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Abstract
Extending (Smirnov and Vishik, Subtle Characteristic Classes, arXiv:1401.6661), we obtain
a complete description of the motivic cohomology with Z /2-coefficients of the Nisnevich
classifying space of the spin group Spinn associated to the standard split quadratic form. This
provides us with very simple relations among subtle Stiefel–Whitney classes in the motivic
cohomology of Čech simplicial schemes associated to quadratic forms from I 3, which are
closely related to Spinn-torsors over the point. These relations come from the action of the
motivic Steenrod algebra on the second subtle Stiefel–Whitney class. Moreover, exploiting
the relation between Spin7 and G2, we describe completely the motivic cohomology ring of
the Nisnevich classifying space of G2. The result in topology was obtained by Quillen (Math
Ann 194:197–212, 1971).

Keywords Spin-torsors · Motivic cohomology · Nisnevich classifying space ·
Characteristic classes

Mathematics Subject Classification 11E04 · 14F42 · 20G15 · 55R40

1 Introduction

Our main purpose in this work consists in an attempt of better understanding Spin-torsors,
which are closely related to quadratic forms from I 3. These are extremely interesting and fas-
cinating objects and, although they arise quite naturally in many areas of mathematics, there
are still many open questions about them due to their complexity and richness. In this paper,
we try to study Spin-torsors from a motivic homotopic point of view by using classifying
spaces and characteristic classes in motivic cohomology. At first, we need to mention that in
the motivic homotopic environment there are two types of classifying spaces, the Nisnevich
and the étale. The difference between the two is particularly visible when one works with
non special algebraic groups. Indeed, in this case, the two types of classifying spaces above
mentioned have in general different cohomology rings and, therefore, different characteristic
classes. From [11], we know that torsors are classified by étale classifying spaces, never-

B Fabio Tanania
fabio.tanania@gmail.com

1 Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstr. 39, 80333 Munich,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-021-02908-2&domain=pdf
http://arxiv.org/abs/1401.6661


42 F. Tanania

theless studying Nisnevich classifying spaces has shown to provide some advantages in the
project of investigating them.

Actually, an essential inspiration for our work lies in [14], where the authors study torsors
by using Nisnevich classifying spaces. They are mainly interested in BOn , the Nisnevich
classifying space of the orthogonal group associated to the standard split quadratic form
qn , which provides a key tool to study On-torsors over the point which are nothing else
but quadratic forms. In particular, they compute the motivic cohomology ring with Z /2-
coefficients of B On . This happens to be a polynomial algebra over the motivic cohomology
of the point generated by some cohomology classes which are called subtle Stiefel–Whitney
classes. These are very informative invariants, for example they enable to recognise the power
of the fundamental ideal of the Witt ring where a quadratic form belongs and they are also
connected to the J -invariant introduced in [17]. In a completely analogous way, it is possible
to compute themotivic cohomology of BSOn , which again is a polynomial algebra generated
by all the subtle Stiefel–Whitney classes but the first, as one would expect from the classical
topological result.

In this work we go a bit further on this path by providing a complete description of the
motivic cohomology with Z /2-coefficients of BSpinn , the Nisnevich classifying space of
the spin group associated to the standard split form qn . As we have already mentioned,
this is a step forward in the understanding of Spin-torsors, and so of quadratic forms with
trivial discriminant and Clifford invariant. In topology the singular cohomology of BSpinn

was computed by Quillen in [13]. Essentially, his computation is based on two key tools:
(1) the regularity of a certain sequence in the cohomology ring of BSOn ; (2) the Serre
spectral sequence associated to the fibration BSpinn → BSOn . Regarding (1),we essentially
prove the regularity of a sequence in the motivic setting similar to Quillen’s sequence in
topology. This sequence is obtained from the second subtle Stiefel–Whitney class by acting
with some specific Steenrod operations. As we will notice, the motivic situation is much
more complicated than the topological one. This comes from the fact that in the motivic
picture the element τ appears. Regarding (2), we use instead techniques developed in [14]
to deal with fibrations of simplicial schemes with fibers which are motivically Tate, since in
the motivic setting we lack a spectral sequence of Serre’s type associated to a fibration. As a
result, we get a description of the entire cohomology ring of BSpinn which is similar to the
topological one in the same way as it is for the orthogonal and the special orthogonal cases.
More precisely, we prove the following theorem (see Theorem 8.3).

Theorem 1.1 For any n ≥ 2, there exists a cohomology class v2k(n) of bidegree
(2k(n)−1)[2k(n)] such that the natural homomorphism of H-algebras

H(BSOn)/Ik(n) ⊗H H [v2k(n) ] → H(BSpinn)

is an isomorphism, where Ik(n) is the ideal generated by θ0, . . . , θk(n)−1 and k(n) depends
on n as in the table of Theorem 3.1.

Equivalently, one can visualize Ik(n) as the ideal generated by the action of the motivic
Steenrod algebra on the second subtle Stiefel–Whitney class. This way we obtain subtle
classes for Spin-torsors and relations among them. Moreover, by exploiting the relation
between Spin7 and the exceptional group G2, we prove the following result that completely
describes the motivic cohomology of BG2 providing subtle characteristic classes for G2-
torsors, namely octonion algebras (see Theorem 9.1).

Theorem 1.2 The motivic cohomology ring of BG2 is completely described by

H(BG2) ∼= H [u4, u6, u7].
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Subtle characteristic classes for Spin-torsors 43

Since torsors are classified by étale classifying spaces, much attention has been devoted to
investigate their Chow rings (see [16]), which neverthless are notoriously difficult to study.
Regarding Spinn , the picture is completely understood for n ≤ 6 where the spin groups are
known to be special by the sporadic isomorphisms. Guillot computed the Chow ring of the
first non-trivial case, namely Spin7, together with the one of G2, over complex numbers in
[4]. Next, Molina obtained the description of the Chow ring of Spin8 over complex numbers
in [9]. On the other hand, Yagita computed in [22] the whole motivic cohomology with Z /2-
coefficients for Spin7 and G2 and provided a bound for the Chow ring with Z /2-coefficients
of all Spinn over complex numbers in [21] by exploitingQuillen’s computation of the singular
cohomology of BSpinn . In this paper we obtain a similar result by exploiting instead our
computation of the motivic cohomology of the Nisnevich classifying space of Spinn which
allows to relax the hypothesis on the base field and also suggests that understandingNisnevich
classifying spaces can possibly help in the study of the étale ones over more general fields.
Outline. We now shortly summarise the content of each section of this text. In Sects. 2 and
3 we give some notations that we follow throughout this paper and recall some preliminary
results from [13] regarding the computation of the cohomology ring of BSpinn in topol-
ogy. In Sect. 4 we present some definitions and properties of the category of motives over
a simplicial scheme which provide us with the main techniques essential to deal with fibra-
tions of simplicial schemes with motivically Tate fibers. Section 5 is devoted to Nisnevich
classifying spaces, to show some of their features and, in particular, to recall subtle Stiefel–
Whitney classes. In Sect. 6 we construct a grid of long exact sequences involving the motivic
cohomology of BSpinn and of BSOn which is our key tool, substituting the Serre spectral
sequence, to get our main result. In Sect. 7 we show some results about regular sequences in
H(BSOn) obtained by acting with some Steenrod operations on the second subtle Stiefel–
Whitney class, which allows us in Sect. 8 to prove the main theorem, i.e. the computation of
the motivic cohomology ring of BSpinn . We see that, in general, this is not polynomial any-
more in subtle Stiefel–Whitney classes, since many non trivial relations appear among them
related to the action of the motivic Steenrod algebra on the second subtle Stiefel–Whitney
class, and new subtle classes appear. Section 9 is devoted to the computation of the motivic
cohomology ring of BG2. In Sects. 10 and 11, using previous results, we find very simple
relations among subtle classes in the motivic cohomology rings of Čech simplicial schemes
associated to Spin-torsors and get some information about the Chern subring of the Chow
ring with Z /2-coefficients of the étale classifying space of Spinn .

2 Notation

Let us start in this section by fixing some notations we will use throughout this paper.
It follows from results by Voevodsky (see [19, Theorem 6.1, Corollary 6.9 and Corollary

7.5]) that H ∼= K M (k)/2[τ ], where τ is the generator of H0,1 ∼= Z /2. At this point, recall
from [20, Lemma 11.1] and [6, Theorem 1.1] that the motivic Steenrod algebra is generated
as a left H -module by the admissible monomials Sqir . . . Sqi0 where i j+1 ≥ 2i j ≥ 0. Each
Steenrod square Sqi has bidegree ([i/2])[i], therefore Sqi (x) = 0 for i > 0 and for any
x ∈ Hn,n ∼= K M

n (k)/2, since H is trivial above the diagonal.Moreover, since we are working
over a field containing the square root of −1, we have that Sq1τ = ρ = 0 where ρ is the
class of −1 in K M (k)/2 and Sqi (τ ) = 0 for any i ≥ 2 by [20, Lemma 9.9]. It follows from
this remark that, in our case, the only motivic cohomology operations that act non-trivially
on H are the multiplications by elements of H .
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k Field of characteristic not 2 containing
√−1

Spc(k), Spc∗(k) Category of motivic spaces over k, its pointed version
Hs (k), Hs,∗(k) Simplicial homotopy category, its pointed version
HA1 (k), HA1,∗(k) A1-Homotopy category of Morel–Voevodsky, its pointed version

DM−
e f f (k) Triangulated category of effective motives

T Unit Tate motive in DM−
e f f (k)

Htop(−) Singular cohomology with Z /2-coefficients
H(−) Motivic cohomology with Z /2-coefficients
H Motivic cohomology with Z /2-coefficients of Spec(k)

K M (k)/2 Milnor K-theory of k modulo 2
wi i-th Stiefel–Whitney class in Htop(BSOn)

ui i-th subtle Stiefel–Whitney class in H(BSOn)

ρ j The element Sq2
j−1

Sq2
j−2

. . . Sq2Sq1w2 in Htop(BSOn)

θ j The element Sq2
j−1

Sq2
j−2

. . . Sq2Sq1u2 in H(BSOn)

I top
j Ideal in Htop(BSOn) generated by ρ0, . . . , ρ j−1

I j Ideal in H(BSOn) generated by θ0, . . . , θ j−1
k(n) max{ j : ρ0, . . . , ρ j−1 is a regular sequence in Htop(BSOn)} (see Theorem 3.1)
h(n) max{ j : τ, θ0, . . . , θ j−1 is a regular sequence in H(BSOn)} (see Theorem 7.5)
v2k(n) Extra polynomial generator in H(BSpinn)

3 Preliminary results

Our goal is to compute the motivic cohomology ring of the Nisnevich classifying space of
Spinn , the spin group of the standard split quadratic form qn . In topology, the computation
of the singular cohomology of BSpinn associated to the real euclidean quadratic form was
achieved by Quillen in [13].

