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Abstract
We study the algebraic K-theory and Grothendieck–Witt theory of proto-exact categories
of vector bundles over monoid schemes. Our main results are the complete description of
the algebraic K-theory space of an integral monoid scheme X in terms of its Picard group
Pic(X) and pointed monoid of regular functions �(X ,OX ) and a complete description of the
Grothendieck–Witt space of X in terms of an additional involution on Pic(X). We also prove
space-level projective bundle formulae in both settings.
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Introduction

Monoid schemes are topological spaces modelled locally on spectra of commutative pointed
monoids, in much the same way that schemes over a field are modelled locally on spectra of
commutative rings. Monoid schemes form the core of algebraic geometry over the elusive
field F1 with one element [39,44], in the sense that every other approach to F1-schemes con-
tains monoid schemes as a full subcategory. From the point of view of algebraic geometry
over fields, monoid schemes can be seen as a direct generalization of toric geometry and
Kato fans of logarithmic schemes; see [3,6,8,9,27] among others. The central position of
monoid schemes within F1-geometry is confirmed by their numerous links to other areas
of mathematics, such as Weyl groups as algebraic groups over F1 [29,44], computational
methods for toric geometry [7,8,14], a framework for tropical scheme theory [15], applica-
tions to representation theory [20,40–42,51] and, last but not least, stable homotopy theory
as K-theory over F1 [3,10], a theme on which we dwell in this paper.

The algebraic K-theory of schemes, originally developed by Quillen [16,30], Waldhausen
[46] and Thomason–Trobaugh [43], among many others, is a rich and difficult subject
which remains very active today. Grothendieck–Witt theory (or hermitian K-theory) is a
generalization of K-theory constructed from algebraic vector bundles with a non-degenerate
bilinear form and, as such, can be seen as an algebraic analogue of Atiyah’s topological K R-
theory [1]. Grothendieck–Witt theory plays a fundamental role in Karoubi’s formulation and
proof of topological and algebraic Bott periodicity and study of the homology of orthogonal
and symplectic groups [21–23]. Recently, much effort has been devoted to developing the
Grothendieck–Witt theory of schemes; see, for example [13,24–26,34,38].

In this paper we study the algebraic K-theory and Grothendieck–Witt theory of monoid
schemes and develop strong links to stable homotopy theory. This should be compared to the
K-theory and Grothendieck–Witt theory of schemes over fields and their many connections
to arithmetic. Our results for K-theory refine earlier calculations of the group K0(X) in [3]
to a complete description of the K-theory space K(X) in terms of the Picard group Pic(X)

and the group �(X ,OX )×. For the Grothendieck–Witt theory of monoid schemes, a subject
which had not yet been studied, we give a similar description of the Grothendieck–Witt space
GW(X) in terms of Pic(X) and �(X ,OX )× together with their natural involutions. In the
remainder of this introduction, we give a more thorough description of these results.

Results

In Sect. 1 we recall relevant categorical and K- theoretic background. We work in the set-
ting of proto-exact categories, a non-additive generalization of Quillen’s exact categories
introduced by Dyckerhoff and Kapranov [11]. This is a convenient setting for both K-theory
and Grothendieck–Witt theory and was developed by the authors in [12]. The first main
result of [12] is a Group Completion Theorem for the K-theory of uniquely split proto-exact
categories. The second main result of [12] is a description of the Grothendieck–Witt space
GWQ(A) of a uniquely split proto-exact category with duality A satisfying additional mild
assumptions, defined using the hermitian Q-construction, in terms of the group completion
of the groupoid of hyperbolic forms and the monoidal groupoid of anisotropic symmetric
forms in A.

In Sect. 2we study the K-theory andGrothendieck–Witt theory of proto-exact categories of
modules over pointed monoids or, in geometric terms, vector bundles over non-commutative
affine monoid schemes. Let A be a (not necessarily commutative) pointed monoid. The
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Algebraic K-theory and Grothendieck–Witt theory of monoid schemes 1409

category A-proj of finitely generated projective left A-modules has a uniquely split proto-
exact structure (Lemma 2.5) and so fits into the framework of [12]. The category A-proj
is particularly simple when A is integral,1 in which case all projective A-modules are free.
This, together with the Group Completion Theorem, allows for an explicit description of the
K-theory space K(A-proj) in terms of the group of units A×, thereby giving a ‘Q = +’
theorem in this setting. In this way, we extend earlier results of Deitmar [10] and establish
some unproven claims of Chu–Morava [4]. Our result is as follows.

Theorem A (Theorem 2.6) Let A be an integral pointed monoid. Then there is a homotopy
equivalence

K(A-proj) � Z × B(A× � �∞)+,

where A× � �∞ is the infinite wreath product lim−→n
((A×)n � �n).

Next, we study the Grothendieck–Witt theory of projective A-modules, where our results
are new. Unlike the case of rings, the category A-proj does not admit an exact duality
structure. In particular, the functor HomA-proj(−, A) is poorly behaved. For this reason,
we restrict attention to the non-full proto-exact subcategory A-projn ⊂ A-proj of normal
morphisms, that is, A-module homomorphisms whose non-empty fibres over non-basepoints
are singletons.We prove in Lemma 2.3 that A-projn admits a duality structure if A is integral.
From this point of view, normal morphisms are essential to Grothendieck–Witt theory. We
remark that the K-theory of A-projn and A-proj coincides. For earlier appearances of normal
morphisms in F1-geometry, see [3,41,51]. The main results of this section determine the
Grothendieck–Witt spaces GW⊕(A-projn) and GWQ(A-projn). In particular, the former
space can be described in terms of “infinite orthogonal/symplectic groups over F1". In this
way, we obtain an F1-analogue of Karoubi’s results on the hermitian K-theory of rings [21].
A simplified version of our result is as follows.

Theorem B (Theorem 2.14) Let A be an integral pointed monoid with A× = {1}. Then there
is a homotopy equivalence

GW⊕(A-projn) � Z
2 × B((Z/2 � �∞) × �∞)+.

By applying the results of [12], we can use Theorem B to describe the weak homotopy
type of GWQ(A-projn).

Having treated the local theory, we turn in Sects. 3 and 4 to the global theory of monoid
schemes. Following earlier approaches [10,19], a general definition of the K-theory of a
monoid scheme X was given in [3], where a proto-exact category of vector bundles Vect(X)

and their normal OX -module homomorphisms was defined. We point out that this is not the
only approach to the K-theory of monoid schemes; see [17] for a recent alternative. In Sect. 3
we bring the approach of [3] to its natural conclusion by explicitly describing the K-theory
space K(X) := K(Vect(X)). The key structural result is Proposition 3.14, which exhibits
an extremely simple non-full proto-exact subcategory 〈〈OX 〉〉[Pic(X)] ⊂ Vect(X) whose K-
theory space is homotopy equivalent to K(X). Here, 〈〈OX 〉〉 is the category whose objects
are isomorphic to O⊕n

X , n ∈ Z≥0, together with all normal OX -module homomorphisms
between them. The category 〈〈OX 〉〉[Pic(X)] can then be seen as the group algebra of Pic(X)

with coefficients in 〈〈OX 〉〉; see Sect. 3.3 for a precise definition. Proposition 3.14 fails for
the exact category of vector bundles over a field and is the source of the relative strength of
the following result.

1 More generally, A need only be right partially cancellative. We work at this level of generality in the body
of the paper.
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1410 J. N. Eberhardt et al.

Theorem C (Theorem 3.17) Let X be an integral monoid scheme. Then there is a homotopy
equivalence

K(X) �
∏′

M∈Pic(X)

Z × B(�(X ,OX )× � �∞)+,

where
∏′ is the restricted product of pointed topological spaces.

Turning to Grothendieck–Witt theory, let L be a line bundle on an integral monoid
scheme X . The integrality assumption on X ensures the existence of an L-twisted duality
structure (PL,�L) on Vect(X). Write GW(X;L) for the Grothendieck–Witt space space
GW(Vect(X), PL,�L), defined either via the hermitian Q-construction or group comple-
tion. The duality structure (PL,�L) is compatible with the subcategory 〈〈OX 〉〉[Pic(X)].
This leads to a complete description of GW(X;L) in terms of the pointed monoid �(X ,OX )

and Pic(X), together with its set- theoretic Z/2-action determined by L.

Theorem D (Theorem 4.8) Let L be a line bundle on an integral monoid scheme X. Then
there is a homotopy equivalence

GW(X;L) �
∏′

M∈Pic(X)P
L
GW(�(X ,OX )-projn) ×

∏′

M∈Pic(X)∗/PL
K(�(X ,OX )-projn),

where Pic(X)P
L
denotes the fixed point set of Pic(X) under the Z/2-action determined by

L and Pic(X)∗/PL is the quotient of the complement Pic(X) \ Pic(X)P
L
.

In particular, this result, together with Theorems A and B, leads to an explicit description
of GW⊕(X;L). The space GWQ(X;L) can then be described using the results of [12].

As an application of our results, we prove space-level projective bundle formulae for K-
theory and Grothendieck–Witt theory, giving analogues of well-known results for schemes
over fields [30,32,36,47]. In our setting, the key background results are Theorem 3.27 and
Lemma 4.14, which give a (Z/2-equivariant) description of the Picard group of a projective
bundle in terms of that of the base. Notably, our proof relies on different arguments than the
classical proof over fields, since sheaf cohomology is not available in the F1-setting. Instead,
we use particular properties of monoid schemes whose analogues for schemes over fields
fail to hold. The projective bundle formula for Grothendieck–Witt theory is as follows; for
K-theory, see Theorem 3.28.

Theorem E (Theorem 4.15) Let E be a vector bundle on an integral monoid scheme X with
associated projective bundleπ : PE → X andL a line bundle on X. Then there is a homotopy
equivalence

GW(PE;π∗L) � GW(X;L) ×
∏′

(M,i)∈(Pic(X)×Z∗)/〈(PL,−1)〉
K(�(X ,OX )-projn).

1 Backgroundmaterial

In this section, we recall necessary background material on proto-exact categories and their
K-theory and Grothendieck–Witt theory.
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Algebraic K-theory and Grothendieck–Witt theory of monoid schemes 1411

1.1 Proto-exact categories

We begin with recalling the definition of a proto-exact category from [11, §2.4].

Definition 1.1 A proto-exact category is a category A with a zero object 0 and two distin-
guished classes of morphisms, I and D, called inflations (or admissible monomorphisms)
and deflations (or admissible epimorphisms) and denoted � and �, respectively, such that
the following axioms hold:

(i) Any morphism 0 → U is in I and any morphism U → 0 is in D.
(ii) The classes I andD are closed under composition and contain all isomorphisms.
(iii) A commutative square of the form

U V

W X

(1)

is cartesian if and only if it is cocartesian.
(iv) A diagram of the form W � X � V can be completed to a bicartesian square of the

form (1).
(v) A diagram of the form W � U � V can be completed to a bicartesian square of the

form (1).

Let U � V be an inflation. By axioms (i) and (v), the pushout diagram

U V

0 X

exists and V � X is a cokernel of U � V . By axiom (iii), we conclude that U �
V is a kernel of V � X . Since kernels are monomorphisms, we find that inflations are
monomorphisms. Similarly, deflations are epimorphisms.

Conflations (or admissible short exact sequences) inA are admissible squares of the form
(1) with W = 0 which, for ease of notation, we denote by U � V � X .

A functor between proto-exact categories is called proto-exact if it sends admissible
squares to admissible squares. In particular, proto-exact functors send conflations to con-
flations.

The proto-exact categories of interest in this paper have a weak analogue of an additive
structure, axiomatized as follows.

Definition 1.2 [12, §1.1] An exact direct sum on a proto-exact category A is a symmetric
monoidal structure ⊕ on A such that 0 is the monoidal unit and ⊕ is a proto-exact functor.
Moreover, the following additional axioms are required to hold, where we set iU = idU ⊕
00�V : U � U ⊕ V and πU = idU ⊕ 0V�0 : U ⊕ V � U for objects U , V ∈ A.

(i) The maps

HomA(U ⊕ V ,W ) −→ HomA(U ,W ) × HomA(V ,W ), f �→ ( f ◦ iU , f ◦ iV )

HomA(W ,U ⊕ V ) −→ HomA(W ,U ) × HomA(W , V ), f �→ (πU ◦ f , πV ◦ f )

are injections for all U , V ,W ∈ A.
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1412 J. N. Eberhardt et al.

(ii) Let U i X π V be a conflation. For each section s of π , there exists a unique
isomorphism φ which makes the following diagram commute:

X

U U ⊕ V V .
iU

i
φ

iV

s

The analogous property holds for every retract r of i .

A functor between proto-exact categories with exact direct sum is called exact if it is
proto-exact and ⊕-monoidal.

Let A be a proto-exact category with exact direct sum. A commutative diagram

U X V

U U ⊕ V V

i π

iU

φ

πV

with φ an isomorphism is called a splitting of the conflation U i X π V .

