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Abstract

We give an asymptotic formula for the number of weak Campana points of bounded height
on a family of orbifolds associated to norm forms for Galois extensions of number fields.
From this formula we derive an asymptotic for the number of elements with m-full norm over
a given Galois extension of Q. We also provide an asymptotic for Campana points on these
orbifolds which illustrates the vast difference between the two notions, and we compare this
to the Manin-type conjecture of Pieropan, Smeets, Tanimoto and Varilly-Alvarado.
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1 Introduction

The theory of Campana points is of growing interest in arithmetic geometry due to its ability
to interpolate between rational and integral points. Two competing notions of Campana
points can be found in the literature, both extending a definition of “orbifold rational points”
for curves within Campana’s theory of “orbifoldes géométriques” in [7-10]. They capture
the idea of rational points which are integral with respect to a weighted boundary divisor.
These two notions have been termed Campana points and weak Campana points in the
recent paper [27] of Pieropan, Smeets, Tanimoto and Varilly-Alvarado, in which the authors
initiate a systematic quantitative study of points of the former type on smooth Campana
orbifolds and prove a logarithmic version of Manin’s conjecture for Campana points on vector
group compactifications. The only other quantitative results in the literature are found in
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628 S. Streeter

[5,6,26,32,33], and the former four of these indicate the close relationship between Campana
points and m-full solutions of equations. We recall that, givenm € Zx, we say thatn € Z\ {0}
is m-full if all primes in the prime decomposition of n have multiplicity at least m.

In this paper, we bring together the perspectives in the above papers and provide the first
result for Campana points on singular orbifolds. As observed in [27, Sect. 1.1], the study
of weak Campana points of bounded height is challenging and requires new ideas for the
regularisation of certain Fourier transforms, and these ideas for the orbifolds in consideration
are the main innovation of this paper. We adopt a height zeta function approach, similar to
the one employed in [27] and modelled on the work of Loughran in [19] and Batyrev and
Tschinkel in [3] on toric varieties, in order to prove log Manin conjecture-type results for

both types of Campana points on (IP?{I, (1 - %) Zz (N,,,)), where Z (N,,) is the zero locus

of a norm form N,, associated to a K-basis @ of a Galois extension of number fields E/K
of degree d > 2 coprime to m € Zx7 if d is not prime. Although toric varieties also play a
prominent role in [26], the tori there are split, whereas we shall work with anisotropic tori.
When K = Q, we derive from the result for weak Campana points an asymptotic for the
number of elements of E of bounded height with m-full norm over Q. We compare the result
for Campana points to a conjecture of Pieropan, Smeets, Tanimoto and Vérilly-Alvarado
[27, Conj. 1.1, p. 3].

1.1 Results

Theorem 1.1 Let E/K be a Galois extension of number fields of degree d > 2, and letm > 2
be an integer which is coprime to d if d is not prime. Let @ be a K -basis of E. Denote by
A® the Q-divisor (1 — %) Z (Ny) of]P‘;(_l for N, the norm form corresponding to w. Let H
denote the anticanonical height function on ]P"Ii(_l from Definition 4.5. Then there exists an
explicit finite set S (@) C Val (K) such that, for any finite set of places S O S (), the number

N ((]P"Il(_l, Af‘,’l) ,H, B, S) of weak Campana Ok s-points of height atmost B € Rx on the
orbifold (]P)‘Il(_l, A%) with respect to the model P‘(ZD_KIS of ]P"Il(_l has the asymptotic formula
N ((P‘};l, A;)  H, B, S) ~ ¢ (@, m, S) B (log B)P@m=1
as B — oo for some explicit positive constant ¢ (w, m, S), where
1 d+m—1 m — 1
bd,m)=— — .
am=5(("3"7)-(i20)

Note 1.2 If w is a relative integral basis of E/K, then S (w) = S, the set of archimedean
places of K, in Theorem 1.1 (see Remark 4.4).

. . d_l . . . d _
Each rational point P € P*~" (Q) possesses precisely two sets of coordinates in Zprim =
{(x0, ..., xq_1) € 2% : gcd (xg, ..., x4—1) = 1}. Interpreting H and N,, as functions on this

set, we immediately obtain the following result.

Corollary 1.3 Taking K = Q and letting @ be an integral basis with the notation and hypothe-
ses of Theorem 1.1, we have
#xeZl. H(x) < B, Ny(x) is mfull) ~ 2¢ (@, m, Sso) B (log BY?@m=1

'prim

@ Springer



Campana points and powerful values... 629

Arithmetically special (e.g. prime, square-free) values of norm forms are a topic of long-
standing interest in number theory (see e.g. [13,20]).

Campana points are only defined and studied for smooth orbifolds (i.e. smooth varieties
for which the orbifold divisor has strict normal crossings support) in [27]. In order to study the

Campana points of (]P"f(_l, An“;), which is smooth only when d = 2, we must first generalise

the definition of Campana points, which we do in Sect. 2.1. Using the same strategy employed
in the proof of Theorem 1.1, we then derive an asymptotic for the number of Campana points

d—1
on (IP’ % An“;)
Theorem 1.4 With the notation and hypotheses of Theorem 1.1, denote by N ((IP’?{I, A%),

H, B, S) the number of Campana Ok s-points on (P”Il{], A,“,’,) of height at most B € Rx
with respect to H. Then there exists an explicit positive constant ¢ (w, m, S) such that, as
B — o0, we have

N ((P‘,’g‘, Ag) ,H, B, S) ~T(w,m,S)Bn.

Remark 1.5 Tt is not clear if the exponent of the logarithm in Theorem 1.1 admits a geometric
interpretation as it does in Theorem 1.4 (cf. [27, Conj. 1.1, p. 3]).

Conventions
Algebra

Wetake N = Z~ 1. We denote by R* the group of units of aring R. Given a group G, we denote
by 1¢ the identity element of G, and for any n € N, we set G[n] = {g € G : g" = 15}.
For any perfect field F, we fix an algebraic closure F and set G = Gal @ /F ) Given a
topological group G, we denote by G = Hom (G, S 1) its group of continuous characters,
where S! = {z € C : zz = 1} C C* is the circle group. A monomial in the variables

X1yovn, Xy is aproductxf' ceexir (ay, ..., ap) € Z’;O. For any n € N, we denote by u, the

group of nth roots of unity and by S, the symmetric group of order n.

Geometry

We denote by I, the projective n-space over the ring R. We omit the subscript if the ring
R is clear. Given a homogeneous polynomial f € R[xo, ..., x,], we denote by Z (f) =
Proj R[xo, ..., x,]/ (f) the zero locus of f viewed as a closed subscheme of P. A variety
over a field F is a geometrically integral separated scheme of finite type over F. Given a
variety X defined over F and an extension E/F, we denote by Xg = V Xgpec F Spec E the
base change of X over E, and we write X = X Xspec 7 Spec F. When F = K and E = K,
for a number field K and a place v of K, we write X, = Xk . Given a field F, we define
Gum,F = Spec F[xo, x1]1/ (xox1 — 1). We omit the subscript F if the field is clear.

Number theory
Given an extension of number fields L/K with K-basis @ = {wy, ..., wz—1}, we write
Ny (x0, ..., X4—1) = Npjk (xowo + - -+ + x4-1wg—1) for the associated norm form. We
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630 S. Streeter

denote by Val (K) the set of valuations of a number field K, and we denote by S, the
set of archimedean valuations. For v € Val (K), we denote by O, the maximal compact
subgroup of K. For a finite set of places S containing S, we denote by O s = {a €
K :a € O, forallv ¢ S} the ring of algebraic S-integers of K. We write Ox = Ok ...
For v € Val (K) non-archimedean, we denote by m, and ¢, a uniformiser for the residue
field of K, and the size of the residue field of K, respectively. If v | oo, then we set
logg, = 1. For each v € Val (K), we choose the absolute value |x|, = Nk, q, (x)|p for
the unique p € Val (Q) with v | p and the usual absolute value | - |, on Q,. We denote by

~

0, . . .
Ak = [l evak)Kv the adele ring of K with the restricted product topology.

2 Background
2.1 Campana points

In this section we define Campana orbifolds, Campana points and weak Campana points,
generalising the definitions in [27, Sect. 3.2] in such a way that the exponents in Theorem
1.4 match those in [27, Conj. 1.1, p. 3].

Definition 2.1 A Campana orbifold over a field F is a pair (X, D) consisting of a proper,
normal variety X over F and an effective Cartier Q-divisor

D, = Z €u Dy

acA

on X, where the D, are prime divisors and ¢, = 1 — m%x for some my € Z=2 U {oo} (by

convention, we take é = 0). We define the support of the Q-divisor D, to be

Dred = Z Doz~

acA

We say that (X, D¢) is smooth if X is smooth and Drq has strict normal crossings (see [31,
Sect. 41.21] for the definition of strict normal crossings divisors).

Let (X, D¢) be a Campana orbifold over a number field K. Let S C Val (K) be a finite
set containing Seo.

Definition 2.2 A model of (X, D¢) over Ok s is a pair (X, D¢), where X is a flat proper
model of X over Ok s (i.e. aflat proper Ok s-scheme with X(0) = X)andDe = ), 4 €aDa
for D, the Zariski closure of D, in X.

Define Dyeg = ), e Dq. Denote by Dy, , oy € Ay the irreducible components of Dreg
over Spec O,. We write o, | o if Dy, C Dy.

Let (X, D¢) be amodel for (X, D¢) over Ok s.Forv ¢ S, any P € X (K) induces some
Py € X (O,) by the valuative criterion of properness [14, Thm. I1.4.7, p. 101].

Definition 2.3 Let P € X (K) and take a place v ¢ S. For each «,, € A,, we define the
local intersection multiplicity ny (Da,, P) of Dy, and P at v to be 00 if Py C Dq,, and the
colength of the ideal P;D,, C O, otherwise. We then define the quantities

1y (Do, P) =Y 1y (D P). 1y (De, P) =Y €qny (Du, P).

oy |a acA
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Campana points and powerful values... 631

We are now ready to define weak Campana points and Campana points. Both notions arise
from [1], with the former appearing in its current form in [2, Sect. 1].

Definition 2.4 We say that P € X (K) is a weak Campana Ok s-point of (X, D) if the
following implications hold for all places v ¢ S of K and for all « € A:

(1) If €, = 1 (meaning m, = 00), then n, (Dy, P) = 0.
2) If ny (D¢, P) > 0, then

1
Y —nu(De, P) = 1.
m

acA Y

We denote the set of weak Campana Ok s-points of (X, D¢) by (X, De)yw (OK,S).

Definition 2.5 We say that P € X (K) is a Campana Ok s-point of (X, D) if the following
implications hold for all places v ¢ S of K and for all @ € A.

(3) If ¢, = 1 (meaning m, = 00), then n,, (Dy, P) = 0.
(4) If ¢4 # 1 and n,, (DO,U, P) > ( for some o, | «, then n,, (Dav, P) > My.

We denote the set of Campana Ok s-points of (X, D) by (X, De) (Ok,s)-

Remark 2.6 Informally, weak Campana points are rational points P € X (K) avoiding
Ue,=1Dy which, upon reduction modulo any place v ¢ S, either do not lie on Dyeq or lie on
D, with multiplicity at least m, on average over «. Similarly, Campana points are rational
points P € X (K) avoiding U, —1 D, which, upon reduction modulo any place v ¢ S, either
do not lie on Dyq or lie on each v-adic irreducible component of each D, with multiplicity
either O or at least m.

