at w for the Euler product of L (χ, s), i.e.

Lw (χ, s) =
⎧
⎨
⎩

(
1 − χw(πw)

qsw

)−1
if w � ∞ and χ is unramified at w,

1 otherwise.

When working over the field L ⊃ K , we define Lv (χ, s) for each v ∈ Val (K ) by

Lv (χ, s) =
∏
w|v

Lw (χ, s) .

Theorem 2.20 [15, Sect. 6] The L-function of a Hecke character χ admits a meromorphic
continuation to C. If χ = ‖ · ‖iθ for some θ ∈ R, then this continuation admits a single pole
of order 1 at s = 1 + iθ . Otherwise, it is holomorphic.

Definition 2.21 Let ψ be a character of
∏

v|∞ K ∗
v . The restriction of ψ to each R>0 ⊂ K ∗

v

is of the form x �→ |x |iκv for some κv ∈ R. We define

‖ψ‖ = max
v|∞ |κv|.

Lemma 2.22 [18, Exercise 3, §5.2, p. 100] Let χ be a non-principal Hecke character of K ,
let C be a compact subset of Re s ≥ 1 and let ε > 0. Then

L (χ, s) �ε,C q (χ)ε (1 + ‖χ∞‖)ε , (s − 1) ζK (s) �C 1, s ∈ C .

Definition 2.23 Let E/K be Galois, let χ be a Hecke character for E and let g ∈ Gal (E/K ).
We define the (Galois) twist of χ by g to be the character

χ g : A∗
E → S1, (tw)w �→ χ

(
(gw (tw))gw

)
.

Here, gw denotes the place of E obtained by the action of g on Val (E), and gw : Ew → Egw

is the induced map on completions. One may easily verify that χ g is trivial on E∗, hence it
is also a Hecke character for E .

3 The norm torus

In this section, we fix an extension of number fields L/K of degree d ≥ 2 with Galois
closure E and a K -basis ω = {ω0, . . . , ωd−1}. We write Nω (x0, . . . , xd−1) for the norm
form corresponding to ω, and G = Gal (E/K ). From the equality

Nω (x0, . . . , xd−1) =
∏

g∈G/Gal(E/L)

(x0g (ω0) + · · · + xd−1g (ωd−1)) , (3.1)
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Campana points and powerful values… 635

we see that Nω is irreducible over K and has splitting field E . We denote by T the norm
torus Tω = Pd−1

K \ Z (Nω). As noted in [19, Sect. 1.2], Pd−1
K is a toric variety with respect

to T , and T ∼= RL/KGm/Gm is anisotropic. Since its boundary is Z (Nω), its splitting field
is E . We have the short exact sequence

0 → Gm → RL/KGm → T → 0. (3.2)

Note 3.1 The isomorphisms T (AK ) ∼= A∗
L/A∗

K and T (K ) ∼= L∗/K ∗ follow from Hilbert’s
Theorem 90 [22, Prop. IV.3.8, p. 283] by applying Galois cohomology to (3.2). They allow
us to interpret an automorphic character χ of T as a Hecke character for L , and we will
do so frequently. In fact, distinct automorphic characters of T correspond to distinct Hecke
characters of L by [3, Cor. 1.4.16, p. 606] and [3, Thm. 3.1.1, p. 619]. Since T (Kv) ∼=(∏

w|v L∗
w

)
/K ∗

v for each v ∈ Val (K ), we see that, ifχ is unramified at v, then it is unramified

as a Hecke character at all w | v. In particular, if χ is unramified at v and v is unramified in
L/K , then

∏
w|v χw (πw) = 1, since πv is a uniformiser for Lw for each w | v.

3.1 Geometry

In this section we study fan-theoretic objects related to T . We begin by describing the fan
 ⊂ X∗

(
T

)
R
associated to the equivariant compactification Pd−1

K of T and the associated
piecewise-linear function ϕ (see [3, Sect. 1.2]) used to define the Batyrev–Tschinkel height
function.

Denoting by l0 (x) , . . . , ld−1 (x) ∈ E[x] the E-linear factors of Nω (x), we have the
E-isomorphism

� : T = Pd−1 \
d−1⋃
i=0

Z (li )
∼−→ Gd−1

m = Pd−1 \
d−1⋃
j=0

Z
(
x j

)
,

[x0, . . . , xd−1] �→ [l0 (x) , . . . , ld−1 (x)].
By [16, Sect. 1.1], the fan associated to Pd−1

E as a compactification of Gd−1
m,E is the fan whose

r -dimensional cones are generated by the r -fold subsets of {e′
0, . . . , e

′
d−1} for 0 ≤ r ≤ d−1,

where e′
i ∈ X∗

(
Gd−1

m

) ∼= Hom
(
Gm, Gd−1

m

)
is defined by

e′
i : Gm → Gd−1

m , t �→ [x0,i (t) , . . . , xd−1,i (t)],
where in turn

x j,i (t) =
{
t if i = j,

1 otherwise.

Definition 3.2 Set ei = �−1 ◦ e′
i for i = 0, . . . , d − 1, and define  to be the fan whose

r -dimensional cones are generated by the r -fold subsets of {e0, . . . , ed−1} for 0 ≤ r ≤ d−1.

It follows that  is the fan associated to Pd−1
E as a compactification of TE . Also, we see

that
∑d−1

i=0 ei = 0 and that {e1, . . . , ed−1} is the dual of the basis {m1, . . . ,md−1} of X∗ (
T

)
,

where mi (x) = li (x)
l0(x)

for i = 1, . . . , d − 1.
We now show that the action of G on  (1) is compatible with its action on the E-linear

factors of Nω. Denote by ∗ the action of G, and set lg(i) = g ∗ li .
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Lemma 3.3 For all g ∈ G and i = 0, . . . , d − 1, we have

g ∗ ei = eg(i).

Proof Let g ∈ G. It suffices to show that

(g ∗ ei )
(
m j

) = eg(i)
(
m j

)
(3.3)

for all i ∈ {0, . . . , d − 1} and j ∈ {1, . . . , d − 1}. Note that, for any i, j, k ∈ {0, . . . , d − 1},
we have

ei

(
l j
lk

)
= δi j − δik, (3.4)

where δi j is the Kronecker delta symbol, defined by

δi j =
{
1 if i = j,

0 otherwise.

Then (3.3) becomes

δig−1( j) − δig−1(0) = δg(i) j − δg(i)0,

which clearly holds.

By [16, Thm. 1.22, p. 217], is the fan associated to the compactificationPd−1
K = Pd−1

E /G
of T over K .

By [3, Prop. 1.2.12, p. 597], the line bundle L (ϕ) associated to the piecewise-linear
function ϕ : X∗

(
T

)
R

→ R (see [3, Prop. 1.2.9, p. 597]) defined by ϕ (ei ) = 1 for all
i = 0, . . . , d − 1 is the anticanonical bundle −KPd−1 .

It follows from the above that G acts transitively on  (1) = {〈e0〉, . . . , 〈ed−1〉}. For
v ∈ Val (K ) non-archimedean, let Gv denote the associated decomposition subgroup of G.
By the proof of [3, Thm. 3.1.3, p. 619], the Gv-orbits of (1) are in bijection with the places
of L over v, and the length of theGv-orbit corresponding to a placew | v is its inertia degree.

Proposition 3.4 Let v ∈ Val (K ) be non-archimedean with ramification degree ev in E/K,
and let

 (1) =
⋃
w|v

w (1)

denote the decomposition of  (1) = {〈e0〉, . . . , 〈ed−1〉} into Gv-orbits. For each w | v,
let nw be the sum of the elements of w (1) and let fw (x) be the product of the linear
factors in the Gv-orbit of {l0, . . . , ld−1} corresponding to w (1) by Lemma 3.3. Then the
map degT ,E,v : T (Kv) → X∗ (Tv) is given by

tv �→ ev

∑
w|v

v ( fw (tv))

deg fw
nw.

Proof. The image of tv in X∗ (Tv) ∼= X∗
(
T

)Gv under degT ,E,v is the cocharacter

ϕtv : X∗ (Tv) → Z, λ �→ evv (λ (tv)) .
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We first show that {nw : w | v} spans X∗
(
T

)Gv . Given g ∈ G and σ = ∑d−1
i=0 ai ei , we

have g ∗ σ = ∑d−1
i=0 ag−1(i)ei , so g ∗ σ = σ if and only if there exists rg ∈ Z such that

ai = ag−1(i) + rg for all i ∈ {0, . . . , d − 1}. Setting s = #G, we have

ai = ags (i) = ags−1(i) + rg = · · · = ai + srg,

hence rg = 0. We deduce that σ ∈ Gv if and only if ai = a j for all ei , e j in the same
Gv-orbit, so the result follows. Moreover, we observe that

∑
w|v awnw = ∑

w|v bwnw if
and only if there exists r ∈ Z such that bw = aw + r for all w | v, since there is a unique
expression for σ ∈ X∗

(
T

)
in the form σ = ∑d−1

i=0 ci ei where cd = 0.
Now, write

ϕtv =
∑
w|v

αwnw.

Define μi ∈ X∗ (
T

)
and λw ∈ X∗ (

T
)Gv for all i ∈ {0, . . . , d − 1} and all w | v by

μi (x) = li (x)d

Nω (x)
, λw (x) =

∏
ei∈w

μi (x) = fw (x)d

Nω (x)deg fw
.

By (3.4), we have

ei
(
μ j

) =
{
d − 1 if i = j,

−1 otherwise.

Then, setting dw = deg fw, we see that

nw (λw′) =
{
ddw − d2w if w = w′,
−dwdw′ otherwise,

so we deduce that
evv (λw (tv)) = ddwαw − dw

∑
w′|v

dw′αw′ (3.5)

for all w | v. On the other hand, we have

evv (λw (tv)) = evdv ( fw (tv)) − evdw

∑
w′|v

v ( fw′ (tv)) . (3.6)

Set βw = dwαw − evv ( fw (tv)). Combining (3.5) and (3.6), we obtain

dβw = dw

∑
w′|v

βw′ ,

hence βw′ = dw′
dw

βw for all w | v, w′ | v. Since Kv
∼= EGv

w for any w | v, it follows that
dw | v ( fw (tv)), so βw ∈ dwZ for all w | v. We deduce that there exists an integer n ∈ Z

such that, for all w | v, we have βw = dwn, hence

αw = ev

v ( fw (tv))

deg fw
+ n.

Since
∑

w|v nw = ∑
i ei = 0, we conclude that

ϕtv = ev

∑
w|v

v ( fw (tv))

deg fw
nw.
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We now study polynomials introduced by Batyrev and Tschinkel in [3, Sect. 2.2], which
play a key role in the analysis of local Fourier transforms in Sect. 5.