Definition 1.3 [12, §1.1] A proto-exact category with exact direct sum is called

(i) uniquely split if every conflation admits a unique splitting, and
(ii) combinatorial if, for each inflation i : U � X1 ⊕ X2, there exist inflations ik : Uk �

Xk , k = 1, 2, and an isomorphism f : U → U1 ⊕ U2 such that i = (i1 ⊕ i2) ◦ f .
Moreover, the obvious dual axiom involving maps πk , k = 1, 2, is required to hold.

1.2 Algebraic K-theory of proto-exact categories

Let A be a proto-exact category. The Q-construction of A can be defined as for exact cate-
gories [30, §2], yielding a category Q(A). See also [12, §2.1]. The K-theory space of A is
then K(A) = �BQ(A), where BQ(A) is pointed by 0 ∈ Q(A), and the K-theory groups
are

Ki (A) = πiK(A), i ≥ 0.

Lemma 1.4 LetA and B be proto-exact categories and F : A → B an essentially surjective
proto-exact functor which is bijective on inflations and deflations. Then the induced map
K(F) : K(A) → K(B) is a homotopy equivalence.

Proof To begin, note that F is conservative. Indeed, a morphism in a proto-exact category is
an isomorphism if and only if it is an inflation and a deflation.

Since F is proto-exact, there is an induced functor Q(F) : Q(A) → Q(B). Essential
surjectivity of F implies that of Q(F). Moreover, Q(F) is full (resp. faithful) because F
is surjective on inflations and deflations (resp. conservative and injective on inflations and
deflations). Hence, Q(F) is an equivalence and the associated map K(F) is a homotopy
equivalence. ��

Let now (A,⊕) be a symmetricmonoidal category. Themaximal groupoidS ⊂ A inherits
a symmetric monoidal structure. Following [16, Page 222], the direct sum K-theory space of
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Algebraic K-theory and Grothendieck–Witt theory of monoid schemes 1413

A is the group completion of BS:

K⊕(A) = B(S−1S).

We have the following proto-exact analogue of Quillen’s Group Completion Theorem
[16].

Theorem 1.5 [12, Theorem 2.2] Let A be a uniquely split proto-exact category. Then there
is a homotopy equivalence K(A) � K⊕(A).

Remark 1.6 The construction of the space K(A) can be refined to produce a connective
spectrumK(A); see [49, Remark IV.6.5.1, §IV.8.5.5]. While K(A) andK(A) have the same
homotopy groups, the spectrumK(A) hasmany technical advantages. For example, a functor
⊗ : A × A → A which is biexact in the sense of [49, Definition IV.6.6] induces a pairing
of spectra K(A) ∧ K(A) → K(A). This gives K•(A) = ⊕

i≥0 Ki (A) the structure of
commutative Z≥0-graded ring if ⊗ is symmetric monoidal.

1.3 Proto-exact categories with duality

For a detailed introduction to proto-exact categories with duality, the reader is referred to
[34, §2], [12, §1.2].

A category with duality is a triple (A, P,�) (often simplyA) consisting of a categoryA,
a functor P : Aop → A and a natural isomorphism � : idA ⇒ P ◦ Pop which satisfies

P(�U ) ◦ �P(U ) = idP(U ), U ∈ A. (2)

If A is proto-exact and P is proto-exact, then A is a proto-exact category with duality. We
henceforth restrict attention to this case.

A symmetric form in A is an isomorphism ψM : M → P(M) which satisfies P(ψM ) ◦
�M = ψM . An isometry φ : (M, ψM ) → (N , ψN ) is an isomorphism φ : M → N which
satisfies ψM = P(φ) ◦ψN ◦φ. The groupoid of symmetric forms and their isometries isAh .

Let (M, ψM ) be a symmetric form. An inflation i : U � M is called isotropic if P(i) ◦
ψM ◦ i is zero and U → U⊥ := ker(P(i) ◦ ψM ) is an inflation. In this case, the reduction
M//U := U⊥/U inherits a symmetric morphism ψM//U : M//U → P(M//U ), which we
assume to be an isomorphism; this is the Reduction Assumption of [50, §3.4]. A symmetric
form (M, ψM ) is called metabolic if it has a Lagrangian, that is, an isotropic subobject
U � M with U = U⊥, and is called anisotropic if it has no non-zero isotropic subobjects.

IfA has an exact direct sum, then we require that P is exact and � is ⊕-monoidal. In this
case, Ah is a symmetric monoidal groupoid. Given an object U ∈ A, the pair

(
H(U ) = U ⊕ P(U ), ψH(U ) =

(
0 idP(U )

�U 0

))

is a symmetric form in A, called the hyperbolic form on U . In the definition of ψH(U ), we
have used the isomorphism P(U ⊕ P(U )) � P(U ) ⊕ P2(U ). The assignmentU �→ H(U )

extends to a functor H : S → Ah where S is the maximal groupoid inA. A symmetric form
which is isometric to (H(U ), ψH(U )) for some U ∈ A is called hyperbolic.

Lemma 1.7 [12, Lemma 1.7] A metabolic form in a uniquely split proto-exact category with
duality is hyperbolic.
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1414 J. N. Eberhardt et al.

Example 1.8 Let A be a category. The triple (H(A), P, ididH(A)
), where H(A) = A × Aop

and P(U , V ) = (V ,U ), is called the hyperbolic category with duality on A. If A is proto-
exact, then so too is H(A) and an exact direct sum on A induces one on H(A).

A form functor (T , η) : (A, P,�) → (B, Q, 
) between categories with duality is a
functor T : A → B and a natural transformation η : T ◦ P ⇒ Q ◦ T op which makes the
diagram2

T (U ) Q2T (U )

T P2(U ) QT P(U )


T (U )

T (�U ) Q(ηU )

ηP(U )

commute for each U ∈ A. The form functor is called non-singular if η is a natural isomor-
phism and is called an equivalence if, moreover, T is an equivalence.

1.4 Grothendieck–Witt theory of proto-exact categories

Let A be a proto-exact category with duality. The hermitian Q-construction of A can be
defined as for exact categories with duality [34, §4.1], yielding a category Qh(A). See
also [12, §3.1]. Forgetting symmetric forms defines a functor F : Qh(A) → Q(A). The
Grothendieck–Witt space GWQ(A) is the homotopy fibre of BF : BQh(A) → BQ(A)

over 0 and the Grothendieck–Witt groups are

GWQ
i (A) = πiGWQ(A), i ≥ 0.

Despite the name,without further assumptions,GWQ
0 (A) is in fact only a pointed set. If, how-

ever, A has an exact direct sum, as will always be the case, then GWQ
0 (A) is a commutative

monoid. The Witt groups are defined by

WQ
i (A) = coker

(
Ki (A)

H∗−→ GWQ
i (A)

)
, i ≥ 0,

where H∗ is induced by the map K(A) → GWQ(A). As for GWQ
0 (A), in general WQ

0 (A)

is only a commutative monoid.

Proposition 1.9 LetA be a proto-exact category with associated hyperbolic category H(A).
Then there is a homotopy equivalence GWQ(H(A))

∼−→ K(A).

Proof The proof of the corresponding result in the exact setting [34, Proposition 4.7] carries
over. ��
Proposition 1.10 A non-singular proto-exact form functor (T , η) : (A, P,�) → (B, Q, 
)

induces a continuous map GWQ(T , η) : GWQ(A) → GWQ(B). Moreover, if (T , η) and
(T ′, η′) are naturally isomorphic, then GWQ(T , η) and GWQ(T ′, η′) are homotopic.

Proof The proofs of the corresponding results in the exact setting [35, §2.8] carry over. ��
An obvious modification of Lemma 1.4 (and its proof) is as follows.

2 For legibility, we have written P2 in place of P ◦ Pop, and so on.
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Lemma 1.11 Let A and B be proto-exact categories with duality and (F, η) : A → B an
essentially surjective proto-exact form functor which is bijective on inflations and deflations.
Then the induced map GWQ(F, η) : GWQ(A) → GWQ(B) is a homotopy equivalence.

Suppose now that (A,⊕) is a symmetric monoidal category with duality. Orthogonal
direct sum gives Ah the structure of a symmetric monoidal groupoid. As in [18, §2], the
direct sum Grothendieck–Witt theory space is the group completion

GW⊕(A) = B(A−1
h Ah),

with associatedGrothendieck–Witt andWitt groupsGW⊕
i (A) = πiGW⊕(A) andW⊕

i (A) =
coker(K⊕

i (A)
H−→ GW⊕

i (A)), i ≥ 0, respectively. Note that these are indeed groups. We
remark that the obvious analogues of Propositions 1.9 and 1.10 and Lemma 1.11 hold for
direct sum Grothendieck–Witt theory.

Let QH (A) ⊂ Qh(A) be the full subcategory on hyperbolic objects and GWQ
H (A) the

homotopy fibre of BQH (A) → BQ(A) over 0. Let also

GW⊕
H (A) = B(A−1

H AH ),

whereSH is the symmetricmonoidal groupoid of hyperbolic symmetric forms. The following
result plays the role of the Group Completion Theorem for the Grothendieck–Witt theory of
uniquely split proto-exact categories. Compare with [33, Theorem 4.2], [36, Theorem A.1]
and [37, Theorem 6.6] in the split exact setting.

Theorem 1.12 [12, Theorems 3.2 and 3.11] Let A be a uniquely split proto-exact category
with duality.

(i) There is a weak homotopy equivalence GWQ
H (A) � GW⊕

H (A).
(ii) If, moreover, A is combinatorial and noetherian, then there is a weak homotopy equiva-

lence

GWQ(A) �
⊔

w∈WQ
0 (A)

BGSw × GWQ
H (A),

where Sw is an anisotropic representative of theWitt classw ∈ WQ
0 (A)with self-isometry

group GSw .

2 K-theory and Grothendieck–Witt theory of pointedmonoids

In this section we study the K-theory and Grothendieck–Witt theory of proto-exact categories
of projectivemodules over pointedmonoids. The specialization of this section to commutative
pointed monoids is the local model for the scheme theoretic considerations of Sects. 3 and 4.

2.1 Pointedmonoids and their module categories

We record basic material about pointed monoids and their module categories. A detailed
reference for commutative pointed monoids is [3, §2]. Many of the results of [3], and their
proofs, apply with only minor changes in the non-commutative setting. See also [28], which
treats modules over non-commutative semigroups with identity.
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1416 J. N. Eberhardt et al.

A pointed monoid is a semigroup A with a zero (or absorbing element) 0 and an identity
1, so that a · 0 = 0 = 0 · a and a · 1 = a = 1 · a for all a ∈ A. A homomorphism
of pointed monoids is a semigroup homomorphism which preserves the zero and identity.
Pointed monoids and their homomorphisms form a category M̃0. The full subcategory of
commutative pointed monoids is M0.

Let I be an ideal of a commutative pointed monoid A, that is, 0 ∈ I and I A = I . The
quotient pointed monoid A/I is the set (A \ I ) ∪ {0} with the multiplication a · b = ab if
a, b, ab ∈ A \ I and a · b = 0 otherwise.

A left A-module (also called an A-set) is a pointed set M , with basepoint denoted again
by 0, together with a left A-action under which 0 ∈ A and 1 ∈ A act by the zero and identity
map of M , respectively. Right A-modules are defined similarly. Unless mentioned otherwise,
by an A-module we mean a left A-module. An A-module homomorphism is a pointed A-
equivariant map. Let A-Mod be the category of left A-modules and their homomorphisms
and A-mod its full subcategory of finitely generated A-modules. An A-module P is called
projective if, for every A-module homomorphism f : P → M and surjective A-module
homomorphism g : N → M , there exists an A-module homomorphism h : P → N
satisfying g ◦ h = f . Let A-proj ⊂ A-Mod be the full subcategory of finitely generated
projective A-modules.

Lemma 2.1 [3, Proposition 2.27] Every projective A-module is of the form
⊕

i∈J Aei where
e2i = ei are idempotents in A.

An A-module homomorphism f : M → N is called normal if f −1(n) is empty or a
singleton for each n ∈ N \{0}. This definition of normality is compatible with the categorical
definition in the case of monomorphisms and epimorphisms; cf. [3, Proposition 2.15]. The
zero and identity morphisms are normal, as are compositions of normal morphisms. Denote
by A-Modn ⊂ A-Mod the subcategory of normal A-module homomorphisms, and similarly
for A-modn and A-projn.

An element a ∈ A is called right cancellative (resp. right partially cancellative, or rpc)
if right multiplication ·a : A → A is an injective A-module homomorphism (resp. normal
A-module homomorphism). Explicitly, a ∈ A is rpc if xa = ya implies x = y or xa =
ya = 0 for all x, y ∈ A. Let Arpc ⊂ A be the subset of right partially cancellative elements
and Arc ⊂ A be the subset of right cancellative elements together with 0 ∈ A. Both Arc

and Arpc are pointed submonoids of A. We call a pointed monoid A right cancellative if
Arc = A and rpc if Arpc = A. Replacing right with left multiplication leads to the notion of
a left (partially) cancellative pointed monoid. A pointed monoid is called cancellative (resp.
partially cancellative, or simply pc) if it is both left and right cancellative (resp. partially
cancellative).