Before recalling his main results, let us define the elements ρ j in Htop(BSOn) ∼=
Z /2[w2, . . ., wn] inductively by the following formulas:

ρ0 = w2;
ρ j+1 = Sq2 j

ρ j .

Theorem 3.1 The sequence ρ0, . . . , ρk(n)−1 is regular in Htop(BSOn), where k(n) depends
on n as in the following table.

n k(n)

8l + 1 4l
8l + 2 4l + 1
8l + 3 4l + 2
8l + 4 4l + 2
8l + 5 4l + 3
8l + 6 4l + 3
8l + 7 4l + 3
8l + 8 4l + 3
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Proof See [13, Theorem 6.3]. 
�
Moreover,we recall that the valueswritten in the previous table are related to the dimension

of spin representations of Spinn . More precisely, for any n there is a spin representation
�n : Spinn → SO2k(n) that induces a map B�n : BSpinn → BSO2k(n) on classifying
spaces which, in turn, induces a homomorphism in cohomology B�∗

n : Htop(BSO2k(n) ) →
Htop(BSpinn). We denote by wi (�n) the cohomology class B�∗

n(wi ) in Htop(BSpinn).

Theorem 3.2 Let I top
k(n) be the ideal in Htop(BSOn) generated by the regular sequence from

Theorem 3.1. Then, the canonical homomorphism

Htop(BSOn)/I top
k(n) ⊗ Z /2[w2k(n) (�n)] → Htop(BSpinn)

is an isomorphism.

Proof See [13, Theorem 6.5]. 
�
Remark 3.3 From Theorems 3.1 and 3.2 it follows that

k(n + 1) =
{

k(n), ρk(n) ∈ I top
k(n)

k(n) + 1, ρk(n) /∈ I top
k(n)

where here by I top
k(n) we mean the ideal in Htop(BSOn+1) ∼= Z /2[w2, . . . , wn+1] generated

by the elements ρ0, . . . , ρk(n)−1.

Furthermore, we notice that Theorem 3.2 relies on the Serre spectral sequence for the
fibration B Z /2 → BSpinn → BSOn . In the motivic setting we do not have such a tool, so
we use instead techniques developed by Smirnov and Vishik in [14] which we recall in the
following sections.

4 Motives over a simplicial base

The main purpose of this section is to recall some key definitions and results regarding the
triangulated category of motives over a simplicial base, which is an essential tool for our
computation. Before starting, we would like to mention that the contents of this section
are essentially the same as Section 3 in [15]. Here, there is only a further attention in the
construction of all cofiber sequences at the level of motivic spaces first, which is needed for
the compatibility with Steenrod operations. Moreover, there is the definition of Thom class
and Corollary 4.4, which were not present in [15].

Let us fix a smooth simplicial scheme Y• over k and a commutative ring with identity R.
Following [18], we denote by Sm/Y• the category in which objects are given by pairs (U , j),
with j a non-negative integer and U a smooth scheme over Y j , and in which morphisms
from (U , j) to (V , i) are given by pairs ( f , θ), with θ : [i] → [ j] a simplicial map and
f : U → V a morphism of schemes, such that the following diagram is commutative

U
f ��

��

V

��
Y j

Yθ

�� Yi .
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46 F. Tanania

Moreover, as for spaces over the point, let us denote by Spc(Y•) = �op ShvNis(Sm/Y•)
the category of motivic spaces over Y• and by Spc∗(Y•) its pointed counterpart, consisting
of simplicial Nisnevich sheaves over Sm/Y•.

For any morphism f : U → V in Spc∗(Y•) there is a cofiber sequence

U → V → Cone( f ) → S1 ∧ U

where Cone( f ) is defined by the following push-out diagram in Spc∗(Y•)

U
f ��

��

V

��
U ∧ �[1] �� Cone( f ).

In [18] there is a construction of the category of motives over Y• with R-coefficients. This
category is denoted by DM−

e f f (Y•, R). We notice that every cofiber sequence in Spc∗(Y•)
induces a distinguished triangle in DM−

e f f (Y•, R). Besides, attached to this category there
is a sequence of restriction functors

r∗
i : DM−

e f f (Y•, R) → DM−
e f f (Yi , R).

The image of a motive N ∈ DM−
e f f (Y•, R) under r∗

i is simply denoted by Ni . Further-
more, we have the following adjunction for any morphism p : Y• → Y ′• of smooth simplicial
schemes

DM−
e f f (Y•, R)

Lp∗ ↑ ↓ Rp∗
DM−

e f f (Y
′•, R).

In the case that p is smooth, together with the previous one, there is also the following
adjunction

DM−
e f f (Y•, R)

Lp# ↓ ↑ p∗

DM−
e f f (Y

′•, R).

In particular, for any smooth simplicial schemeY• over k, we have a pair of adjoint functors

DM−
e f f (Y•, R)

Lc# ↓ ↑ c∗

DM−
e f f (k, R)

where c : Y• → Spec(k) is the projection to the base. Then, following [18, Section 5], one
can define Tate objects T (q)[p] in DM−

e f f (Y•, R) as c∗(T (q)[p]).
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Subtle characteristic classes for Spin-torsors 47

At this point, we recall some facts about coherence taken from [14]. By a smooth coherent
morphism we mean a smooth morphism π : X• → Y• such that there is a cartesian diagram

X j
π j ��

Xθ

��

Y j

Yθ

��
Xi πi

�� Yi

for any simplicialmap θ : [i] → [ j]. Amotive N inDM−
e f f (Y•, R) is said to be coherent if all

simplicial morphisms θ : [i] → [ j] induce structural isomorphisms Nθ : LY ∗
θ (Ni ) → N j .

The full subcategory of DM−
e f f (Y•, R) whose objects are coherent motives is denoted by

DM−
coh(Y•, R). The fact that LY ∗

θ is a triangulated functor implies that DM−
coh(Y•, R)

is closed under taking cones and arbitrary direct sums. On the other hand, we have that
Lπ# maps coherent objects to coherent ones for any smooth coherent morphism π . Hence,
M(X•

π−→ Y•) is a coherent motive, where by M(X•
π−→ Y•) we mean the image Lπ#(T ) of

the unit Tate motive.
In the following results, CC(Y•) indicates the simplicial set built up from a simplicial

scheme Y• by applying the functor CC sending any connected scheme to the point and
commuting with coproducts.

The following proposition permits us to deal with fibrations of simplicial schemes with
motivically Tate fibers.

Proposition 4.1 Let Y• be a simplicial scheme, R be a commutative ring with identity, and
suppose that the first singular cohomology group H1(CC(Y•), R×) is trivial. Let r , s be
non-negative integers, and let N ∈ DM−

coh(Y•, R) be a motive such that Ni ∼= T (r)[s] in
DM−

e f f (Yi , R) for all i. Then, N ∼= T (r)[s] in DM−
e f f (Y•, R).

Proof See [14, Proposition 3.1.5]. 
�
We point out that, for R = Z /2, the cohomology group H1(CC(Y•), R×) is always

trivial.
The next result is the core technique inspired by [14] that enables to generate long exact

sequences inmotivic cohomology, similar to Gysin sequences for sphere bundles in topology,
for fibrations with motivically Tate fibers.

Proposition 4.2 Let π : X• → Y• be a smooth coherent morphism of smooth simplicial
schemes over k and A a smooth k-scheme such that:

(1) over the 0 simplicial component π is the projection Y0 × A → Y0;
(2) H1(CC(Y•), R×) ∼= 0;
(3) M(A) ∼= T ⊕ T (r)[s − 1] ∈ DM−

e f f (k, R).

Then, M(Cone(π)) ∼= T (r)[s] ∈ DM−
e f f (Y•, R) where Cone(π) is the cone of π in

Spc∗(Y•). Moreover, we get a Thom isomorphism of H(Y•, R)-modules

H∗−s,∗′−r (Y•, R) → H∗,∗′
(Cone(π), R).

Proof In Spc∗(Y•) we have a cofiber sequence

X•
π−→ Y• → Cone(π) → S1 ∧ X•
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48 F. Tanania

which induces a distinguished triangle

M(X•
π−→ Y•) → T → M(Cone(π)) → M(X•

π−→ Y•)[1]
in the motivic category DM−

e f f (Y•, R). Since π is smooth coherent and π0 is the projection
Y0 × A → Y0 by hypothesis, we have that it is the projection over any simplicial component,

i.e. πi is the projection Yi × A ∼= Xi → Yi for all i . It immediately follows that M(Xi
πi−→

Yi ) ∼= T ⊕ T (r)[s − 1] in DM−
e f f (Yi , R) since by hypothesis M(A) ∼= T ⊕ T (r)[s − 1]

in DM−
e f f (k, R). Hence, the map πi induces the projection T ⊕ T (r)[s − 1] → T in

DM−
e f f (Yi , R) for any i , fromwhichwe get that M(Cone(π))i ∼= T (r)[s] inDM−

e f f (Yi , R).

Moreover, we point out that M(Cone(π)) is a coherent motive, since both M(X•
π−→ Y•)

and T are coherent objects and DM−
coh(Y•, R) is closed under taking cones. Since we are

also assuming by hypothesis that H1(CC(Y•), R×) ∼= 0 we can apply Proposition 4.1 to
M(Cone(π)). Therefore, we obtain that M(Cone(π)) ∼= T (r)[s] inDM−

e f f (Y•, R), and the
proof is complete. 
�

The image of 1 under the Thom isomorphism is called Thom class and it is denoted by α.
Later on, we will also need the following proposition about functoriality of the Thom

isomorphism.

Proposition 4.3 Let π : X• → Y• and π ′ : X ′• → Y ′• be smooth coherent morphisms of
smooth simplicial schemes over k with Y0 connected and A a smooth k-scheme that satisfies
all conditions from the previous proposition with respect to π ′ and such that the following
diagram is cartesian with all morphisms smooth

X•
π ��

pX

��

Y•
pY

��
X ′•

π ′
�� Y ′•.