Remark 2.7 Our definition of Campana points differs from the one in [27, Sect. 3.2], in
which one requires simply that n, (Dy, P) > m, instead of n,, (Dav, P) > m, in the second

implication. If one were to apply this definition to the orbifold (P‘Il(_l, A,‘;;) of Theorem 1.1,

which is singular for all d > 3 as Z (Ny) is not a strict normal crossings divisor in this
case, then the weak Campana points and the Campana points would be the same, but the
asymptotic of Theorem 1.1 differs to [27, Conj. 1.1, p. 3] for d > 3 (at least if one takes the
thin set there to be the empty set). Using the definitions above, we obtain the asymptotic for
Campana points in Theorem 1.4, whose exponents match this conjecture.

Lemma 2.8 Let (X, D¢) be a smooth Campana orbifold over a number field K which is
Kawamata log terminal (i.e. € < 1 for all @ € A), and let (X, D) be a model of (X, D¢)
over Ok s with X smooth over Ok s and Dyq a relative strict normal crossings divisor in
X/Ok s as defined in [17, Sect. 2]. Then the definition of Campana points on (X, D¢) above
coincides with the one in [27, Sect. 3.2].

Proof Since Dyeq is a relative strict normal crossings divisor, each irreducible component
Dy is smooth over Ok s. In particular, its base change over Spec O, is smooth for any
v ¢ S, so the divisors Dy, @, | « are disjoint. Then, for any rational point P € X (K),
the reduction of P at the place v can lie on at most one of the divisors Dy, ay | o, so
ny (Do, P) = Y 1o v (Da,» P) is either O or at least m, if and only if each n, (Dq, . P),
oy | @, is either O or at least m,,. m|
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632 S. Streeter

2.2 Toric varieties

Eeﬁnition 2.9 An (algebraic) torus over a field F is an algebraic group T over F such that
T = G}, for some n € N. The splitting field of a torus T over a field F is defined to be the
smallest Galois field extension E of F for which Tg = GJ,.

Definition 2.10 A toric variety is a smooth projective variety X equipped with a faithful
action of an algebraic torus 7 such that there is an open dense orbit containing a rational
point.

Definition 2.11 Let T be a torus over a field F. The character group of T is X* (T) =
Hom (T, Gm), and we have X* (T) = X* (T)GF. The cocharacter group of T is X, (T) =

Hom (X* (T), Z), and we have X, (T) = X, (T)GF. We let X* (T)p = X* (T) ®z R and
Xy (Tr = X (T) @z R.

Definition 2.12 An algebraic torus T over a field F is anisotropic if it has trivial character
group over F,ie. X*(T) =0.

Let T be a torus over a number field K with splitting field E. Set Too = [],o, Tv- For
v € Val (K), let T (O,) denote the maximal compact subgroup of 7T (K,).

v|oo
Definition 2.13 Let v € Val (K) and w € Val (E) with w | v.
For v 1 co with ramification degree ¢, in E /K, define the maps
degT,u (T (Ky) = Xu (Ty), ty=> [xo = v (o ()]

and degr g, = ey degy .
For v | oo, define the maps

degT,v T (Ky) = X (Ty)r, t = [xo = loglxe ()]

and degTyEyv =[Ey: Kv]degT,v.
Finally, define the maps

degr = Y (loggy)degr,, degrp= Y (logqy)degr s,
veVal(K) veVal(K)

Lemma 2.14 [4, Sect. 2.2], [19, Sect. 4.2] Let v € Val (K), and let f be either degT’v or
degr g -

(1) If v is non-archimedean, then we have the exact sequence

0— T (Oy) > T(Ky) i) Xy (Ty) .
The image of f is open and of finite index. Further, if v is unramified in E, then f is

surjective.
(1) If v is archimedean, then we have the short exact sequence

0= T (0) = T (Ky) > X, (T,)z — 0.

Further, f admits a canonical section.
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Campana points and powerful values... 633

(iii) Letting g be either degy or degr p and denoting its kernel by T (Ax)", we have the
split short exact sequence

0— T (Ax)' = T (Ag) > X, (T)g — 0,
hence we have an isomorphism
T (Ak) =T (Ak)' x Xy (D). 2.1

Definition 2.15 Let x be a character of T (Ag). We say that x is automorphic if it is trivial
on T (K). We say that x is unramified at v € Val (K) if x, is trivial on T (O,), and we say
that it is unramified if it is unramified at every v € Val (K).

. . degr
The canonical sections of the maps T (K,) I X« (Ty)g for each v | oo from
Lemma 2.14(ii) induce a canonical section of the composition

T (Ak) = [T (Kp) > Xa (Too)g

v]oo
which in turn induces a “type at infinity map”
T (A" = X" (To)rs X F> Xoo- (2.2)
Defining K7 =[], 7 (Oy), the splitting (2.1) for ¢ = deg; induces a map
(T A /T (K)Kr) = X* (Too)r

which has finite kernel and image a lattice of codimension rank X* (7T) (see
[4, Lem. 4.52, p. 96]).

Note 2.16 When T is anisotropic, we have T A)' = T (Ag) by Lemma 2.14(iii), and
then we see from the above that there is a map

(T (Ag) /T (K)Kr) = X* (Too)r

with finite kernel and image a lattice of full rank.

2.3 Hecke characters
Definition 2.17 A Hecke character for K is an automorphic character of G,, k.

Each Hecke character x has a conductor q (x) € N (see [18, Sect. 5.10]), which measures
the ramification of x at the non-archimedean places of K.

Definition 2.18 A Hecke character is principal if it is trivial on G, x (A)'.

By Lemma 2.14¢(iii), x is principal if and only if x = || - ||’ for some 6 € R, where || - ||
denotes the adelic norm map, i.e.

. 1
Il A% = S' o= [ b
veVal(K)
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634 S. Streeter

Definition 2.19 The (Hecke) L-function L (x, s) of a Hecke character x is
-1
Lmnzﬂo—ﬁ@Q ,
. a3

where the product is taken over all places v 1 co at which y is unramified.
The Dedekind zeta function of K is

{k (s)=L(l,s).

Given a Hecke character x for a number field L and w € Val (L), we denote by Ly, (x, )
the local factor at w for the Euler product of L (yx, s), i.e.

( _ Xw(mw)
Lw (X, S) = Gu
1 otherwise.

—1
) if w { oo and x is unramified at w,

When working over the field L D K, we define L, (x, s) for each v € Val (K) by

Ly (6. 8) =[] Lu (x.9).

wlv

Theorem 2.20 [15, Sect. 6] The L-function of a Hecke character x admits a meromorphic
continuation to C. If x = || - ||' for some 6 € R, then this continuation admits a single pole
of order 1 at s = 1 + i6. Otherwise, it is holomorphic.

Definition 2.21 Let ¢ be a character of Hvloo K. The restriction of v to each R.g C K
is of the form x > |x|** for some k, € R. We define

¥l = max [k |.
v|oco
Lemma 2.22 [18, Exercise 3, §5.2, p. 100] Let x be a non-principal Hecke character of K,
let C be a compact subset of Res > 1 and let ¢ > 0. Then
L(x,s) <e.c g (07 (L4 Il (s =Dk (5) Kc 1, seC.

Definition 2.23 Let E/K be Galois, let x be a Hecke character for E and let g € Gal (E/K).
We define the (Galois) twist of x by g to be the character

xS A = S () = X (8w (tw)gw) -

Here, gw denotes the place of E obtained by the action of g on Val (E), and g, : Eyy — Egy
is the induced map on completions. One may easily verify that x & is trivial on E*, hence it
is also a Hecke character for E.

3 The norm torus
In this section, we fix an extension of number fields L/K of degree d > 2 with Galois

closure E and a K-basis @ = {wo, ..., wq—1}. We write Ny, (xg, ..., xy—1) for the norm
form corresponding to w, and G = Gal (E/K). From the equality

No (o, .- oxa-D = [  (og @)+ +xi18 (@i-1)), @3.D
geG/Gal(E/L)
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Campana points and powerful values... 635

we see that N, is irreducible over K and has splitting field £. We denote by T the norm
torus T = IP”Iigl \ Z (Ny). As noted in [19, Sect. 1.2], P‘;{l is a toric variety with respect
toT,and T = Ry /G, /G,y is anisotropic. Since its boundary is Z (Ny), its splitting field
is E. We have the short exact sequence

0— Gy — RykGpu — T — 0. 3.2)

Note 3.1 The isomorphisms 7' (Ax) = A} /A% and T (K) = L*/K* follow from Hilbert’s
Theorem 90 [22, Prop. IV.3.8, p. 283] by applying Galois cohomology to (3.2). They allow
us to interpret an automorphic character x of 7 as a Hecke character for L, and we will
do so frequently. In fact, distinct automorphic characters of 7' correspond to distinct Hecke
characters of L by [3, Cor. 1.4.16, p. 606] and [3, Thm. 3.1.1, p. 619]. Since T (K,) =

(]_[w‘v L*w) /K foreachv € Val (K), we see that, if x is unramified at v, then it is unramified

as a Hecke character at all w | v. In particular, if x is unramified at v and v is unramified in
L/K, then ]—Iw|v Xw (7Tyw) = 1, since 7, is a uniformiser for L., for each w | v.

3.1 Geometry

In this section we study fan-theoretic objects related to 7. We begin by describing the fan
X C X, (T)R associated to the equivariant compactification IP”;{] of T and the associated
piecewise-linear function ¢y (see [3, Sect. 1.2]) used to define the Batyrev—Tschinkel height
function.

Denoting by lo (x),...,lg—1 (x) € E[x] the E-linear factors of N, (x), we have the
E-isomorphism

d—1 d—1
o:T=P""\Jzt) > G, '=P""\[JZ(x)).
i=0 j=0
[x0, ..., Xa—11 > [lo (x), ..., la—1 (X)].
By [16, Sect. 1.1], the fan associated to ]P",’;1 as a compactification of Gfi:é is the fan whose
r-dimensional cones are generated by the r-fold subsets of {¢(,, ..., ¢/, _;}forO <r <d—1,
where ¢/ € X, (Gfrfl) = Hom (G, an’l) is defined by
¢ Gy — GL' e [x0i (0 ... Xa—1i (D],

where in turn

tifi =j,
xji ()=
5 @) {lotherwise.

Definition 3.2 Sete; = o 1o el{ fori =0,...,d — 1, and define X to be the fan whose
r-dimensional cones are generated by the r-fold subsets of {eg, ..., egs—1} forO <r <d—1.

It follows that X is the fan associated to IF"f;l as a compactification of Tg. Also, we see
that Y/ e; = Oand that {ey, . . ., e4—1} is the dual of the basis {m1, ..., mq_1} of X* (T),
where m; (x) = {8 fori =1,....d — 1.