A pointed monoid A is called right reversible if Aa ∩ Ab �= {0} for any two non-zero
elements a, b ∈ A. For example, a commutative cancellative pointed monoid is (both left
and right) reversible, since 0 �= ab ∈ Aa ∩ Ab.

A pointed monoid is called right noetherian if it satisfies the ascending chain condition
for right congruences.

For a family of A-modules {Mi }i∈J , the direct sum A-module is

⊕

i∈J

Mi =
( ⊔

i∈J

Mi

)
/〈0Mi ∼ 0Mj | i, j ∈ J 〉
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with the obvious A-action. For an A-B-bimodule M and a B-C-bimodule N , the tensor
product A-C-bimodule is

M ⊗B N = (M × N ) /{(mb, n) ∼ (m, bn) | b ∈ B}
with the obvious actions of A and C .

Example 2.2 (i) The initial object of M̃0 is F1 := {0, 1}. There is an equivalence of
F1-mod with the category set∗ of finite pointed sets. The subcategory F1-modn =
F1-projn is often denoted by VectF1 in the literature.

(ii) The terminal object of M̃0 is {0}, the unique monoid with 0 = 1.
(iii) Let G be a group. Then F1[G] := G � {0} is a cancellative pointed monoid. A pointed

monoid is cancellative and right reversible if and only if it can be embedded in F1[G]
for some group G [5, Theorem 1.23].

(iv) The subset A× ⊂ A of multiplicative units is a group and F1[A×] ⊂ A is a cancellative
pointed submonoid.

(v) The pointed monoid F1[t] = {t i }i≥0 � {0} is cancellative.
(vi) Let n ≥ 2. The pointedmonoidF1[t]/〈tn = 0〉 = {0, 1, t, . . . , tn−1} is not cancellative,

since t · 0 = t · tn−1, but is pc and reversible.
(vii) The pointedmonoid A = F1[t, s]/〈ts = 0〉 is pc but not reversible, since At∩As = {0}.
(viii) Let n > d ≥ 2. The pointed monoid F1[t]/〈tn = td〉 = {0, 1, t, . . . , td , . . . , tn−1} is

not pc, since t · td−1 = t · tn−1.

For a left A-module M , the set HomA-Mod(M, A) becomes a right A-module via

( f · a)(m) := f (m)a, f ∈ HomA-Mod(M, A), a ∈ A, m ∈ M .

Unlike in the case of rings, the module HomA-Mod(M, A) does not define a good notion of
a module dual to M . For this reason, we instead consider the subset HomA-Modn(M, A) ⊂
HomA-Mod(M, A) of normal homomorphisms. As the following result shows, this subset is
not an A-submodule without additional assumptions. Denote by Aop the monoid opposite to
A.

Lemma 2.3 Let A be a pointed monoid.

(i) For any M ∈ A-Mod, the right A-module structure onHomA-Mod(M, A) induces a right
Arpc-module structure on HomA-Modn(M, A).

(ii) If A is right reversible and rpc and M is a finitely generated free A-module, then the
right A-module HomA-modn(M, A) is finitely generated and free.

(iii) If A is right reversible, rpc and right noetherian, then HomA-modn(−, A) defines a ⊕-
monoidal functor

P : (A-modn)op → Aop-modn .

Proof The first statement is a direct verification. For the second statement, let

M =
⊕

i∈J

Asi

be a finitely generated free A-module. Denote by s∨
i : M → A the map sending asi to a and

as j to 0 if j �= i . We claim that the induced map
⊕

i∈J

s∨
i :

⊕

i∈J

ti A → HomA-modn(M, A), ti xi �→ s∨
i · xi
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is a right A-module isomorphism. The map is well-defined and injective since A is rpc.
If |J | = 1, then the map is clearly an isomorphism. Suppose then that |J | ≥ 2 and let
f ∈ HomA-Modn(M, A). Set fi = f (si ). We claim that there is at most one i ∈ J such
that fi �= 0 and hence f = s∨

i · fi . Assume that there exist distinct i, j ∈ J such that
fi �= 0 �= f j . Since A is right reversible, there exist a, b ∈ A such that a fi = b f j �= 0.
Hence, f (asi ) = f (bs j ) �= 0, a contradiction. The second statement follows.

Turning to the third statement, let M ∈ A-mod. Fix a surjection F → M with F a
finitely generated free A-module. A direct check shows that P(M) is naturally a submodule
of P(F). By the first two parts of the lemma, P(F) is finitely generated and free. Since
A is right noetherian, P(F) is noetherian [3, Proposition 2.31], from which it follows that
P(M) is finitely generated. The definition of P on morphisms is via pre-composition and
is well-defined because the composition of normal morphisms is normal. To prove that P
is ⊕-monoidal, let M, N ∈ A-mod. An element f ∈ P(M ⊕ N ) determines by restriction
fM ∈ P(M) and fN ∈ P(N ). Suppose that neither fM nor fN is zero. Since A is right
reversible, im fM∩im fN �= {0}, contradicting the assumption that f is normal. It follows that
at most one of fN and fM is non-zero and there is a well-defined A-module homomorphism

P(M ⊕ N ) → P(M) ⊕ P(N ).

It is straightforward to verify that this is an isomorphism. We omit the verification that P
respects ⊕ on morphisms. ��

Remark 2.4 (i) There is a right A-module isomorphism

HomA-mod

(
⊕

i∈J

Asi , A

)
∼=

∏

i∈J

A

where the si are generators of the A-module
⊕

i∈J Asi . In particular, the standard A-
linear dual of a free A-module is in general not free. In fact,

∏
i∈J A need not even be

finitely generated. For example, theF1[t]-moduleF1[t]×F1[t] is not finitely generated.
From this point of view, the normal dual HomA-modn(−, A) has better properties than
HomA-mod(−, A).

(ii) The functor HomA-modn(−, A) of Lemma 2.3(iii) does not extend to (A-mod)op →
Aop-mod, since for a non-normal morphism f : M → N , the image of
HomA-modn( f , A) is not contained in HomA-modn(M, A) ⊂ HomA-mod(M, A).

2.2 K-theory of pointedmonoids

The K-theory of pointed monoids has been studied by a number of authors [3,4,10,17]. In
this section we describe those results which are relevant to this paper.

Let A be a pointed monoid. The category A-Mod admits a proto-exact structure with
inflations and deflations being the normal A-module homomorphisms which are injective
and surjective, respectively [3, §2.2.2]. However, ⊕ is not a coproduct for A-Modn. Indeed,
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for a non-zero A-module M , there is no dashed arrow in A-Modn which makes the diagram

M

M M ⊕ M

M

iM
idMiM

idM

commute. In particular, A-Modn is not a quasi-exact category.
Since A-proj ⊂ A-Mod is an extension closed full subcategory, it inherits a proto-exact

structure from A-Mod.

Lemma 2.5 (See also [3, Proposition 2.29]) Let A be a pointed monoid. The proto-exact
category A-proj is uniquely split and combinatorial.

Proof Let U i V π W be a conflation in A-proj. Since W is projective, there exists a
section s : W → V of π . Since π is a deflation, it is normal by definition which implies that
that the section s is unique. Define an A-module homomorphism φ : U ⊕ W → V by

φ(u) = i(u), φ(w) = s(w).

To see that φ is injective, suppose, for example, that φ(u) = φ(w). Applying π gives

0 = π(i(u)) = π(s(w)) = w,

implying u = w = 0. We claim that φ is also surjective and hence an isomorphism by [3,
Lemma 2.2]. It is immediate that im i ⊂ imφ. Let v ∈ V \ im i . Then π(v) �= 0 and hence
also s(π(v)) �= 0. Because π ◦ s = idW , the map s ◦π is idempotent. It follows that s(π(v))

and v have the same (non-zero) image under s ◦ π . Since s ◦ π is normal, s(π(v)) = v. We
conclude that φ is a splitting of the original conflation.

That the combinatorial property holds follows from the fact that⊕ is defined using disjoint
union of the underlying sets. ��

Note that Lemma 2.5 also implies that A-projn is a uniquely split proto-exact category.
The following ‘Q = +’ theorem is the main results of this section.

Theorem 2.6 Let A be an rpc pointed monoid. Then there is a homotopy equivalence

K(A-proj) � Z × B(A× � �∞)+.

The K-groups of A-proj are given by the stable homotopy groups of (BA×)+, the classifying
space of A× with an added base point,

Ki (A-proj) ∼= π s
i ((BA×)+).

Proof Since A is rpc, projective A-modules are free. Indeed, this follows from Lemma 2.1
and the fact that a (non-trivial) rpc pointed monoid has a single non-zero idempotent, namely
1 ∈ A. By Theorem 1.5 (see also [4, Theorem 4.2]), there is a homotopy equivalence
K(A-proj) � K⊕(A-proj). To compute K⊕(A-proj), we apply [48, Proposition 3] to the
cofinal family {A⊕n}n∈Z≥0 of A-proj. We then have

Aut(A-proj) := lim−→
n

AutA-proj(A
⊕n) = lim−→

n

(A×)n � �n = A× � �∞,
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and hence K⊕(A-proj) = Z × B(A× � �∞)+ which implies the first statement.
The Barratt–Priddy theorem [2] provides a homotopy equivalence between Z × B(A× �

�∞)+ and �∞�∞(BA×)+ which implies the second statement; see [49, Example 4.10.1]
for a reference. ��

Note that, by Lemma 1.4, the embedding A-projn ↪→ A-proj induces a homotopy equiv-
alence K(A-projn) � K(A-proj).

2.3 Grothendieck–Witt theory of pointedmonoids

In this section, we study the Grothendieck–Witt theory of pointed monoids. This leads to a
non-additive analogue of Karoubi’s Grothendieck–Witt theory of rings [21].

Let A be an rpc pointed monoid. Fix a pointed monoid involution σ : A → Aop and a
central element ε ∈ A which satisfies εσ (ε) = 1. For example, when A is commutative,
σ = idA and ε = 1 is an admissible choice. For a non-trivial case, see the examples below.

Given M ∈ A-Mod, consider Pσ (M) := HomA-Modn (M, A) as a left A-module via

(a · f )(m) := f (m)σ (a), f ∈ Pσ (M), a ∈ A, m ∈ M .

Compare with Lemma 2.3.

Proposition 2.7 Let A be a right reversible rpc pointed monoid. The natural transformation
�σ,ε : idA-projn ⇒ Pσ ◦ (Pσ )op with components

�
σ,ε
M (m)( f ) = εσ ( f (m)), f ∈ Pσ (M), m ∈ M

makes (A-projn, Pσ ,�σ,ε) into a uniquely split combinatorial proto-exact category with
duality.

Proof Lemma 2.5 shows that A-proj, and hence A-projn, is uniquely split and combinatorial.
Given φ : M → N in A-projn, the morphism Pσ (φ) : Pσ (N ) → Pσ (M) is defined to be
(−) ◦ φ. This is well-defined since the composition of normal morphisms is normal. Since
A is rpc, projective A-modules are free. That Pσ is ⊕-monoidal on A-projn follows from
Lemma 2.3. Exactness of Pσ then follows from the splitness of A-projn. Hence, Pσ satisfies
the desired properties.

A direct calculation shows that �σ,ε
M (m) : Pσ (M) → A is an A-module homomorphism.

To see that �
σ,ε
M (m) is normal, fix an A-module basis M ∼= ⊕

i∈J Asi and write m = xsi .
When x = 0, the map �

σ,ε
M (m) is zero, which is normal. Suppose then that x �= 0 and let

0 �= a ∈ A. We have

�
σ,ε
M (m)−1(a) = { f ∈ Pσ (M) | ε(σ ( f (xsi )) = a} = {y ∈ A | ε(σ (ys∨

i (xsi )) = a}
= {y ∈ A | σ(y)σ (x) = σ(ε)a}.

Since A is rpc and σ is an isomorphism, the final set is empty or a singleton, as required. The
assumption εσ (ε) = 1 ensures that the equalities P(�U ) ◦ �P(U ) = idP(U ) hold. ��
Example 2.8 Let A = F1. The only possibilities are σ = idF1 and ε = 1. For each M ∈
VectF1 = F1-projn, there is a canonical isomorphism

δM : M ∼−→ P(M), δM (m)(m′) =
{
1 if m = m′,
0 if m �= m′.
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We emphasize that such an isomorphism does not exist for a general pointed monoid. Under
this identification, P squares to the identity. The triple (VectF1 , P, ididVectF1

) is therefore a

proto-exact category with strict duality.