Then, the induced square of motives in the category DM−
e f f (Y

′•, R) extends uniquely to a
morphism of triangles where LpY#M(Cone(π)) → M(Cone(π ′)) is given by M(pY )(r)[s].
Proof We start by noticing that in Spc∗(Y ′•) we can complete our commutative diagram to a
morphism of cofiber sequences

X•
π ��

pX

��

Y• ��

pY

��

Cone(π) ��

p

��

S1∧X•

id∧pX

��
X ′•

π �� Y ′• �� Cone(π ′) �� S1∧X ′•

which induces a morphism of distinguished triangles in DM−
e f f (Y

′•, R)

LpY#M(X•
π−→ Y•) ��

M(pX )

��

LpY#T ��

M(pY )

��

LpY#Cone(π) ∼= LpY#T (r)[s] ��

M(p)

��

LpY#M(X•
π−→ Y•)[1]

M(pX )[1]
��

M(X ′•
π ′−→ Y ′•) �� T �� Cone(π ′) ∼= T (r)[s] �� M(X ′•

π ′−→ Y ′•)[1]
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Subtle characteristic classes for Spin-torsors 49

where the isomorphisms in the third column follow by Proposition 4.2. If we restrict our
previous diagrams to the 0 simplicial component we obtain in Spc∗(Y ′

0)

Y0 × A
π0 ��

pY0×id

��

Y0 ��

pY0

��

Cone(π0) ��

p0

��

S1 ∧ (Y0 × A)

id∧(pY0×id)

��
Y ′
0 × A

π0 �� Y ′
0

�� Cone(π ′
0)

�� S1 ∧ (Y ′
0 × A)

and in DM−
e f f (Y

′
0, R)

LpY0#T ⊕ LpY0#T (r)[s − 1] ��

M(pY0 )⊕M(pY0 )(r)[s−1]
��

LpY0#T ��

M(pY0 )

��

LpY0#T (r)[s] ��

M(p0)

��

LpY0#T [1] ⊕ LpY0#T (r)[s]

M(pY0 )[1]⊕M(pY0 )(r)[s]
��

T ⊕ T (r)[s − 1] �� T �� T (r)[s] �� T [1] ⊕ T (r)[s]

from which we deduce that M(p0) must be M(pY0)(r)[s]. Notice that the morphisms
M(p)(−r)[−s] and M(pY ) are in

HomDM−
e f f (Y

′•,R)(LpY#T , T ) ∼= HomDM−
e f f (Y•,R)(T , p∗

Y T ) ∼= HomDM−
e f f (Y•,R)(T , T ) ∼= R

and, for the same reason, M(p0)(−r)[−s] = M(pY0) is in

HomDM−
e f f (Y

′
0,R)(LpY0#T , T ) ∼= HomDM−

e f f (Y0,R)(T , p∗
Y0T ) ∼= HomDM−

e f f (Y0,R)(T , T ) ∼= R.

Since the homomorphism

r∗
0 : HomDM−

e f f (Y•,R)(T , T ) ∼= R → HomDM−
e f f (Y0,R)(T , T ) ∼= R

is the identity on R, we get that M(p) = M(pY )(r)[s], as we aimed to show. 
�
In particular, from the previous proposition it immediately follows the next corollary about

functoriality of Thom classes.

Corollary 4.4 Under the hypothesis of Proposition 4.3, the homomorphism of H(Y ′•, R)-
modules

p∗ : H∗,∗′
(Cone(π ′), R) → H∗,∗′

(Cone(π), R)

sends α′ to α, where α′ and α are the respective Thom classes.

5 The Nisnevich classifying space

Throughout this paper, we are mainly interested in Nisnevich classifying spaces of linear
algebraic groups over Spec(k). In this section we recall some of their properties and relations
with étale classifying spaces. The contents of this section are similar to Section 4 in [15]. The
main difference resides on the fact that, in order to deal with the Spin-case, it is essential
to weaken the hypothesis in Proposition 5.1 from “is injective" (see [15, Proposition 4.1])
to “has trivial kernel". Moreover, here we have added Corollary 5.2, Proposition 5.6 and
Corollary 5.8, which were not present in [15].

Given a linear algebraic group G over k, let us call by EG the simplicial scheme defined
on simplicial components by (EG)n = Gn+1 with partial projections and partial diagonals as
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50 F. Tanania

face and degeneracy maps respectively. The operation in G induces a natural action on EG.
Then, the Nisnevich classifying space BG is obtained by taking the quotient respect to this
action, i.e. BG = EG/G.Moreover, from themorphismof sitesπ : (Sm/k)ét → (Sm/k)Nis

we obtain the following adjunction

Hs((Sm/k)ét )

π∗ ↑ ↓ Rπ∗
Hs((Sm/k)Nis)

where π∗ is the restriction to Nisnevich topology and π∗ is étale sheafification. Then, a
definition of the étale classifying space of G is provided by Bét G = Rπ∗π∗ BG . Although
this definition presents étale classifying spaces as objects of Hs((Sm/k)Nis , there exists
a geometric construction for their A1-homotopy type (see [11]) obtained from a faithful
representation ρ : G ↪→ GL(V ) by taking the quotient respect to the diagonal action of G
on an open subscheme of an infinite-dimensional affine space ⊕∞

i=1V where G acts freely.
Now, let H be an algebraic subgroup of G. Then, we can define two simplicial objects

related to B H , namely a bisimplicial scheme B̃ H = (E H × EG)/H and a simplicial
scheme B̂ H = EG/H . We highlight that the obvious morphism of simplicial schemes
π : B̂ H → BG is trivial over each simplicial component with G/H -fibers. At this point,
let us call by φ : B̃ H → B H and ψ : B̃ H → B̂ H the two natural projections. Notice that
φ is always trivial over each simplicial component with contractible fiber EG, therefore an
isomorphism inHs(k). The behaviour ofψ is somewhat different. Indeed, we need to impose
a precise condition in order to make it an isomorphism.

Proposition 5.1 If the map HomHs (k)(Spec(R), Bét H) → HomHs (k)(Spec(R), Bét G) has
trivial kernel for any Henselian local ring R over k, then ψ is an isomorphism in Hs(k). In
particular, B H ∼= B̂ H in Hs(k).

Proof We start by noticing that the restriction of ψ over any simplicial component is given
by the morphism (E H × Gn+1)/H → Gn+1/H . The simplicial scheme (E H × Gn+1)/H
is nothing but the Čech simplicial scheme Č(Gn+1 → Gn+1/H) associated to the H -torsor
Gn+1 → Gn+1/H which becomes split once extended to G. In order to check that

Č(Gn+1 → Gn+1/H) → Gn+1/H

is a simplicial weak equivalence it is enough, by [11, Lemma 1.11], to evaluate on henselian
local rings. Therefore, we need to look at the morphism of simplicial sets

Č(Gn+1(R) → (Gn+1/H)(R)) → (Gn+1/H)(R)

for any henselian local ring R over k. Now, the fiber of Gn+1 → Gn+1/H over any point
Spec(R) of Gn+1/H is given by a H -torsor P → Spec(R) whose extension to G is split,
so split itself by hypothesis. In other words, this fiber is nothing but the split H -torsor H ×
Spec(R) → Spec(R). In this way we have found a splitting of Gn+1(R) → (Gn+1/H)(R)

which proves that Č(Gn+1(R) → (Gn+1/H)(R)) → (Gn+1/H)(R) is a weak equivalence
of simplicial sets, for any henselian local ring R. This implies that ψ is an isomorphism in
Hs(k). 
�

In practice, in the case we are interested in, it is enough to check the hypothesis of
the previous proposition only for field extensions of k. The reason resides on the fact that
rationally trivial quadratic forms are Zariski-locally trivial (see [12, Theorem 5.1]). Indeed,
we have the following corollary to the previous proposition.
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Corollary 5.2 Let H and G be such that all rationally trivial H-torsors and G-torsors are
Zariski-locally trivial. If the map HomHs (k)(Spec(K ), Bét H) → HomHs (k)(Spec(K ),

Bét G) has trivial kernel for any field extension K of k, then ψ is an isomorphism in Hs(k).
In particular, B H ∼= B̂ H in Hs(k).

Proof Let R be any Henselian local ring over k and K its field of fractions. Then, we have
the following commutative diagram

HomHs (k)(Spec(R), Bét H) ��

��

HomHs (k)(Spec(R), Bét G)

��
HomHs (k)(Spec(K ), Bét H) �� HomHs (k)(Spec(K ), Bét G).

Saying that all rationally trivial H -torsors and G-torsors are Zariski-locally trivial implies
that the two vertical maps in the previous diagram have trivial kernels.Moreover, by hypothe-
sis, we have that the bottomhorizontalmap has trivial kernel too. Therefore, the top horizontal
map has trivial kernel and the statement follows by Proposition 5.1. 
�

The natural embedding of algebraic groups H ↪→ G induces two morphisms j : B H →
B̂ H and g : B H → BG. The following result tells us that, under the hypothesis of the
previous proposition, j identifies B H and B̂ H in Hs(k).

Proposition 5.3 Under the hypothesis of Proposition 5.1, j is an isomorphism in Hs(k).

Proof We already know that in this case the morphisms of bisimplicial schemes φ and ψ

become weak equivalences once restricted to simplicial components. It follows that the
morphisms they induce on the respective diagonal simplicial objects, namely φ : �(B̃ H) →
B H and ψ : �(B̃ H) → B̂ H , are weak equivalences. So, in order to get the result, it is
enough to provide a simplicial homotopy F (n)

i : (Hn+1 × Gn+1)/H → Gn+2/H between
jφ and ψ . One is given by

F (n)
i (h0, . . ., hn, g0, . . ., γn) = (h0, . . ., hi , gi , . . ., γn)

for any n and any 0 ≤ i ≤ n. 
�

Remark 5.4 Note that, since g = π j , the homomorphism j∗ : H(B̂ H) → H(B H) is an
isomorphism of H(BG)-modules.

The reason why we would like to work with B̂ H → BG instead of B H → BG is that the
first is a coherent morphism which is trivial over the 0 simplicial component with fiber G/H .
So, provided that the reduced motive of G/H is Tate, we could apply to it Proposition 4.2.
In a nutshell, this is how one can reconstruct the cohomology of the Nisnevich classifying
space of an algebraic group inductively by considering some filtration of it.