We now show that the action of G on X (1) is compatible with its action on the E-linear
factors of N,. Denote by * the action of G, and set [g(;) = g * ;.
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636 S. Streeter

Lemma3.3 Forallg e Gandi =0,...,d — 1, we have
g *e = €g(i)-

Proof Let g € G. It suffices to show that

(g xei) (m)) = egiy (m)) (3.3)
foralli € {0,...,d—1}and j € {1,...,d — 1}. Note that, forany i, j, k € {0, ...,d — 1},
we have ;
e (7) =0ij — ik, (3.4)
k

where §;; is the Kronecker delta symbol, defined by

s |1 iti=,
Y710 otherwise.

Then (3.3) becomes

Big1(j) — Sig-10) = Sgirj — Sgo-
which clearly holds. |

By [16, Thm. 1.22,p.217], X is the fan associated to the compactification IP’”,I(_I = IP‘fE_l/G
of T over K.

By [3, Prop. 1.2.12, p. 597], the line bundle L (¢yx) associated to the piecewise-linear
function ¢x : X, (ﬂR — R (see [3, Prop. 1.2.9, p. 597]) defined by ¢5 (¢;) = 1 for all
i =0,...,d— 1is the anticanonical bundle —Kpa-1.

It follows from the above that G acts transitively on X (1) = {{eo), ..., (e4—1)}. For
v € Val (K) non-archimedean, let G, denote the associated decomposition subgroup of G.
By the proof of [3, Thm. 3.1.3, p. 619], the G -orbits of X (1) are in bijection with the places
of L over v, and the length of the G, -orbit corresponding to a place w | v is its inertia degree.

Proposition 3.4 Let v € Val (K) be non-archimedean with ramification degree e, in E/K,
and let

=z

wlv

denote the decomposition of ¥ (1) = {{eo), ..., (eq—1)} into Gy-orbits. For each w | v,
let ny, be the sum of the elements of X, (1) and let fy, (x) be the product of the linear
factors in the Gy-orbit of {ly, ..., la—1} corresponding to ¥, (1) by Lemma 3.3. Then the
map degr g, T (Ky) = X« (Ty) is given by

v (fw (fv))
e Z deg fi o

wlv

Proof. The image of t, in X, (T,) = X, (T)G” under degy g, is the cocharacter

@, X5 (Ty) = Z, A eyv (A ().
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We first show that {n,, : w | v} spans X, (ﬂG". Given g € G and 0 = :Z:_Ol ajej, we

have g x 0 = Zfl;ol ag-1(jy¢i, 80 g * 0 = o if and only if there exists ry € Z such that
ai =ag-14 +ryg foralli € {0,...,d — 1}. Setting s = #G, we have

@i = Qgs(i) = Ags-1(j) T Tg =+ =i +57g,

hence rg = 0. We deduce that o € »Gv if and only if ¢; = a; for all ¢;, e; in the same
G ,-orbit, so the result follows. Moreover, we observe that wa Ay = Zw‘v byny if
and only if there exists r € Z such that b,, = a,, + r for all w | v, since there is a unique
expression for o € X, (T) in the form o = Z;j:_ol cie; where cg = 0.

Now, write
= E Uyhy.

wlv

Define u; € X*(T) and ,, € X* (T)G“ foralli € {0,...,d — 1} and all w | v by

li d w
= S = [ i =L @)

Ny (x)° ey N, (x )degfw'
By (3.4), we have
d—1 ifi=j],
é (M]) n {—1 otherwise.
Then, setting d,, = deg f,,, we see that
ddy, —d* ifw=1uw,
Ny (Ay) = Y v .
—dydyy otherwise,
so we deduce that
eyv (Ay (1)) = ddyoy —dy Z dyy Oty (3.5)
w'|v
for all w | v. On the other hand, we have
eV (Ay (1)) = epdv (fu (ty)) — evdy v (fuw (). (3.6)
w'|v
Set By = dyoy — eyv (fy (t,)). Combining (3.5) and (3.6), we obtain
d,Bw = dw Z lsw/,
w'|v
hence B,y = %ﬂw for all w | v, w’ | v. Since K, = Eg” for any w | v, it follows that

dy | v(fw (ty)), so By € dyZ for all w | v. We deduce that there exists an integer n € Z
such that, for all w | v, we have 8,, = dyn, hence

v (fw () in

w = €y

deg fu
Since 3, nw = >_; i = 0, we conclude that
v (fw ()
¢, =e — . o
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We now study polynomials introduced by Batyrev and Tschinkel in [3, Sect. 2.2], which
play a key role in the analysis of local Fourier transforms in Sect. 5.

Definition 3.5 Let v € Val (K) be non-archimedean, and let ¥ (1) = U§=1 %; (1) be the
decomposition of ¥ (1) into G,-orbits. Let d; be the cardinality of ¥; (1). For each %; (1),
define an independent variable u;. Let o € »6v, and let ¥, (HU---U X, (1) be the set of

1-dimensional faces of o. We define the rational function

di] dik
Roy i, ...,u) = d.n i .
(l—ui' )...(1_14"1()
1 it
and we define the polynomial QO , (u1, ..., u;) by
QZ,U(M17-..7I/”) = Z RU’v(l/tl,...,u[),

(=) (1-ud)

Proposition 3.6 For all non-archimedean valuations v € Val (K), we have
d d,
Oso @i, ...;u)=1—ui"---u.
Proof Observe that the G ,-invariant cones in X are precisely those cones generated by a set
of 1-dimensional cones of the form %; (1) U--- U X; (1) for some iy, ..., i € {1,...,1}
pairwise distinct with £ < [. From this observation, we deduce that

~

-1 d;
Os,o Ui, ..., u

1) _ 3 k
dl dl - Z Z di] d,'k :
(1—141)---(1—141) k=1i1,...ixell,..., 1}<1_”i1)"'(1_”ik)

pairwise distinct

In particular, we see that

!
Oso(r,....up= Y H(ti+(1—2fi)“7i)_”fl"'”7[lv

(11,1 €{0, 1) i=1

so it suffices to prove that

3 ]L[(ti + =2 ul) =1, 3.7)

(11,10, 1} i=1

Splitting the sum into two smaller sums for #; = 0 and #; = 1, we obtain

Z IL[(ti-i-(l—Zti)M?i)

(11,....1)€f0, 1} i=1

S () Y T a2

(12.0s1n) {0, 1)1 i=2

3 ]L[(zi+(1 —2t,')u;1i).

(IS tn)E{Oxl}Iil i=2

Repeating this process for each variable #,, . . ., ;, we deduce (3.7). m|
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3.2 Haar measures and volume

Let w be an invariant d-form on 7'. By a classical construction (see [12, Sect. 2.1.7]), @ gives
rise to a Haar measure |w|, on T (K,) foreach v € Val (K). In [23, Sect. 3.3], Ono constructs
the convergence factors

—1 .
cv=iLv<x*<ﬂ,l> if v f oo,
1 if v | co.

Here, L, (X* (T), s) is the local factor at v of the Artin L-function L (X* (T, s). Defining
My =Cy Hwl,, the product of the w1, converges to give a Haar measure © on T (Ag ), which
is independent of @ by the product formula.

Note 3.7 From the short exact sequence (3.2), we obtain

. L (s)
L M)5) = Gy

Lemma 3.8 With respect to the Haar measure u, we have

vol (T (Ag) /T (K)) = dReSf:l oL (s)

Ress—1 ¢k (5)
Proof By [23, Sect. 3.5] and [24, Main Thm., p. 68], we have
| Pic T|
vol (T (Ag)' /T (K)) = ———L (X*(T), 1),
()t /7 00) = BT (x (7). 1)

where 111 (7) is the In this proof, two equations appear in overly large font in the eProof,
although they are the correct size in the PDF version. of T, i.e.

II(T) =ker | Hy (K. T) > [] H&(Ko. T)
veVal(K)

By [29, Prop. 8.3, p. 58] and [19, Cor. 4.6, p. 2568], the rationality of 7 implies that I1I (T")
is trivial. Further, we have Pic T = 7Z/dZ (see [14, Prop. I1.6.5(c), p. 133]). Since ¢k (s) and

¢r (s) both have a simple pole at s = 1, we have L (X*(T), 1) = g::%%. Finally, as T

is anisotropic, we have T (Ap)' =T (Ag). O

4 Heights and indicator functions

In this section we define functions which allow us to use harmonic analysis to study weak
Campana points. Let L /K be an extension of number fields with K -basis® = {wo, ..., wg—1}
and Galois closure E/K. When L = E, foranyi,j € {0,...,d —1}and g € G =
Gal (E/K), write

d—1 d—1 d—1
ij g
w;-wj = E ai wi, g (w;) = E byowg, 1= E Crwg.
k=0 k=0 k=0

Definition 4.1 W_hen L = E, wedefine S (@) to be the minimal subset of Val (K) containing
Soo such that @, bf,cx € Oy forall v ¢ S(w),i,j.k € {0,....,d — 1} and g € G.
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Otherwise, we define S (@) to be the minimal subset of Val (K') containing S such that N,
is an irreducible polynomial over Ok s(w)-

Remark 4.2 When L = E, by (3.1), the S (w)-integrality of the a,ij and b,f implies that N,
is defined over Ok s(w), While the S (w)-integrality of the c; implies that the coefficients of
N, are not all divisible by some o € Ok s(w) \ O; S()* Since N,, is irreducible over K, we
deduce that N,, is irreducible over Ok s(w), hence, for any L, the Zariski closure of Z (Ny)
in PG 18 Proj Ok s@)[x0; - -, Xa—11/ (No)-

From now on, we fix the model (]P’é_l(].s(w) , D,‘;’l) for (P‘[i(_l , Aﬁ"n), where D =
(1 — %) Proj Ok sw)l[x0, ..., xa—11/ (Nw). We denote by Dr“éd the support of D&.

Note 4.3 In both the Galois and non-Galois cases, the conditions on S (@) ensure that we
may take the “obvious” model above. The potentially stronger conditions in the Galois case
(in which we obtain our results) ensure compatibility between intersection multiplicity and
toric multiplication, as we shall see in Sect. 4.2.

Remark 4.4 When L = E and w is a relative integral basis, we get S (@) = S0, since every
algebraic integer is expressible as an O -linear combination of elements of a relative integral
basis, and Oy is closed under multiplication and conjugation.

4.1 Definitions

Definition 4.5 [3, Sect. 2.1] For each place v of K, we define the local height function
H,: T (Ky) — Rog, 1, > e?=(de8rpu)logan,
We then define the global height function

H:T(Ak) = Reo. (), [ Ho).
veVal(K)

Definition 4.6 For each place v ¢ S (), define the function

max({|x; |4}
[No (x) Iy
Remark 4.7 Note that H, (x) > 1 forall x € T (K,). Indeed, one may always select v-adic

coordinates x; such that max{|x;|,} = 1, and N, has coefficients in O, by Remark 4.2, so,
by the strong triangle inequality, we have [Ny, (x) |, < 1.

H:T(Ky) = Rop, x>

Lemma 4.8 For all but finitely many places v ¢ S (), we have H), = H,,.

Proof Note that H, is the local Weil function associated to the basis of global sections of
—Kpa-1 consisting of all monomials of degree d in [3, Def. 2.1.1, p. 606]. It is well-known
(see [12, Sect. 2.2.3]) that two height functions corresponding to adelic metrisations of the
same line bundle are equal over all but finitely many places. |

Definition 4.9 We define the finite set
S (@ =S@U{v¢Sw):H#H,}U{veVal(K): E/K is ramified at v}.