Next, we turn to the classification of symmetric forms in A-projn. Let M be a free A-
module of rank one. Fix a basis M ∼= A. A symmetric form ψM on M then takes the form

ψM (a)(x) = xξσ (a), a, x ∈ A

for some ξ ∈ A× which satisfies ξ = εσ (ξ). Write ψξ for this symmetric form. An isomor-
phism M → M , which is necessarily determined by an element u ∈ A×, defines an isometry
ψuξσ (u) → ψξ . Motivated by these observations, define an A×-action on the set

A×
σ,ε = {ξ ∈ A× | ξ = εσ (ξ)}

by u · ξ = uξσ (u). Then the set of isomorphism classes of rank one symmetric forms in
A-projn is Picsym(A) := A×

σ,ε/A
×. The isometry group of ψξ is the stabilizer

I (ξ) = {u ∈ A× | ξ = uξσ (u)}.
Example 2.9 The pointed monoid A = F13 := F1[Z/3] has a unique non-trivial monoid
automorphism σ , which is an involution. Either non-identity element ε ∈ Z/3 is compatible
with σ . We have A×

σ,ε = {ε2} and I (ε2) ∼= Z/3. In particular, Picsym(A) is a singleton.

Given (h, {mξ }) ∈ Z≥0 × ∏′
ξ∈Picsym(A)Z≥0 in the restricted product (see Appendix A.2),

define a symmetric form

ψh,{mξ } = ψ⊕h
H(A) ⊕

⊕

ξ∈Picsym(A)

ψ
⊕mξ

ξ .

Proposition 2.10 Let A be a right reversible rpc pointed monoid.

(i) The assignment (h, {mξ }) �→ ψh,{mξ } induces a monoid isomorphism between

Z≥0 ×
∏′

ξ∈Picsym(A)

Z≥0

and the monoid π0(A-projnh) of isometry classes of symmetric forms in A-projn.
(ii) There is a group isomorphism

AutA-projnh (ψh,{mξ }) ∼= (
(Z/2 �σ A×) � �h

) ×
∏′

ξ∈Picsym(A)

(
I (ξ) � �mξ

)
,

where Z/2 acts on A× by u �→ σ(u−1).

Proof After using Lemma 1.7, the first statement is straightforward. The second statement
is a direct calculation. ��
Remark 2.11 LetM ∈ A-projbe free of rankn. Fixing a basis ofM , and hence also of Pσ (M),
identifies a symmetric form on M with an A×-valued permutation matrix ψ = (ψi j ) ∈
A× � �n which satisfies ψi j = εσ (ψ j i ), 1 ≤ i, j ≤ n. In this formulation, Proposition 2.10
becomes the classification of such matrices up to congruence.

We recall the ReductionAssumption from Sect. 1.3: let (M, ψM ) be a symmetric form and
i : U � M an isotropic inflation; then the inherited morphism ψM//U : M//U → P(M//U )

is assumed to be an isomorphism.
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Proposition 2.12 The Reduction Assumption holds for (A-projn, Pσ ,�σ,ε).

Proof An isotropic subobject U � ψh,{mξ } necessarily factors through the summand
H(A)⊕h . It therefore suffices to consider only hyperbolic symmetric forms. By the com-
binatorial property of A-projn, we can write U = U1 ⊕ P(U2) for some Ui ∈ A-proj, in
which case the isotropic condition is P(U2) � P(X/U1). The reduction of H(A)⊕h is then
canonically isometric to H(coker(P(U2) � P(X/U1)). See also [51, Lemma 1.1]. ��
Remark 2.13 In view of Proposition 2.12, we conclude, using [50, Theorem 3.10], that the
forgetful morphism R•(A-projn) → S•(A-projn) from the R•-construction to the Wald-
hausen S-construction is a relative 2-Segal space. We can therefore apply the construction of
[50, §4] to produce a module over of the Hall algebraH(A-projn). The algebraH(A-projn),
and its variations, have been studied by Szczesny [40–42]. In the setting of the representation
theory of quivers over F1, which is combinatorial but not split, modules arising from the
R•-construction have been studied in [51] where, in particular, a version of Green’s theorem
is proved.

We can now state the main result of this section.

Theorem 2.14 Let A be a right reversible rpc pointed monoid with Picsym(A) countable.
Then GW⊕(A-projn, σ, ε) is homotopy equivalent to

Z ×
( ∏′

ξ∈Picsym(A)

Z

)
× B

⎛

⎝(
(Z/2 �σ A×) � �∞

) ×
∏′

ξ∈Picsym(A)

(
I (ξ) � �∞

)
⎞

⎠
+

.

Proof Index the set Picsym(A) as {ξ j } j∈J for some subset J ⊆ Z≥0. For each n ≥ 0, consider
the symmetric form

�n =
⊕

j∈J
j≤n

ψξ j

and set sn = H(A)⊕n⊕�⊕n
n . Then {sn}n∈Z≥0 is a cofinal family in A-projnh .UsingProposition

2.10, we find

Aut(A-projnh) := lim−→AutA-projnh (sn)
∼= (

(Z/2 �σ A×) � �∞
) ×

∏′

ξ∈Picsym(A)

I (ξ) � �∞.

We are therefore in the setting of [48, Proposition 3], allowing us to conclude that there is a
homotopy equivalence

GW⊕(A-projn, σ, ε) � K⊕
0 (A-projnh) × B Aut(A-projnh)

+.

Finally, use Proposition 2.10 to identify K⊕
0 (A-projnh) and Z × ∏′

ξ∈Picsym(A)Z. ��
Corollary 2.15 In the setting of Theorem 2.14, there is an isomorphism

W⊕
0 (A-projn, σ, ε) ∼=

∏′

ξ∈Picsym(A)

Z.

Example 2.16 Suppose that A has no non-trivial units. This is the case, for example, for
A = F1[T1, . . . , Tn]. Then there is an isomorphism

GW⊕(A-projn, σ ) ∼= Z
2 × B

((
Z/2 � �∞

) × �∞
)+

.
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Example 2.17 For later use, we record the homotopy equivalence

GW⊕(VectF1) � Z
2 × B

((
Z/2 � �∞

) × �∞
)+

.

To describe GWQ(VectF1), we use Theorem 1.12. Since {H(F⊕n
1 )}n≥0 is a cofinal family

of AH , arguing as in the proof of Theorem 2.14, we obtain a homotopy equivalence

GWH (VectF1) � Z × B(Z/2 � �∞)+

so that there is a weak homotopy equivalence

GWQ(VectF1) �
⊔

n∈Z≥0

B�n × Z × B(Z/2 � �∞)+.

Computations for more general monoids are similar.

3 Algebraic K-theory of monoid schemes

In the remainder of the paper, all pointed monoids are assumed to be commutative.

3.1 Monoid schemes

We present some background on monoid schemes. The reader is referred to [3,6,8,9] for
further details.

A prime ideal of a pointed monoid A is an ideal p ⊂ A whose complement S = A − p is
a multiplicative subset, that is, S contains 1 and is multiplicatively closed.

Let S be a multiplicative subset of A. The localization of A at S is S−1A = (S × A)/ ∼,
where (s, a) ∼ (a′, s′) if there exists t ∈ S such that tsa′ = ts′a. Write a

s for the class of
(s, a) in S−1A. The product a

s · bt = ab
st endows S

−1A with the structure of a pointed monoid
and the map ιS : A → S−1A, a �→ a

1 , is a monoid morphism, which we call the localization
map.

Given h ∈ A, we write A[h−1] for the localization of A at S = {hi }i∈Z≥0 . Given a prime
ideal p ⊂ A, we write Ap for the localization of A at S = A − p. If A is cancellative, then
S = A − {0} is a multiplicative subset and we define the fraction field of A as Frac A =
S−1A, which is a pointed group, that is, (Frac A)× = Frac A − {0}. More generally, if A is
cancellative and 0 /∈ S, then ιS : A → S−1A is injective and S−1A is cancellative. In this
situation, we often identify A with its image in S−1A and write a for a

1 ∈ S−1A.
A monoidal space is a pair (X ,OX ) consisting of a topological space X and a sheaf of

pointed monoids OX . We often suppress OX from the notation. A primary example of a
monoidal space is the spectrum X = Spec A of a pointed monoid A whose points are the
prime ideals of A, whose topology is generated by the principal open subsetsUh = {p | h /∈ p}
for h ∈ A, and whose structure sheaf OX is characterized by the values OX (Uh) = A[h−1]
and by its stalks OX ,p = Ap. We use the short hand notation �X = OX (X) for the pointed
monoid of global sections of OX .

An affine monoid scheme is a monoidal space which is isomorphic to Spec(A) for some
pointed monoid A. A monoid scheme is a monoidal space which admits an open cover by
affine monoid schemes.

A morphism between monoid schemes X and Y is a continuous map ϕ : X → Y together
with a morphism ϕ# : OY → ϕ∗(OX ) of sheaves of pointed monoids such that, for every
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x ∈ X , the induced pointed monoid morphism ϕ#
x : OY ,ϕ(x) → OX ,x is local, that is, maps

non-units to non-units.
A monoid scheme is of finite type if it is quasi-compact and has an affine open covering

by spectra of finitely generated pointed monoids. We say that X has enough closed points
if every point y ∈ X specializes to a closed point x or, equivalently, x is contained in the
topological closure of {y}.
Remark 3.1 We list some well-known properties of monoid schemes.

(i) A monoid scheme is a spectral space (cf. [31]), which means, in particular, that every
irreducible closed subset has a unique generic point, which we typically denote by η.

(ii) A pointed monoid A has a unique maximal (prime) ideal, namely, the complement
m = A−A× of the unit group A×. Therefore, every affinemonoid scheme X = Spec A
has a unique closed point x = m, and X is the only open neighbourhood of x . As a
consequence, every affine open subset U of a monoid scheme X has a unique closed
point x and �U = OX ,x .

(iii) If X has enough closed points, then it is covered by the minimal open neighbourhoods
Ux = SpecOX ,x of the closed points x . This covering is the minimal open covering of
X , in the sense that every other open covering of X refines to {Ux | x ∈ X closed}.

(iv) If X is of finite type, then it has only finitely many points. In particular, X has enough
closed points and Ux is open in X for every x ∈ X .

Definition 3.2 A monoid scheme X is called

(i) cancellative (resp. pc) if the pointed monoid OX ,x is cancellative (resp. pc) for each
x ∈ X ,

(ii) integral (resp. reversible) if the pointedmonoidOX (U ) is cancellative (resp. reversible)
for each open set U ⊂ X , and

(iii) torsion free if for every x ∈ X , the unit group of OX ,x is torsion free, that is, if an = 1
for n > 1, then a = 1.

Remark 3.3 Note that we digress from [3] in the meaning of integrality of monoid schemes.
To wit, we require that OX (U ) is cancellative for all opens U , and not merely for an open
covering, as required in [3]. For instance, the disjoint union of two integral monoid schemes
(in our sense) would be integral in the sense of [3], but not in the sense of this text.

Lemma 3.4 (i) Let X be a cancellative (resp. pc) monoid scheme. Then the pointed monoid
OX (U ) is cancellative (resp. pc) for each affine open subset U ⊂ X.

(ii) An integral monoid scheme is cancellative.
(iii) An integral monoid scheme is reversible.

Proof LetU ⊂ X be an open affine subset of a cancellative (resp. pc) monoid scheme. Then
U = SpecOX ,x where x is the unique closed point ofU . It follows thatOX (U ) is cancellative
(resp. pc).

The second statement follows from the fact that the stalks of an integral monoid scheme
are submonoids of the (cancellative) generic stalk.

The final statement follows from the first statement and the fact that cancellative pointed
monoid is reversible. ��

Let X be an irreducible cancellative monoid scheme with generic point η. Define the
function field of X as OX ,η, which is a pointed group.
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Lemma 3.5 Let X be an irreducible cancellative monoid scheme with generic point η. For
every open U ⊂ X, there is an equality OX (U ) = ⋂

x∈U OX ,x of pointed submonoids of
OX ,η.

Proof Since OX ,x is cancellative and OX ,η is a localization of OX ,x , the localization map
OX ,x → OX ,η is injective for every x ∈ X . ��
Proposition 3.6 A monoid scheme X is integral if and only if it is irreducible and pc.

Proof Assume that X is integral. If X is not irreducible, then there exist disjoint non-empty
open subsets U1 and U2. By the sheaf axiom, we have OX (U1 ∪ U2) = �U1 × �U2,
which is not cancellative, contradicting the integrality of X . Thus, X is irreducible. Let
x ∈ X with affine open neighbourhood U = Spec A, so that x corresponds to a prime ideal
p ⊂ A. Because X is integral, A is cancellative, as is its localization OX ,x = Ap. Thus, X is
cancellative and, in particular, pc.

Suppose instead that X is irreducible and pc. We first prove that X is cancellative. Let
x ∈ X with affine open neighbourhood U = Spec A. Since X is irreducible, A has a unique
minimal ideal p and since U is pc, A is pc by Lemma 3.4(i). Then A fails to be cancellative
only if it has nontrivial zero divisor, say ab = 0 for non-zero a, b ∈ A. In this case, the
inverse image pb = ι−1

b (m) of the maximal ideal m = A[b−1] − A[b−1]× of A[b−1] under
the localization map ιb : A → A[b−1] is a prime ideal that contains a but not b. Similarly,
there is a prime ideal pb that contains b but not a. Since ab = 0, the intersection pa ∩ pb
cannot contain a prime ideal. This contradicts the fact that A has a unique minimal ideal.
Hence, A and all of its localizations are cancellative. This proves that X is cancellative.