Definition 3.5 Let v ∈ Val (K ) be non-archimedean, and let  (1) = ⋃l
i=1 i (1) be the

decomposition of  (1) into Gv-orbits. Let di be the cardinality of i (1). For each i (1),
define an independent variable ui . Let σ ∈ Gv , and let i1 (1) ∪ · · · ∪ ik (1) be the set of
1-dimensional faces of σ . We define the rational function

Rσ,v (u1, . . . , ul) = u
di1
i1

· · · udikik(
1 − u

di1
i1

)
· · ·

(
1 − u

dik
ik

) ,

and we define the polynomial Q,v (u1, . . . , ul) by

Q,v (u1, . . . , ul)(
1 − ud11

)
· · ·

(
1 − udll

) =
∑

σ∈Gv

Rσ,v (u1, . . . , ul) .

Proposition 3.6 For all non-archimedean valuations v ∈ Val (K ), we have

Q,v (u1, . . . , ul) = 1 − ud11 · · · udll .

Proof Observe that the Gv-invariant cones in  are precisely those cones generated by a set
of 1-dimensional cones of the form i1 (1) ∪ · · · ∪ ik (1) for some i1, . . . , ik ∈ {1, . . . , l}
pairwise distinct with k < l. From this observation, we deduce that

Q,v (u1, . . . , ul)(
1 − ud11

)
· · ·

(
1 − udll

) =
l−1∑
k=1

∑
i1,...,ik∈{1,...,l}
pairwise distinct

u
di1
i1

· · · udikik(
1 − u

di1
i1

)
· · ·

(
1 − u

dik
ik

) .

In particular, we see that

Q,v (u1, . . . , ul) =
∑

(t1,...,tl )∈{0,1}l

l∏
i=1

(
ti + (1 − 2ti ) u

di
i

)
− ud11 · · · udll ,

so it suffices to prove that

∑

(t1,...,tl )∈{0,1}l

l∏
i=1

(
ti + (1 − 2ti ) u

di
i

)
= 1. (3.7)

Splitting the sum into two smaller sums for t1 = 0 and t1 = 1, we obtain

∑

(t1,...,tl )∈{0,1}l

l∏
i=1

(
ti + (1 − 2ti ) u

di
i

)

=
(
ud11 +

(
1 − ud11

)) ∑

(t2,...,tn)∈{0,1}l−1

l∏
i=2

(
ti + (1 − 2ti ) u

di
i

)

=
∑

(t2,...,tn)∈{0,1}l−1

l∏
i=2

(
ti + (1 − 2ti ) u

di
i

)
.

Repeating this process for each variable t2, . . . , tl , we deduce (3.7).
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3.2 Haar measures and volume

Let ω be an invariant d-form on T . By a classical construction (see [12, Sect. 2.1.7]), ω gives
rise to a Haar measure |ω|v on T (Kv) for each v ∈ Val (K ). In [23, Sect. 3.3], Ono constructs
the convergence factors

cv =
{
Lv

(
X∗ (

T
)
, 1

)−1
if v � ∞,

1 if v | ∞.

Here, Lv

(
X∗ (

T
)
, s

)
is the local factor at v of the Artin L-function L

(
X∗ (

T
)
, s

)
. Defining

μv = c−1
v |ω|v , the product of the μv converges to give a Haar measure μ on T (AK ), which

is independent of ω by the product formula.

Note 3.7 From the short exact sequence (3.2), we obtain

L
(
X∗ (

T
)
, s

) = ζL (s)

ζK (s)
.

Lemma 3.8 With respect to the Haar measure μ, we have

vol (T (AK ) /T (K )) = d
Ress=1 ζL (s)

Ress=1 ζK (s)
.

Proof By [23, Sect. 3.5] and [24, Main Thm., p. 68], we have

vol
(
T (AK )1 /T (K )

) = |Pic T |
|X (T ) | L

(
X∗ (

T
)
, 1

)
,

where X (T ) is the In this proof, two equations appear in overly large font in the eProof,
although they are the correct size in the PDF version. of T , i.e.

X (T ) = ker

⎛
⎝H1

ét (K , T ) →
∏

v∈Val(K )

H1
ét (Kv, T )

⎞
⎠ .

By [29, Prop. 8.3, p. 58] and [19, Cor. 4.6, p. 2568], the rationality of T implies thatX (T )

is trivial. Further, we have Pic T ∼= Z/dZ (see [14, Prop. II.6.5(c), p. 133]). Since ζK (s) and
ζL (s) both have a simple pole at s = 1, we have L

(
X∗ (

T
)
, 1

) = Ress=1 ζL (s)
Ress=1 ζK (s) . Finally, as T

is anisotropic, we have T (AK )1 = T (AK ).

4 Heights and indicator functions

In this section we define functions which allow us to use harmonic analysis to study weak
Campanapoints. Let L/K be an extensionof numberfieldswith K -basisω = {ω0, . . . , ωd−1}
and Galois closure E/K . When L = E , for any i, j ∈ {0, . . . , d − 1} and g ∈ G =
Gal (E/K ), write

ωi · ω j =
d−1∑
k=0

ai jk ωk, g (ωi ) =
d−1∑
k=0

bgkωk, 1 =
d−1∑
k=0

ckωk .

Definition 4.1 When L = E , we define S (ω) to be the minimal subset of Val (K ) containing
S∞ such that ai jk , bgk , ck ∈ Ov for all v /∈ S (ω), i, j, k ∈ {0, . . . , d − 1} and g ∈ G.
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Otherwise, we define S (ω) to be the minimal subset of Val (K ) containing S∞ such that Nω

is an irreducible polynomial over OK ,S(ω).

Remark 4.2 When L = E , by (3.1), the S (ω)-integrality of the ai jk and bgk implies that Nω

is defined over OK ,S(ω), while the S (ω)-integrality of the ck implies that the coefficients of
Nω are not all divisible by some α ∈ OK ,S(ω) \O∗

K ,S(ω). Since Nω is irreducible over K , we
deduce that Nω is irreducible over OK ,S(ω), hence, for any L , the Zariski closure of Z (Nω)

in Pd−1
OK ,S(ω)

is ProjOK ,S(ω)[x0, . . . , xd−1]/ (Nω).

From now on, we fix the model
(
Pd−1
OK ,S(ω)

,Dω
m

)
for

(
Pd−1
K ,�ω

m

)
, where Dω

m =(
1 − 1

m

)
ProjOK ,S(ω)[x0, . . . , xd−1]/ (Nω). We denote by Dω

red the support of Dω
m .

Note 4.3 In both the Galois and non-Galois cases, the conditions on S (ω) ensure that we
may take the “obvious” model above. The potentially stronger conditions in the Galois case
(in which we obtain our results) ensure compatibility between intersection multiplicity and
toric multiplication, as we shall see in Sect. 4.2.

Remark 4.4 When L = E and ω is a relative integral basis, we get S (ω) = S∞, since every
algebraic integer is expressible as anOK -linear combination of elements of a relative integral
basis, and OL is closed under multiplication and conjugation.

4.1 Definitions

Definition 4.5 [3, Sect. 2.1] For each place v of K , we define the local height function

Hv : T (Kv) → R>0, tv �→ eϕ(degT ,E,v(tv)) log qv .

We then define the global height function

H : T (AK ) → R>0, (tv)v �→
∏

v∈Val(K )

Hv (tv) .

Definition 4.6 For each place v /∈ S (ω), define the function

H ′
v : T (Kv) → R>0, x �→ max{|xi |dv }

|Nω (x) |v .

Remark 4.7 Note that H ′
v (x) ≥ 1 for all x ∈ T (Kv). Indeed, one may always select v-adic

coordinates xi such that max{|xi |v} = 1, and Nω has coefficients in Ov by Remark 4.2, so,
by the strong triangle inequality, we have |Nω (x) |v ≤ 1.

Lemma 4.8 For all but finitely many places v /∈ S (ω), we have H ′
v = Hv .

Proof Note that H ′
v is the local Weil function associated to the basis of global sections of

−KPd−1 consisting of all monomials of degree d in [3, Def. 2.1.1, p. 606]. It is well-known
(see [12, Sect. 2.2.3]) that two height functions corresponding to adelic metrisations of the
same line bundle are equal over all but finitely many places.

Definition 4.9 We define the finite set

S′ (ω) = S (ω) ∪ {v /∈ S (ω) : H ′
v = Hv} ∪ {v ∈ Val (K ) : E/K is ramified at v}.
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Definition 4.10 For each place v /∈ S (ω), define the local indicator function

φm,v : T (Kv) → {0, 1}, tv �→
{
1 if H ′

v (tv) = 1 or H ′
v (tv) ≥ qmv ,

0 otherwise.

Setting φm,v = 1 for v ∈ S (ω), we then define the global indicator function

φm : T (AK ) → {0, 1}, (tv)v �→
∏

v∈Val(K )

φm,v (tv) .

Remark 4.11 Let v /∈ S (ω) be a non-archimedean place of K . Since H ′
v is continuous with

discrete image in R>0, its level sets are clopen. It follows that φm,v is continuous for all
v ∈ Val (K ). Also, since φm,v (T (Ov)) = 1 for all v /∈ S′ (ω) by Lemma 2.14(i), we see that
φm is well-defined and continuous on T (AK ).

Lemma 4.12 The weak Campana OK ,S(ω)-points of
(
Pd−1
K ,�ω

m

)
are precisely the rational

points t ∈ T (K ) such that φm (t) = 1.

Proof. Take v /∈ S (ω), and let t0, . . . , td−1 be a set of Ov-coordinates for t ∈ T (K ) with at
least one ti ∈ O∗

v . Then we have

H ′
v (t) = 1

|Nω (t0, . . . , td−1) |v = qv(Nω(t0,...,td−1))
v = q

nv(Dω
red,t)

v .

4.2 Invariant subgroups

For this section, let L = E be Galois over K .

Lemma 4.13 For all v /∈ S (ω) and x, y ∈ T (Kv), we have

H ′
v (x · y) ≤ H ′

v (x) H ′
v (y) .

Proof. Choose sets of projective coordinates {x0, . . . , xd−1} and {y0, . . . , yd−1} for x and y
respectively. Note that

(x0ω0 + · · · + xd−1ωd−1) · (y0ω0 + · · · + yd−1ωd−1) = (z0ω0 + · · · + zd−1ωd−1) ,

where, for ai jk ∈ Ov as in Definition 4.1, we have

zk =
d−1∑
i=0

d−1∑
j=0

ai jk xi y j .

Using Nω (x · y) = Nω (x) Nω (y) and the strong triangle inequality, we deduce that

H ′
v (x · y) = max{| ∑d−1

i=0
∑d−1

j=0 a
i j
k xi y j |dv }

|Nω (x · y) |v
≤ max{|ai jk |dv }max{|xi |dv }

|Nω (x) |v
max{|y j |dv }
|Nω (y) |v ≤ H ′

v (x) H ′
v (y) .