@ Springer



Campana points and powerful values... 641

Definition 4.10 For each place v ¢ S (@), define the local indicator function

1 if H) (t,) = lor H) (t,) > qI".

:T(K,) — {0,1}, t, —
v (Ko) 0.1 v 0 otherwise.

Setting ¢p,,» = 1 for v € S (w), we then define the global indicator function

b T (k) —> (0,1}, (t)y > [ bmo ).

veVal(K)

Remark 4.11 Let v ¢ S (w) be a non-archimedean place of K. Since H), is continuous with
discrete image in R. g, its level sets are clopen. It follows that ¢,, , is continuous for all
v € Val (K). Also, since ¢y, (T (Oy)) = 1 forall v ¢ S’ (w) by Lemma 2.14(i), we see that
¢ 1s well-defined and continuous on 7 (Ag).

Lemma4.12 The weak Campana Ok s(w)-points of <]P"11(_1, A%) are precisely the rational
pointst € T (K) such that ¢, (t) = 1.

Proof. Take v ¢ S (w), and let 19, ..., t;—1 be a set of Oy-coordinates for ¢t € T (K) with at
least one #; € O}. Then we have
1 (Noloseta)) _ 1o(D24.1)
H/(t): — VN0, sld—1 :ql/ red’ .
’ INo (t0, - ta-D) |y _ !
O O
4.2 Invariant subgroups
For this section, let L = E be Galois over K.
Lemma4.13 Forallv ¢ S(w) and x,y € T (Ky), we have
Hy (x-y) < Hy (x) Hy (y).
Proof. Choose sets of projective coordinates {xo, ..., xg—1} and {yo, ..., yg—1} for x and y
respectively. Note that
(xowo + -+ + Xg—1wg—1) - Yowo + -+ + Ya—1w4—1) = (Zowo + -+ + Za—10d—1)
where, for a,’;j € O, as in Definition 4.1, we have
d—ld—1
=33y,
i=0 j=0
Using Ny, (x - y) = Ny (x) Ny (y) and the strong triangle inequality, we deduce that
ey MU S
X-y)=
! [N (x-¥) |y
d d
i o max{|x;|4} max{|y;
fmax{|a]lcj|f}l} {l l|u} {lyjlv} <H/ (x) Hl: (y) O

[No (X) v INo (W) v — !
Lemma 4.14 For any place v ¢ S (@), the level set

Ky =A{ty €T (Ky): Hl/; (ty) =1}
is a subgroup of T (Oy).
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Proof From Proposition 3.4 and Lemma 2.14(1), it is clear that H), (t,) = 1 implies 1, €
T (0y), s0 Ky C T (Oy). It is also clear that H), (1) = 1, and closure under multiplication

follows from Lemma 4.13 and Remark 4.7. It only remains to verify that x € C, implies
-1

x~' € K. Let x € Ky, and choose coordinates xg, ..., xgy—1 With max{|xi|‘,f} = 1. Since
H) (x) = 1, we must have | Ny, (x) |, = 1. Note that
1 1
(xowo + + -+ Xg—10g-1) = 1_[ (x0g (o) + -+ + x08 (@w0)) -
Nw (X(), ceey xd—l)
geG
g#lG

Recursively applying Lemma 4.13, we obtain

Hy(x7") < [] H (e ).
geG
g#lG

By Remark 4.7, it suffices to show that, for any ¢ € G, we have H, (g (x)) = 1. Since
Ny (g (x)) = N, (x), it suffices by Remark 4.7 to show that max{|g (x); |,} < 1. This
follows from the fact that b,‘f € O, since v ¢ S (w), see Definition 4.1. O

Corollary 4.15 For every place v ¢ S (w), the function H, is KC,-invariant.
Proof Take x € K,,and lety € T (K,). Then by Lemma 4.13, we have
Hy(x-y) < Hy (x) H) (y) = H, (¥),
while on the other hand, since x~! € K, by Lemma 4.14, we have
Hy () = Hy(x7 - (- y) < H) () H) (x-y) = H) (x - ),
so we conclude that H, (x - y) = H), (y). O

Lemma4.16 For each place v ¢ S (w), the functions H, and ¢, are both IC,-invariant
and 1 on IC,,. Further, IC, is compact, open and of finite index in T (O,). Moreover, when
v ¢S (w), we have Ky = T (Oy).

Proof Let v ¢ S (w). By [3, Thm. 2.1.6(i), p. 608], H, is T (Oy)-invariant, hence trivial
and invariant on all of 7 (O,). By Corollary 4.15, the function ¢, , is K,-invariant; since
Om.v (1) = 1, it is also trivial on /C,.

Now, since K, = (Hf,lr(ov))_] ({1}), it is open. Since the cosets of an open subgroup
form an open cover of a topological group, any open subgroup of a compact topological
group is closed and of finite index. Then I, C T (O,) is closed, hence compact, and of finite
index. Finally, we note that, when v ¢ S’ (w), we have H, = H,, and H, ' ({1}) = T (O,)
by Lemma 2.14(i) and the equality ¢5' ({0}) = {0}, s0 K, = T (O). O

Definition 4.17 Foreachv € S (w), set K, = T (Oy). Let K = ]_[ve\,al(K) Ky, and let U be

the group of automorphic characters of 7 which are trivial on /.

4.3 Height zeta function and Fourier transforms

Definition 4.18 For Re s >> 0, we define the height zeta function

O (x)
H x)*’

Zn:C—C, s Z
xePd—1(K)
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Definition 4.19 Let u, and u be the Haar measures introduced in Sect. 3.2. Let f :
T (Ag) — C be a continuous function given as a product of local factors f, : T (K,) — C
such that f, (T (O,)) = 1 for all but finitely many places v € Val (K). For each place
v € Val (K) and each character y of T (Ag), we define the local Fourier transform of x,
with respect to f, to be

ﬁv(fv7Xu;_S)=/ M

du
Tk, Ho ()’ '

for all s € C for which the integral exists. We then define the global Fourier transform of x
with respect to f to be

Hf.ii—= [] ﬁv(fv,xv;_s):/ SFOx®,

N
veVal(K) T H®

5 Weak Campana points

In this section we prove Theorem 1.1. Fix an extension of number fields L/K of degree d
with K-basis w, set ' = T, as in Sect. 3 and let m € Zx».

5.1 Strategy

Following [3,19], we will apply a Tauberian theorem [3, Thm. 3.3.2, p. 624] to our height
zeta function Z,, (s) in order to find an asymptotic for the number of weak Campana points
of bounded height. By loc. cit., it suffices to show that Z,, (s) is absolutely convergent for
Res > % and that Z,, (s) (s — %)b(d’m)
Res > % which is not zero at s = % In order to do this, we will apply the version of the
Poisson summation formula given by Bourqui [4, Thm. 3.35, p. 64]. Formally applying this
version with G = T (Akg), H = T (K), dg = du, dh the discrete measure on T (K) and

F@) = f}”(t(;g for some s € C with Re s > % gives

admits an extension to a holomorphic function on

1 ~
Zy (5) = H (¢, x5 —5) . 5.1
©) = ST /T<K))XG(T<AKZ>/T<K>)A (Gm> x5 =) (5.

5.2 Analytic properties of Fourier transforms

Lemma 5.1 For an)j\place v € Val (K), any character x, of T (Ky) and any € > 0, the local
Fourier transform H, (qu,v, Xvs —s) is absolutely convergent and is bounded uniformly (in
terms of € and v) on Res > e.

Proof Let Res > e. Since

|ﬁv (d’m.vv Xvs _S) | < /

T(Ky)

Dm v () xv (ty)

ooy | s H, (1,1; —€),
v v

it suffices to prove that ﬁv (1,1; —e) is convergent. For v | oo, this follows from
[3, Prop. 2.3.2, p. 614], so assume that v { co. The following argument is essentially the
one in [3, Rem. 2.2.8, p. 613], but we fill in the details for the sake of clarity.
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Since H, and du, are T (O,)-invariant and /T((’)I,) du, = 1, we have
H,(1,1; —€) / by > L
v (L 15 —€) = Py = —=-
(k) Ho (8)° ceri oy HY (%)

Now, by Lemma 2.14(i), T (K,) /T (O,) can be identified with a sublattice of finite index in
X (Ty), and this sublattice coincides with X, (7,) when v is unramified in L /K. Then we
see that, interpreting H,, as a function on X, (7}), we have

1 1
Z H, (E)E = Z H, (ny)¢ ’

HeT (Ky)/T(Oy) ny€Xx(Ty)
and the proof of [3, Thm. 2.2.6, p. 611] and Proposition 3.6 give
= ()0 5)
Y o= ()05
€ d s
nyeXolTy) Hy (ny) W/ qy
so we deduce that ﬁv (1, 1; —e) is convergent, and this concludes the proof. O

Lemma 5.2 For any v € Val (K), the local Fourier transform ﬁv (¢m,v, 1; —s) is non-zero
forall s € R..

Proof The proof is analogous to the proof of [19, Lem. 5.1, p. 2575]. |

Lemma5.3 Let L = E be a Galois extension of K. For any place v € Val (K), let x, be a
character of T (Ky) which is non-trivial on K. Then

ﬁv (¢m,v7 Xvs _S) =0.
Proof Since ¢, , and H, are C,-invariant, the result follows by character orthogonality. O

Corollary 5.4 Let L = E be a Galois extension of K, and let x be an automorphic character
of T. If x ¢ U for U as in Definition 4.17, then

H (G, x; —s) =0.

Lemma5.5 Let v t 0o be a non-archimedean place of K unramified in L/K, and let x be
an automorphic character of T which is unramified at v. Then we have

-~ 1 w )\ ™! _
Hv(l,xu;—s)z(l—ﬁ)ﬂ(l—w) =Ly (X, 9) Ck o (ds) 7

2 G
Proof The result follows from [3, Thm. 2.2.6, p. 611] and Proposition 3.6. O
Definition 5.6 Givena vectoru = (uy, ..., u,) € N, define f; , , (x1 ..., x,) tobe the sum
of all degree-n monomials in xy, ..., x, weighted via u, i.e.
Srnu (X1, 000, x0) = Z xptoxl
iy uiai=n
Via;€Zxq
Set

Srn (X1, %) = fr,n,(l,...,l) (X1s ey Xr).
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Proposition 5.7 Let v ¢ S’ (w) be a non-archimedean place of K, and let x € U. Let
wi, ..., w, € Val (L) be the places of L over v. Let u; be the inertia degree of w; over v for
eachi =1,...,r. Set

Cx,v,n = fr,n,u (le (ﬂwl) yoees Xwy (T[wr)) .