To complete the proof that X is integral, denote by η the generic point of X . Lemma 3.5
implies that OX (U ) is a submonoid of the cancellative stalk OX ,η for every open subset U
of X , and therefore is itself cancellative. Thus X is integral. ��
Definition 3.7 (i) A valuation monoid is a cancellative pointed monoid A such that

Frac A = {a, a−1 | a ∈ A}.
(ii) A morphism ϕ : Y → X of monoid schemes is proper if for all valuation monoids

A with inclusion ι : A → Frac A and all morphisms μ : Spec Frac A → Y and
ν : Spec A → X with ϕ ◦ μ = ν ◦ ι∗, there exists a unique morphism ν̂ : Spec A → Y
such that the diagram

Spec Frac A Y

Spec A X

μ

ι∗ ϕ

ν

ν̂

commutes.
(iii) A monoid scheme X of finite type is proper if the terminal morphism X → SpecF1 is

proper.

Proposition 3.8 Let X be a proper, integral and torsion free monoid scheme of finite type.
Then �X = F1.

Proof Let η be the generic point of X . Since X is integral, all stalks OX ,x , x ∈ X , are
submonoids of the generic stalk OX ,η; see Lemma 3.5. Thus

�X =
⋂

x∈X
OX ,x ,
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the intersection being taken in OX ,η.
In order to prove that �X = F1, we consider an element f ∈ OX ,η and assume that

f /∈ {0, 1}. Being a proper scheme, X is of finite type, and since it is torsion free, we have
OX ,η

∼= F1[T±1
1 , . . . , T±1

n ] for some n ≥ 0. Under this isomorphism, f corresponds to a
Laurent monomial

∏n
i=1 T

ei
i for some tuple (e1, . . . , en) �= (0, . . . , 0) in Z

n . Therefore, we
find a pointed monoid morphism

v : OX ,η
∼= F1[T±1

1 , . . . , T±1
n ] −→ F1[T±1]

that maps f to T−i for some i > 0. Since X is of finite type, Uη = SpecOX ,η is an open
subscheme of X .

Let ι : F1[T ] → F1[T±1] be the canonical inclusion and consider the diagram

SpecF1[T±1] Uη X

SpecF1[T ] SpecF1

v∗

ι∗ ϕ

ν

ν̂

whose outer square commutes as SpecF1 is terminal and where ν̂ is the unique morphism
given by the defining property of the proper scheme X . Let z = 〈T 〉 be the closed point
of SpecF1[T ] and x = ν̂(z). Consider the induced morphism of stalks ν̂#z : OX ,x →
OSpecF1[T ],z = F1[T ]. Since v( f ) = T−i for i > 0, the element f ∈ OX ,η is not contained
inOX ,x , which shows that f is not a global section. This shows that �X = {0, 1}, as desired.

��

3.2 Vector bundles

Let X and F be monoid schemes. A fibre bundle on X with fibre F , or simply an F-bundle
on X , is a morphism π : E → X of monoid schemes such that there is an open covering
{Ui } of X and isomorphisms ϕi : E ×X Ui → F ×Ui , called trivializations, such that each
diagram

E ×X Ui F ×Ui

Ui

ϕi

∼=
πi prUi

commutes, where πi = E ×X Ui → Ui is the restriction of π toUi . Sometimes we suppress
the morphism π from the notation and say that E is an F-bundle on X . An F-bundle E on X
is trivializable if there exists a trivialization E ∼= F × X . A morphism of F-bundles E and
E ′ on X is a commutative diagram

E E ′

X
π π ′

of morphisms of monoid schemes.

Remark 3.9 If X = Spec A is affine, then it has a unique closed point and thus every covering
{Ui } is trivial in the sense that Ui = X for some i . Therefore every F-bundle on X is
trivializable.

As a consequence, given an F-bundle π : E → X on an arbitrary monoid scheme X , we
can find trivializations ϕi : E×X Ui → F×Ui for every chosen affine open covering {Ui } of
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X . In particular, this holds for the minimal affine open covering {SpecOX ,x | x ∈ X closed}
if X has enough closed points.

Let n ∈ Z≥0. The affine n-space over F1 is A
n
F1

= SpecF1[T1, . . . , Tn]. A vector bundle
on X of rank n is an A

n
F1
-bundle. We denote the category of finite rank vector bundles on X ,

together with all bundle morphisms, by Vect(X).

Remark 3.10 In contrast to vector bundles on schemes over a field, we need not require
any additional datum to describe vector bundles, since the ‘vector space structure’ of A

n
F1

is intrinsically given, and coordinate changes of an A
n
F1
-bundle are necessarily ‘F1-linear’.

This follows from the fact that every A-linear automorphism of A[T1, . . . , Tn] is graded; cf.
the proof of Proposition 3.11.

As in algebraic geometry over a field, vector bundles correspond to finite locally free
sheaves. We briefly review the definitions.

Let X be a monoid scheme. An OX -module is a sheaf F of pointed sets on X together
with a morphism OX × F → F of sheaves such that F(U ) is an OX (U )-module and
the restriction maps F(U ) → F(V ) are pointed OX (U )-module homomorphisms for all
open subsets V ⊂ U ⊂ X . A morphism of OX -modules is a morphism ϕ : F → F ′ of
sheaves such that F(U ) → F ′(U ) is a pointed OX (U )-module homomorphism for every
open U ⊂ X . This defines the category OX -Mod of OX -modules on X .

An OX -module F is said to be finite locally free if every point x ∈ X has an open
neighbourhood x ∈ U ⊂ X such that F |U is a free OX |U -module of finite rank. We denote
by LF(X) the full subcategory of OX -Mod on finite locally free sheaves.

The relation between finite locally free sheaves and vector bundles uses the symmetric
algebra. Let A be a pointed monoid and M an A-module. The symmetric algebra of M is the
Z≥0-graded pointed monoid

Sym(M) =
⊕

i∈Z≥0

Symi (M)

where

Symi (M) = M⊗i / 〈a1 ⊗ · · · ⊗ ai = aσ(1) ⊗ · · · ⊗ aσ(i) | a1, . . . , ai ∈ M, σ ∈ �i 〉
for i > 0 and Sym0(M) = A. The multiplication of Sym(M) is given by concatenation of
tensors and the inclusion A = Sym0(M) ↪→ Sym(M) is a monoid morphism.

Proposition 3.11 The sheafification of the functor vect = Spec ◦Sym ◦�(X ,−) defines an
equivalence of categories vect : LF(X) → Vect(X).

Proof This is proven similarly to the corresponding fact for schemes over a field. We briefly
sketch the key arguments, but forgo to verify all details. First of all, note that vect(F) is
indeed a vector bundle since

Sym(A⊕n) ∼= A[T1, . . . , Tn] = F1[T1, . . . , Tn] ⊗F1 A

and therefore vect(U ) = Spec Sym
(
�(U ,F)

) ∼= A
n
F1

× Spec�U for every affine open U
of X .

A quasi-inverse lf : Vect(X) → LF(X) of vect can be defined as follows. Let π : E → X
be a vector bundle of rank n, U = Spec A an affine open of X and V = E ×X U . A
trivialization ϕU : V ∼−→ U ×F1 A

n
F1

defines an isomorphism

fU : �V ∼= A ⊗F1 F1[T1, . . . , Tn] ∼= A[T1, . . . , Tn].
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Since the A-linear automorphisms of A[T1, . . . , Tn] correspond to the images of T1, . . . , Tn ,
which must be of the form fU (Ti ) = ai Tσ(i) for some permutation σ ∈ Sn and some
a1, . . . , an ∈ A×, the A-invariant subsets

�V1,i = f −1
U

({aTi | a ∈ A}) and �V1 =
n⋃

i=1

�V1,i

of �V do not depend on the choice of trivialization ϕU up to a permutation of indices. This
yields a canonical representation of �V as a symmetric algebra Sym(�V1).

Define lf(E)(U ) to be the set of A-linear maps s : �V1 → A such that s(�V1,i ) = {0}
for all but one i ∈ {1, . . . , n}, which is a free A-module. The sheafification of the assignment
U �→ lf(E)(U ) defines a functor lf : Vect(X) → LF(X) that is quasi-inverse to vect. ��

In light of Proposition 3.11, we allow ourselves to consider vector bundles as sheaves.
Note that under the correspondence Vect(X) → LF(X), line bundles (vector bundles of rank
one) correspond to invertible sheaves, that is, locally free sheaves of rank one.

Define Pic X to be the set of isomorphism classes of invertible sheaves on X together
with the group operation induced by ⊗. By abuse of language, we call elements of Pic X
line bundles and sometimes identify an isomorphism class with a chosen representative. The
neutral element of Pic X is the class of OX and the inverse of a line bundle L is the dual line
bundle L∨ = HomOX (L,OX ) where HomOX (L,OX ) is the sheafification of the functor
U �→ Hom�U

(L(U ),OX (U )
)
.

3.3 Locally projective sheaves

Let U = Spec A be an affine monoid scheme. An A-module M defines an OU -module M̃
with M̃(Uh) = M ⊗A A[h−1]. For an arbitrary monoid scheme X , we say that an OX -
module F is finite locally projective if there exists an affine open covering {Ui } of X such
Mi = F(Ui ) is a finitely generated projective OX (Ui )-module and such that F |Ui

∼= M̃i as
sheaves on Ui . We denote the category of finite locally projective sheaves by LP(X). Finite
locally free sheaves are locally projective sheaves. The converse implication holds for the
following class of monoid schemes.

Lemma 3.12 Let X be a pc monoid scheme. Then every finite locally projective sheaf is finite
locally free.

Proof Let F be a finite locally projective sheaf on X and {Ui } an affine open covering such
that F(Ui ) is a finitely generated projective OX (Ui )-module. Then Ui = SpecOX ,xi is pc
where xi is the unique closed point of Ui . If e2 = e = 1 · e in a pc pointed monoid, then
either e = 0 or e = 1. Thus, by Lemma 2.1, F(Ui ) is a free OX (Ui )-module of finite rank,
which shows that F is finite locally free. ��

A morphism of OX -modules f : E → F is called normal if the pointed OX ,x -module
homomorphism fx : Ex → Fx is normal for each x ∈ X . The category OX -Mod has a
proto-exact structure in which conflations are kernel-cokernel pairs of normal morphisms
[3, Lemma 5.6]; see also [20, Proposition 3.13]. Normal morphisms define a proto-exact
subcategory OX -Modn of OX -Mod.

The category LP(X) is an extension closed subcategory of OX -Mod and so inherits a
proto-exact structure. The full subcategory LPn(X) of OX -Modn on finite locally projective
sheaves also has an induced proto-exact structure.
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Wewrite⊕ and⊗ for the direct sum and tensor product onOX -Mod, respectively. Both⊕
and ⊗ induce bifunctors on LP(X), making OX -Mod and LP(X) into symmetric bimonoidal
categories, as well as the respective subcategories OX -Modn and LPn(X).

Lemma 3.13 [3, Theorem 5.12] Let X be a monoid scheme. Then the proto-exact category
LP(X) is uniquely split and combinatorial.

Let 〈〈OX 〉〉 ⊂ LPn(X) be the full subcategory of objects which are isomorphic to O⊕n
X

for some n ∈ Z≥0. It is a proto-exact symmetric bimonoidal subcategory. We can form the
proto-exact symmetric bimonoidal category

〈〈OX 〉〉[Pic(X)] :=
⊕

M∈Pic(X)

〈〈OX 〉〉.

See Appendix A.1 for the definition of the right hand side.
The following result plays an important role in the remainder of the paper.

Proposition 3.14 Let X be an integral monoid scheme. Then the functor

F :=
⊕

M∈Pic(X)

(−)M ⊗ M : 〈〈OX 〉〉[Pic(X)] → LP(X)

is symmetric bimonoidal, proto-exact, essentially surjective and bijective on inflations and
deflations. In particular, every finite locally projective sheaf on X decomposes uniquely into
a direct sum of line bundles.

Proof That F is symmetric bimonoidal is a direct calculation. It is clear that F is proto-exact.
By Proposition 3.6, the scheme X is irreducible and pc. Proposition 3.12 therefore implies
that finite locally projective sheaves on X are finite locally free. Since X is irreducible, it has
a unique generic point. The proof of [3, Theorem 5.14] then applies to show that any finite
locally projective sheaf on X is isomorphic to a direct sum of line bundles, from which it
follows that F is essentially surjective.

To see that F is bijective on inflations and deflations, consider the map

Hom

(
n⊕

k=1

EMik
,

m⊕

l=1

FM jl

)
−→ Hom

(
n⊕

k=1

EMik
⊗ Mik ,

m⊕

l=1

FM jl
⊗ M jl

)

whose domain and codomain is a set ofmorphisms in 〈〈OX 〉〉[Pic(X)] and LP(X), respectively.
The left hand side is

∏

k,l,ik= jl

Hom〈〈OX 〉〉(EMik
,FM jl

).