Lemma 4.14 For any place v /∈ S (ω), the level set

Kv = {tv ∈ T (Kv) : H ′
v (tv) = 1}

is a subgroup of T (Ov).
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Proof From Proposition 3.4 and Lemma 2.14(i), it is clear that H ′
v (tv) = 1 implies tv ∈

T (Ov), so Kv ⊂ T (Ov). It is also clear that H ′
v (1) = 1, and closure under multiplication

follows from Lemma 4.13 and Remark 4.7. It only remains to verify that x ∈ Kv implies
x−1 ∈ Kv . Let x ∈ Kv , and choose coordinates x0, . . . , xd−1 with max{|xi |dv } = 1. Since
H ′

v (x) = 1, we must have |Nω (x) |v = 1. Note that

(x0ω0 + · · · + xd−1ωd−1)
−1 = 1

Nω (x0, . . . , xd−1)

∏
g∈G
g =1G

(x0g (ω0) + · · · + x0g (ω0)) .

Recursively applying Lemma 4.13, we obtain

H ′
v

(
x−1) ≤

∏
g∈G
g =1G

H ′
v (g (x)) .

By Remark 4.7, it suffices to show that, for any g ∈ G, we have H ′
v (g (x)) = 1. Since

Nω (g (x)) = Nω (x), it suffices by Remark 4.7 to show that max{|g (x)i |v} ≤ 1. This
follows from the fact that bgk ∈ Ov since v /∈ S (ω), see Definition 4.1.

Corollary 4.15 For every place v /∈ S (ω), the function H ′
v is Kv-invariant.

Proof Take x ∈ Kv , and let y ∈ T (Kv). Then by Lemma 4.13, we have

H ′
v (x · y) ≤ H ′

v (x) H ′
v (y) = H ′

v (y) ,

while on the other hand, since x−1 ∈ Kv by Lemma 4.14, we have

H ′
v (y) = H ′

v

(
x−1 · (x · y)) ≤ H ′

v

(
x−1) H ′

v (x · y) = H ′
v (x · y) ,

so we conclude that H ′
v (x · y) = H ′

v (y).

Lemma 4.16 For each place v /∈ S (ω), the functions Hv and φm,v are both Kv-invariant
and 1 on Kv . Further, Kv is compact, open and of finite index in T (Ov). Moreover, when
v /∈ S′ (ω), we have Kv = T (Ov).

Proof Let v /∈ S (ω). By [3, Thm. 2.1.6(i), p. 608], Hv is T (Ov)-invariant, hence trivial
and invariant on all of T (Ov). By Corollary 4.15, the function φm,v is Kv-invariant; since
φm,v (1) = 1, it is also trivial on Kv .

Now, since Kv = (
H ′

v|T (Ov)

)−1
({1}), it is open. Since the cosets of an open subgroup

form an open cover of a topological group, any open subgroup of a compact topological
group is closed and of finite index. ThenKv ⊂ T (Ov) is closed, hence compact, and of finite
index. Finally, we note that, when v /∈ S′ (ω), we have H ′

v = Hv , and H−1
v ({1}) = T (Ov)

by Lemma 2.14(i) and the equality ϕ−1
 ({0}) = {0}, so Kv = T (Ov).

Definition 4.17 For each v ∈ S (ω), set Kv = T (Ov). Let K = ∏
v∈Val(K ) Kv , and let U be

the group of automorphic characters of T which are trivial on K.

4.3 Height zeta function and Fourier transforms

Definition 4.18 For Re s � 0, we define the height zeta function

Zm : C → C, s �→
∑

x∈Pd−1(K )

φm (x)

H (x)s
.
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Definition 4.19 Let μv and μ be the Haar measures introduced in Sect. 3.2. Let f :
T (AK ) → C be a continuous function given as a product of local factors fv : T (Kv) → C

such that fv (T (Ov)) = 1 for all but finitely many places v ∈ Val (K ). For each place
v ∈ Val (K ) and each character χ of T (AK ), we define the local Fourier transform of χv

with respect to fv to be

Ĥv ( fv, χv;−s) =
∫

T (Kv)

fv (tv) χv (tv)

Hv (tv)s
dμv

for all s ∈ C for which the integral exists. We then define the global Fourier transform of χ

with respect to f to be

Ĥ ( f , χ;−s) =
∏

v∈Val(K )

Ĥv ( fv, χv;−s) =
∫

T (AK )

f (t) χ (t)

H (t)s
dμ.

5 Weak Campana points

In this section we prove Theorem 1.1. Fix an extension of number fields L/K of degree d
with K -basis ω, set T = Tω as in Sect. 3 and let m ∈ Z≥2.

5.1 Strategy

Following [3,19], we will apply a Tauberian theorem [3, Thm. 3.3.2, p. 624] to our height
zeta function Zm (s) in order to find an asymptotic for the number of weak Campana points
of bounded height. By loc. cit., it suffices to show that Zm (s) is absolutely convergent for

Re s > 1
m and that Zm (s)

(
s − 1

m

)b(d,m)
admits an extension to a holomorphic function on

Re s ≥ 1
m which is not zero at s = 1

m . In order to do this, we will apply the version of the
Poisson summation formula given by Bourqui [4, Thm. 3.35, p. 64]. Formally applying this
version with G = T (AK ), H = T (K ), dg = dμ, dh the discrete measure on T (K ) and
F (t) = φm (t)

H(t)s for some s ∈ C with Re s > 1
m gives

Zm (s) = 1

vol (T (AK ) /T (K ))

∑

χ∈(T (AK )/T (K ))∧
Ĥ (φm, χ;−s) . (5.1)

5.2 Analytic properties of Fourier transforms

Lemma 5.1 For any place v ∈ Val (K ), any character χv of T (Kv) and any ε > 0, the local
Fourier transform Ĥv

(
φm,v, χv;−s

)
is absolutely convergent and is bounded uniformly (in

terms of ε and v) on Re s ≥ ε.

Proof Let Re s ≥ ε. Since

|Ĥv

(
φm,v, χv;−s

) | ≤
∫

T (Kv)

∣∣∣∣
φm,v (tv) χv (tv)

Hv (tv)s

∣∣∣∣ dμv ≤ Ĥv (1, 1;−ε) ,

it suffices to prove that Ĥv (1, 1;−ε) is convergent. For v | ∞, this follows from
[3, Prop. 2.3.2, p. 614], so assume that v � ∞. The following argument is essentially the
one in [3, Rem. 2.2.8, p. 613], but we fill in the details for the sake of clarity.
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Since Hv and dμv are T (Ov)-invariant and
∫
T (Ov)

dμv = 1, we have

Ĥv (1, 1;−ε) =
∫

T (Kv)

1

Hv (tv)ε
dμv =

∑

tv∈T (Kv)/T (Ov)

1

Hv

(
tv

)ε .

Now, by Lemma 2.14(i), T (Kv) /T (Ov) can be identified with a sublattice of finite index in
X∗ (Tv), and this sublattice coincides with X∗ (Tv) when v is unramified in L/K . Then we
see that, interpreting Hv as a function on X∗ (Tv), we have

∑

tv∈T (Kv)/T (Ov)

1

Hv

(
tv

)ε ≤
∑

nv∈X∗(Tv)

1

Hv (nv)
ε ,

and the proof of [3, Thm. 2.2.6, p. 611] and Proposition 3.6 give

∑
nv∈X∗(Tv)

1

Hv (nv)
ε =

(
1 − 1

qdε
v

) ∏
w|v

(
1 − 1

qε
w

)−1

,

so we deduce that Ĥv (1, 1;−ε) is convergent, and this concludes the proof.

Lemma 5.2 For any v ∈ Val (K ), the local Fourier transform Ĥv

(
φm,v, 1;−s

)
is non-zero

for all s ∈ R>0.

Proof The proof is analogous to the proof of [19, Lem. 5.1, p. 2575].

Lemma 5.3 Let L = E be a Galois extension of K . For any place v ∈ Val (K ), let χv be a
character of T (Kv) which is non-trivial on Kv . Then

Ĥv

(
φm,v, χv;−s

) = 0.

Proof Since φm,v and Hv areKv-invariant, the result follows by character orthogonality.

Corollary 5.4 Let L = E be a Galois extension of K , and let χ be an automorphic character
of T . If χ /∈ U for U as in Definition 4.17, then

Ĥ (φm, χ;−s) = 0.

Lemma 5.5 Let v � ∞ be a non-archimedean place of K unramified in L/K, and let χ be
an automorphic character of T which is unramified at v. Then we have

Ĥv (1, χv;−s) =
(
1 − 1

qdsv

) ∏
w|v

(
1 − χw (πw)

qsw

)−1

= Lv (χ, s) ζK ,v (ds)−1 .

Proof The result follows from [3, Thm. 2.2.6, p. 611] and Proposition 3.6.

Definition 5.6 Given a vector u = (u1, . . . , ur ) ∈ Nr , define fr ,n,u (x1 . . . , xr ) to be the sum
of all degree-n monomials in x1, . . . , xr weighted via u, i.e.

fr ,n,u (x1, . . . , xr ) =
∑

∑r
i=1 ui ai=n

∀i ai∈Z≥0

xa11 . . . xarr .

Set

fr ,n (x1, . . . , xr ) = fr ,n,(1,...,1) (x1, . . . , xr ) .
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Proposition 5.7 Let v /∈ S′ (ω) be a non-archimedean place of K , and let χ ∈ U . Let
w1, . . . , wr ∈ Val (L) be the places of L over v. Let ui be the inertia degree of wi over v for
each i = 1, . . . , r . Set

cχ,v,n = fr ,n,u
(
χw1

(
πw1

)
, . . . , χwr

(
πwr

))
.

Then, for Re s > 0, we have

Ĥv

(
φm,v;χv;−s

) = 1 +
∞∑

n=m

cχ,v,n − cχ,v,n−d

qnsv

.

Proof Let s ∈ C with Re s > 0. As χ ∈ U and v /∈ S′ (ω), it follows that χ is unramified at
v. Then, expanding geometric series, we have

Lv (χ, s) =
r∏

i=1

(
1 − χwi

(
πwi

)

qui sv

)−1

= 1 +
∞∑
n=1

cχ,v,n

qnsv

,

so, by Lemma 5.5, we obtain

Ĥv (1, χv;−s) = 1 +
∞∑
n=1

cχ,v,n − cχ,v,n−d

qnsv

.

On the other hand, we may write

Ĥv (1, χv;−s) =
∫

T (Kv)

χv (tv)

Hv (tv)s
dμv =

∞∑
n=0

1

qnsv

∫

Hv(tv)=qnv

χv (tv) dμv,

so, comparing these expressions, we see for n ≥ 1 that

cχ,v,n − cχ,v,n−d =
∫

Hv(tv)=qnv

χv (tv) dμv.

Since v /∈ S′ (ω), we have φm,v (tv) = 1 if and only if Hv (tv) = 1 or Hv (tv) ≥ qmv , so the
result follows.