We now move our attention to some particular examples which are of main interest for
the purposes of this paper. First, we recall that On-torsors are in one-to-one correspondence
with quadratic forms, SOn-torsors are in one-to-one correspondence with quadratic forms
with trivial discriminant and Spinn-torsors yield quadratic forms with trivial discriminant
and Clifford invariant via a surjective map with trivial kernel for n ≥ 2. Hence, we can apply
Propositions 5.1 and 5.3 to the case that G and H are respectively On+1 and On , or SOn+1
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and SOn , or Spinn+1 and Spinn for n ≥ 2. Moreover, we have the following short exact
sequences of algebraic groups

1 → SOn → On → μ2 → 1,

1 → μ2 → Spinn → SOn → 1

from which we get that

Aqn+1
∼= On+1/On ∼= SOn+1/SOn ∼= Spinn+1/Spinn

where Aqn+1 is the affine quadric defined by the equation qn+1 = 1. Now we recall that

M(Aqn+1)
∼= Z⊕Z([(n + 1)/2])[n] ∈ DM−

e f f (k)

by [14, Proposition 3.1.3]. Hence, we can apply Proposition 4.2 to the fibrationswe aremostly
interested in, namely B̂On → BOn+1, B̂SOn → BSOn+1 and B̂Spinn → BSpinn+1.

Indeed, by exploiting the arguments above mentioned the following theorem is obtained
in [14].

Theorem 5.5 There is a unique set u1, . . ., un of classes in the motivic Z /2-cohomology
of BOn such that deg(ui ) = ([i/2])[i], ui vanishes when restricted to H(BOi−1) for any
2 ≤ i ≤ n and

H(BOn) ∼= H [u1, . . ., un].
Proof See [14, Theorem 3.1.1]. 
�

The generators ui are called subtle Stiefel–Whitney classes. It is possible to get the same
description for H(BSOn) with the only difference given by the fact that u1 = 0. Indeed, one
has the following result.

Proposition 5.6 The motivic cohomology ring of BSOn is completely described by

H(BSOn) ∼= H [u2, . . . , un].
Proof It is enough to apply Proposition 4.2 to the coherent morphism B̂SOn → BOn whose
fiber is isomorphic toμ2. Thisway one gets aGysin long exact sequence of H(BOn)-modules
in motivic cohomology

· · · → H p−1,q(BOn)
j∗−→ H p,q(BOn)

k∗−→ H p,q(BSOn)
l∗−→ H p,q(BOn) → . . . .

Now, note that k∗ is a ring homomorphism, hence it sends 1 to 1. Since H0,0(BSOn) ∼=
Z /2, it follows that l∗ is the 0 homomorphism in bidegree (0)[0]. This implies that j∗ sends
1 to u1. From the fact that it is a homomorphism of H(BOn)-modules we deduce that j∗ is
the multiplication by u1. Hence, it is a monomorphism in all bidegrees, fromwhich it follows
that l∗ is the 0 homomorphism in all bidegrees. Therefore, k∗ is an epimorphism and it kills
all monomials divisible by u1, from which we deduce that H(BSOn) ∼= H [u2, . . . , un]. 
�

Unfortunately, as we will see, while for orthogonal and special orthogonal groups Gysin
sequences are enough to get the description of the motivic cohomology of their classifying
spaces, for spin groups this is not true anymore. Indeed, we need to use also the fibrations
BSpinn → BSOn and study their induced homomorphisms in cohomology.We achieve this
in the following sections.
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We will also use the action of the motivic Steenrod algebra on subtle classes which is
given by the following Wu formula as in the classical case.

Proposition 5.7

Sqkum =

⎧⎪⎨
⎪⎩

∑k
j=0

(m+ j−k−1
j

)
uk− j um+ j , 0 ≤ k < m

u2
m, k = m

0, k > m

Proof See [14, Proposition 3.1.12]. 
�

From the previous result we immediately deduce the following corollary which will be
useful in the next sections.

Corollary 5.8 Let w be a monomial of bidegree ([m
2 ])[m] in Z /2[τ, u2, . . ., un+1]. Then,

Sqmw = w2 and Sq jw = 0 for any j > m.

Proof If m is even, by [20, Lemmas 9.8 and 9.9], there is nothing to prove since w is on

the slope 2 diagonal. Consider m odd, then w = τ
r−1
2 xuh1 · · ·uhr where x is a monomial

in even subtle classes and uhi are odd subtle classes (notice that r must be odd by degree

reason). Therefore, by Cartan formula, we have that Sqmw = Sqm(τ
r−1
2 xuh1 · · ·uhr ) =

Sqm−hr (τ
r−1
2 xuh1 · · ·uhr−1)Sqhr uhr = (τ

r−1
2 xuh1 · · ·uhr−1)

2u2
hr

= w2 since the monomial

τ
r−1
2 xuh1 · · ·uhr−1 is on the slope 2 diagonal. Moreover, Sq jw = 0 for j > m for the same

reason. 
�

6 The fibration BSpinn → BSOn

We have already noticed that the special orthogonal case does not differ much from the
orthogonal one, at least from the cohomological perspective, in the sense that their motivic
cohomology rings are both polynomial over the cohomology of the point in subtle Stiefel–
Whitney classes. This is not true anymore for spin groups. The main reason is that in this
case there are much more complicated relations among subtle classes given by the action
of the motivic Steenrod algebra on u2 which make the cohomology rings not polynomial in
subtle Stiefel–Whitney classes anymore (precisely for n > 9) and, moreover, new classes
appear. For this reason, in order to get our main result, together with an inductive argument
we need to consider the fibration BSpinn → BSOn . More precisely, in order to investigate
the motivic cohomology of BSpinn , we need to consider for any n ≥ 2 the commutative
square

B̂Spinn
ân ��

π̃

��

B̂SOn

π

��
BSpinn+1

an+1 �� BSOn+1
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where π and π̃ are smooth coherent morphisms, trivial over simplicial components, with
fiber isomorphic to the affine quadric Aqn+1 defined by the equation qn+1 = 1.

In Spc∗(BSOn+1) we can complete the previous diagram to the following one (commu-
tative up to a sign in the right bottom square) where each row and each column is a cofiber
sequence

B̂Spinn
ân ��

π̃

��

B̂SOn
b̂n ��

π

��

Cone(̂an)
ĉn ��

π

��

S1 ∧ B̂Spinn

��
BSpinn+1

an+1 ��

f̃

��

BSOn+1
bn+1 ��

f

��

Cone(an+1)
cn+1 ��

f

��

S1 ∧ BSpinn+1

��
Cone(π̃) ��

��

Cone(π) ��

��

Cone(π) ��

��

S1 ∧ Cone(π̃)

��
S1 ∧ B̂Spinn �� S1 ∧ B̂SOn �� S1 ∧ Cone(̂an) �� S2 ∧ B̂Spinn .

The previous diagram induces, in turn, a commutative diagram of long exact sequences in
motivic cohomology with Z /2-coefficients, where all the homomorphisms are compatible
with Steenrod operations and respect the H(BSOn+1)-module structure. This remark comes
from the fact that the following diagram of categories

Spc∗(BSOn+1) ��

��

HA1,∗(k)

��
DM−

e f f (BSOn+1,Z /2) �� DM−
e f f (k,Z /2)

is commutative up to a natural equivalence and both functors in the right bottom corner
have adjoints from the right, so we have the action of Steenrod operations on the motivic
cohomology of objects belonging to the image of Spc∗(BSOn+1) inDM−

e f f (BSOn+1,Z /2)
pulled from HA1,∗(k).

Since Spin-torsors yield quadratic forms from I 3 via a map with trivial kernel and for
quadratic forms Witt cancellation holds, we are allowed to use Propositions 5.1 and 5.3 and
Remark 5.4. As a result, we get the following infinite grid of long exact sequences
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.

.

.

��

.

.

.

��

.

.

.

��

.

.

.

��
. . . �� H p−2,q (BSpinn )

c∗
n ��

h̃∗

��

H p−1,q (Cone(an ))
b∗

n ��

h
∗

��

H p−1,q (BSOn )
a∗

n ��

h∗

��

H p−1,q (BSpinn )

��

�� . . .

. . . �� H p−1,q (Cone(π̃)) ��

f̃ ∗

��

H p,q (Cone(π)) ��

f
∗

��

H p,q (Cone(π)) ��

f ∗

��

H p,q (Cone(π̃))

��

�� . . .

. . . �� H p−1,q (BSpinn+1)
c∗

n+1 ��

g̃∗

��

H p,q (Cone(an+1))
b∗

n+1 ��

g∗

��

H p,q (BSOn+1)
a∗

n+1 ��

g∗

��

H p,q (BSpinn+1)

��

�� . . .

. . . �� H p−1,q (BSpinn ) ��

��

H p,q (Cone(an )) ��

��

H p,q (BSOn ) ��

��

H p,q (BSpinn ) ��

��

. . .

.

.

.

.

.

.

.

.

.

.

.

.

(1)

where all the homomorphisms are compatible with Steenrod operations and respect the
H(BSOn+1)-module structure.

We recall that, by applyingProposition 4.2 to the smooth coherentmorphismπ : B̂SOn →
BSOn+1, which has fiber isomorphic to Aqn+1 whose reduced motive is Tate, there is a Thom
isomorphism

H p−n−1,q−[ n+1
2 ](BSOn+1) → H p,q(Cone(π))

which sends 1 to the Thom class α. By Theorem 5.5, modulo this isomorphism f ∗ is just
the multiplication by the subtle Stiefel–Whitney class un+1, since it is the only class of its
bidegree vanishing in H(BOn). Since Spinn+1/Spinn ∼= Aqn+1 , Proposition 4.2 applies also
to the smooth coherent morphism π̃ : B̂Spinn → BSpinn+1. Therefore, we have a Thom
isomorphism

H p−n−1,q−[ n+1
2 ](BSpinn+1) → H p,q(Cone(π̃))

and a Thom class α̃ ∈ Hn+1,[ n+1
2 ](Cone(π̃)). We notice that, by Corollary 4.4, α̃ is nothing

but the restriction of α from Hn+1,[ n+1
2 ](Cone(π)) to Hn+1,[ n+1

2 ](Cone(π̃)). Hence, modulo
the Thom isomorphism, f̃ ∗ is multiplication by un+1. Moreover, from Proposition 4.3 we
have that the map Cone(π̃) → Cone(π) induces inDM−

e f f (BSOn+1,Z /2) the morphism

M(BSpinn+1
an+1−−→ BSOn+1)([(n + 1)/2])[n + 1] M(an+1)([(n+1)/2])[n+1]−−−−−−−−−−−−−−−→

T ([(n + 1)/2])[n + 1]
from which it follows that

M(Cone(π)) ∼= M(Cone(an+1))([(n + 1)/2])[n + 1]
which induces an isomorphism

H p−n−1,q−[ n+1
2 ](Cone(an+1)) → H p,q(Cone(π)).
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Note that, from Theorem 5.5, the morphism h∗ is always the 0 homomorphism, which
means at the same time that g∗ is surjective and f ∗ is injective. From these remarks we obtain
the next proposition.

Proposition 6.1 Sqmα = umα for any m ≤ n + 1 and 0 otherwise. The same holds for α̃.