Since LP(X) is split (Lemma 3.13), the subset of inflations or deflations in the codomain is

Hominf/deff
LP(X)

(
n⊕

k=1

EMik
⊗ Mik ,

m⊕

l=1

FL jl
⊗ M jl

)

∼=
∏

k,l
ik= jl

Hominf/deff
LP(X)

(EMik
⊗ Mik ,FM jl

⊗ M jl ).

It therefore suffices to consider the case n = m = 1 and i1 = j1. In this case,
Hom〈〈OX 〉〉[Pic(X)](EM,FM) = HomLP(X)(EM,FM), which we claim can be identified with
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Fig. 1 The canonical covering of
Proj

(
F1[T0, T1, T2]/〈T0T1T2 =

0〉)

T0 T1

T2

T0, T1

T0, T2 T1, T2

U2

U1 U0

HomLP(X)(EM ⊗ M,FM ⊗ M). To see this, consider the quasi-inverse auto-equivalences

− ⊗ M : OX -Mod � OX -Mod : − ⊗ M∨.

Let f : E → F be a normal morphism in OX -Mod. The stalk morphism ( f ⊗ M)x is
naturally identified with

fx ⊗ idMx : Ex ⊗OX ,x Mx → Fx ⊗OX ,x Mx ,

which is normal. It follows from this, and the fact that the quasi-inverse of − ⊗ M is of the
same form, that − ⊗ M restricts to an autoequivalence of LP(X). This proves the claim and
finishes the proof of the proposition. ��

Example 3.15 The assumption that X is irreducible in Proposition 3.14 cannot be dropped.
Indeed, let X = Proj

(
F1[T0, T1, T2]/〈T0T1T2 = 0〉), which is the union of the three coordi-

nate lines in P
2
F1
. The three canonical opens of P

2
F1

provide a covering X = U0 ∪ U1 ∪ U2,

whereUi ∼= Spec
(
F1[Tj , Tk]/〈Tj Tk = 0〉) consists of the three points 〈Tj 〉, 〈Tk〉 and 〈Tj , Tk〉

if {i, j, k} = {0, 1, 2} and where Ui ∩Uj ∼= Spec
(
F1[T±1

k ]) consists of a single point 〈Tk〉.
The situation is illustrated in Fig. 1.

Consider the locally projective sheaf F on X with F(Ui ) ∼= (
�(OX ,Ui ))

⊕2, i = 0, 1, 2,
and whose transition functions ϕi, j : F |Ui (Ui ∩ Uj ) → F |Uj (Ui ∩ Uj ) are given by the
permutation matrices

ϕ0,1 = ϕ0,2 =
(
1 0
0 1

)
and ϕ1,2 =

(
0 1
1 0

)
.

Then F is not isomorphic to a direct sum of line bundles.

Next, we describe the proto-exact summands of 〈〈OX 〉〉[Pic(X)].

Proposition 3.16 Let X be an integral monoid scheme. Then �X is cancellative and the
global sections functor

�(X ,−) = HomLPn(X)(OX ,−) : 〈〈OX 〉〉 → �X-Mod

induces an exact equivalence 〈〈OX 〉〉 ∼−→ �X-projn.
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Proof The functor �(X ,−) is ⊕-monoidal and hence exact, since the domain and codomain
categories are uniquely split. The essential image of �(X ,−) consists of all finitely gener-
ated free �X -modules. Since X is integral, the pointed monoid �X is cancellative, being a
submonoid of the stalk OX ,η of the generic point η of X (Lemma 3.5). Hence, projective
�X -modules are free. That �(X ,−) : 〈〈OX 〉〉 → �X -projn is fully faithful follows from
the observation that both Hom�X -modn(�X⊕n, �X⊕m) and Hom〈〈OX 〉〉(O⊕n

X ,O⊕m
X ) can be

identified with the set of �X -valued m × n-matrices with at most one non-zero entry in each
row and column. ��

3.4 K-theory of monoid schemes

In this section we describe the algebraic K-theory space of integral monoid schemes.
Let X be a monoid scheme. Denote by K(X) = K(LP(X)) the algebraic K-theory space

of LP(X) and set Ki (X) = πiK(X).

Theorem 3.17 Let X be an integral monoid scheme. Then there is a homotopy equivalence

K(X) �
∏′

M∈Pic(X)

Z × B(�X× � �∞)+.

Proof By Lemma 1.4, the functor F from Proposition 3.14 defines a homotopy equivalence
K(〈〈OX 〉〉[Pic(X)]) ∼−→ K(X). Using Propositions A.2 and A.4 and the fact that K-theory
commutes with filtered colimits and finite direct sums of categories (see [30, §2]), we obtain

K(X) � lim−→
S∈P<∞(Pic(X))

K( ⊕

s∈S
〈〈OX 〉〉) � lim−→

S∈P<∞(Pic(X))

∏

s∈S
K(〈〈OX 〉〉)

�
∏′

M∈Pic(X)

K(〈〈OX 〉〉).

Using Proposition 3.16, we have K(〈〈OX 〉〉) � K(�X -projn). The desired homotopy equiv-
alence now follows from Theorem 2.6. ��
Corollary 3.18 Let X be a proper integral torsion free monoid scheme. Then there is a homo-
topy equivalence

K(X) �
∏′

M∈Pic(X)

Z × (B�∞)+.

Proof This follows from Propositions 3.6 and 3.8 and Theorem 3.17. ��
Next, we deduce some results at the level of K-theory groups. In particular, we recover

[3, Theorem 5.14].

Corollary 3.19 Le X be an integral monoid scheme with �X× finite. Then there is an iso-
morphism of graded rings

K•(X) ∼= π s• (B(�X)×+)[Pic(X)],
where the right hand side is the group algebra of Pic(X) with coefficients in the graded ring
π s• (B(�X×)+).
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Proof At the level of abelian groups, the statement follows from Theorem 3.17 by taking
homotopy groups. For the ring structure, we use that the functor F of Proposition 3.14 is
symmetric bimonoidal. Denote by 〈〈OX 〉〉M the direct summand of 〈〈OX 〉〉 concentrated in
degree M ∈ Pic(X). Then ⊗ restricts to biexact functors

⊗ : 〈〈OX 〉〉M1 × 〈〈OX 〉〉M2 → 〈〈OX 〉〉M1M2 , Mi ∈ Pic(X).

In this way we obtain a commutative diagram of pairings of K-theory spectra

K(〈〈OX 〉〉M1) × K(〈〈OX 〉〉M2) K(〈〈OX 〉〉M1M2)

K(〈〈OX 〉〉[Pic(X)]) × K(〈〈OX 〉〉[Pic(X)]) K(〈〈OX 〉〉[Pic(X)]).
Compare with [49, §IV.6.6]. The remaining statements follow. ��
Example 3.20 Fix n ≥ 1 and let P

n
F1

be the n-dimensional projective space over F1. It is a
monoid scheme whose base change P

n
F1

×Spec(F1) Spec(Z) is the n-dimensional projective
space P

n
Z
over the integers. There is an isomorphism of groups Pic(Pn

F1
) ∼= Z which sends

OP
n
F1

(1) to 1 ∈ Z; see [45, Theorem 2.6], [3, §5.4.3] or [14, Lemma 6.5]. Corollary 3.19

then gives the isomorphism K0(P
n
F1

) � Z[Z]. In this way, we recover [3, Corollary 5.15]. In
particular, K0(P

n
F1

) is independent of n, in stark contrast to the case of projective space over
a field.

Remark 3.21 It might surprise the reader that the K-theory of P
n
F1

does not depend on n. The
reason for this is the lack of relations between the twisted line bundles OP

n
F1

(d). There are

various approaches to addressing this issue.
In [3, Theorem5.17] it is shown that themissing relations canbe recoveredby a comparison

morphism between K-theory and G-theory. In [17, Theorem 5.7] it is shown that the K ′-
theory of P

n
F1

is as expected, where K ′-theory is defined in terms of sheaves that locally
come from finitely generated partially cancellative modules. Neither of these approaches
extend to Grothendieck–Witt theory and hence we do not pursue them further in the present
paper.

In a different direction, it would be tempting to define K-theory using perfect complexes,
in the spirit of Thomason–Trobaugh [43]. This could potentially allow the weakening of the
assumptions on X in Theorem 3.17. Classically, perfect complexes are defined in terms of
chain complexes, which are not well-behaved in the present non-additive setting. However,
employing simplicial sets or ∞-categories could fix this problem. We thank the referee for
this suggestion. We do not pursue this direction here.

3.5 Projective bundles

Let X be a monoid scheme. A projective bundle on X is a P
n
F1
-bundle π : E → X for some

n ≥ 0.
As in algebraic geometry over a field, there is a correspondence between classes of vector

bundles, or finite locally free sheaves, and projective bundles on X . Let E = lf(E) be a locally
free sheaf of rank r on X . The sheafification of the functor Proj ◦Sym ◦�(−, E) defines a
P
r−1
F1

-bundle π : PE → X ; see [8, §7] for details on the Proj construction. Its restriction to

an affine open U of X is isomorphic to P
r−1
U such that πU commutes with the structure map

P
r−1
U → U .
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Remark 3.22 We note without proof that every projective bundle is of the form PE for some
finite locally free sheaf E on X . Two finite locally free sheaves E and E ′ define isomorphic
projective bundles π : PE → X and π ′ : PE ′ → X if and only if there is a locally free sheaf
L of rank one such that E ′ ∼= E ⊗ L.
Lemma 3.23 Let A be a pointed monoid and n ≥ 0. Then �P

n
A = A.

Proof Consider the canonical affine open Ui = Spec A[ Tj
Ti

| j = 0, . . . , n] of P
n
A =

Proj A[T0, . . . , Tn] and Uη = ⋂n
i=0Ui = Spec A[ Tj

Ti
|i, j = 0, . . . , n]. Since P

n
A is cov-

ered by the Ui and the restriction maps �Ui → �Uη, i = 0, . . . , n, are injective, we have
�P

n
A = ⋂n

i=0 �Ui as an intersection inside �Uη.
In particular, a global section f ∈ �P

n
A is contained in �Uη and is therefore of the form

a
∏n

i=0 T
ei
i for some a ∈ A and (e0, . . . , en) ∈ Z

n+1 with
∑n

i=0 ei = 0. Since f ∈ �Ui ,
we have ei ≤ 0 for all i = 0, . . . , n. Thus e0 = · · · = en = 0, which shows that f ∈ A as
claimed. ��
Proposition 3.24 Let X be an integral monoid scheme and π : PE → X a projective bundle.
Then the map π∗ : �X → �PE is an isomorphism of pointed monoids.

Proof Since X is integral, it has a unique generic point η, all restrictionmaps are injective and
�X is the intersection

⋂
�U inside OX ,η, where U varies over all affine open subschemes

of X .
For every affine openU ⊂ X , the bundle PE ×X U ∼= P

n
U trivializes. Since η is contained

in every open subset of X , we conclude that PE is irreducible with unique generic point η̂

mapping to η. Moreover, since every affine open subschemeU of X is integral, PE is covered
by the integral subschemes PE ×X U ∼= P

n
U , which shows that PE is integral. We conclude,

using Lemma 3.5, that �PE embeds into OPE,η̂ and equals the intersection
⋂

U �U where
U varies over an affine open covering of X .

To show thatπ∗ is injective, suppose thatπ∗(s) = π∗(t) for s, t ∈ �X . LetV ∼= Spec A be
an affine open of X andUV ,i ∼= Spec A[ Tj

Ti
| j = 0, . . . , n] the canonical open of PE ×X V ∼=

P
n
V . Since (π |V )∗ : A → A[ Tj

Ti
| j = 0, . . . , n] is injective and π∗(s)|UV ,i = π∗(t)|UV ,i , we

conclude that s|V = t |V . Covering X with affine opens V yields the equality s = t .
We turn to surjectivity of π∗. Let s ∈ �PE . By Lemma 3.23, the restriction s|U of s to

U = P×X V ∼= P
n
A comes from a global section tV ∈ �V for every affine open V of X . Since

(π |V )∗ : �V → �U is injective, tV is unique, and therefore the collection {tV }, where V
varies through all affine opens of X , glues to a unique global section t of PE with π∗(t) = s.
This shows that π∗ is surjective and completes the proof. ��
Lemma 3.25 Let X be a monoid scheme and π : PE → X a projective bundle. Then there is
a canonical section σ : X → PE such that σ(x) is the generic point of the fibre π−1(x) for
every x ∈ X.