Then, for Res > 0, we have

~ c Cy vn—d
Hy (fm.v: xv: —s) —1+Z X”"qm“"
v

Proof Lets € CwithRes > 0. As x € U and v ¢ S’ (w), it follows that x is unramified at
v. Then, expanding geometric series, we have

r X -(]T ) -1 00 .
LU(X’S):H<1_W> :1+Z xon
v n=1

ns
i=1 9o

so, by Lemma 5.5, we obtain

Cx.vn — Cxvn—d

ns
9y

00
Hy (1, xv; —5) =1+Z

n=1

On the other hand, we may write

~ Xv (tv)
H(1,X;—s):f —E / Xo (ty) d iy,
v ! 7(k,) Hy (lv) 0‘]{)“ v (ty)=q}! o ’

so, comparing these expressions, we see for n > 1 that

Cyx.v,n — Cxun—d = / Xv (By) d .
Hy(ty)=q}

Since v ¢ S’ (w), we have ¢y, , (t,) = 1 if and only if H, (t,) = 1 or Hy (t,) > ¢, so the
result follows.

5.3 Regularisation

Now that we have expressions for the local Fourier transforms at all but finitely many places,
our goal is to find “regularisations” for the global Fourier transforms, i.e. functions expressible
as Euler products whose convergence is well-understood and whose local factors approximate
the local Fourier transforms well (as expansions in g,) at all but finitely many places. As in
[3,19,27], we will construct our regularisations from L-functions.

Proposition 5.8 Let G be a subgroup of Sy acting freely and transitively on {1, ..., d}, and
let m > 2 be a positive integer. Let S, act upon G™ by permutation of coordinates, and let

G act on G™ /S, by right multiplication of every element of a representative m-tuple. Set
S(G,m) = (G"/Sn) /G.

) If(g1,--->8m) = (h1,..., hy) in S (G, m), then

d d
D Xy X = D Xhii) K (5.2)
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hence, for (g1, ..., 8m) € S (G, m), we may define the sum

------

(i) If (g1, ---» 8&m) # (h1, ..., hw), then the sums ¢~ (x1, ..., Xq) and ¢g——~

,,,,,,,,,,

(X1, ..., Xxq) share no summands. Further, a monomial appears twice in @rgn)
(X1, ..., xq) ifand only if (g1, ..., 8m) = (818 ---, &m&r) for somer € {1, ..., m}
with g # 1g.
(iii) If d is coprime to m, then we have
fam @ XD =Y Blergy) (1 Xa)

(815ees 8gm)€S(G,m)
@iv) Ifd is prime and m = kd, then we have

fam (1o x) +d = Dxfexh = > Barram) X153 Xa) .
(815--:8m)E€S(G,m)

Proof First, we prove (i). Note that (gi,...,gm) = (h1,...,hy) if and only if
{hi,....hm} = {g1g,...,8mg} as multisets for some g € G. If the coordinates of
(hi, ..., hy) € G™ are a permutation of those of (g1, ..., gn) € G™, then
'xhl(i) o "th(i) = 'xgl(i) o "xgm(i)
foranyi € {1,...,d}, while if (hy, ..., hy,) = (818, ..., gng) for some g € G, then for
anyi € {l,...,d}, we have
Xg18() """ Xgmg() = Xg1(j) ~* Xgm(j)

for the unique j with g (i) = j. In either case, we obtain (5.2). The claim follows.
Next we prove (ii). Note that for (g1, g2, ..., gm) € S(G,m), we may take g = lg
without loss of generality. Suppose that

XiXgy(i) "+ Xgm(@) = XjXha(j) " Xhm ())
forsome i, j € {1,...,d}. This is equivalent to the equality of multisets
{i,82@),....8m Oy ={j h2a(j),.... hm (D}
Ifi = j, we have
{2@),....gm O}y ={h2 (D), ..., hm (D},

and by the freeness of the action of G on {1, ..., d}, we have (g2, ..., gm) = (h2, ..., hy)
up to reordering, i.e. the m-tuple (1, h2, ..., hy;;) is a permutation of (1g, g2, ..., gn)- If
i # j, we may take g» (i) = j without loss of generality (note that g» # 1¢ in this case),
and we obtain the equality of multisets

{Joh2 ()5 hm (D} = {82 (1), haga (0) 5 .. himga (D)}

Once again, by freeness of the action of G on {1, ..., d}, we get that

{16, 82, 8m} = {82, 282, ..., hing2}

as multisets, from which both claims follow.
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Before proceeding to the proofs of (iii) and (iv), we make the following observation:
if a multiset M = {g1, ..., gn} of elements of G is closed under right multiplication by
some g € G of order n > 2, then n divides m. Indeed, M must contain the n distinct
elements g1, g1, 818>, ..., g1g"~}. Without loss of generality, we may take g; = g;g'~!
for/ =1,...,n. Since {g1,..., g} = {g1, 218, .-, glg”’l} is clearly closed under right
multiplication by g, so is the sub-multiset {g,+1, ..., gn}. [terating this process, we deduce
that n divides the cardinality of M, as otherwise we would eventually obtain a non-empty
sub-multiset closed under right multiplication by g with fewer than n elements, which is
clearly impossible.

We now prove (iii) and (iv). By (i) and (ii), every degree-m monomial in xy, . . ., X7 appears
in a unique summand of Zme S(G.m) P(g1.weegm) (X1 - Xg), and a monomial appears
twice in m (x1, ..., xq) if and only if the multiset {gy, ..., g} is closed under right

multiplication by some g, # 1. By the above, the latter is possible only if the order of g,
divides m, while by Lagrange’s theorem, the order of g, divides d. If d is coprime to m, then
we deduce that no such g, exists, thus we obtain (iii). If d = p is prime and m = kp, then g,
is necessarily a generator of the cyclic group G. It then follows as in the above observation
that

Ty -1 -1

(81:---. 8xp) = (lc,gr,...,gr” oo lgogr gl )
Letting g be a generator of G, we see that ¢(lg,g ’’’’’ T og e ) (xl,...,xp) =
pxy Xy s the only one of the polynomials (f)m(xl, R xp), (gl, R gkp) €
S (G, kp) in which a monomial appears more than once, and so we obtain (iv). ]

Remark 5.9 1t follows immediately from Proposition 5.8 that

1 (d+m—1y . .
45(G.m) — (@5 7) if d and m are coprime,
’ F(() = 1) + Vif d is prime andd divides m
d d—1 p )
since the number of monomials of degree m in d variables is (dZ’fl_l)

Remark 5.10 As we shall shortly see, it is the ability to partition (or in the case where d is a
prime dividing m, nearly partition) the sum of all degree-m monomials in d variables as in
Proposition 5.8 that allows us to construct well-behaved regularisations.

For the rest of this section, let L = E be Galois over K with Galois group G, and assume
that m is coprime to d if d is not prime.

Lemma5.11 Let v ¢ S’ (w) be a non-archimedean place which is totally split in E/K and
let x € U. Then

ni(gl ---- a)eS(Gm) LU (Xgl P Xgm, ms) 1_[

Ly (x®--- x5, ms),
o ovesm—ay Lo (X" x*

m—d’ ms 1
) (gl ~~~~~ 8m)€5’(G,m)

S (G,m)={(g1,....gm) € S(G,m) :#{g1,....gm} <d —1}.
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648 S. Streeter

Proof Let G = {g1, ..., ga}. First, we show that every factor of the denominator of the left-
hand side appears on the numerator. Let (hy, ..., h,—q) € S(G,m —d). Then we claim
that

L, (Xhl ...X”'"*d,ms) =L, (Xhl oy 1 ~-~ng,ms).

Since G acts freely and transitively on the places wy, ..., wg of E over v, we have
S () e XS ()} = Xy (w1 ) 5 -+ Xy (Twg)}
forany i = 1,...,d. Since y, is trivial on £, = T (O,), we have from Note 3.1 that

]_[, 1 Xw; ( ) = x» (1) = 1,50 (38" --- x84),, (my) = 1 for all w | v. Then the equality
follows.
It now suffices to show that, for (h1, ..., hm—a) # (h}. ..., h,_,), we have

(hisoo o hm—d: 81,5 8a) # (R, B o 81, 8d)-

If not, then {K,... A}, ;. g1,....84} = {ght,...,8hm—a. 881, ..., 884} as multisets

for some g € G. Since we have {ggi,...,g84} = {g1,...,ga}, this implies that
{ny, ..., 0,y = {ght,..., ghm—q} as multisets, but then we have (hy,..., hy_q) =
(hy,... R}, _,). which is false. O

Remark 5.12 1t follows from the proof of Lemma 5.11 that #S" (G, m) = S (G, m)
S (G, m — d). Combining this with Remark 5.9, we obtain

, 1 ((d+m—1 m—1
#S (G,m)za<( d—1 )—(d_l)>:b(d,m).

Note that the term - ( d— l) only appears when d < m.

Definition 5.13 For all x € U, Res > 0 and non-archimedean places v { 0o, set

ﬁv (¢m,u: Xvs _S)

Fo v (s) = l_[ Ly (Xgl "'Xgmams), Gy () = F ) ,
@1 gm)eS'(G.m) XV
and define
Fuy ) =[] Fnxow (5) = I L(x% - x% . ms),
vfoo (815--8m)€S'(G,m)
Gy ) =[] GCmoxw . (5.3)
vfoo

For any non-archimedean place v { co, write

ﬁv (¢m,v’ Xvs _S) = Z ax,ir:)sﬁ’

where ay ., = va(tv)=q{? Om.v (ty) Xv (ty) dpiy, and write

mns
9y

b
Fm,X,U (S) =1 + Z st,n?n
=1
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Campana points and powerful values... 649

for the expansion of F, , , (s) as a multidimensional geometric series in g,'*, so

ZOO Ay .,v,n 00
n=0 q{}s dX u,n

oo bx,v,mn Z

ns
1+Zn:] g n=0 Gv

where d, , ,, is defined for all n > 0 by the iterative formula

Gm,x,v (s) =

L]
dx,v,n =dy,vn — be,v,n1rdx,v,n—mr~ 5.4
r=1

In particular, we have dy  , = ay v, forO <n <m — 1.

Corollary 5.14 Forv ¢ S’ (@) a non-archimedean place, we have dy 0 = 1 and dy , , =0
foralln € {1, ..., m}.

Proof Let ¢, , , be as defined in Proposition 5.7. Since v ¢ S’ (w), we have from loc. cit.
thata, y 0 =1,ay, =0forn € {l,...,m—1}anday ym = ¢y ,v.m —Cy,v,m—a. Then, by
(5.4), we see that dy .0 = ay vo0 =1landdy y, = ay vn =0for1 <n <m — 1. Further,
we obtain

dy,vm = ay,v,m — by vmdy,v,0 = Cx,v,m — Cxv.m—d = by vm,

so, to complete the proof, it suffices to show that by, m = ¢y, v.m — Cx,v,m—d-

Since E /K is Galois, all of the places wy, ..., w, of E over v share a common inertia degree
d,.Since x, (T (O,)) = 1,itisunramified as a Hecke character at all of the w; (see Note 3.1),
and for any g1, ..., gm € G,sois x8' --- x8. Then

r 8l ... y8m . -1
L, (Xgl "'Xg”l,ms) _ 1—[ (l _ (x demiwi (ﬂw,)>
= o (5.5)

R 1
=1+ dyms Z (x* "'Xgm)"h' (i) + 0 (q(dumﬂ)s
v

v i=1

First, suppose that v is totally split in £/K. Then (5.5) gives

) D@1z (wn (Tw)) s -+ X () e ( 1 ) .