5.3 Regularisation

Now that we have expressions for the local Fourier transforms at all but finitely many places,
our goal is to find “regularisations” for the global Fourier transforms, i.e. functions expressible
as Euler productswhose convergence iswell-understood andwhose local factors approximate
the local Fourier transforms well (as expansions in qv) at all but finitely many places. As in
[3,19,27], we will construct our regularisations from L-functions.

Proposition 5.8 Let G be a subgroup of Sd acting freely and transitively on {1, . . . , d}, and
let m ≥ 2 be a positive integer. Let Sm act upon Gm by permutation of coordinates, and let
G act on Gm/Sm by right multiplication of every element of a representative m-tuple. Set
S (G,m) = (Gm/Sm) /G.

(i) If (g1, . . . , gm) = (h1, . . . , hm) in S (G,m), then

d∑
i=1

xg1(i) · · · xgm (i) =
d∑

i=1

xh1(i) · · · xhm (i), (5.2)
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hence, for (g1, . . . , gm) ∈ S (G,m), we may define the sum

φ(g1,...,gm ) (x1, . . . , xd) =
d∑

i=1

xg1(i) · · · xgm (i).

(ii) If (g1, . . . , gm) = (h1, . . . , hm), then the sums φ(g1,...,gm ) (x1, . . . , xd) and φ(h1,...,hm )

(x1, . . . , xd) share no summands. Further, a monomial appears twice in φ(g1,...,gm )

(x1, . . . , xd) if and only if (g1, . . . , gm) = (g1gr , . . . , gmgr ) for some r ∈ {1, . . . ,m}
with gr = 1G.

(iii) If d is coprime to m, then we have

fd,m (x1, . . . , xd) =
∑

(g1,...,gm )∈S(G,m)

φ(g1,...,gm ) (x1, . . . , xd) .

(iv) If d is prime and m = kd, then we have

fd,m (x1, . . . , xd) + (d − 1) xk1 · · · xkd =
∑

(g1,...,gm )∈S(G,m)

φ(g1,...,gm ) (x1, . . . , xd) .

Proof First, we prove (i). Note that (g1, . . . , gm) = (h1, . . . , hm) if and only if
{h1, . . . , hm} = {g1g, . . . , gmg} as multisets for some g ∈ G. If the coordinates of
(h1, . . . , hm) ∈ Gm are a permutation of those of (g1, . . . , gm) ∈ Gm , then

xh1(i) · · · xhm (i) = xg1(i) · · · xgm (i)

for any i ∈ {1, . . . , d}, while if (h1, . . . , hm) = (g1g, . . . , gmg) for some g ∈ G, then for
any i ∈ {1, . . . , d}, we have

xg1g(i) · · · xgmg(i) = xg1( j) · · · xgm ( j)

for the unique j with g (i) = j . In either case, we obtain (5.2). The claim follows.
Next we prove (ii). Note that for (g1, g2, . . . , gm) ∈ S (G,m), we may take g1 = 1G

without loss of generality. Suppose that

xi xg2(i) · · · xgm (i) = x j xh2( j) · · · xhm ( j)

for some i, j ∈ {1, . . . , d}. This is equivalent to the equality of multisets

{i, g2 (i) , . . . , gm (i)} = { j, h2 ( j) , . . . , hm ( j)}.
If i = j , we have

{g2 (i) , . . . , gm (i)} = {h2 (i) , . . . , hm (i)},
and by the freeness of the action of G on {1, . . . , d}, we have (g2, . . . , gm) = (h2, . . . , hm)

up to reordering, i.e. the m-tuple (1G , h2, . . . , hm) is a permutation of (1G , g2, . . . , gm). If
i = j , we may take g2 (i) = j without loss of generality (note that g2 = 1G in this case),
and we obtain the equality of multisets

{ j, h2 ( j) , . . . , hm ( j)} = {g2 (i) , h2g2 (i) , . . . , hmg2 (i)}.
Once again, by freeness of the action of G on {1, . . . , d}, we get that

{1G , g2, . . . , gm} = {g2, h2g2, . . . , hmg2}
as multisets, from which both claims follow.
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Before proceeding to the proofs of (iii) and (iv), we make the following observation:
if a multiset M = {g1, . . . , gm} of elements of G is closed under right multiplication by
some g ∈ G of order n ≥ 2, then n divides m. Indeed, M must contain the n distinct
elements g1, g1g, g1g2, . . . , g1gn−1. Without loss of generality, we may take gl = g1gl−1

for l = 1, . . . , n. Since {g1, . . . , gn} = {g1, g1g, . . . , g1gn−1} is clearly closed under right
multiplication by g, so is the sub-multiset {gn+1, . . . , gm}. Iterating this process, we deduce
that n divides the cardinality of M , as otherwise we would eventually obtain a non-empty
sub-multiset closed under right multiplication by g with fewer than n elements, which is
clearly impossible.

We nowprove (iii) and (iv). By (i) and (ii), every degree-mmonomial in x1, . . . , xd appears
in a unique summand of

∑
(g1,...,gm )∈S(G,m) φ(g1,...,gm ) (x1, . . . , xd), and a monomial appears

twice in φ(g1,...,gm ) (x1, . . . , xd) if and only if the multiset {g1, . . . , gm} is closed under right
multiplication by some gr = 1G . By the above, the latter is possible only if the order of gr
divides m, while by Lagrange’s theorem, the order of gr divides d . If d is coprime to m, then
we deduce that no such gr exists, thus we obtain (iii). If d = p is prime and m = kp, then gr
is necessarily a generator of the cyclic group G. It then follows as in the above observation
that (

g1, . . . , gkp
) =

(
1G , gr , . . . , g

p−1
r , . . . , 1G , gr , . . . , g

p−1
r

)
.

Letting g be a generator of G, we see that φ
(1G ,g,...,gp−1,...,1G ,g,...,gp−1)

(
x1, . . . , xp

) =
pxk1 · · · xkp is the only one of the polynomials φ

(g1,...,gkp)

(
x1, . . . , xp

)
,
(
g1, . . . , gkp

) ∈
S (G, kp) in which a monomial appears more than once, and so we obtain (iv).

Remark 5.9 It follows immediately from Proposition 5.8 that

#S (G,m) =
{

1
d

(d+m−1
d−1

)
if d and m are coprime,

1
d

((d+m−1
d−1

) − 1
)

+ 1 if d is prime andd divides m,

since the number of monomials of degree m in d variables is
(d+m−1

d−1

)
.

Remark 5.10 As we shall shortly see, it is the ability to partition (or in the case where d is a
prime dividing m, nearly partition) the sum of all degree-m monomials in d variables as in
Proposition 5.8 that allows us to construct well-behaved regularisations.

For the rest of this section, let L = E be Galois over K with Galois group G, and assume
that m is coprime to d if d is not prime.

Lemma 5.11 Let v /∈ S′ (ω) be a non-archimedean place which is totally split in E/K and
let χ ∈ U . Then

∏
(g1,...,gm )∈S(G,m) Lv (χ g1 · · · χ gm ,ms)∏

(h1,...,hm−d )∈S(G,m−d) Lv

(
χh1 · · · χhm−d ,ms

) =
∏

(g1,...,gm )∈S′(G,m)

Lv

(
χ g1 · · · χ gm ,ms

)
,

where

S′ (G,m) = {
(g1, . . . , gm) ∈ S (G,m) : #{g1, . . . , gm} ≤ d − 1

}
.
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Proof Let G = {g1, . . . , gd}. First, we show that every factor of the denominator of the left-
hand side appears on the numerator. Let (h1, . . . , hm−d) ∈ S (G,m − d). Then we claim
that

Lv

(
χh1 · · · χhm−d ,ms

)
= Lv

(
χh1 · · · χhm−dχ g1 · · · χ gd ,ms

)
.

Since G acts freely and transitively on the places w1, . . . , wd of E over v, we have

{χ g1
wi

(
πwi

)
, . . . , χ gd

wi

(
πwi

)} = {χw1

(
πw1

)
, . . . , χwd

(
πwd

)}
for any i = 1, . . . , d . Since χv is trivial on Kv = T (Ov), we have from Note 3.1 that∏d

i=1 χwi

(
πwi

) = χv (1) = 1, so (χ g1 · · · χ gd )w (πw) = 1 for all w | v. Then the equality
follows.

It now suffices to show that, for (h1, . . . , hm−d) = (
h′
1, . . . , h

′
m−d

)
, we have

(h1, . . . , hm−d , g1, . . . , gd) = (
h′
1, . . . , h

′
m−d , g1, . . . , gd

)
.

If not, then {h′
1, . . . , h

′
m−d , g1, . . . , gd} = {gh1, . . . , ghm−d , gg1, . . . , ggd} as multisets

for some g ∈ G. Since we have {gg1, . . . , ggd} = {g1, . . . , gd}, this implies that
{h′

1, . . . , h
′
m−d} = {gh1, . . . , ghm−d} as multisets, but then we have (h1, . . . , hm−d) =(

h′
1, . . . , h

′
m−d

)
, which is false.

Remark 5.12 It follows from the proof of Lemma 5.11 that #S′ (G,m) = S (G,m) −
S (G,m − d). Combining this with Remark 5.9, we obtain

#S′ (G,m) = 1

d

((
d + m − 1

d − 1

)
−

(
m − 1

d − 1

))
= b (d,m) .

Note that the term 1
d

(m−1
d−1

)
only appears when d ≤ m.

Definition 5.13 For all χ ∈ U , Re s > 0 and non-archimedean places v � ∞, set

Fm,χ,v (s) =
∏

(g1,...,gm )∈S′(G,m)

Lv

(
χ g1 · · · χ gm ,ms

)
, Gm,χ,v (s) = Ĥv

(
φm,v, χv;−s

)

Fm,χ,v (s)
,

and define

Fm,χ (s) =
∏

v�∞
Fm,χ,v (s) =

∏

(g1,...,gm )∈S′(G,m)

L
(
χ g1 · · · χ gm ,ms

)
,

Gm,χ (s) =
∏

v�∞
Gm,χ,v (s) . (5.3)

For any non-archimedean place v � ∞, write

Ĥv

(
φm,v, χv;−s

) =
∞∑
n=0

aχ,v,n

qnsv

,

where aχ,v,n = ∫
Hv(tv)=qnv

φm,v (tv) χv (tv) dμv , and write

Fm,χ,v (s) = 1 +
∞∑
n=1

bχ,v,mn

qmns
v
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for the expansion of Fm,χ,v (s) as a multidimensional geometric series in qms
v , so

Gm,χ,v (s) =
∑∞

n=0
aχ,v,n
qnsv

1 + ∑∞
n=1

bχ,v,mn
qmns
v

=
∞∑
n=0

dχ,v,n

qnsv

,

where dχ,v,n is defined for all n ≥ 0 by the iterative formula

dχ,v,n = aχ,v,n −
� n
m �∑

r=1

bχ,v,mrdχ,v,n−mr . (5.4)

In particular, we have dχ,v,n = aχ,v,n for 0 ≤ n ≤ m − 1.