Proof Choose an affine open covering {Ui = Spec Ai } of X and define Vi = Ui ×X PE .
Since PE trivializes over affine opens, Vi is isomorphic to P

n
Ai

= Proj Ai [T0, . . . , Tn], with
n the fibre dimension of PE . For each i , the graded Ai -linear pointed monoid morphism

si : Ai [T0, . . . , Tn] −→ Ai [T̂ ]
Tj �−→ T̂

defines a morphism

σi = s∗
i : Ui = P

0
Ui

= Proj Ai [T̂ ] −→ Proj Ai [T0, . . . , Tn] ∼= Vi .
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Since the si are invariant under Ai -linear automorphisms of Ai [T0, . . . , Tn], they do not
depend on the choice of identification Vi ∼= P

n
Ai
, and therefore coincide on the intersections

of theUi and glue to a canonical morphism σ : X → PE . Since π#(Ui )◦ si is the identity on
Ai [T̂ ] for every i , the composition π ◦σ is the identity on X , which shows that σ is a section
to π . The restriction of σ to σx : {x} → π−1(x) corresponds to the graded k(x)-monoid
morphism

sx : k(x)[T0, . . . , Tn] −→ k(x)[T̂ ]
Tj �−→ T̂

where k(x) = OX ,x/mx is the “residue field” at x . Since s−1
x (〈0〉) = 〈0〉, we conclude that

σx (x) is the generic point in π−1(x). This completes the proof. ��

Lemma 3.26 Let A be a pointed monoid and n ≥ 1. Then Pic(Pn
A) = {OP

n
A
(m) | m ∈ Z}.

Proof As explained in the example at the end of Sect. 3.4, this result is known for A = F1.
The inclusion i : F1 → A induces a morphism π : P

n
A → P

n
F1

and a group homomorphism
π∗ : Pic(Pn

F1
) → Pic(Pn

A).
Choose any pointed monoid morphism p : A → F1, such as sending all units to 1 and all

other elements to 0. Then i ◦ p = idF1 and p induces a section σ : P
n
F1

→ P
n
A of π and a

retract σ ∗ : Pic(Pn
A) → Pic(Pn

F1
) of π∗. We conclude that π∗ is injective.

We turn to the surjectivity of π∗. Let Ui = SpecF1[Tj/Ti ] j=0,...,n be the canonical open
subsets of P

n
F1

= ProjF1[T0, . . . , Tn] and
Uη = U0 ∩ · · · ∩Un = SpecF1[Tj/Ti ]i, j=0...,n .

Let Vi = Ui ×P
n
F1

P
n
A and Vη = Uη ×P

n
F1

P
n
A. Then {Vi } is an affine open covering of P

n and

every line bundle L on Pn
A trivializes over this covering. This means that we get, for every

i = 0, . . . , n, a commutative diagram

L(Vi ) �Vi

L(Vη) �Vη

ϕi

∼
resVi ,Vη ιi

∼
ϕi,η

of �Vi -linear maps whose right vertical arrow is the canonical inclusion that comes from
the inclusion �Ui → �Uη. Since the �Vi -linear map ϕi,η ◦ resVi ,Vη is determined by the
image of 1, which is of the form a

∏n
i=0 T

ei
i for some a ∈ A and (e0, . . . , en) ∈ Z

n+1 with∑n
i=0 ei = 0, and a is invertible (since ιi = ϕi,η ◦ resVi ,Vη ◦ ϕ−1

i is a localization of pointed
monoids), we can assume that

ϕi,η ◦ resVi ,Vη (1) =
n∏

i=0

T ei
i ,

after replacing ϕi by a−1ϕ−1. This shows that we can choose the trivalizations ϕi so that
they restrict to bijections �Ui → F1[Tj/Ti ] j=0,...,n . This yields a line bundle L′ on P

n
F1

with
π∗(L′) = L. Therefore, π∗ is surjective. ��

The following result is a monoid- theoretic analogue of a well-known result for schemes
over algebraically closed fields.
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Theorem 3.27 Let X be an irreducible monoid scheme and π : PE → X a projective bundle.
Then the map

ϕ : Pic(X) × Z −→ Pic(PE)

(L,m) �−→ π∗L ⊗ OPE (m)

is an isomorphism of abelian groups.

Proof Let η be the generic point of X and Uη = SpecOX ,η, which comes with a canonical
morphism ιη : Uη → X . Define Vη = Uη ×X PE , which comes with the cartesian diagram

Vη PE

Uη X

ι

πη π

ιη

σ

where σ : X → PE is the canonical section of π from Lemma 3.25. This yields a commu-
tative diagram of group homomorphisms

Pic Vη PicPE

PicUη Pic X

ι∗

π∗
η π∗

ι∗η

σ ∗ ,

where PicUη is trivial since Uη is affine. Thus ι∗ ◦ π∗ = π∗
η ◦ ι∗η = 0. Since σ ∗ ◦ π∗ is the

identity on Pic X , we conclude that π∗ is injective.
By Lemma 3.26, Pic Vη = {OVη (n) | n ∈ Z}. Thus, the assignment OVη (n) �→ OPE (n)

defines a group homomorphism r : Pic Vη → PicPE , which is a section of ι∗. This shows
that ι∗ is a surjection.

Consider a line bundleL ∈ PicPE in the kernel of ι∗, so that ι∗(L) ∼= OVη . Choose an affine
open covering {Ui } of X , so that Ui = Spec Ai for Ai = �Ui , and define Vi = Ui ×X PE .
This defines an open covering {Vi } of PE . Since the Ui are affine, PE|Ui is trivializable, so
that PE|Ui

∼= P
n
Ai

where n is the fibre dimension of π . By Lemma 3.26, we conclude that
L|Vi ∼= OVi (m) for some m ∈ Z. Since OVη (m) ∼= L|Vη

∼= OVη , we have m = 0. We
therefore obtain a commutative diagram

L(Vi ) OPE (Vi ) π∗(OX )(Vi ) π∗(σ ∗(L)
)
(Vi )

L(Vη) OPE (Vη) π∗(OX )(Vη) π∗(σ ∗(L)
)
(Vη)

∼

resVi ,Vη

∼

resVi ,Vη

∼

resVi ,Vη resVi ,Vη

∼ ∼ ∼

for every i . Since the Vi cover PE , we conclude that L = π∗(σ ∗(L)
)
is in the image of π∗.

Altogether, this shows that there is a canonically split short exact sequence

0 Pic X PicPE Pic Vη 0,
π∗ ι∗

σ ∗ r

which induces the isomorphism

Pic X × Z
∼−→ Pic X × Pic Vη

(π∗,r)−→ PicPE
(L,m) �−→ (L,OVη (m)

) �−→ L ⊗ OPE (m)
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of the claim of the theorem. ��

3.6 A projective bundle formula

We combine our earlier results to prove a projective bundle formula for the K-theory space
of a monoid scheme. This gives a monoid- theoretic analogue of Quillen’s projective bundle
formula over fields [30, Theorem 2.1 of Section 8].

Theorem 3.28 Let X be an integral monoid scheme and π : PE → X a projective bundle.
Then there is a homotopy equivalence

K(PE)
∼−→

∏′

n∈Z
K(X).

Proof Combining Propositions 3.14 and 3.24 and Theorem 3.27, we obtain a diagram of
functors

LPn(PE) ← 〈〈OPE 〉〉[Pic(PE)] � 〈〈OX 〉〉[Pic(X) × Z]
� (〈〈OX 〉〉[Pic(X)])[Z] → LP(X)[Z].

By Lemma 1.4, the first and last functors induce homotopy equivalences of K-theory spaces.
We therefore have homotopy equivalences

K(PE) � K(LP(X)[Z]) �
∏′

n∈Z
K(X).

��
Corollary 3.29 Let X be an integral monoid scheme. Then there is an isomorphism of graded
rings

K•(PE) ∼= K•(X) ⊗Z Z[Z].
As already seen in Example 3.20 in the case of projective spaces, the result is very differ-
ent from the usual projective bundle formula for schemes. We refer to Remark 3.21 for a
discussion of this phenomenon.

4 Grothendieck–Witt theory of monoid schemes

4.1 Duality for locally free sheaves

Let X be a monoid scheme. There is a bifunctor

HomOX (−,−) : OX -Modop ×OX -Mod → OX -Mod

defined so that, for E,F ∈ OX -Mod and an open set U ⊂ X , we have

HomOX (E,F)(U ) = HomOX |U (E|U ,F|U ).

Let L be a line bundle on X . As in the local case (Sect. 2.1), and unlike the case of schemes
over a field, the functorHomOX (−,L) does not define a duality functor on LFn(X). This can
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be remedied as follows. Let X be a pc monoid scheme. Given E ∈ OX -Mod, define a sheaf
of pointed sets PL(E) on X by

PL(E)(U ) = Homn
OX |U (E|U ,L|U ),

the right hand side being the set of normal OX |U -module homomorphisms E|U → L|U .
Because X is pc, PL(E)(U ) has a natural OX (U )-module structure, as follows from a local
calculation using Lemma 2.3.

Proposition 4.1 Let L be a line bundle on a reversible pc monoid scheme X. Let �L :
idLFn(X) ⇒ PL ◦ (PL)op be the natural isomorphism with components

�L
E (s)( f ) = f (s), s ∈ E(U ), f ∈ PL(E)(U )

where U ⊂ X is an open subset. Then (LFn(X), PL,�L) is a uniquely split combinatorial
proto-exact category with duality. Moreover, the Reduction Assumption (see Sect. 1.3) holds.

Proof That PL sends locally free sheaves to locally free sheaves follows from the fact that
X is reversible and a local calculation using Lemma 2.3. Let f : E → F be a morphism
in LFn(X). For each x ∈ X , the stalk morphism PL( f )x : PL(F)x → PL(E)x can be
identified with

(−) ◦ fx : HomOX ,x -Modn(Fx ,Lx ) → HomOX ,x -Modn(Ex ,Lx ).

Since the composition of normal morphisms is normal, PL( f ) is well-defined. That PL is
compatible with⊕ follows from Lemma 2.3. That�L is a natural isomorphism follows from
a local calculation using Proposition 2.7.

It remains to verify the Reduction Assumption. Whether or not the induced map ψN//U :
N//U → P(N//U ) is an isomorphism can be checked locally, in which case it reduces to
Proposition 2.7. ��
Remark 4.2 Proposition 4.1 admits the following generalization, which can be seen as
the natural commutative globalization of the setting of Proposition 2.7. Let σ : X →
X be an involution and ε ∈ �(X ,OX )×. Assume that σ ∗L ∼= L and εσ (ε) = 1.
Let PL,σ : LFn(X)op → LFn(X) be the functor E �→ Homn

OX
(σ ∗E,L) and define

�L,σ,ε by �
L,σ,ε
E (s)( f ) = εσ ( f (s)). Then the analogue of Proposition 4.1 holds for

(LFn(X), PL,σ ,�L,σ,ε). The results which follow hold also at this level of generality,
with essentially the same proofs. We note only that the involution of the pointed monoid
�X is determined through the isomorphism �X ∼= EndOX -Mod(M) via the formula
f �→ ψM ◦ PL,σ ( f )◦ψ−1

M . However, for ease of exposition, we restrict to the case σ = idX
and ε = 1.

When L = OX we omit it from the notation so that, for example, POX = P .

Lemma 4.3 Let X be a reversible pc monoid scheme. If line bundles L, L′ are equal in
Pic(X)/Pic(X)2, then there is an equivalence of proto-exact categories with duality

(LFn(X), PL,�L) � (LFn(X), PL′
,�L′

).

Proof Under the assumption of the lemma, there exists a line bundle L̃ ∈ LFn(X) and an
isomorphism

L ⊗ L̃ ∼−→ L̃∨ ⊗ L′. (3)
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Let T be the exact autoequivalence − ⊗ L̃ : LFn(X) → LFn(X); see the proof of Proposi-
tion 3.14. Then (T , η) is an equivalence of categories with duality, where η : T ◦ PL ⇒
PL′ ◦ T op is the natural isomorphism with components

ηE : P(E) ⊗ L ⊗ L̃ → P(E) ⊗ L̃∨ ⊗ L′, E ∈ LFn(X)

defined using the chosen isomorphism (3). ��
Lemma 4.4 Let X be a reversible pc monoid scheme and E ∈ LFn(X) a line bundle. Then
there is a canonical isomorphism HomOX (E,OX ) ∼= P(E).

Proof This follows from the local observation that, for a pc pointedmonoid A, any A-module
homomorphism A → A is normal. ��

The functor P is ⊗-monoidal, while PL is not in general. Instead, PL is P-monoidal,
that is, there are coherent isomorphisms

PL(E ⊗ F) ∼= P(E) ⊗ PL(F), E,F ∈ LFn(X)

which are natural in E and F . The functor PL induces an involution

PL : Pic(X) → Pic(X). (4)

By Lemma 4.4, this map agrees with that induced by HomOX (−,L). We emphasize that,
since PL is only P-monoidal, the map (4) is not a group homomorphism unless L ∈ Pic(X)

is trivial. Denote by Pic(X)P
L
the Z/2-invariants of Pic(X). The complement Pic(X)∗ =

Pic(X) \ Pic(X)P
L
has a free Z/2-action.

Next, we study the compatibility of Proposition 3.14 with duality. The subcategory
〈〈OX 〉〉 ⊂ LFn(X) is P-stable and so inherits from LFn(X) a proto-exact duality, again denoted
by (P,�). Define a proto-exact duality (PL,�L) on 〈〈OX 〉〉[Pic(X)] as follows. The functor
PL is defined on basic objects by

PL(EM) = P(E)PL(M), E ∈ 〈〈OX 〉〉, M ∈ Pic(X)

and extended to 〈〈OX 〉〉[Pic(X)] by additivity. The natural isomorphism �L has components
�L

EM = �L
E .