81 ... y8m —_
Ly (X x® ms) =1+ qms (m+1)s

v

Since G acts freely and transitively on the wj;, it follows from Proposition 5.8 and
Lemma 5.11 that by = Cy v,m — Cx,v,m—d> and 80 dy y m = 0.
Now assume that v is not totally split in E/K. If ged(d,m) = 1, then ¢y v =

Cxoom=d = 0, as ¢y,»,, = O whenever d, { n. If d is prime, then v is inert and we
have H, (d)m,v, Xvs —s) = 1 since T (Ky) = T (Oy). Then, in either case, we have
Cy,vm — Cy,v.m—d = 0, and (5.5) implies that b, , ,, = 0, hence d  ,» = 0. ]

Corollary 5.15 For any x € U, we have

H (b x; =) = [ | Ho (1, Xo3 =) Fuuy () Gy (),

v|oo

where Gy, y (s) is holomorphic and uniformly bounded with respect to x for Res > % and
Gl (%) # 0. In particular, H (¢dm, x; —S) possesses a holomorphic continuation to the
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650 S. Streeter

line Res = .-, apart from possibly at s = —-. When x = 1, the right-hand side has a pole
of order b (d, m)ats = %.

Proof. By construction, H (¢m: x: =) = [Ty0e Hv (1. xvi —5) Fm  (5) Gy (5). We will
prove the stronger result that G, , (s) is holomorphiconRe s > +1 and uniformly bounded

with respect to both y and € on Res > m+s-1 + e foralle > 0.
For a place v f co and s € C with Res = o > € for some € > 0, we have

© 14 x
| = / G (1)
- v (tw) Xu () d ity
nX:(:) q;ls ,12:(:) q'}}g Hv(tl)f%r;l
= Z no / |¢m v (tv) Xv (tv)| d,uv
n=0 qv v (ty)= q1
- / P () 20 )| )
T(Ky) H, (ty)° v

)(Ln

s0, by Lemma 5.1, the series Y - is absolutely convergent and bounded by a constant
depending only on € and v. Now, for any N € N, we have

oo N

} :ax,v,n Z Ay,v,n
ns ns

n=0 qv n=0 T

o0

Z Ay.v.n

ns
n=N+1 v

N ay vl

ne
n=0 9o

from which it follows that Z;O:o “2‘,,”;:” is also uniformly convergent, hence the function
v

ﬁu (qu,v, Xv; —s) is holomorphic on Res > 0. Then, we note that F}, y , (s) is clearly
holomorphic on Re s > 0, and we have

1 | 1 db(d,m)
- 1_[ ‘Lv(xgl...xgm,ms)7 ‘S(l'i_ ) ,

[Fnyo() 1 qy
X @1, gmeS' (G,m) v

hence G,y ,v (s) is holomorphic on Re s > 0 and is bounded uniformly in terms of € and v
onRes > €.
To conclude the result, it suffices to prove that there exists N € N such that

1_[ G x,v (8)

a>N

is holomorphic and uniformly bounded with respect to y on Res > m%rl + e forall e > 0.
Letv ¢ S’ (w) be non-archimedean, and let Re s = 0 > #H + €. From

~ 1
H, (¢m,v7 Xvs _S) = (1 - ?) L, (X7 ),
9y
and the definition of F;, y , (s), we have
|ax,v,n| <2d", |bx,v$n| <, myd".
Then, by (5.4), it follows inductively that we have

|dy vl <2" (b (d, m)d)" = (2b(d, m)d)". (5.6)
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Campana points and powerful values... 651

Choose N > (2b(d,m) d)vl so that, for all places v { oo with g, > N, we have v ¢
S’ (w). Now, any normally convergent infinite product is holomorphic (see [28, Sect. 2]), and
I go=N Gm.x.v (s) converges normally if and only if

Z i |d)(,U,n|

qne
qv>N n=m+1 v

converges. By (5.6) and our condition on N, we need only check convergence of

1
Z (m+1)o’

qu>N 9

which is clear. Then G,y (s) is holomorphic on Re s > #ﬂ Further, for Re s > m%rl +e€,
we have the bound

n
o0

2b(d,m)d
[l G =TI {1+ 2 (=) |
qv>N qu>N n=m+1 q)"
which is uniform with respect to x. Now, as a convergent infinite product, G| (%) is
. . 1 ﬁv(¢m<1),l§_$>
zero if and only if Gm.1w (E) = F7<) = 0 for some place v J[ o0o. However,
m, L\ 7

Hy (¢moos 1; —1) # 0 by Lemma 5.2, so we conclude that G, 1 (=) # 0. The order of the
pole of the right-hand side being b (d, m) follows from Theorem 2.20, since

Fon1 (s) = g (ms)? @™ O
Note 5.16 In constructing the regularisation F, , (s), one must ensure that

ﬁv (d’m,v, Xv;_s) _ 1+0< 1 )

Fm,x,v (5) q,Serl)S

for all non-archimedean places v with g, is sufficiently large. As seen above, the restrictions
on d, m and E ensure that this is automatic for all such places which are not totally split,
i.e. we only need to approximate the local Fourier transform at totally split places not in
S’ (w). Without these restrictions, one might have to approximate the local Fourier transform
at places of more than one splitting type simultaneously, and to do this would require a new
approach.

Before applying our key theorems, we give one more result, which will be used in order
to move from the Poisson summation formula to the Tauberian theorem.

Lemma5.17 [19, Lem. 5.9, p. 2577] Choose an R-vector space norm || - || on X* (Tso)r
and let L C X* (Teo)r be a lattice. Let C be a compact subset of Res > % and let

g X" (Txo)r X C — C be a function. If there exists 0 < § < ﬁ such that
lg (W, )| <c (1+ ¥’
Jorall r € X* (Too)g and s € C, then the sum

Yoe@W [ H A v —s)

veL v|oo

is absolutely and uniformly convergent on C.
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652 S. Streeter

Theorem 5.18 Let
1\ bd-m)
Qpy (8) = Z (5) (S_*> .
m

Then 2, (s) admits an extension to a holomorphic function on Re s > %

Proof Let s € C with Res > % Combining the formal application (5.1) of the Poisson
summation formula with Lemma 3.8 and Corollary 5.4 gives

Ress—1{k (5) =
V4 =—" H L X —S).
") = Rt o) > H (G, x5 —5) 5.7)
XU
By Corollary 5.15, the function s +— % is L' forRes > % To show that this application

is valid, we apply Bourqui’s criterion [4, Cor. 3.36, p. 64], by which it suffices to show that
the right-hand side of (5.7) is absolutely convergent, s +—> ﬁ"’(gz is continuous and there
exists an open neighbourhood U C T (Ag) of the origin and strictly positive constants C

and C; such that forallu € U and all t € T (Ag), we have

' Om (1) < Om (ur) <C Om (1) )
H()* H (ut)’ H (®)*

We may take U = K by Lemma 4.16, and continuity is clear. It only remains to prove the
absolute convergence. We will prove the stronger result that

. 1 b(d,m)
> H (¢, x: =) <s — 7)
m

xXeu

is absolutely and uniformly convergent on any compact subset C of the half-plane Re s > %,

which will both verify validity of the application and prove the theorem.
Since K C K7 is of finite index, the map (2.2) yields a homomorphism

U— X" (To)r, X Xoos

with finite kernel A/ and image £ a lattice of full rank. We obtain

R 1 b(d,m)
Y H (bmo x; —5) (s - —)
m

xeu

—~ - 1\ 2dm
= ZHHU (],w;_s) Z HHU (¢m,v3XU;_S) (S—%) R

el vico XEU vioo
Xoo=Y

where the inner sum is finite. Then, for s € C, we have

_ 1\ bdm)
Z H (pm, x; —5) (S - *>
m

XU

<y [Taav:-9] > 11

YveLl vloo XEU vioco

Xoo=

R 1\ bm)
H, (¢m,v» Xvs _S) <S - *) .

m
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Now, for x € U, we deduce from the proof of Corollary 5.15 that

e b(d,m) 1\ 2@m
l_[ H, (¢m,v’ Xvs _S) <S - *) <Lc Fm*X (S) (S — Z) .

m
vfoo

In order to deduce the result from Lemma 5.17, it suffices to prove that, for each ¥ € £ and

some constant 0 < § < we have

1
-1’

1 b(d,m)
3 Fuy 9 <s - ;> <c L+ vy

XU
Xoo=V

for || - || as in Definition 2.21. As L C Kr is of finite index, there exists a constant Q > 0
suchthatg (x) < Q forall x € U (cf. [19, Proof of Thm. 5.12, p. 2579]). Since F,,  (s)isa
product of b (d, m) L-functions of Hecke characters evaluated at ms, it follows from Lemma
2.22 that

1 b(d,m)
D Fuy ) (s - —) Le.c INT-Q° (L+ ¥
xXeu mn
Xoo=Y

for all for all ¢ > 0 and s € C. The result now follows from Lemma 5.17. ]

5.4 The leading constant

In order to apply [3, Thm. 3.3.2, p. 624] and deduce Theorem 1.1 from Theorem 5.18, it only
remains to show that ,, (5-) # 0.

1
m

Definition 5.19 Let U/© be the subgroup of G-invariant elements of ¢/, and set

_ jUlmlifd =2,
0= U% NU[m] otherwise.

Lemma 5.20 For any Galois extension of number fields E/K, the subgroup Ulm] <
(T (Ag) /T (K))" is finite. In particular, Uy is a finite subgroup of U.
Proof By class field theory [22, Ch. VI, Sect. 6; Ch. VII, Sect. 6], U/ may be interpreted as

A
a subset of Gal (E g?( ) JE ) for E 2'?( ) the maximal S’ (w)-unramified abelian extension of

E, hence U{[m] is in bijection with a subset of Hom (Gal (Egl?(w)/E) s //,m), afinite set. 0O

Lemma5.21 (i) The characters x € U contributing to thipole of Z, (s) of order b (d, m)
ats = % are precisely those x € Uy such that l_[vloo H, (1, Xv; —%) G,y (%) # 0.

(1) Suppose that d # 2. If d and m are coprime, then Uy = {1}. If d is prime and m is a
multiple of d, thenUy = {x e U : x¥ = 1}.

Proof From Theorem 2.20 and Corollary 5.15, x € U contributes to the pole of
Zn(s) at 5 = % if and only if each factor of F,, , (s) in (5.3) equals ¢g (ms) and
l_[vloo ﬁv (1, Xv$ —%) G,y (%) # 0. Denoting by 1 the Hecke character associated to ,
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this means precisely that [T, H, (L, Xo: =) Gy (L) # Oand, foreach (g1, ..., gm) €
S (G, m), we have (8! ...y8m), =1 for all v { oo, which is equivalent by strong approx-
imation [11, Thm., p. 67] to ¥8!' ... 48 = 1. By Note 3.1, this holds if and only if

X8 x8m =1forall (g1,...,8m) € S (G, m). (5.8)

To conclude the first part, it only remains to show that (5.8) holds if and only if x € Up.

Taking (g1, ..., &n) = (1,...,1) in (5.8), we obtain x™ = 1. If d = 2, then §' (G, m) =

{(1,.... D}, and we are done. Otherwise, taking (g1, ..., gm) = (g, 1,....1) for any

g € G, we obtain x" " !x® = 1,50 ™ = 1 and x = x® for all g € G. Conversely, if
™ = 1and x = x8 forall g € G, then (5.8) holds.