Corollary 5.14 For v /∈ S′ (ω) a non-archimedean place, we have dχ,v,0 = 1 and dχ,v,n = 0
for all n ∈ {1, . . . ,m}.
Proof Let cχ,v,n be as defined in Proposition 5.7. Since v /∈ S′ (ω), we have from loc. cit.
that aχ,v,0 = 1, aχ,v,n = 0 for n ∈ {1, . . . ,m−1} and aχ,v,m = cχ,v,m −cχ,v,m−d . Then, by
(5.4), we see that dχ,v,0 = aχ,v,0 = 1 and dχ,v,n = aχ,v,n = 0 for 1 ≤ n ≤ m − 1. Further,
we obtain

dχ,v,m = aχ,v,m − bχ,v,mdχ,v,0 = cχ,v,m − cχ,v,m−d − bχ,v,m,

so, to complete the proof, it suffices to show that bχ,v,m = cχ,v,m − cχ,v,m−d .
Since E/K is Galois, all of the placesw1, . . . , wr of E over v share a common inertia degree
dv . Sinceχv (T (Ov)) = 1, it is unramified as aHecke character at all of thewi (see Note 3.1),
and for any g1, . . . , gm ∈ G, so is χ g1 · · · χ gm . Then

Lv

(
χ g1 · · · χ gm ,ms

) =
r∏

i=1

(
1 − (χ g1 · · · χ gm )wi

(
πwi

)

qdvms
v

)−1

= 1 + 1

qdvms
v

r∑
i=1

(
χ g1 · · · χ gm

)
wi

(
πwi

) + O

(
1

q(dvm+1)s
v

)
.

(5.5)

First, suppose that v is totally split in E/K . Then (5.5) gives

Lv

(
χ g1 · · · χ gm ,ms

) = 1 + φ(g1,...,gm )

(
χw1

(
πw1

)
, . . . , χwd

(
πwd

))

qms
v

+ O

(
1

q(m+1)s
v

)
.

Since G acts freely and transitively on the wi , it follows from Proposition 5.8 and
Lemma 5.11 that bχ,v,m = cχ,v,m − cχ,v,m−d , and so dχ,v,m = 0.

Now assume that v is not totally split in E/K . If gcd (d,m) = 1, then cχ,v,m =
cχ,v,m−d = 0, as cχ,v,n = 0 whenever dv � n. If d is prime, then v is inert and we
have Ĥv

(
φm,v, χv;−s

) = 1 since T (Kv) = T (Ov). Then, in either case, we have
cχ,v,m − cχ,v,m−d = 0, and (5.5) implies that bχ,v,m = 0, hence dχ,v,m = 0.

Corollary 5.15 For any χ ∈ U , we have
Ĥ (φm;χ;−s) =

∏
v|∞

Ĥv (1, χv;−s) Fm,χ (s)Gm,χ (s) ,

where Gm,χ (s) is holomorphic and uniformly bounded with respect to χ for Re s ≥ 1
m and

Gm,1
( 1
m

) = 0. In particular, Ĥ (φm, χ;−s) possesses a holomorphic continuation to the
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line Re s = 1
m , apart from possibly at s = 1

m . When χ = 1, the right-hand side has a pole

of order b (d,m) at s = 1
m .

Proof. By construction, Ĥ (φm;χ;−s) = ∏
v|∞ Ĥv (1, χv;−s) Fm,χ (s)Gm,χ (s). We will

prove the stronger result thatGm,χ (s) is holomorphic onRe s > 1
m+1 and uniformly bounded

with respect to both χ and ε on Re s ≥ 1
m+1 + ε for all ε > 0.

For a place v � ∞ and s ∈ C with Re s = σ ≥ ε for some ε > 0, we have

∞∑
n=0

∣∣∣∣
aχ,v,n

qnsv

∣∣∣∣ =
∞∑
n=0

1

qnσ
v

∣∣∣∣∣
∫

Hv(tv)=qnv

φm,v (tv) χv (tv) dμv

∣∣∣∣∣

≤
∞∑
n=0

1

qnσ
v

∫

Hv(tv)=qnv

∣∣φm,v (tv) χv (tv)
∣∣ dμv

=
∫

T (Kv)

∣∣∣∣
φm,v (tv) χv (tv)

Hv (tv)s

∣∣∣∣ dμv,

so, by Lemma 5.1, the series
∑∞

n=0
aχ,v,n
qnsv

is absolutely convergent and bounded by a constant
depending only on ε and v. Now, for any N ∈ N, we have

∣∣∣∣∣
∞∑
n=0

aχ,v,n

qnsv

−
N∑

n=0

aχ,v,n

qnsv

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=N+1

aχ,v,n

qnsv

∣∣∣∣∣ ≤
∞∑
n=0

|aχ,v,n |
qnε
v

,

from which it follows that
∑∞

n=0
aχ,v,n
qnsv

is also uniformly convergent, hence the function

Ĥv

(
φm,v, χv;−s

)
is holomorphic on Re s > 0. Then, we note that Fm,χ,v (s) is clearly

holomorphic on Re s > 0, and we have

1

|Fm,χ,v (s) | =
∏

(g1,...,gm )∈S′(G,m)

∣∣∣Lv

(
χ g1 · · · χ gm ,ms

)−1
∣∣∣ ≤

(
1 + 1

qmε
v

)db(d,m)

,

hence Gm,χ,v (s) is holomorphic on Re s > 0 and is bounded uniformly in terms of ε and v

on Re s ≥ ε.
To conclude the result, it suffices to prove that there exists N ∈ N such that

∏
qv>N

Gm,χ,v (s)

is holomorphic and uniformly bounded with respect to χ on Re s ≥ 1
m+1 + ε for all ε > 0.

Let v /∈ S′ (ω) be non-archimedean, and let Re s = σ ≥ 1
m+1 + ε. From

Ĥv

(
φm,v, χv;−s

) =
(
1 − 1

qdsv

)
Lv (χ, s) ,

and the definition of Fm,χ,v (s), we have

|aχ,v,n| ≤ 2dn, |bχ,v,n | ≤ (b (d,m) d)n .

Then, by (5.4), it follows inductively that we have

|dχ,v,n | ≤ 2n (b (d,m) d)n = (2b (d,m) d)n . (5.6)
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Choose N > (2b (d,m) d)
1
σ so that, for all places v � ∞ with qv > N , we have v /∈

S′ (ω). Now, any normally convergent infinite product is holomorphic (see [28, Sect. 2]), and∏
qv>N Gm,χ,v (s) converges normally if and only if

∑
qv>N

∞∑
n=m+1

|dχ,v,n |
qnσ
v

converges. By (5.6) and our condition on N , we need only check convergence of
∑
qv>N

1

q(m+1)σ
v

,

which is clear. Then Gm,χ (s) is holomorphic on Re s > 1
m+1 . Further, for Re s ≥ 1

m+1 + ε,
we have the bound∣∣∣∣∣∣

∏
qv>N

Gm,χ,v (s)

∣∣∣∣∣∣
≤

∏
qv>N

⎛
⎝1 +

∞∑
n=m+1

⎛
⎝2b (d,m) d

q
1

m+1+ε
v

⎞
⎠

n⎞
⎠ ,

which is uniform with respect to χ . Now, as a convergent infinite product, Gm,1
( 1
m

)
is

zero if and only if Gm,1,v
( 1
m

) = Ĥv

(
φm,v ,1;− 1

m

)

Fm,1,v

(
1
m

) = 0 for some place v � ∞. However,

Ĥv

(
φm,v, 1;− 1

m

) = 0 by Lemma 5.2, so we conclude that Gm,1
( 1
m

) = 0. The order of the
pole of the right-hand side being b (d,m) follows from Theorem 2.20, since

Fm,1 (s) = ζE (ms)b(d,m) .

Note 5.16 In constructing the regularisation Fm,χ (s), one must ensure that

Ĥv

(
φm,v, χv;−s

)

Fm,χ,v (s)
= 1 + O

(
1

q(m+1)s
v

)

for all non-archimedean places v with qv is sufficiently large. As seen above, the restrictions
on d , m and E ensure that this is automatic for all such places which are not totally split,
i.e. we only need to approximate the local Fourier transform at totally split places not in
S′ (ω). Without these restrictions, one might have to approximate the local Fourier transform
at places of more than one splitting type simultaneously, and to do this would require a new
approach.

Before applying our key theorems, we give one more result, which will be used in order
to move from the Poisson summation formula to the Tauberian theorem.

Lemma 5.17 [19, Lem. 5.9, p. 2577] Choose an R-vector space norm ‖ · ‖ on X∗ (T∞)R

and let L ⊂ X∗ (T∞)R be a lattice. Let C be a compact subset of Re s ≥ 1
m and let

g : X∗ (T∞)R × C → C be a function. If there exists 0 ≤ δ < 1
d−1 such that

|g (ψ, s) | �C (1 + ‖ψ‖)δ
for all ψ ∈ X∗ (T∞)R and s ∈ C, then the sum

∑
ψ∈L

g (ψ, s)
∏
v|∞

Ĥv (1, ψ;−s)

is absolutely and uniformly convergent on C.

123



652 S. Streeter

Theorem 5.18 Let

�m (s) = Zm (s)

(
s − 1

m

)b(d,m)

.

Then �m (s) admits an extension to a holomorphic function on Re s ≥ 1
m .

Proof Let s ∈ C with Re s > 1
m . Combining the formal application (5.1) of the Poisson

summation formula with Lemma 3.8 and Corollary 5.4 gives

Zm (s) = Ress=1 ζK (s)

d Ress=1 ζE (s)

∑
χ∈U

Ĥ (φm, χ;−s) . (5.7)

By Corollary 5.15, the function s �→ φm (t)
H(t)s is L

1 for Re s > 1
m . To show that this application

is valid, we apply Bourqui’s criterion [4, Cor. 3.36, p. 64], by which it suffices to show that
the right-hand side of (5.7) is absolutely convergent, s �→ φm (t)

H(t)s is continuous and there
exists an open neighbourhood U ⊂ T (AK ) of the origin and strictly positive constants C1

and C2 such that for all u ∈ U and all t ∈ T (AK ), we have

C1

∣∣∣∣
φm (t)

H (t)s

∣∣∣∣ ≤
∣∣∣∣
φm (ut)

H (ut)s

∣∣∣∣ ≤ C2

∣∣∣∣
φm (t)

H (t)s

∣∣∣∣ .