Proof We just notice that f ∗(Sqmα) = Sqm f ∗(α) = Sqmun+1 = umun+1 = um f ∗(α) =
f ∗(umα). The result follows by injectivity of f ∗. 
�

7 Some regular sequences in H(BSOn)

The main aim of this section is to prove a result in the motivic setting similar to Theorem
3.1. We construct a sequence θ0, θ1, . . . , θk(n)−1 in H(BSOn) by applying some Steenrod
operations to u2 just as in the topological case. Then, we focus on the two sequences obtained
from the previous one by imposing on the one hand τ = 1 and on the other τ = 0. While the
regularity of the first sequence was completely established by Quillen, nothing was known
about the regularity of the second. We follow Quillen’s method which allows to obtain the
regularity of the sequence in topology by studying it in the cohomology of a certain power
of B O1 where it has an easier shape, related to some quadratic form over Z /2. The lenght
k(n) of the regular sequence essentially depends on the characteristics of this quadratic form.
For τ = 0, this approach does not work completely, so we study instead our sequence in
the cohomology of a certain power of BO2. In this ring our sequence has a simple form,
related now to a certain bilinear form overZ /2. As for the topological case, by studying these
bilinear forms, we are able to get the regularity of some sequences of lenght h(n) (related
to our initial motivic sequences) with τ = 0. Surprisingly, these sequences are either long
as Quillen’s sequences or have one less element. Then, combining Quillen’s result (τ = 1)
with ours (τ = 0), we get the regularity of θ0, θ1, . . . , θk(n)−1 in the motivic cohomology of
BSOn for the same values that appear in topology.

Let V be an n-dimensionalZ /2-vector space and� an algebraically closed field extension
of Z /2. We denote by V� the �-vector space � ⊗Z /2 V . Note that the Frobenius automor-
phism acts on V� via the first tensor factor. Following [13], we also denote by x �→ x2 the
Frobenius transformation on V�. First, we recall the following result from [13].

Proposition 7.1 An �-subspace M of V� is of the form W� for some subspace W of V if
and only if M is stable under the Frobenius transformation.

Proof See [13, Proposition 2.1]. 
�
Let B be a bilinear form over V and denote by ⊥V its right radical, i.e.

⊥V = {y ∈ V : B(x, y) = 0 f or any x ∈ V }.
Note that B(x, y) can be seen as a homogeneous element of degree 2 in

�[x1, . . . , xn, y1, . . . , yn]. In fact, let {e1, . . . , en} be a basis for V , then B(x, y) =∑n
i, j=1 B(ei , e j )xi y j where the xi and the y j are the coordinates of x and y respectively in

the chosen basis. Let h = n−dim(⊥V ) and consider the ideal J in�[x1, . . . , xn, y1, . . . , yn]
generated by the homogeneous polynomials B(x, y), B(x, y2), . . . , B(x, y2

h−1
).

Proposition 7.2 The algebraic subset in V� × V� defined by the ideal J is given by

V ar(J ) =
⋃

W⊆V

W ⊥
� × W�
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where W ⊥
� = {x ∈ V� : B(x, y) = 0 f or any y ∈ W�}.

Proof From Proposition 7.1 we know that W� is stable under the Frobenius transformation
for any subspace W of V . Hence, if (x, y) belongs to W ⊥

� × W�, then y, y2, . . . , y2
h−1

are in W� and x ∈ W ⊥
� . It follows that B(x, y), B(x, y2), . . . , B(x, y2

h−1
) are all zero, so

(x, y) ∈ V ar(J ). Therefore, ⋃
W⊆V

W ⊥
� × W� ⊆ V ar(J ).

On the other hand, let (x, y) be a point of V ar(J ) and consider the subspace My of V�

defined by

My = 〈y, y2, . . . , y2
h−1〉 + ⊥V �.

Obviously, (x, y) belongs to M⊥
y × My . In order to prove that My is of the form W� for

some W ⊆ V it is enough to show that My is stable under the Frobenius transformation. Note

that ⊥V � is stable under the Frobenius transformation, and so, if y2
i ∈ ⊥V � for some i , then

y2
j ∈ ⊥V � for all j ≥ i . Hence, My/

⊥V � = 〈y, y2, . . . , y2
i−1〉 and 〈y2

i
, . . . , y2

h−1〉 ⊆
⊥V � for some i ≤ h. If i < h, then My is stable under the Frobenius transformation, since
⊥V � is so. If i = h, then My = 〈y, y2, . . . , y2

h−1〉 ⊕ ⊥V �. Therefore, if y, y2, . . . , y2
h−1

are linearly independent then My = V� since dim(⊥V ) = n − h, so y2
h
clearly belongs to

My . Otherwise, y2
i ∈ 〈y, . . . , y2

i−1〉 for some 0 ≤ i ≤ h − 1, from which it follows that

y2
h ∈ 〈y, . . . , y2

h−1〉. Hence, My is stable under the Frobenius transformation from which
we deduce that

V ar(J ) ⊆
⋃

W⊆V

W ⊥
� × W�

which completes the proof. 
�
From the previous proposition we immediately obtain the following result.

Corollary 7.3 The sequence B(x, y), B(x, y2), . . . , B(x, y2
h−1

) is a regular sequence in the
polynomial ring Z /2[x1, . . . , xn, y1, . . . , yn].
Proof Recall that r1, . . . , rh is a regular sequence in the polynomial ring �[x1, . . . , xn, y1,
. . . , yn] if and only if dim(V ar(r1, . . . , rh)) ≤ 2n − h (see [13, Proposition 1.1]). Hence,
in order to prove the result it is enough to look at the dimension of V ar(J ). In fact,

dim(V ar(J )) = maxW⊆V {dim(W ⊥
� ) + dim(W�)}

= maxW⊆V {dim(W ⊥
� /(W ⊥

� ∩ ⊥V �)) + dim(W ⊥
� ∩ ⊥V �)

+ dim(W�/(W� ∩ ⊥V �)) + dim(W� ∩ ⊥V �)}
≤ n − dim(⊥V ) + 2dim(⊥V ) = 2n − h

since on V�/⊥V � the bilinear form is non-degenerate and dim(⊥V ) = n − h, therefore

dim(W�/(W� ∩ ⊥V �)) + dim(W ⊥
� /(W ⊥

� ∩ ⊥V �)) = dim(V�/⊥V �) = n − dim(⊥V ).

Hence, the sequence is regular in�[x1, . . . , xn, y1, . . . , yn], and so inZ /2[x1, . . . , xn, y1,
. . . , yn]. 
�
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At this point, consider the standard embeddings O×m
2 ↪→ O2m and O×m

2 ×O1 ↪→ O2m+1,
which induce respectively the ring homomorphisms compatible with Steenrod operations

α2m : H(B O2m) ∼= H [u1, . . . , u2m] → H(BO2)
⊗m ∼= H [x1, y1, . . . , xm, ym]

and

α2m+1 : H(BO2m+1) ∼= H [u1, . . . , u2m+1] → H(BO2)
⊗m ⊗H H(BO1)

∼= H [x1, y1, . . . , xm, ym, xm+1]
where xi is in bidegree (0)[1] and yi is in bidegree (1)[2] for any i . By tensoring them with
Z /2 over H , one obtains the ring homomorphisms

β2m : Z /2[u1, . . . , u2m] → Z /2[x1, y1, . . . , xm, ym]
and

β2m+1 : Z /2[u1, . . . , u2m+1] → Z /2[x1, y1, . . . , xm, ym, xm+1].
Let Sn be the polynomial ring Z /2[u1, . . . , un] and Rn be Z /2[x1, y1, . . . , xm, ym], if

n = 2m, and Z /2[x1, y1, . . . , xm, ym, xm+1], if n = 2m + 1. There exist commutative
diagrams

H(B O2m)
α2m ��

γ2m

��

H(BO2)
⊗m

δ2m

��
S2m

β2m

�� R2m

H(BO2m+1)
α2m+1 ��

γ2m+1

��

H(BO2)
⊗m ⊗ H(BO1)

δ2m+1

��
S2m+1

β2m+1

�� R2m+1

where γn and δn are the respective reduction maps along H → Z /2. By Whitney sum
formula (see [14, Proposition 3.1.13]) and since τ is killed in R2m , we have that

β2m(u2 j ) = σ j (y1, . . . , ym)

and

β2m(u2 j+1) =
m∑

i=1

xiσ j (y1, . . . , yi−1, yi+1, . . . , ym)

where σ j is the j-th elementary symmetric polynomial. Similar formulas hold in R2m+1, i.e.
we have that

β2m+1(u2 j ) = σ j (y1, . . . , ym)

and

β2m+1(u2 j+1) =
m∑

i=1

xiσ j (y1, . . . , yi−1, yi+1, . . . , ym) + xm+1σ j (y1, . . . , ym).

Before proceeding we need the following technical lemma on regular sequences.

Lemma 7.4 Let f : A = Z /2[a1, . . . , am] → B = Z /2[b1, . . . , bn] be a ring homo-
morphism, where deg(bi ) = 1 for any i and f (a j ) is a homogeneous polynomial in B of
positive degree α j for any j . Moreover, let r1, . . . , rk be a sequence of elements of A. If
f (r1), . . . , f (rk) is a regular sequence in B, then r1, . . . , rk is a regular sequence in A.
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Proof Let C be the polynomial ring Z /2[b1, . . . , bn, c1, . . . , cm], with deg(ci ) = 1 for any
i . Define the ring homomorphisms i : B → C , h : C → B and g : A → C by i(b j ) = b j ,
h(b j ) = b j and h(c j ) = 0, and g(a j ) = i f (a j ) + c

α j
j . Note that hi = idB , f = hg and

g(a j ) is homogeneous in C for any j . The sequence b1, . . . , bn, g(a1), . . . , g(am) is regular
in C , so it is g(a1), . . . , g(am) since regular sequences of homogeneous elements of positive
degree permute (see for example [2, Corollary 17.2]). From [5, Proposition 1] it follows
that C is a free A-module. At this point, note that c1, . . . , cm, i f (r1), . . . , i f (rk) is a regular
sequence in C essentially by hypothesis. Hence, the sequence g(r1), . . . , g(rk) is regular
in C , since g(r j ) + i f (r j ) ∈ ker(h) = (c1, . . . , cm) for any j . The fact that C is a free
A-module via g implies that r1, . . . , rk is regular in A, which is what we aimed to show. 
�
Theorem 7.5 The sequence γn(u1), γn(u2), γn(Sq1u2), . . . , γn(Sq2h(n)−2

Sq2h(n)−3 · · ·
Sq1u2) is regular in Sn, where h(n) depends on n as in the following table.

n h(n)

8l + 1 4l
8l + 2 4l + 1
8l + 3 4l + 1
8l + 4 4l + 1
8l + 5 4l + 2
8l + 6 4l + 3
8l + 7 4l + 3
8l + 8 4l + 3

Proof By Lemma 7.4 we can check the regularity of the needed sequence by looking at its
image under βn . Indeed, we will show the regularity of the sequence

βnγn(u1), βnγn(u2), βnγn(Sq1u2), . . . , βnγn(Sq2h(n)−2
Sq2h(n)−3 · · · Sq1u2).