Letnowd # 2,x € Up,v ¢ §' (w)andw | v. Wehave ¥, () = ¥ (m0) = Yew (ngw)
forall g € G. Since ]_[w‘v Y (mw) = 1 (see Note 3.1) and G acts transitively on the places
of E over v, we obtain Wff) (w) = 1, hence x¢ = 1 by strong approximation. On the other
hand, x™ = 1. For d and m coprime, we conclude that x = 1. O

Proposition 5.22 The limit
1 1\P@m
Qn <—> = lim <s — —) Z H (¢m, x; —3)
m s— L m
m X €U

is non-zero.

Proof We have

o DX (D) P (1)
2 H @ xi =) = Z/T H ()" d“_/mm Hay & X Odi

20 XUy (Ag) X €Uy

Letr € T (Ag). Note that, if there exists x' € Uy with x’ (r) # 1, then

Dxw=) xx0=x®Y x®,

XU XUy XUy

) eruo x (t) = 0. Then we have

~ 1
Y H (b, x5 —s) = Uo] ———du,

xethy T oo H (1)’
where
T (A0 =t € T (Ag) : ¢ (1) = x (1) = 1 forall x € Up).

For any x € Uy and non-archimedean place v ¢ S’ (@), comparing the series expressions of
Hy (dm,v. xv; —s) and Fyy, v () = Fp.1,0 (5) in Definition 5.13, we see that

/ Xo () dpy = / diiy, / Xo () dpy = / duy,
Hy(ty)=1 Hy(ty)=1 Hv(tv)zq{zn Hv(tu)=q{?’

0 Xy (ty) = 1 forall x € Up whenever H, (t,) = 1 or H, (t,) = q".
For each place v ¢ S’ (w), define the continuous function

1 if H) (t,) = 1 or H) (ty) = qIt,

Omv: T (Ky) — {0,1}, £ — .
0 otherwise.
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Letting 6y, , be the indicator function of K, for v € S’ (@), we define the function

Om : T (Ag) — {0, 1}, 6y ((tv)y) = l_[ Om,v () -
veVal(K)

By the above, we deduce that T’ (AK)G’" cT (AK)MO*"”", where
T (Ag)? ={t € T (Ag) : 6, (1) = 1}.

Then, by comparing limits along the real line, we see that it suffices to prove that

L
_S—)m

b(d,m) .
lim <s——) H 6y,,1; —s) #0.
m

It is easily seen that for any non-archimedean place v ¢ S’ (w), we have

at,v,m

ms
9

Hy (O, 1; —s) =1+

for ay y,» as in Definition 5.13, so, as in Corollary 5.15, we may deduce that

H O, 1; —5) = £ (ms)P @™ G, (5)

for G, (s) a function holomorphic on Res > % It also follows that G, (%) # 0, since

H, (6m,v, 1; —L) # 0 analogously to Lemma 5.2. Then the result follows. o

Corollary 5.23 We have

b(d,m)
Q (i)—M lim (s—l> 3" H @ xi =) #0.

m dRess—1 g (5) s—)% m xello

Proof of Theorem 1.1 Since Q, (L) # 0, the result for S = S(w) follows from
[3, Thm. 3.3.2, p. 624] and Theorem 5.18, taking ¢ (&, m, S (w)) to be

mRes;=1 ¢k (s)

1 b(d,m) R
li s — — H (¢, x; —5) .
(b (. m) = DIdRes,1 T (5) 50§ (Y m) P

The result for § O § (w) follows analogously upon redefining ¢,, , to be identically 1 for
eachv € §'\ S (@) in Definition 4.10. m|

6 Campana points

In this section we prove Theorem 1.4. We will be brief when the argument is largely similar
to the case of weak Campana points, emphasising only the key differences. Fix a Galois
extension E/K of number fields with K-basis @ = {wo, ..., ws—1}, let m € Z=> and set
T =T, as in Sect. 3.

Definition 6.1 For each non-archimedean place v ¢ S (w), let

No @) =[] fo®

wlv
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denote the v-adic decomposition of the norm form N, associated to w into irreducible poly-
nomials fy, (x) € Oy[x]. For each w | v, we define the functions

max{]x; |3}

|fw ) |y ’
1 if Hy (8) = Lor Hy (1) = gl

0 otherwise.

Hy,: T (Ky) — Reg, x>

l/fl’l’l,w : T (Kv) g {07 1}7 tU g {

We then define the Campana local indicator function

Y : T (Ky) = (0,1}, 1> [ [ ¥ ().

wlv

Setting ¥,,,, = 1 for v € § (@), we then define the Campana indicator function

Y 2 T (Ag) = {0, 1), )y > [ W @)

veVal(K)

If v ¢ S’ (w), then for each w | v, we also define the function

Lif Hy (1) = 1or Hy (1) = gl

omuw: T (Ky) = {0,1}, t,— )
0 otherwise

and we define

Omw i T (Ky) = {0, 1}, 1y > [ Jomuw ().

wlv

Letting 0y, be the indicator function for K, for v € §’ (w), we define the function

om i T (Ag) = {01}, (t)y > ] omw ).
veVal(K)

Lemma 6.2 The Campana Ok s(w)-points of (P?{l, Af‘,)l) are precisely the rational points
t € T (K) such that ¥, (t) = 1.

Proof Taking coordinates fg, ..., f—1 as in the proof of Lemma 4.12, we have
~ 1 V(fu(t0mld—1) _ Py (Z(fu))
H (t): — Jw yeeesbd— :q oy w)s
v [ fw (t0, s ta—1) T ! !
for all non-archimedean places v ¢ S (w) and places w | v, where Z ( f,,) denotes the Zariski
closure of Z (fy) in IF’?;KISW). ]

Lemma 6.3 Forall v € Val (K), the function Yy, , is ICy-invariant and 1 on IC,,.

Proof For v € S (w) the result is trivial, so let v ¢ S (w) and w | v. Since fy, (x - y) =
Jw (x) fu (y) for x,y € L, it follows as in the proof of Lemma 4.13 that ﬁw (x-y) <
H, (x) Hy (y) forall x, y € T (K,). Since H) = [, Hy. we have H, (K,) = 1 for all
w | v, hence it follows as in the proof of Corollary 4.15 that ﬁw and ¥, ,, are ICy-invariant.
Since Y,y (1) = 1, we deduce that ¥, ,, () = 1. O
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Proposition 6.4 Givenv ¢ S’ (@) and t, € T (K,), the image of t, in X (Ty) is

Z log,, (ﬁw (’v))

deg fu

wH

wlv

with ny, defined as in Proposition 3.4.
Proof Follows from Proposition 3.4. |

Corollary 6.5 Forv ¢ S’ (w) non-archimedean with q,, sufficiently large, x an automorphic
character of T unramified at v and s € C with Re s > 0, we have

-~ 1 1
H” (1//’”7“’ Xvs —S) =1+ qms Z Xw (NW)m +0 <q(m+1)5> :
v

v wlv
deg fulm

Proof. Since x,, Hy and ¥, , are T (O,)-invariant and v ¢ S’ (w), we have

iT . _ Y. () Xv () _ Y, v (g) Xv (ﬁ)
H, (Wm,vs Xvs _S) = /;"(Kv) Wdﬂv = Z s —

RerkoTy ()
_ Z Yo (My) Xv (My) _ > Yx.v,r
o e¥x (my)s log gy o -

rs
nyeXy(Ty) r=0 T

where

Vv = Z Yim,v (M) xv (M) .
no€Xs(Ty)
Hv(nv):qz

Put d, = degfy and let n, = Y
Proposition 3.4 and Note 3.1, we have

wy Gwhw € X, (Ty) with miny{ay} = 0. By

log, Hy (ny) = Zdwaw’ Xo (ny) = l_[ Xuw ()™

wlv wlv
1 ifozw:OOrawzdﬂforallwlv,
w

Y, (My) =

0 otherwise.

In particular, ¥, , (n,) = 0 whenever g, < H, (n,) < ql’)"_l, hence y, y, =0forl <r <

m — 1. Further, we see that ¥, , (n,) = 1 and H, (ny,) = ¢} if and only if there is exactly
one place wy | v such that ay,, = d’i and oy, = 0 for w # wy, so
H)O

Vx.v.m = Z Xw ()™
wlv

deg fuwlm

Since [V, (ny) x» (ny) | < 1, we deduce that

d
|Vx,u,r|§# ﬂl7--~7ﬂd€Z20:Zﬂi:r} <d.

i=1
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Analogously to the proof of Corollary 5.15, we deduce for ¢, sufficiently large that

) i ( : )
X,0,r
=0 . O
rs (m+1)s
r=m+1 v Qv

Proposition 6.6 For all places v ¢ S’ (w) with q, sufficiently large, we have

5 1
Hy (Yo, xv: =s) = Lo (x". ms) (1 oo ((m+l)>> e
Qv

Proof. Let v ¢ S’ (w) with g, sufficiently large as in Corollary 6.5. If v is totally split in
E/K,then deg f,, = 1 for all w | v, so Corollary 6.5 gives

—~ 1 1
Hy (Vs o =8) =14 25 D () + 0 ((m+1)) ’
q

voow v

and so we deduce the equality, since

Lo ey TT (1 X o)\ . of !
v (X ’ ms) - 1_[ - =1+ qms Z X (Tw) + q(m—H)x :
v

ms
wlv qv v owly

Now let v have inertia degree d, > 1 in E/K. Then deg f,, = d, | d forall w | v. If d
and m are coprime, then d, t m, hence y, , ,» = 0 and the result follows from

-1
Xan (7Tw) 1
Ly (x™, ms) = ]_[ <1 - 7:1)"’1'"1;” ) =140 (qdvms .

wlv v v

If d is prime, then v is inert, so T (O,) = T (Ky), ﬁu (Wm,vv Xv; —s) =1, and

1 1
Ly (Xm’ms):] T Tdms 1+0 < (m+1)s>' O
4y qv
Proposition 6.7 For any x € U, we have

H s x; =) = [ [ Ho (1, w3 =) L (X" m5) G (5,

v|oo

where 5,,” (s) is a function which is holomorphic on Res > %, 5,,1,1 (%) # 0 and
1

H (Y, 1; —s) has a simple pole at s = —.

m

%W for each place v 1 00, it follows as in the proof

of Corollary 5.15 that CN}m, x,v ($) is holomorphic and bounded uniformly in terms of € and v
on Res > € for all € > 0. Since Proposition 6.6 gives

~ 1
Gy () =140 ((m-H)> ’
Qv

it follows as in the proof of Corollary 5.15 that (N}m, x (8) is holomorphic and uniformly
bounded with respect to x for Res > % with G, ( 1 ) # 0. Then, since

m

Proof Defining ém,x,v (s) =

L (1, ms) = ¢g (ms),

we conclude from Theorem 2.20 that H (¥, 1; —s) has a simple pole at s = % O
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Definition 6.8 For Re s > 0, define the functions

m . C—C, s Z Vi (x) §m=zm(s)(s—$>.