Note that, by Remark 3.3 and Proposition 3.6, a monoid scheme X is integral if and only
if it is irreducible, pc and reversible.

Lemma 4.5 Let X be an integral monoid scheme. The functor F of Proposition 3.14 lifts to
an exact form functor

(F, μ) : (〈〈OX 〉〉[Pic(X)],PL,�L) → (LFn(X), PL,�L).

Proof Define the natural isomorphism μ : F ◦ PL ⇒ PL ◦ Fop so that its components

μEM : P(E) ⊗ PL(M) → P(E ⊗ M) ⊗ L, E ∈ LFn(X)

are determined by the monoidal data of P . It is straightforward to verify that μ is compatible
with �L and �L. We omit the details. ��

Define a proto-exact category

〈〈OX 〉〉[Pic(X)P
L ] =

⊕

M∈Pic(X)P
L
〈〈OX 〉〉. (5)
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Since Pic(X)P
L ⊂ Pic(X) is PL-stable, 〈〈OX 〉〉[Pic(X)P

L ] is a PL-stable proto-exact
subcategory of 〈〈OX 〉〉[Pic(X)]. The induced duality on 〈〈OX 〉〉[Pic(X)P

L ] is equivalent to
that induced by (P,�) on each summand of 〈〈OX 〉〉. In other words, equation (5) defines
〈〈OX 〉〉[Pic(X)P

L ] as a proto-exact category with duality.
Define a second proto-exact category by

〈〈OX 〉〉[Pic(X)∗/PL] =
⊕

M∈Pic(X)∗/PL
〈〈OX 〉〉.

The choice of a set- theoretic section of the quotient Pic(X)∗ → Pic(X)∗/PL embeds
〈〈OX 〉〉[Pic(X)∗/PL] as a proto-exact subcategory of LFn(X) which, however, is not PL-
stable. The following result is immediate.

Proposition 4.6 Let X be an integral monoid scheme. There is an equivalence of proto-exact
categories with duality

〈〈OX 〉〉[Pic(X)] � 〈〈OX 〉〉[Pic(X)P
L ] ⊕ H

(〈〈OX 〉〉[Pic(X)∗/PL]).

4.2 Grothendieck–Witt theory of monoid schemes

Let L be a line bundle on a reversible pc monoid scheme X . Let GW(X;L) =
GW(LFn(X), PL,�L), defined by either via the hermitian Q-construction or group comple-
tion. Set GWi (X;L) = πiGW(X;L).

Proposition 4.7 Let X be an integral monoid scheme. Then the homotopy type of GW(X;L)

depends on L only through its class in Pic(X)/Pic(X)2.

Proof This follows from Proposition 1.10 and Lemma 4.3. ��
We have the following analogue of Theorem 3.17 for Grothendieck–Witt theory.

Theorem 4.8 LetL be a line bundle on an integral monoid scheme X. Then there is a natural
homotopy equivalence

GW(X;L) �
∏′

M∈Pic(X)P
L
GW(〈〈OX 〉〉) ×

∏′

M∈Pic(X)∗/PL
K(〈〈OX 〉〉).

Proof By Lemma 1.11, Proposition 4.6 and the fact that GW commutes with direct sums of
categories, there is a natural homotopy equivalence

GW(X;L) � GW(〈〈OX 〉〉[Pic(X)P
L ]) × GW (

H(〈〈OX 〉〉[Pic(X)∗/PL])) .

The second factor is

GW (
H(〈〈OX 〉〉[Pic(X)∗/PL])) � K(〈〈OX 〉〉[Pic(X)∗/PL]) �

∏′

M∈Pic(X)∗/PL
K(〈〈OX 〉〉),

where the first homotopy equivalence follows from Proposition 1.9 and the second from the
proof of Theorem 3.17.

Turning to the factor GW(〈〈OX 〉〉[Pic(X)P
L ]), note that since equation (5) respects the

duality structures, there is a homotopy equivalence

GW(〈〈OX 〉〉[Pic(X)P
L ]) �

∏′

M∈Pic(X)P
L
GW(〈〈OX 〉〉).
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This completes the proof. ��
Using Proposition 3.16, we can combine Theorems 2.6 and 2.14 with Theorem 4.8 to

obtain an explicit description of GW(X;L).

Corollary 4.9 Let X be a proper integral monoid scheme. Then there is a homotopy equiva-
lence

GW⊕(X;L) �
∏′

M∈Pic(X)P
L

Z
2 × B(�∞ × (Z/2 � �∞))+ ×

∏′

M∈Pic(X)∗/PL

(
Z × B�+∞

)
.

Proof The only additional piece of information needed is Proposition 3.8. ��
Without the properness assumption, there is an analogue of Corollary 4.9 is written in

terms of Picsym(�X) and the isometry groups I (ξ). Since we will not use this, we omit its
formulation.

Specializing to direct sum (Grothendieck–)Witt groups, we obtain the following results.

Theorem 4.10 Let L be a line bundle on an integral monoid scheme X.

(i) There is an isomorphism of abelian groups

GW⊕
0 (X;L) ∼= Picsym(�X)[Pic(X)P

L ] × Z[Pic(X)/PL].
(ii) There is an isomorphism of abelian groups

W⊕
0 (X;L) ∼= Picsym(�X)[Pic(X)P

L ].
Proof This follows fromTheorem4.8, after usingTheorems 2.6 and 2.14.Weomit the details.

��
Example 4.11 Let A

1
F1

= Spec(F1[t]). Since F1[t] has no non-trivial idempotents and only

the trivial automorphism, the functor − ⊗F1 F1[t] : VectF1 → LFn(A1
F1

) induces an equiv-
alence on maximal groupoids. Moreover, this equivalence respects dualities. It follows that
there are homotopy equivalences K(A1

F1
) � K(VectF1) and GW(A1

F1
) � GW(VectF1).

Example 4.12 Let X = P
n
F1
. Fix d ∈ Z and setL = OP

n
F1

(d). The involution PL of Pic(X) ∼=
Z is k �→ −k + d . In particular, Pic(X)P

L
is non-empty if and only if d is even, in which

case Pic(X)P
L = { d2 }. Let [d] = 0 if d is even and [d] = 1 otherwise. With this notation,

we obtain from Theorem 4.10 an isomorphism

Z
[d] × Z[Z≥d ] ∼= GW⊕

0 (Pn
F1

; d), bl d
2

+
∑

i≥d

ai li �→ b[OP
n
F1

( d2 )] +
∑

i≥d

ai [H(OP
n
F1

(i))].

Note that OP
n
F1

( d2 ) admits a unique symmetric form, which is omitted from the notation. In

particular, GW⊕
0 (Pn

F1
; d) is independent of n and, as guaranteed by Lemma 4.3, depends on

d only through its parity. Moreover, we have W⊕
0 (Pn

F1
; d) ∼= Z

[d] with generator OP
n
F1

( d2 ).

Example 4.13 Using Theorem 4.8 and the isomorphism Pic(Pn
F1

) ∼= Z, we find

GWQ(Pn
F1

) ∼= GWQ(VectF1) ×
∏′

k∈Z>0

K(VectF1)

∼=
⊔

n∈Z≥0

B�n × Z × B(Z/2 � �∞)+ ×
∏′

k∈Z>0

Z × B(�∞)+.

Again, the result is independent of n.
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4.3 A projective bundle formula

We begin with a lemma.

Lemma 4.14 Let π : PE → X be a projective bundle on an integral monoid scheme. Then
the isomorphism

ϕ : Pic(X) × Z → Pic(PE), (M,m) �→ π∗(M) ⊗ OPE (m)

from Theorem 3.27 is Z/2-equivariant, where Z/2 acts on Pic(X) × Z by PL and negation
on the first and second factors, respectively, and on Pic(PE) by Pπ∗L.

Proof This is a direct calculation. ��
Theorem 4.15 Let π : PE → X be a projective bundle on an integral monoid scheme and L
a line bundle on X. Then there is a homotopy equivalence

GW(PE;π∗L) � GW(X;L) ×
∏′

(M,i)∈(Pic(X)×Z∗)/〈(PL,−1)〉
K(〈〈OX 〉〉).

Proof By Lemma 4.14, the map ϕ induces a bijection

Pic(PE)P
π∗L → (Pic(X) × Z)(P

L,−1) = Pic(X)P
L × {0} (6)

and a Z/2-equivariant bijection

Pic(PE)∗ ∼= Pic(X)P
L × Z

∗ � Pic(X)∗ × Z

= Pic(X)∗ × {0} � Pic(X) × Z
∗.

Together with Theorem 4.8, these bijections yield homotopy equivalences

GW(PE;π∗L) =
∏′

M∈Pic(X)P
L
GW(〈〈OPE 〉〉)

×
∏′

(M,i)∈(Pic(X)×Z∗)/〈(PL,−1)〉
K(〈〈OPE 〉〉) ×

∏′

M∈Pic(X)∗/PL
K(〈〈OPE 〉〉)

� GW(X;L) ×
∏′

(M,i)∈(Pic(X)×Z∗)/〈(PL,−1)〉
K(〈〈OPE 〉〉),

as claimed. ��
Passing to homotopy groups, we obtain F1-linear analogues of previously known results

over fields in which 2 is invertible [32,36,47].

Corollary 4.16 Let π : PE → X be a projective bundle on an integral monoid scheme and L
a line bundle on X.

(i) The map

ϕ : GW0(X;L) × (
K0(X) ⊗Z Z[Z∗])(π∗PL,−1) → GW0(PE;π∗L)

defined by ϕ(M) = π∗M and ϕ(W,m) = HL(π∗W⊗OPE OPE (m)) is an isomorphism
of abelian groups.
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(ii) There is an isomorphism of abelian groups

W0(X;L) ∼= W0(PE;π∗L).

Proof The first statement follows from Theorem 4.15 by taking connected components.
Alternatively, we could use Theorems 3.19 and 4.10 and Lemma 4.14.

Turning to the second statement, Theorem 4.10 gives

W0(PE;π∗L) ∼= W0(�(PE,OPE )-projn)[Pic(PE)P
π∗L ].

Using Theorem 3.27 and the bijection (6), we conclude. ��
Example 4.17 We have

GW0(Spec(F1)) × K0(Spec(F1)) ⊗Z Z[Z∗]Z/2 ∼= Z
2 × Z ⊗Z Z[Z∗]Z/2 ∼= Z

2 × Z[Z>0]
which is isomorphic to GW0(P

n
F1

) ∼= Z × Z[Z≥0], as required by Corollary 4.16.

Acknowledgements The authors thank Marco Schlichting for helpful correspondence and an anonymous
referee for useful feedback. All three authors thank the Max Planck Institute for Mathematics in Bonn for its
hospitality and financial support.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A

A.1 Direct sums of categories

Let I be a set and {Ci }i∈I a family of categories with zero objects.

Definition A.1 The direct sum category
⊕

i∈I Ci is defined as the full subcategory of the
product category

∏
i∈I Ci whose objects are those tuples (Ai )i∈I of objects Ai in Ci for

which Ai is a zero object in Ci for all but finitely many i ∈ I .

Many properties and structures of the individual categories Ci extend in a pointwise fashion
to

⊕
i∈I Ci . For example, if all Ci are proto-exact (with exact direct sum), then so too is⊕

i∈I Ci .
One can realize

⊕
i∈I Ci as a filtered colimit of finite direct sums. Let P<∞(I ) be

the partially ordered set of finite subsets of I , ordered by inclusion. Consider the functor
P<∞(I ) → Cat which assigns to a finite subset S ⊂ I the category

⊕
s∈S Cs and to an

inclusion S ↪→ T the obvious functor
⊕

s∈S Cs ↪→ ⊕
t∈T Ct .

Proposition A.2 There is an equivalence of categories

lim−→
S∈P<∞(I )

⊕

s∈S
Cs �

⊕

i∈I
Ci .
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If C = Ci is a constant family of categories with a symmetric bimonoidal structure (⊕,⊗)

and (I , ·) is an abelian group, then we denote the direct sum by

C[I ] :=
⊕

i∈I
C.

Define a symmetric bimonoidal structure on C[I ] by extending ⊕ componentwise and defin-
ing ⊗ using the convolution product

⊕

a

Va ⊗
⊕

b

Wb :=
⊕

c

⎛

⎜⎜⎝
⊕

a,b
ab=c

Va ⊗ Wb

⎞

⎟⎟⎠ .

A.2 Restricted products

Let {(Yi , ∗i )}i∈I be family of pointed topological spaces indexed by a set I .

Definition A.3 The restricted product of {(Yi , ∗i )}i∈I is
∏′

i∈I
Yi = {(yi ) | yi �= ∗i for only finitely many i ∈ I } ⊆

∏

i∈I
Yi

equipped with the subspace topology.

The restricted product can be realized as a filtered colimit of finite products as follows.

Proposition A.4 There is a homeomorphism

lim−→
S∈P<∞(I )

∏

s∈S
Yi �

∏′

i∈I
Yi .
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