First, consider the case n = 2m. Then, β2mγ2m(u1) = β2m(u1) = ∑m
i=1 xi and

β2mγ2m(u2) = β2m(u2) = ∑m
i=1 yi . Moreover, since τ is killed in R2m , we have that

β2mγ2m(Sq2l · · · Sq1u2) = δ2mα2m(Sq2l · · · Sq1u2)

= δ2m(Sq2l · · · Sq1α2m(u2))

=
m∑

i=1

δ2m(Sq2l · · · Sq2Sq1yi )

=
m∑

i=1

δ2m(Sq2l · · · Sq2(xi yi )) =
m∑

i=1

xi y2
l

i .

Modulo β2mγ2m(u1) and β2mγ2m(u2), β2mγ2m(Sq2l · · · Sq1u2) = B(x, y2
l
), where B

is the bilinear form over an m − 1-dimensional Z /2-vector space V defined by B(x, y) =∑m−1
i �= j=1 xi y j . Note that

dim(⊥V ) =
{
0, i f m is odd

1, i f m is even
.
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In fact, from B(ei , y) = 0 it follows that y1 + · · · + yi−1 + yi+1 + · · · + ym−1 = 0 for
any i ≤ m − 1, where ei is the vector in V which has coordinates which are all 0 but the i-th
that is a 1. Hence,

⊥V =
{
0, i f m is odd

〈(1, . . . , 1)〉, i f m is even
.

Corollary 7.3 implies that the sequence

β2mγ2m(u1), β2mγ2m(u2), β2mγ2m(Sq1u2), . . . , β2mγ2m(Sq2h(2m)−2
Sq2h(2m)−3 · · · Sq1u2)

is regular in R2m where

h(2m) =
{

m, i f m is odd

m − 1, i f m is even
.

Therefore, the sequence

γ2m(u1), γ2m(u2), γ2m(Sq1u2), . . . , γ2m(Sq2h(2m)−2
Sq2h(2m)−3 · · · Sq1u2)

is regular in S2m for the same values of h(2m).
Now, consider the case n = 2m + 1. Similarly to the previous case, β2m+1γ2m+1(u1) =

β2m+1(u1) = ∑m+1
i=1 xi and β2m+1γ2m+1(u2) = β2m+1(u2) = ∑m

i=1 yi . Moreover, we have
that

β2m+1γ2m+1(Sq2l · · · Sq1u2) = δ2m+1α2m+1(Sq2l · · · Sq1u2)

= δ2m+1(Sq2l · · · Sq1α2m+1(u2))

=
m∑

i=1

δ2m+1(Sq2l · · · Sq2Sq1yi )

=
m∑

i=1

δ2m+1(Sq2l · · · Sq2(xi yi )) =
m∑

i=1

xi y2
l

i .

Modulo β2m+1γ2m+1(u1) and β2m+1γ2m+1(u2), β2m+1γ2m+1(Sq2l · · · Sq1u2)

= B(x, y2
l
), where B is the bilinear formover anm-dimensionalZ /2-vector space V defined

by B(x, y) = ∑m−1
i=1 (xi + xm)yi . In this case, dim(⊥V ) = 1. In fact, from B(ei , y) = 0 it

follows that yi = 0 for any i ≤ m − 1. Hence, ⊥V = 〈(0, . . . , 0, 1)〉, from which it follows
by Corollary 7.3 that the sequence

β2m+1γ2m+1(u1), β2m+1γ2m+1(u2), β2m+1γ2m+1(Sq1u2), . . . ,

β2m+1γ2m+1(Sq2h(2m+1)−2
Sq2h(2m+1)−3 · · · Sq1u2)

is regular in R2m+1 where h(2m + 1) = m. Therefore

γ2m+1(u1), γ2m+1(u2), γ2m+1(Sq1u2), . . . , γ2m+1(Sq2h(2m+1)−2
Sq2h(2m+1)−3 · · · Sq1u2)

is a regular sequence in S2m+1, where h(2m + 1) = m. This completes the proof. 
�
Define the elements θ j in H(BSOn) inductively by the following formulas:

θ0 = u2;
θ j+1 = Sq2 j

θ j .
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Corollary 7.6 The sequence τ, θ0, . . . , θh(n)−1 is regular in H(BSOn), where h(n) depends
on n as in the table of Theorem 7.5.

Proof First, note that all θ j are obtained from u2 by using onlyWu formula (Proposition 5.7)
and Cartan formula where elements of K M (k)/2 are never involved, from which it follows
that every θ j is an element of Z /2[τ, u2, . . . , un]. Since K M (k)/2 is free over Z /2, it is
enough to show the regularity of the sequence inZ /2[τ, u2, . . . , un]. Then, the result follows
from Theorem 7.5 by noticing that, modulo τ and u1, θ j = inγn(Sq2 j−1 · · · Sq1u2), where
in is the inclusion of Sn in H(BOn). 
�

At this point, let us consider three homomorphisms i : Htop(BSOn) → H(BSOn),
h : Htop(BSOn) → H(BSOn) and t : H(BSOn) → Htop(BSOn), where i is defined
by imposing i(wi ) = ui and extending to a ring homomorphism, h by imposing, for any

monomial x , h(x) = τ [ pi(x)
2 −qi(x)]i(x), where (qi(x))[pi(x)] is the bidegree of i(x), and

extending linearly and t by imposing t(ui ) = wi , t(τ ) = 1 and t(K M
r (k)/2) = 0 for any

r > 0 and extending to a ring homomorphism.
We start by describing some properties of these homomorphisms. First of all, i and h

are graded with respect to the usual grading in Htop(BSOn) and the topological degree in
H(BSOn). Besides, by the very definition of h, h(x) has bidegree ([ pi(x)

2 ])[pi(x)] for any
homogeneous polynomial x . On the other hand, we notice that h is not a ring homomorphism.
Anyway, we have the following lemmas.

Lemma 7.7 For any homogeneous polynomials x and y in Htop(BSOn), we have that
h(xy) = τ εh(x)h(y), where ε is 1 if pi(x) pi(y) is odd and 0 otherwise.

Proof At first consider two monomials x and y. Then, we get

h(xy) = τ [ pi(x)+pi(y)
2 −qi(x)−qi(y)]i(xy) = τ ε+[ pi(x)

2 −qi(x)]+[ pi(y)
2 −qi(y)]i(x)i(y) = τ εh(x)h(y)

where ε is 1 if pi(x) pi(y) is odd and 0 otherwise. For homogeneous polynomials x = ∑l
j=0 x j

and y = ∑m
k=0 yk , where x j and yk are monomials, we have

h(xy) = h(

l∑
j=0

m∑
k=0

x j yk) =
l∑

j=0

m∑
k=0

h(x j yk) =
l∑

j=0

m∑
k=0

τ ε jk h(x j )h(yk)

where ε jk is 1 if pi(x j ) pi(yk ) is odd and 0 otherwise. Now, we recall that pi(x j ) = pi(x)

and pi(yk ) = pi(y) for any j and k, from which it immediately follows that h(xy) =
τ ε

∑l
j=0

∑m
k=0 h(x j )h(yk) = τ εh(x)h(y), where ε is 1 if pi(x) pi(y) is odd and 0 other-

wise. 
�
Lemma 7.8 For any homogeneous (respect to bidegree) z ∈ Z /2[τ, u2, . . . , un], we have
that ht(z) = τ [ pz

2 −qz ]z (where [ pz
2 − qz] can possibly be negative).

Proof Write z as
∑m

j=0 z j , where z j are monomials in Z /2[τ, u2, . . . , un]. Then,

ht(z) =
m∑

j=0

ht(z j ) =
m∑

j=0

τ
[

pit(z j )
2 −qit(z j )]i t(z j ).

Notice that z j = τ n j x j , for somemonomials x j inZ /2[u2, . . . , un]. By the very definition
of i and t we get that i t(z j ) = x j . Thus,

ht(z) =
m∑

j=0

τ
[ px j

2 −qx j ]x j =
m∑

j=0

τ
[ px j

2 −qx j −n j ]z j = τ [ pz
2 −qz ]z
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since px j = pz j = pz and qx j + n j = qz j = qz . 
�
Lemma 7.9 For any j , t(θ j ) = ρ j and h(ρ j ) = θ j .

Proof Since a Wu formula (Proposition 5.7) holds even in the motivic case by 5.7, we get
that t(θ j ) = ρ j by the very definition of t . Then, h(ρ j ) = ht(θ j ) = θ j by Lemma 7.8 and
by recalling that θ j is in bidegree (2 j−1)[2 j + 1]. 
�

At this point, denote by I j the ideal in H(BSOn) generated by θ0, . . . , θ j−1 and by I top
j

the ideal in Htop(BSOn) generated by ρ0, . . . , ρ j−1. We are now ready to prove the main
result of this section.

Theorem 7.10 The sequence θ0, . . . , θk(n)−1 is regular in H(BSOn). Moreover, θk(n) ∈ Ik(n),
where k(n) depends on n as in the table of Theorem 3.1.

Proof Since K M (k)/2 is free over Z /2 we just need to show the regularity of the needed
sequence in Z /2[τ, u2, . . . , un]. From the fact that regular sequences of homogeneous ele-
ments of positive degree permute and by Corollary 7.6, we immediately deduce the regularity
of the sequence for n = 0, 1, 2, 6 and 7(mod 8), since in these cases h(n) = k(n). Now,
suppose n = 3, 4 or 5(mod 8). In these cases, h(n) = k(n) − 1, therefore Corollary 7.6
implies that the sequence τ, θ0, . . . , θk(n)−2 is regular. Let z be a homogeneous polynomial in
Z /2[τ, u2, . . . , un] such that zθk(n)−1 ∈ Ik(n)−1. Then, we deduce that t(z)ρk(n)−1 ∈ I top

k(n)−1.