<
xePd-1(K) H @)

The proofs of the following two results are analogous to those of their weak Campana

counterparts, namely Theorem 5.18 and Lemma 5.21 respectively.
Theorem 6.9 The function ?Zm (s) admits a holomorphic extension to Re s > %

Lemma 6.10 The characters x € U contributing to the simple pole of Zm (s)ats = % are

precisely the characters x € U[m] such that Gm X ( ) # 0.

Proposition 6.11 The limit

1 ~

= xeU[m]

is non-zero.

Proof By the same reasoning as in the proof of Proposition 5.22, we have

o Ym () x (1) (f) 1
H L X — = U dpu,
Z (W X Z /A CH@®W uml raopman H @
x€Ulm] yeulm]? TBK) (Ak)
where

T (Ag)H™Vm = (1 € T (Ag) : Y (1) = x (¢) = 1 forall x € U[m]}.

Now, take x € U[m], v ¢ S’ (@) non-archimedean. If o, (¢,) = 1 for some t, € T (K,),
then the image of ¢, in X, (7)) is of the form wa oy, Where each «y, is either O or ;”—v
for d,, the common inertia degree of the places of E over v, so

Xv () = HXw (”w)duaw =1,

wlv

since each dyo,, is 0 or m and XO = x™ = 1. Then x, (t,) = 1 for all x € U[m]. In
particular, we deduce that T (Ag)° C T (A )Y where

T (Ag)™ ={t € T (Ag) i op (1) = 1}.

Then it suffices to prove that

1\ ~
lim (s — —) H (o, 1; —s) #0.
s—1 m

Analogously to the proof of Proposition 6.7, we may deduce that
H (0, 15 =$) = t& (ms) G ()

for G, (s) a function holomorphic on Re s > L with G (L) # 0, so the result follows. O
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Proof of Theorem 1.4 Since 2,y (L) # 0 by Proposition 6.1, the result for S = S (@) now

follows from [3, Thm. 3.3.2, p. 624] and Theorem 6.9, taking

C@.m, S (@) = Dol (s - %) > H W2 —).

dResg—1 {E () 51 xel[m]

The result for S O S (w) follows analogously upon redefining ,, , to be identically 1 for
eachv e S\ S (w). O

7 Comparison to Manin-type conjecture

In this section we compare the leading constantin Theorem 1.4 with the Manin—Peyre constant
in the conjecture of Pieropan, Smeets, Tanimoto and Vdrilly-Alvarado.

7.1 Statement of the conjecture

Let (X, D¢) be a smooth Campana orbifold over a number field K which is klt (i.e. ¢, < 1
forall @ € A) and Fano (i.e. — (Kx + D¢) is ample). Let (X, D) be a regular Ok s-model
of (X, D) for some finite set S C Val (K) containing S (i.e. X regular over Ok s). Let
L = (L, | -|) be an adelically metrised big line bundle with associated height function
H; : X (K) — R. (see [25, Sect. 1.3]). For any subset U C X (K) and any B € R, we
define

NWU,L,B)y=#{P eU:Hg(P)<B}.

Definition 7.1 Let V be a variety over a field k of characteristic zero, and let A C V (k). We
say that A is of rype I if there is a proper Zariski closed subset W C V with A C W (k). We
say that A is of rype II if there is a normal geometrically irreducible variety V' with dimV’ =
dimV and a finite surjective morphism ¢ : V/ — V of degree > 2 with A C ¢ (V' (k)). We
say that A is thin if it is contained in a finite union of subsets of V (k) of types I and II.

We are now ready to give the statement of the conjecture.

Conjecture 7.2 [27, Conj. 1.1, p. 3] Suppose that L is nef and (X, De) (OK,S) is not
thin. Then there exists a thin set Z C (X, D¢) (OK, 5) and explicit positive constants
a=a((X,Ds),L),b =b(K,(X,De),L)and c = ¢ (K, S,(X,D.), L, Z) such that,
as B — oo, we have

N ((X,De) (Ok.5)\ Z, L, B) ~ cB* (log B)’ "
7.2 Interpretation for norm orbifolds

The orbifold (le(_] , A%) in Theorem 1.4 is kit and Fano. It is smooth precisely whend = 2.

The Ok 5(w)-model (IP"(’Q_KlS(w) , D;’n’) is regular. The Batyrev—Tschinkel height arises from an

adelic metrisation £ of —Kps-1 = O (d). According to [27, Sect. 3.3], we have
1
¢ (K S, (}P’d’l ,D,‘;;) L, z) =t (K S (), (P’jg‘, A;) L, Z),

Ok, s(w)
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where

r(K.s@. (P an).£.7) = / H(t)' ™ drpa-r.
FT(K),

Here, tpa-1 is the Tamagawa measure defined in [ 19, Def. 2.8, p. 372], and P4~! (K), denotes
the topological closure of the Campana points inside P~ (A k). If one assumes that weak
approximation for Campana points holds for this orbifold (see [27, Question 3.9, p. 13]), it
follows from the definition of tpa—1 (cf. [27, Sect. 9]) that

Res,— "\a
_ o ReSs=1 8k (5) (s— *) H (Ym, 13 =s).
Ress—1 CE () s— L "

Given the assumption on weak approximation, the conjectural leading constant is

-1 mResg=1 Lk (5) .. AT L
C(K’S’ (Po“() ’”) zz) d Res;=1 Lk (5) ylimi )

On the other hand, the leading constant given by Theorem 1.4 in this case is

T@.m, S @) = PRS=1 K6 (s—%) S H W x: —9) -

dResg=1 ¢E (5) sk xeUm]

We observe that our constant differs from the conjectural one in the potential inclusion of
non-trivial characters in the limit.

7.3 The quadratic case

We now consider the case d = 2, in which the orbifold in Theorem 1.4 is smooth. Here,
work of Nakahara and the author [21] shows that weak approximation for Campana points
holds for any m € Z>».

In Theorem 1.4, it is not clear that there are non-trivial characters contributing to the
leading constant and whether their contribution is positive if so. However, we now exhibit
an extension for which a non-trivial character contributes positively to the leading constant,
and all contributing characters do so positively.

Proposition7.3 Let K = Q «/—39) E=Q (\/— V1 ) and m = 2. Choose the K -basis

w = {l, H'“ﬁ} of E. Then S (w) = Soo, #U[2] > 1, and for every x € U[2], we have
th%% (s— *)H(lﬁz x; —s) > 0.

Proof Writinga -1+b - Hzﬁ as (a,b) and G = Gal (E/K) as {1¢, g}, we have

(1,0)* = (1,0), (1,0)- (0, 1) = (0, 1), (0. )* = (—1. 1),

16 ((1,0)) = (1,0), 16 ((0,1)) = (0, 1), g ((1,0)) = (1,0), g ((0, 1)) = (1, =1),
and clearly 1 = (1, 0), hence S (w) = Sx. Note that N, (x, y) = x4+ xy + y2.

Since Cl1 (E) = 7Z/27Z, the Hilbert class field M of E is quadratic over E. We obtain
the unramified Hecke character xjs of E, which is defined for all split w € Val (E) by

XM.w () = —1 and is trivial at all other places. Since x is trivial on A%, it may be
viewed inside U[2], hence #U/[2] > 1.
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Let x € U[2]. To show that lims_)% (s — %) H (Y2, x: —s) > 0, it suffices to show
that ﬁv (1//2,1,, Xv; —%) > 0 for all v € Val(K). If v | oo, then ﬁv (wz,v, Xv; —%) =
ﬁv (1, 1; —%) > (0, as x, gives a continuous homomorphism from 7' (K,) /T (O,) = R.oto
2, and R g has no proper open subgroups. If v is inert, then we have ﬁu (1//2,1,, Xvs —%) =1.
If v is not inert, then Ny, (x, y) = (x + 61y) (x + 6y) for 61, 6, € O, roots of 72 — z + 1.
By Proposition 6.4, we have H, = H) if and only if there are no (a,b) € (Kff)2 with
min{v (a), v (b)} = Osuchthatv (a + 61b),v (a + 6-b) > 1.Ifv(a + 61b) , v (a + 6,b) >
1, then we deduce from the equalities

01 (a + 62b) — 0y (a+ 01b) = (01 — ) a, (a+ 61b) — (a+ 6,b) = (61 — 6) b,

that v (@), v (b) > 1 — v (61 — 62). Since min{v (a) , v (b)} = 0, we have H,, # H, if and
only if v (81 — 62) > 1. Since (61 — 6,)% = =3, the only such place is the unique place vg
of K above 3, and vy (61 — 67) = 1.

For any split place v # vg, we have IC,, = T (Oy) and Y2 , = ¢2,4, SO

~ 1 > ¢ —c )
H, <w2,va Xvs _*> =1+ E AL St QXYU’"
2 2
n=2 qv

by Proposition 5.7. In fact, for w; and wy the places of E over v, we have yx, (nwz) =

1 n
Xwy (7Tw1) € {1, —1}, hence Cy.v,n — Cx,on—2 = 2Xw1 (7Tw1) ,» SO

—~ 1 ad 2xw; (T " 2 1
HU<1/,2’U,XU;_2>=1+Z“”(;“”)=1+ — > 0.
n=2 qv qv 1-— qv 2X11)1 (7[11)1)

It only remains to check that H,, (V2,001 Xvo: — %) > 0. We will make use of the following
property of valuations:

vo (@ + B) = min{vg (&) , vo (B)}, with equality if vy (@) # vo (B) . (7.1)

Assume that, for a,b € (K;ko)2 as above, we have vy (a + 6b) > 2. We claim that
vg (a + 01b) = 1. First, we deduce from (7.1) that

2 <o (a+62b) =vo ((a+601b)+ (61 —62) b)
> min{vg (a + 61b) , vo ((61 — 62) b)},

with equality if vg (a + 61b) # vo (61 — 62) b). Since vg ((29i - 1)2) = vy (-3) = 2,
we have vp (20; —1) = 1, so vp(6;)) = vo(20;)) = wvo (1) = 0 by (7.1), hence
minf{vg (a) , vo (62b)} = min{vg (a) , vg (b)} = 0. Then, since vy (a + 62b) > 2, it follows
that vy (a) = vg (020). We deduce that vg (a) = vg (62b) = vg (b), so vy (a) = vg (b) =
min{vg (a) , vo (b)} = 0. Since vg (61 — 62) = 1, we have vg ((0; — 62) b) = 1. It follows
that vy (@ + 01b) = 1 by (7.1).

We deduce that v 4, (tvo) = 1 if and only if #,, € K,,, hence

=~ 1
Hy, <¢2,v07 Xvo > —§> =/K diLy, > 0;

0

positivity follows since I, C T (O,) is of finite index for all v € Val (K). O
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7.4 Possible thin sets

Assuming the truth of Conjecture 7.2, the question arises of which thin set Z should be
removed in the setting of Proposition 7.3. Informally, its removal should remove the con-
tribution of all non-trivial characters x € U[2]. One might therefore postulate that, for
each non-trivial character x € U[2], there is a finite morphism ¢, : C, — ]P}(, where
Cy is a smooth projective curve, and Z = |, /21 ¢x (Cx (K)). By the height bounds in
[30, Sect. 9.7], we would have C, = P% and deg (¢,) = 2, making the morphisms ¢,
degree-two endomorphisms of IP’}(. However, it is not clear how one should construct such
endomorphisms. This may be an interesting direction to pursue in future work.
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