We may take U = K by Lemma 4.16, and continuity is clear. It only remains to prove the
absolute convergence. We will prove the stronger result that

∑
χ∈U

Ĥ (φm, χ;−s)

(
s − 1

m

)b(d,m)

is absolutely and uniformly convergent on any compact subsetC of the half-plane Re s ≥ 1
m ,

which will both verify validity of the application and prove the theorem.
Since K ⊂ KT is of finite index, the map (2.2) yields a homomorphism

U → X∗ (T∞)R , χ �→ χ∞,

with finite kernel N and image L a lattice of full rank. We obtain

∑
χ∈U

Ĥ (φm, χ;−s)

(
s − 1

m

)b(d,m)

=
∑
ψ∈L

∏
v|∞

Ĥv (1, ψ;−s)
∑
χ∈U

χ∞=ψ

∏

v�∞
Ĥv

(
φm,v, χv;−s

) (
s − 1

m

)b(d,m)

,

where the inner sum is finite. Then, for s ∈ C , we have

∑
χ∈U

Ĥ (φm, χ;−s)

(
s − 1

m

)b(d,m)

�
∑
ψ∈L

∏
v|∞

∣∣Ĥv (1, ψ;−s)
∣∣ ∑

χ∈U
χ∞=ψ

∏

v�∞

∣∣∣∣∣Ĥv

(
φm,v, χv;−s

) (
s − 1

m

)b(d,m)
∣∣∣∣∣ .
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Now, for χ ∈ U , we deduce from the proof of Corollary 5.15 that
∣∣∣∣∣∣
∏

v�∞
Ĥv

(
φm,v, χv;−s

) (
s − 1

m

)b(d,m)

∣∣∣∣∣∣
�C

∣∣∣∣∣Fm,χ (s)

(
s − 1

m

)b(d,m)
∣∣∣∣∣ .

In order to deduce the result from Lemma 5.17, it suffices to prove that, for each ψ ∈ L and
some constant 0 ≤ δ < 1

d−1 , we have∣∣∣∣∣∣∣∣

∑
χ∈U

χ∞=ψ

Fm,χ (s)

(
s − 1

m

)b(d,m)

∣∣∣∣∣∣∣∣
�C (1 + ‖ψ‖)δ

for ‖ · ‖ as in Definition 2.21. As K ⊂ KT is of finite index, there exists a constant Q > 0
such that q (χ) < Q for all χ ∈ U (cf. [19, Proof of Thm. 5.12, p. 2579]). Since Fm,χ (s) is a
product of b (d,m) L-functions of Hecke characters evaluated atms, it follows from Lemma
2.22 that ∣∣∣∣∣∣∣∣

∑
χ∈U

χ∞=ψ

Fm,χ (s)

(
s − 1

m

)b(d,m)

∣∣∣∣∣∣∣∣
�ε,C |N | · Qε (1 + ‖ψ‖)ε

for all for all ε > 0 and s ∈ C . The result now follows from Lemma 5.17.

5.4 The leading constant

In order to apply [3, Thm. 3.3.2, p. 624] and deduce Theorem 1.1 from Theorem 5.18, it only
remains to show that �m

( 1
m

) = 0.

Definition 5.19 Let UG be the subgroup of G-invariant elements of U , and set

U0 =
{
U[m] if d = 2,

UG ∩ U[m] otherwise.
Lemma 5.20 For any Galois extension of number fields E/K, the subgroup U[m] ≤
(T (AK ) /T (K ))∧ is finite. In particular, U0 is a finite subgroup of U .

Proof By class field theory [22, Ch. VI, Sect. 6; Ch. VII, Sect. 6], U may be interpreted as

a subset of Gal
(
Eab
S′(ω)

/E
)∧

for Eab
S′(ω)

the maximal S′ (ω)-unramified abelian extension of

E , hence U[m] is in bijection with a subset of Hom
(
Gal

(
Eab
S′(ω)

/E
)

, μm

)
, a finite set.

Lemma 5.21 (i) The characters χ ∈ U contributing to the pole of Zm (s) of order b (d,m)

at s = 1
m are precisely those χ ∈ U0 such that

∏
v|∞ Ĥv

(
1, χv;− 1

m

)
Gm,χ

( 1
m

) = 0.
(i) Suppose that d = 2. If d and m are coprime, then U0 = {1}. If d is prime and m is a

multiple of d, then U0 = {χ ∈ U : χd = 1}.
Proof From Theorem 2.20 and Corollary 5.15, χ ∈ U contributes to the pole of
Zm (s) at s = 1

m if and only if each factor of Fm,χ (s) in (5.3) equals ζE (ms) and∏
v|∞ Ĥv

(
1, χv;− 1

m

)
Gm,χ

( 1
m

) = 0. Denoting by ψ the Hecke character associated to χ ,
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this means precisely that
∏

v|∞ Ĥv

(
1, χv;− 1

m

)
Gm,χ

( 1
m

) = 0 and, for each (g1, . . . , gm) ∈
S′ (G,m), we have (ψg1 . . . ψgm )v = 1 for all v � ∞, which is equivalent by strong approx-
imation [11, Thm., p. 67] to ψg1 . . . ψgm = 1. By Note 3.1, this holds if and only if

χ g1 . . . χ gm = 1 for all (g1, . . . , gm) ∈ S′ (G,m) . (5.8)

To conclude the first part, it only remains to show that (5.8) holds if and only if χ ∈ U0.
Taking (g1, . . . , gm) = (1, . . . , 1) in (5.8), we obtain χm = 1. If d = 2, then S′ (G,m) ={
(1, . . . , 1)

}
, and we are done. Otherwise, taking (g1, . . . , gm) = (g, 1, . . . , 1) for any

g ∈ G, we obtain χm−1χ g = 1, so χm = 1 and χ = χ g for all g ∈ G. Conversely, if
χm = 1 and χ = χ g for all g ∈ G, then (5.8) holds.

Let nowd = 2,χ ∈ U0,v /∈ S′ (ω) andw | v.Wehaveψw (πw) = ψ
g
w (πw) = ψgw

(
πgw

)
for all g ∈ G. Since

∏
w|v ψw (πw) = 1 (see Note 3.1) and G acts transitively on the places

of E over v, we obtain ψd
w (πw) = 1, hence χd = 1 by strong approximation. On the other

hand, χm = 1. For d and m coprime, we conclude that χ = 1.

Proposition 5.22 The limit

�m

(
1

m

)
= lim

s→ 1
m

(
s − 1

m

)b(d,m) ∑
χ∈U0

Ĥ (φm, χ;−s)

is non-zero.

Proof We have
∑
χ∈U0

Ĥ (φm, χ;−s) =
∑
χ∈U0

∫

T (AK )

φm (t) χ (t)

H (t)s
dμ =

∫

T (AK )

φm (t)

H (t)s
∑
χ∈U0

χ (t) dμ.

Let t ∈ T (AK ). Note that, if there exists χ ′ ∈ U0 with χ ′ (t) = 1, then
∑
χ∈U0

χ (t) =
∑
χ∈U0

χχ ′ (t) = χ ′ (t)
∑
χ∈U0

χ (t) ,

so
∑

χ∈U0
χ (t) = 0. Then we have

∑
χ∈U0

Ĥ (φm, χ;−s) = |U0|
∫

T (AK )U0,φm

1

H (t)s
dμ,

where

T (AK )U0,φm = {t ∈ T (AK ) : φm (t) = χ (t) = 1 for all χ ∈ U0}.
For any χ ∈ U0 and non-archimedean place v /∈ S′ (ω), comparing the series expressions of
Ĥv

(
φm,v, χv;−s

)
and Fm,χ,v (s) = Fm,1,v (s) in Definition 5.13, we see that

∫

Hv(tv)=1
χv (tv) dμv =

∫

Hv(tv)=1
dμv,

∫

Hv(tv)=qmv

χv (tv) dμv =
∫

Hv(tv)=qmv

dμv,

so χv (tv) = 1 for all χ ∈ U0 whenever Hv (tv) = 1 or Hv (tv) = qmv .
For each place v /∈ S′ (ω), define the continuous function

θm,v : T (Kv) → {0, 1}, tv �→
{
1 if H ′

v (tv) = 1 or H ′
v (tv) = qmv ,

0 otherwise.
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Letting θm,v be the indicator function of Kv for v ∈ S′ (ω), we define the function

θm : T (AK ) → {0, 1}, θm ((tv)v) =
∏

v∈Val(K )

θm,v (tv) .

By the above, we deduce that T (AK )θm ⊂ T (AK )U0,φm , where

T (AK )θm = {t ∈ T (AK ) : θm (t) = 1}.
Then, by comparing limits along the real line, we see that it suffices to prove that

lim
s→ 1

m

(
s − 1

m

)b(d,m)

Ĥ (θm, 1;−s) = 0.

It is easily seen that for any non-archimedean place v /∈ S′ (ω), we have

Ĥv

(
θm,v, 1;−s

) = 1 + a1,v,m

qms
v

for aχ,v,n as in Definition 5.13, so, as in Corollary 5.15, we may deduce that

Ĥ (θm, 1;−s) = ζE (ms)b(d,m) Gm (s)

for Gm (s) a function holomorphic on Re s ≥ 1
m . It also follows that Gm

( 1
m

) = 0, since
Ĥv

(
θm,v, 1;− 1

m

) = 0 analogously to Lemma 5.2. Then the result follows.

Corollary 5.23 We have

�m

(
1

m

)
= Ress=1 ζK (s)

d Ress=1 ζE (s)
lim
s→ 1

m

(
s − 1

m

)b(d,m) ∑
χ∈U0

Ĥ (φm, χ;−s) = 0.

Proof of Theorem 1.1 Since �m
( 1
m

) = 0, the result for S = S (ω) follows from
[3, Thm. 3.3.2, p. 624] and Theorem 5.18, taking c (ω,m, S (ω)) to be

m Ress=1 ζK (s)

(b (d,m) − 1)!d Ress=1 ζE (s)
lim
s→ 1

m

(
s − 1

m

)b(d,m) ∑
χ∈U0

Ĥ (φm, χ;−s) .

The result for S ⊃ S (ω) follows analogously upon redefining φm,v to be identically 1 for
each v ∈ S \ S (ω) in Definition 4.10.

6 Campana points

In this section we prove Theorem 1.4. We will be brief when the argument is largely similar
to the case of weak Campana points, emphasising only the key differences. Fix a Galois
extension E/K of number fields with K -basis ω = {ω0, . . . , ωd−1}, let m ∈ Z≥2 and set
T = Tω as in Sect. 3.

Definition 6.1 For each non-archimedean place v /∈ S (ω), let

Nω (x) =
∏
w|v

fw (x)
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denote the v-adic decomposition of the norm form Nω associated to ω into irreducible poly-
nomials fw (x) ∈ Ov[x]. For each w | v, we define the functions

H̃w : T (Kv) → R>0, x �→ max{|xi |deg fw
v }

| fw (x) |v ,

ψm,w : T (Kv) → {0, 1}, tv �→
{
1 if H̃w (tv) = 1 or H̃w (tv) ≥ qmv ,

0 otherwise.