It follows from Theorem 3.1 that t(z) = ∑k(n)−2
l=0 ψlρl for some homogeneous ψl ∈

Htop(BSOn) and, after applying h, we obtain τ [ pz
2 −qz ]z = ∑k(n)−2

l=0 τ εl h(ψl)θl by Lemmas
7.7, 7.8 and 7.9. Hence, the regularity of θ0, . . . , θk(n)−2, τ implies that z ∈ Ik(n)−1 and we
obtain the regularity of the sequence θ0, . . . , θk(n)−1. At this point, we only need to show that

θk(n) ∈ Ik(n). Note that ρk(n) ∈ I top
k(n) by Theorem 3.2. Hence, ρk(n) = ∑k(n)−1

l=0 φlρl for some

homogeneousφl ∈ Htop(BSOn) and, after applying h, we obtain θk(n) = ∑k(n)−1
l=0 τ εl h(φl)θl

by Lemmas 7.7 and 7.9. Thus, θk(n) ∈ Ik(n), which completes the proof. 
�

8 Themotivic cohomology ring of BSpinn

In this section we prove a motivic version of Theorem 3.2. The general strategy consists in
using the grid of long exact sequences in motivic cohomology from Diagram 1 in Section
6 in order to get the result by an inductive argument. This method allows us to lift, not
only subtle classes, but even relations among them from the cohomology of BSpinn to the
cohomology of BSpinn+1. These relations are essentially the elements θ j of the motivic
regular sequences encountered in the previous section. Moreover, we see that a new subtle
class v2k(n) appears in the motivic cohomology of BSpinn and the obstruction to lift it to the
cohomology of BSpinn+1 is detected by the increasing of the lenght of the regular sequence
moving from n to n + 1. In the proof of the main theorem it is essential to deal with the two
possible cases separately: on the one hand the case that v2k(n) is liftable and the lenght of the
regular sequence stays unchanged, i.e. k(n + 1) = k(n), on the other the case that v2k(n) is
not liftable and the lenght of the regular sequence increases by one, i.e. k(n + 1) = k(n)+ 1.
Furthermore, we notice that when v2k(n) is not liftable, then “almost" its square is so, giving
rise to a new extra class v2k(n)+1 in doubled degrees.

We start by showing that, as in topology, the second subtle Stiefel–Whitney class is trivial
in the motivic cohomology ring H(BSpinn).
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Lemma 8.1 For any n ≥ 2, u2 is trivial in H(BSpinn). Moreover, there exists a unique
element x0 in H(Cone(an)) such that b∗

n(x0) = u2.

Proof Recall that SO2 ∼= Spin2 ∼= Gm , where Gm is the multiplicative group, and the

morphism from Spin2 to SO2 is the double cover Gm
(·)2−−→ Gm , which induces the map on

classifying spaces a2 : BGm → BGm . By Kummer theory, the induced morphism on Picard
groups Pic(BGm) → Pic(BGm) is multiplication by 2. Now, recall that Pic(BGm) ∼=
H2,1(BGm,Z) (see [8, Corollary 4.2]). Then, for n = 2 the homomorphism

a∗
2 : H(BGm) ∼= H [u2] → H(BGm) ∼= H [v2]

sends u2 to 2v2, hence u2 = 0 in H(BSpin2).
Now, suppose u2 = 0 in H(BSpinn), then u2 should be divisible by un+1 in

H(BSpinn+1), which forces u2 to be trivial by degree reasons. Therefore, by induc-
tion, u2 = 0 in H(BSpinn) for any n. It immediately follows that there exists x0 in
H(Cone(an)) such that b∗

n(x0) = u2 for any n ≥ 2. We prove its uniqueness by show-
ing that b∗

n is a monomorphism in bidegree (1)[2]. First of all we notice that, for any n ≥ 2,
H1,1(BSpinn) ∼= K M

1 (k)/2 by induction on n and by observing that g̃∗ is an isomorphism
in bidegree (1)[1]. Hence, c∗

n : H1,1(BSpinn) → H2,1(Cone(an)) is the zero homomor-
phism, since the composition H1,1 → H1,1(BSOn) → H1,1(BSpinn) is surjective and,
therefore, so is the second map. It follows that b∗

n : H2,1(Cone(an)) → H2,1(BSOn) is a
monomorphism, as we aimed to show. 
�

From the previous lemma, for any n ≥ 2, we have a canonical set of elements x j in

H(Cone(an)) defined by x j = Sq2 j−1 · · · Sq1x0 for any j > 0. Denote by 〈x0, . . . , x j−1〉
the H(BSOn)-submodule of H(Cone(an)) generated by x0, . . . , x j−1. Before proceeding
we need the following lemma.

Lemma 8.2 For any j ≥ 1, x j /∈ 〈x0, . . . , x j−1〉 in H(Cone(a2)), and consequently in any
H(Cone(an)).

Proof We start by considering the Bockstein homomorphism β associated to the short exact
sequence 0 → Z → Z → Z /2 → 0. The homomorphism a∗

2 on cohomology with integer
coefficients sends u2 to 2v2 where v2 is the generator of H(BSpin2) ∼= H(BGm) and
so is injective, hence b∗

2 is the 0 homomorphism on cohomology with integer coefficients,
from which it follows that x0 cannot come from any integral cohomology class. Thus, y =
β(x0) �= 0.Moreover, since u2 comes froman integral cohomology class,we have b∗

2(y) = 0,
so y = mc∗

2(v2) for some integer m. At this point we notice that mv2 is in the image of a∗
2

for any even m, so m must be odd, which implies that y is not divisible by 2, since v2 mod(2)
is not in the image of a∗

2 . This is enough to conclude that

x1 = Sq1x0 = β(x0) mod(2) = y mod(2) �= 0.

Hence, x1 = c∗
2(v2) from which we deduce that

x j = Sq2 j−1
. . . Sq2x1 = c∗

2(Sq2 j−1
. . . Sq2v2) = c∗

2(v
2 j−1

2 )

by [20, Lemma 9.8], since Sq2i−1
. . . Sq2v2 is in bidegree (2i−1)[2i ] for any i . Now, suppose

that x j ∈ 〈x0, . . . , x j−1〉, in other words x j = ∑ j−1
i=0 φi xi for some φi ∈ H [u2]. Then, we

would have that

φ0u2 = b∗
2(x j +

j−1∑
i=0

φi xi ) = 0
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which implies φ0 = 0. Moreover, since positive powers of u2 act trivially on H [v2] (with
Z /2-coefficients), we have that

c∗
2(v

2 j−1

2 ) = c∗
2(v

2 j−1

2 +
j−1∑
i=1

φiv
2i−1

2 ) = 0

that is impossible since c∗
2 is injective on the slope 2 line (above zero), which comes from

the fact that H(BSO2) ∼= H [u2] and a∗
2 (u2) = 0. 
�

At this point,we are ready to prove ourmain resultwhich provides the complete description
of themotivic cohomology of BSpinn over fields of characteristic different from 2 containing√−1.

Theorem 8.3 For any n ≥ 2, there exists a cohomology class v2k(n) of bidegree
(2k(n)−1)[2k(n)] such that the natural homomorphism of H-algebras

H(BSOn)/Ik(n) ⊗H H [v2k(n) ] → H(BSpinn)

is an isomorphism, where Ik(n) is the ideal generated by θ0, . . . , θk(n)−1 and k(n) depends
on n as in the table of Theorem 3.1.

Proof Our proof goes by induction on n, starting from n = 2.
Base case: For n = 2, H(BSpin2) ∼= H(BGm) ∼= H [v2] provides our induction base.
Inductive step: We denote by θ ′

j and θ j the class Sq2 j−1 · · · Sq1u2 in H(BSOn) and
H(BSOn+1) respectively, by I ′

k(n) the ideal generated by the elements u2, θ
′
1, . . . , θ

′
k(n)−1,

by Ik(n) the ideal generated by u2, θ1, . . . , θk(n)−1, by x ′
0 and x0 the unique lifts of u2 to

H(Cone(an)) and H(Cone(an+1)) respectively, by x ′
j the class Sq2 j−1 · · · Sq1x ′

0 and by x j

the class Sq2 j−1 · · · Sq1x0.
Now, suppose by induction hypothesis that we have an isomorphism

H(BSOn)/I ′
k(n) ⊗H H [v2k(n) ] → H(BSpinn) (2)

where k(n) is the value prescribed by the table of Theorem 3.1.
Looking at the long exact sequence

· · · → H∗−1,∗′
(BSpinn) → H∗−n−1,∗′−[(n+1)/2](BSpinn+1)

·un+1−−−→ H∗,∗′
(BSpinn+1)

→ H∗,∗′
(BSpinn) → . . . (3)

fromDiagram1 inSect. 6 and by induction on degreeweknow that, in square degrees less than
2k(n), in H(BSpinn+1) there are only subtle Stiefel–Whitney classes, i.e. the homomorphism
a∗

n+1 : H(BSOn+1) → H(BSpinn+1) is surjective in these degrees. Let w be a class in

H2k(n)−n,2k(n)−1−[ n+1
2 ](BSOn+1) such that a∗

n+1(w)̃α = h̃∗(v2k(n) ), where α̃ is the Thom class
of the morphism g̃. We point out that

a∗
n+1(un+1w) = un+1a∗

n+1(w) = f̃ ∗h̃∗(v2k(n) ) = 0.

The following result, whose proof is reported at the end of this section, enables to complete
the induction step. It is indeed the core proposition that permits to conduct the proof of our
main theorem.
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Proposition 8.4 Suppose we have a commutative diagram

H(BSOn+1) ⊗H H [v] g∗⊗l ��

pn+1

��

H(BSOn) ⊗H H [c]
pn

��
H(BSpinn+1)

g̃∗
�� H(BSpinn)

such that v is a lift from H(BSpinn) to H(BSpinn+1) of a monic homogeneous polynomial
c in v2k(n) with coefficients in H(BSOn), l(v) = c and h̃∗(c) = 0.

If I m (̃h∗) = I m(pn+1) · h̃∗(v2k(n) ), then ker(pn+1) = Jk(n) + (un+1w), where Jk(n) is
Ik(n) ⊗H H [v].

If moreover ker (̃h∗) = I m(g̃∗ pn+1), then we get an isomorphism

H(BSOn+1)/(Ik(n) + (un+1w)) ⊗H H [v] → H(BSpinn+1).

So, in order to finalize the proof we only need to find a cohomology class v which satisfies
the requirements of Proposition 8.4. There are two possible cases: 1) h̃∗(v2k(n) ) = 0; 2)
h̃∗(v2k(n) ) �= 0.