We then define the Campana local indicator function

ψm,v : T (Kv) → {0, 1}, tv �→
∏
w|v

ψm,w (tv) .

Setting ψm,v = 1 for v ∈ S (ω), we then define the Campana indicator function

ψm : T (AK ) → {0, 1}, (tv)v �→
∏

v∈Val(K )

ψm,v (tv) .

If v /∈ S′ (ω), then for each w | v, we also define the function

σm,w : T (Kv) → {0, 1}, tv �→
{
1 if H̃w (tv) = 1 or H̃w (tv) = qmv ,

0 otherwise

and we define

σm,v : T (Kv) → {0, 1}, tv �→
∏
w|v

σm,w (tv) .

Letting σm,v be the indicator function for Kv for v ∈ S′ (ω), we define the function

σm : T (AK ) → {0, 1}, (tv)v �→
∏

v∈Val(K )

σm,v (tv) .

Lemma 6.2 The Campana OK ,S(ω)-points of
(
Pd−1
K ,�ω

m

)
are precisely the rational points

t ∈ T (K ) such that ψm (t) = 1.

Proof Taking coordinates t0, . . . , td−1 as in the proof of Lemma 4.12, we have

H̃w (t) = 1

| fw (t0, . . . , td−1) |v = qv( fw(t0,...,td−1))
v = q

nαw (Z( fw),t)
v

for all non-archimedean places v /∈ S (ω) and placesw | v, whereZ ( fw) denotes the Zariski
closure of Z ( fw) in Pd−1

OK ,S(ω)
.

Lemma 6.3 For all v ∈ Val (K ), the function ψm,v is Kv-invariant and 1 on Kv .

Proof For v ∈ S (ω) the result is trivial, so let v /∈ S (ω) and w | v. Since fw (x · y) =
fw (x) fw (y) for x, y ∈ L , it follows as in the proof of Lemma 4.13 that H̃w (x · y) ≤
H̃w (x) H̃w (y) for all x, y ∈ T (Kv). Since H ′

v = ∏
w|v H̃w , we have H̃w (Kv) = 1 for all

w | v, hence it follows as in the proof of Corollary 4.15 that H̃w and ψm,w are Kv-invariant.
Since ψm,v (1) = 1, we deduce that ψm,v (Kv) = 1.
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Proposition 6.4 Given v /∈ S′ (ω) and tv ∈ T (Kv), the image of tv in X∗ (Tv) is

∑
w|v

logqv

(
H̃w (tv)

)

deg fw
nw,

with nw defined as in Proposition 3.4.

Proof Follows from Proposition 3.4.

Corollary 6.5 For v /∈ S′ (ω) non-archimedean with qv sufficiently large, χ an automorphic
character of T unramified at v and s ∈ C with Re s > 0, we have

Ĥv

(
ψm,v, χv;−s

) = 1 + 1

qms
v

∑
w|v

deg fw |m

χw (πw)m + O

(
1

q(m+1)s
v

)
.

Proof. Since χv , Hv and ψm,v are T (Ov)-invariant and v /∈ S′ (ω), we have

Ĥv

(
ψm,v, χv;−s

) =
∫

T (Kv)

ψm,v (tv) χv (tv)

Hv (tv)s
dμv =

∑

tv∈T (Kv)/T (Ov)

ψm,v

(
tv

)
χv

(
tv

)

Hv

(
tv

)s

=
∑

nv∈X∗(Tv)

ψm,v (nv) χv (nv)

eϕ(nv)s log qv
=

∞∑
r=0

γχ,v,r

qrsv

,

where

γχ,v,r =
∑

nv∈X∗(Tv)
Hv(nv)=qrv

ψm,v (nv) χv (nv) .

Put dw = deg fw and let nv = ∑
w|v αwnw ∈ X∗ (Tv) with minw{αw} = 0. By

Proposition 3.4 and Note 3.1, we have

logqv
Hv (nv) =

∑
w|v

dwαw, χv (nv) =
∏
w|v

χw (πw)dwαw ,

ψm,v (nv) =
{
1 if αw = 0 or αw ≥ m

dw
for all w | v,

0 otherwise.

In particular, ψm,v (nv) = 0 whenever qv ≤ Hv (nv) ≤ qm−1
v , hence γχ,v,r = 0 for 1 ≤ r ≤

m − 1. Further, we see that ψm,v (nv) = 1 and Hv (nv) = qmv if and only if there is exactly
one place w0 | v such that αw0 = m

dw0
and αw = 0 for w = w0, so

γχ,v,m =
∑
w|v

deg fw |m

χw (πw)m .

Since |ψm,v (nv) χv (nv) | ≤ 1, we deduce that

|γχ,v,r | ≤ #

{
β1, . . . , βd ∈ Z≥0 :

d∑
i=1

βi = r

}
≤ dr .
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Analogously to the proof of Corollary 5.15, we deduce for qv sufficiently large that

∞∑
r=m+1

γχ,v,r

qrsv

= O

(
1

q(m+1)s
v

)
.

Proposition 6.6 For all places v /∈ S′ (ω) with qv sufficiently large, we have

Ĥv

(
ψm,v, χv;−s

) = Lv

(
χm,ms

) (
1 + O

(
1

q(m+1)s
v

))
, Re s > 0.

Proof. Let v /∈ S′ (ω) with qv sufficiently large as in Corollary 6.5. If v is totally split in
E/K , then deg fw = 1 for all w | v, so Corollary 6.5 gives

Ĥv

(
ψm,v, χv;−s

) = 1 + 1

qms
v

∑
w|v

χm
w (πw) + O

(
1

q(m+1)s
v

)
,

and so we deduce the equality, since

Lv

(
χm,ms

) =
∏
w|v

(
1 − χm

w (πw)

qms
v

)−1

= 1 + 1

qms
v

∑
w|v

χm
w (πw) + O

(
1

q(m+1)s
v

)
.

Now let v have inertia degree dv > 1 in E/K . Then deg fw = dv | d for all w | v. If d
and m are coprime, then dv � m, hence γχ,v,m = 0 and the result follows from

Lv

(
χm,ms

) =
∏
w|v

(
1 − χm

w (πw)

qdvms
v

)−1

= 1 + O

(
1

qdvms
v

)
.

If d is prime, then v is inert, so T (Ov) = T (Kv), Ĥv

(
ψm,v, χv;−s

) = 1, and

Lv

(
χm,ms

) = 1 − 1

qdms
v

= 1 + O

(
1

q(m+1)s
v

)
.

Proposition 6.7 For any χ ∈ U , we have
Ĥ (ψm, χ;−s) =

∏
v|∞

Ĥv (1, χv;−s) L
(
χm,ms

)
G̃m,χ (s) ,

where G̃m,χ (s) is a function which is holomorphic on Re s ≥ 1
m , G̃m,1

( 1
m

) = 0 and

Ĥ (ψm, 1;−s) has a simple pole at s = 1
m .

Proof Defining G̃m,χ,v (s) = Ĥv(ψm,v ,χv;−s)
Lv(χm ,ms) for each place v � ∞, it follows as in the proof

of Corollary 5.15 that G̃m,χ,v (s) is holomorphic and bounded uniformly in terms of ε and v

on Re s ≥ ε for all ε > 0. Since Proposition 6.6 gives

G̃m,χ,v (s) = 1 + O

(
1

q(m+1)s
v

)
,

it follows as in the proof of Corollary 5.15 that G̃m,χ (s) is holomorphic and uniformly
bounded with respect to χ for Re s ≥ 1

m with G̃m,1
( 1
m

) = 0. Then, since

L (1,ms) = ζE (ms) ,

we conclude from Theorem 2.20 that Ĥ (ψm, 1;−s) has a simple pole at s = 1
m .

123



Campana points and powerful values… 659

Definition 6.8 For Re s � 0, define the functions

Z̃m : C → C, s �→
∑

x∈Pd−1(K )

ψm (x)

H (x)s
, �̃m = Z̃m (s)

(
s − 1

m

)
.

The proofs of the following two results are analogous to those of their weak Campana
counterparts, namely Theorem 5.18 and Lemma 5.21 respectively.

Theorem 6.9 The function �̃m (s) admits a holomorphic extension to Re s ≥ 1
m .

Lemma 6.10 The characters χ ∈ U contributing to the simple pole of Z̃m (s) at s = 1
m are

precisely the characters χ ∈ U[m] such that G̃m,χ

( 1
m

) = 0.

Proposition 6.11 The limit

lim
s→ 1

m

(
s − 1

m

) ∑
χ∈U[m]

Ĥ (ψm, χ;−s)

is non-zero.

Proof By the same reasoning as in the proof of Proposition 5.22, we have

∑
χ∈U[m]

Ĥ (ψm, χ;−s) =
∑

χ∈U[m]

∫

T (AK )

ψm (t) χ (t)

H (t)s
dμ = |U[m]|

∫

T (AK )U [m],ψm

1

H (t)s
dμ,

where

T (AK )U[m],ψm = {t ∈ T (AK ) : ψm (t) = χ (t) = 1 for all χ ∈ U[m]}.
Now, take χ ∈ U[m], v /∈ S′ (ω) non-archimedean. If σv (tv) = 1 for some tv ∈ T (Kv),
then the image of tv in X∗ (Tv) is of the form

∑
w|v αwnw , where each αw is either 0 or m

dv

for dv the common inertia degree of the places of E over v, so

χv (tv) =
∏
w|v

χw (πw)dvαw = 1,

since each dvαw is 0 or m and χ0 = χm = 1. Then χv (tv) = 1 for all χ ∈ U[m]. In
particular, we deduce that T (AK )σm ⊂ T (AK )U[m],ψm , where

T (AK )σm = {t ∈ T (AK ) : σm (t) = 1}.
Then it suffices to prove that

lim
s→ 1

m

(
s − 1

m

)
Ĥ (σm, 1;−s) = 0.

Analogously to the proof of Proposition 6.7, we may deduce that

Ĥ (σm, 1;−s) = ζE (ms) G̃m (s)

for G̃m (s) a function holomorphic on Re s ≥ 1
m with G̃m

( 1
m

) = 0, so the result follows.
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Proof of Theorem 1.4 Since �̃m
( 1
m

) = 0 by Proposition 6.11, the result for S = S (ω) now
follows from [3, Thm. 3.3.2, p. 624] and Theorem 6.9, taking

c̃ (ω,m, S (ω)) = m Ress=1 ζK (s)

d Ress=1 ζE (s)
lim
s→ 1

m

(
s − 1

m

) ∑
χ∈U[m]

Ĥ (ψm, χ;−s) .

The result for S ⊃ S (ω) follows analogously upon redefining ψm,v to be identically 1 for
each v ∈ S \ S (ω).

7 Comparison toManin-type conjecture

In this sectionwecompare the leading constant inTheorem1.4with theManin–Peyre constant
in the conjecture of Pieropan, Smeets, Tanimoto and Várilly-Alvarado.

7.1 Statement of the conjecture

Let (X , Dε) be a smooth Campana orbifold over a number field K which is klt (i.e. εα < 1
for all α ∈ A) and Fano (i.e. − (KX + Dε) is ample). Let (X ,Dε) be a regular OK ,S-model
of (X , Dε) for some finite set S ⊂ Val (K ) containing S∞ (i.e. X regular over OK ,S). Let
L = (L, ‖ · ‖) be an adelically metrised big line bundle with associated height function
HL : X (K ) → R>0 (see [25, Sect. 1.3]). For any subset U ⊂ X (K ) and any B ∈ R>0, we
define

N (U ,L, B) = #{P ∈ U : HL (P) ≤ B}.

Definition 7.1 Let V be a variety over a field k of characteristic zero, and let A ⊂ V (k). We
say that A is of type I if there is a proper Zariski closed subset W ⊂ V with A ⊂ W (k). We
say that A is of type II if there is a normal geometrically irreducible variety V ′ with dimV ′ =
dimV and a finite surjective morphism φ : V ′ → V of degree ≥ 2 with A ⊂ φ

(
V ′ (k)

)
. We

say that A is thin if it is contained in a finite union of subsets of V (k) of types I and II.

We are now ready to give the statement of the conjecture.

Conjecture 7.2 [27, Conj. 1.1, p. 3] Suppose that L is nef and (X ,Dε)
(OK ,S

)
is not

thin. Then there exists a thin set Z ⊂ (X ,Dε)
(OK ,S

)
and explicit positive constants

a = a ((X , Dε) , L), b = b (K , (X , Dε) , L) and c = c (K , S, (X ,Dε) ,L, Z) such that,
as B → ∞, we have

N
(
(X ,Dε)

(OK ,S
) \ Z ,L, B

) ∼ cBa (log B)b−1 .

7.2 Interpretation for norm orbifolds

The orbifold
(
Pd−1
K ,�ω

m

)
in Theorem 1.4 is klt and Fano. It is smooth precisely when d = 2.

TheOK ,S(ω)-model
(
Pd−1
OK ,S(ω)

,Dω
m

)
is regular. The Batyrev–Tschinkel height arises from an

adelic metrisation L of −KPd−1 = O (d). According to [27, Sect. 3.3], we have

c
(
K , S,

(
Pd−1
OK ,S(ω)

,Dω
m

)
,L, Z

)
= 1

d
τ

(
K , S (ω) ,

(
Pd−1
K ,�ω

m

)
,L, Z

)
,
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where

τ
(
K , S (ω) ,

(
Pd−1
K ,�ω

m

)
,L, Z

)
=

∫

Pd−1(K )ε

H (t)1−
1
m dτPd−1 .

Here, τPd−1 is the Tamagawameasure defined in [19, Def. 2.8, p. 372], andPd−1 (K )ε denotes
the topological closure of the Campana points inside Pd−1 (AK ). If one assumes that weak
approximation for Campana points holds for this orbifold (see [27, Question 3.9, p. 13]), it
follows from the definition of τPd−1 (cf. [27, Sect. 9]) that

τ = m
Ress=1 ζK (s)

Ress=1 ζE (s)
lim
s→ 1

m

(
s − 1

m

)
Ĥ (ψm, 1;−s) .

Given the assumption on weak approximation, the conjectural leading constant is

c
(
K , S,

(
Pd−1
OK ,S(ω)

,Dω
m

)
,L, Z

)
= m Ress=1 ζK (s)

d Ress=1 ζE (s)
lim
s→ 1

m

(
s − 1

m

)
Ĥ (ψm, 1;−s) .

On the other hand, the leading constant given by Theorem 1.4 in this case is

c̃ (ω,m, S (ω)) = m Ress=1 ζK (s)

d Ress=1 ζE (s)
lim
s→ 1

m

(
s − 1

m

) ∑
χ∈U[m]

Ĥ (ψm, χ;−s) .

We observe that our constant differs from the conjectural one in the potential inclusion of
non-trivial characters in the limit.

7.3 The quadratic case

We now consider the case d = 2, in which the orbifold in Theorem 1.4 is smooth. Here,
work of Nakahara and the author [21] shows that weak approximation for Campana points
holds for any m ∈ Z≥2.

In Theorem 1.4, it is not clear that there are non-trivial characters contributing to the
leading constant and whether their contribution is positive if so. However, we now exhibit
an extension for which a non-trivial character contributes positively to the leading constant,
and all contributing characters do so positively.

Proposition 7.3 Let K = Q
(√−39

)
, E = Q

(√−3,
√
13

)
and m = 2. Choose the K -basis

ω = {1, 1+√−3
2 } of E. Then S (ω) = S∞, #U[2] > 1, and for every χ ∈ U[2], we have

lims→ 1
2

(
s − 1

2

)
Ĥ (ψ2, χ;−s) > 0.

Proof Writing a · 1 + b · 1+√−3
2 as (a, b) and G = Gal (E/K ) as {1G , g}, we have

(1, 0)2 = (1, 0) , (1, 0) · (0, 1) = (0, 1) , (0, 1)2 = (−1, 1) ,

1G ((1, 0)) = (1, 0) , 1G ((0, 1)) = (0, 1) , g ((1, 0)) = (1, 0) , g ((0, 1)) = (1,−1) ,

and clearly 1 = (1, 0), hence S (ω) = S∞. Note that Nω (x, y) = x2 + xy + y2.
Since Cl (E) ∼= Z/2Z, the Hilbert class field M of E is quadratic over E . We obtain

the unramified Hecke character χM of E , which is defined for all split w ∈ Val (E) by
χM,w (πw) = −1 and is trivial at all other places. Since χM is trivial on A∗

K , it may be
viewed inside U[2], hence #U[2] > 1.
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Let χ ∈ U[2]. To show that lims→ 1
2

(
s − 1

2

)
Ĥ (ψ2, χ;−s) > 0, it suffices to show

that Ĥv

(
ψ2,v, χv;− 1

2

)
> 0 for all v ∈ Val (K ). If v | ∞, then Ĥv

(
ψ2,v, χv;− 1

2

) =
Ĥv

(
1, 1;− 1

2

)
> 0, asχv gives a continuous homomorphism from T (Kv) /T (Ov) ∼= R>0 to

μ2, andR>0 has no proper open subgroups. If v is inert, thenwe have Ĥv

(
ψ2,v, χv;− 1

2

) = 1.
If v is not inert, then Nω (x, y) = (x + θ1y) (x + θ2y) for θ1, θ2 ∈ Ov roots of z2 − z + 1.
By Proposition 6.4, we have Hv = H ′

v if and only if there are no (a, b) ∈ (
K ∗

v

)2 with
min{v (a) , v (b)} = 0 such that v (a + θ1b) , v (a + θ2b) ≥ 1. If v (a + θ1b) , v (a + θ2b) ≥
1, then we deduce from the equalities

θ1 (a + θ2b) − θ2 (a + θ1b) = (θ1 − θ2) a, (a + θ1b) − (a + θ2b) = (θ1 − θ2) b,

that v (a) , v (b) ≥ 1 − v (θ1 − θ2). Since min{v (a) , v (b)} = 0, we have H ′
v = Hv if and

only if v (θ1 − θ2) ≥ 1. Since (θ1 − θ2)
2 = −3, the only such place is the unique place v0

of K above 3, and v0 (θ1 − θ2) = 1.
For any split place v = v0, we have Kv = T (Ov) and ψ2,v = φ2,v , so

Ĥv

(
ψ2,v, χv;−1

2

)
= 1 +

∞∑
n=2

cχ,v,n − cχ,v,n−2

q
n
2
v

by Proposition 5.7. In fact, for w1 and w2 the places of E over v, we have χw2

(
πw2

) =
χw1

(
πw1

)−1 ∈ {1,−1}, hence cχ,v,n − cχ,v,n−2 = 2χw1

(
πw1

)n , so

Ĥv

(
ψ2,v, χv;−1

2

)
= 1 +

∞∑
n=2

2χw1

(
πw1

)n

q
n
2
v

= 1 + 2

qv

⎛
⎝ 1

1 − q
− 1

2
v χw1

(
πw1

)

⎞
⎠ > 0.

It only remains to check that Ĥv0

(
ψ2,v0 , χv0 ;− 1

2

)
> 0.Wewill make use of the following

property of valuations:

v0 (α + β) ≥ min{v0 (α) , v0 (β)}, with equality if v0 (α) = v0 (β) . (7.1)

Assume that, for a, b ∈ (
K ∗

v0

)2 as above, we have v0 (a + θ2b) ≥ 2. We claim that
v0 (a + θ1b) = 1. First, we deduce from (7.1) that

2 ≤ v0 (a + θ2b) = v0 ((a + θ1b) + (θ1 − θ2) b)

≥ min{v0 (a + θ1b) , v0 ((θ1 − θ2) b)},
with equality if v0 (a + θ1b) = v0 ((θ1 − θ2) b). Since v0

(
(2θi − 1)2

) = v0 (−3) = 2,
we have v0 (2θi − 1) = 1, so v0 (θi ) = v0 (2θi ) = v0 (1) = 0 by (7.1), hence
min{v0 (a) , v0 (θ2b)} = min{v0 (a) , v0 (b)} = 0. Then, since v0 (a + θ2b) ≥ 2, it follows
that v0 (a) = v0 (θ2b). We deduce that v0 (a) = v0 (θ2b) = v0 (b), so v0 (a) = v0 (b) =
min{v0 (a) , v0 (b)} = 0. Since v0 (θ1 − θ2) = 1, we have v0 ((θ1 − θ2) b) = 1. It follows
that v0 (a + θ1b) = 1 by (7.1).

We deduce that ψ2,v0

(
tv0

) = 1 if and only if tv0 ∈ Kv0 , hence

Ĥv0

(
ψ2,v0 , χv0 ;−1

2

)
=

∫

Kv0

dμv0 > 0;

positivity follows since Kv ⊂ T (Ov) is of finite index for all v ∈ Val (K ).
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7.4 Possible thin sets

Assuming the truth of Conjecture 7.2, the question arises of which thin set Z should be
removed in the setting of Proposition 7.3. Informally, its removal should remove the con-
tribution of all non-trivial characters χ ∈ U[2]. One might therefore postulate that, for
each non-trivial character χ ∈ U[2], there is a finite morphism ϕχ : Cχ → P1

K , where
Cχ is a smooth projective curve, and Z = ⋃

χ∈U[2] ϕχ

(
Cχ (K )

)
. By the height bounds in

[30, Sect. 9.7], we would have Cχ
∼= P1

K and deg
(
ϕχ

) = 2, making the morphisms ϕχ

degree-two endomorphisms of P1
K . However, it is not clear how one should construct such

endomorphisms. This may be an interesting direction to pursue in future work.
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