Case 1: In this case v2k(n) can be lifted to H(BSpinn+1) so w = 0 and we can choose
c = v2k(n) . It follows that I m (̃h∗) = 0 = I m(pn+1)·h̃∗(v2k(n) ) and ker (̃h∗) = H(BSpinn) =
I m(pn) = I m(pn(g∗ ⊗ l)) = I m(g̃∗ pn+1), since in this case pn and g∗ ⊗ l are surjective.
So, by Proposition 8.4, we have that the homomorphism

H(BSOn+1)/Ik(n) ⊗H H [v2k(n) ] → H(BSpinn+1)

is an isomorphism. Furthermore, we observe that k(n + 1) = k(n) is the value predicted by
the table of Theorem 3.1 since θk(n) ∈ Ik(n) as it is zero in H(BSpinn+1) (because u2 is).
This completes the first case.

Case 2: In this case we notice that the element w such that a∗
n+1(w)̃α = h̃∗(v2k(n) ) must

be different from 0.

Remark 8.5 Since H(BSpinn) is generated by vi
2k(n) as a H(BSOn)-module (and, so, as

a H(BSOn+1)-module) by induction hypothesis, we have that I m (̃h∗) is generated by
h̃∗(vi

2k(n) ) as a H(BSOn+1)-module.

At this point, we need the following lemmas whose proofs are reported at the end of this
section.

Lemma 8.6 For any m, we have Sqma∗
n+1(w) ∈ 〈a∗

n+1(w)〉, where 〈a∗
n+1(w)〉 is the

H(BSOn+1)-submodule of H(BSpinn+1) generated by a∗
n+1(w).

Lemma 8.7 For any m > 1 there exist elements λm and μm in H(BSpinn+1) such that
h̃∗(vm

2k(n) ) = λmh̃∗(v2k(n) ), g̃∗(μm) = vm
2k(n) + g̃∗(λm)v2k(n) , λm and μm are in the image of

H(BSOn+1) ⊗H H [μ2] and μm is divisible by μ2.

Now consider the following commutative diagram

H(BSOn+1) ⊗H H [μ2] g∗⊗l ��

pn+1

��

H(BSOn) ⊗H H [v2
2k(n) + g̃∗(λ2)v2k(n) ]
pn

��
H(BSpinn+1)

g̃∗
�� H(BSpinn).
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From Lemma 8.7 and from Remark 8.5 we get that I m (̃h∗) = I m(pn+1) · h̃∗(v2k(n) ).
Then, by Proposition 8.4, we obtain that ker(pn+1) = Jk(n) + (un+1w).

Note that, by looking at the long exact sequence 3 at the beginning of the proof and
by induction on degree, H2k(n),2k(n)−1

(BSpinn+1) consists only of subtle Stiefel–Whitney
classes, since we are studying the case that v2k(n) is not covered by g̃∗ and so a∗

n+1 :
H(BSOn+1) → H(BSpinn+1) is surjective also in bidegree (2k(n)−1)[2k(n)]. Hence,

c∗
n+1 : H2k(n),2k(n)−1

(BSpinn+1) → H2k(n)+1,2k(n)−1
(Cone(an+1))

is the zero homomorphism and b∗
n+1 is injective in bidegree of xk(n), from which we deduce

that θk(n) /∈ Ik(n) since xk(n) /∈ 〈x0, . . . , xk(n)−1〉 by Lemma 8.2. Therefore, by observing
that ker(pn+1) = Jk(n) + (un+1w) and pn+1(θk(n)) = 0 we get that θk(n) + un+1w ∈ Ik(n)

which implies that ker(pn+1) = Jk(n)+1.
In order to finish, we need the following lemma whose proof is reported at the end of this

section.

Lemma 8.8 The following identification holds in H(BSpinn):

ker (̃h∗) = I m(g̃∗ pn+1).

Denote by v2k(n)+1 the class μ2, then by Proposition 8.4 we get that the homomorphism

H(BSOn+1)/Ik(n)+1 ⊗H H [v2k(n)+1 ] → H(BSpinn+1)

is an isomorphism. Moreover, since θk(n) /∈ Ik(n) we have that ρk(n) /∈ I top
k(n) from which it

follows that k(n + 1) = k(n) + 1 by Remark 3.3. This completes the proof of the second
case. 
�

We conclude this section by providing the proofs of Proposition 8.4 and Lemmas 8.6, 8.7
and 8.8. We remind the reader that in all the following proofs there is a running inductive
assumption (see 2 at the beginning of the proof of Theorem 8.3).

Proof of Proposition 8.4 Wewant to prove that pn+1(x) = 0 implies x ∈ Jk(n) + (un+1w) for
any x . We proceed by induction on the square degree of x . The induction base is guaranteed
by the fact that the degree 2 part of the kernel is generated by u2 and u2 ∈ Ik(n). Now, suppose
that the claim is true for square degrees less than the square degree of x . We can write x
as

∑m
j=0 φ jv

j for some φ j ∈ H(BSOn+1). Notice that pn(g∗ ⊗ l)(x) = g̃∗ pn+1(x) = 0,

therefore
∑m

j=0 png∗(φ j )c j = 0. From this we deduce that png∗(φ j ) = 0 for any j since
by hypothesis c is a monic polynomial in v2k(n) in H(BSpinn), so g∗(φ j ) ∈ I ′

k(n). Then,
φ j ∈ Ik(n) + (un+1) since φ j + ig∗(φ j ) ∈ (un+1) and i(I ′

k(n)) ⊂ Ik(n) + (un+1), where
i is the inclusion of H(BSOn) in H(BSOn+1) sending ul to ul . Hence, there are ψ j ∈
H(BSOn+1) such that φ j + un+1ψ j ∈ Ik(n), from which it follows that x + un+1z ∈ Jk(n)

where z = ∑m
j=0 ψ jv

j . Hence, un+1 pn+1(z) = 0 which implies that

pn+1(z)̃α ∈ I m (̃h∗) = I m(pn+1) · h̃∗(v2k(n) ) = I m(pn+1) · pn+1(w)̃α

from which we deduce that there exists an element y in H(BSOn+1) ⊗H H [v] such that
pn+1(z) = pn+1(yw). Therefore, z + yw ∈ Jk(n) + (un+1w) by induction hypothesis. It
follows that z ∈ Jk(n) + (w) and x ∈ Jk(n) + (un+1w).

In order to prove the last part of the proposition we show by induction on degree that,
if ker (̃h∗) = I m(g̃∗ pn+1), then pn+1 is surjective. The induction basis comes from the
fact that, in square degree ≤ 2, H(BSpinn+1) is the same as the cohomology of the point.
Take an element x and suppose that pn+1 is surjective in square degrees less than the square
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degree of x . From g̃∗(x) ∈ ker (̃h∗) = I m(g̃∗ pn+1) it follows that there is an element χ in
H(BSOn+1) ⊗H H [v] such that g̃∗(x) = g̃∗ pn+1(χ). Therefore, x + pn+1(χ) = un+1z
for some z ∈ H(BSpinn+1). By induction hypothesis z = pn+1(ζ ) for some element
ζ ∈ H(BSOn+1)⊗H H [v], hence x = pn+1(χ + un+1ζ ), which is what we aimed to show.


�

Proof of Lemma 8.6 We proceed by induction on m. For m = 0 there is nothing to prove and
for m > 2k(n) − n we have that Sqmw = 0 by Corollary 5.8. Suppose the statement is true
for integers less than m ≤ 2k(n) − n. Then,

Sqm(un+1w) =
m∑

j=0

τ j mod2Sq j un+1Sqm− jw =
m∑

j=0

τ j mod2u j un+1Sqm− jw

from which it follows, by applying a∗
n+1 and by noting that un+1a∗

n+1(w) = 0, that

0 = Sqm(un+1a∗
n+1(w)) =

m∑
j=0

τ j mod2u j un+1Sqm− j a∗
n+1(w) = un+1Sqma∗

n+1(w)

where all the elements but one in the sum disappear since by induction (on m) hypothesis
Sqm− j a∗

n+1(w) ∈ 〈a∗
n+1(w)〉 for j > 0 and un+1a∗

n+1(w) = 0.
Hence, f̃ ∗(Sqma∗

n+1(w)̃α) = 0, from which it follows that Sqma∗
n+1(w)̃α ∈ I m (̃h∗). By

Remark 8.5, we obtain that Sqma∗
n+1(w)̃α = ∑

i≥1 φi h̃∗(vi
2k(n) ) for some φi ∈ H(BSOn+1).

But, for any i > 1, the square degree of h̃∗(vi
2k(n) ) is greater than that of Sqma∗

n+1(w)̃α. We

deduce that Sqma∗
n+1(w)̃α = φ1h̃∗(v2k(n) ), from which it follows that

Sqma∗
n+1(w) = φ1a∗

n+1(w) ∈ 〈a∗
n+1(w)〉

which is what we aimed to prove. 
�

Proof of Lemma 8.7 We notice that, by Proposition 6.1 and Corollary 5.8,

h̃∗(v22k(n) ) = h̃∗(Sq2k(n)

v2k(n) ) = Sq2k(n)

(a∗
n+1(w)̃α)

= (τ n mod2Sq2k(n)−na∗
n+1(w)un + τ (n+1) mod2Sq2k(n)−n−1a∗

n+1(w)un+1)̃α

= τ n mod2Sq2k(n)−na∗
n+1(w)un α̃

since, by Lemma 8.6, Sq2k(n)−n−1a∗
n+1(w) ∈ 〈a∗

n+1(w)〉 and un+1a∗
n+1(w) = 0. Now, note

that Lemma 8.6 also implies that Sq2k(n)−na∗
n+1(w) = ra∗

n+1(w) for some r ∈ H(BSOn+1)

which allows us to define the element λ2 in H(BSOn+1) as λ2 = τ n mod2run . Then, we
immediately obtain that h̃∗(v2

2k(n) ) = λ2h̃∗(v2k(n) ).

Denote by μ2 a lift of v2
2k(n) + g̃∗(λ2)v2k(n) to H(BSpinn+1). Suppose the statement is

true for m, so, taking into account that h̃∗ is H(BSpinn+1)-linear, we have

h̃∗(vm+1
2k(n) ) = h̃∗((vm

2k(n) + g̃∗(λm)v2k(n) )v2k(n) + g̃∗(λm)v22k(n) )

= μmh̃∗(v2k(n) ) + λmλ2h̃∗(v2k(n) ).
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Denote by λm+1 the element μm + λmλ2 and by μm+1 the element λmμ2. Then,

g̃∗(μm+1) = g̃∗(λmμ2) = g̃∗(λm)(v22k(n) + g̃∗(λ2)v2k(n) )

= g̃∗(λm)v22k(n) + g̃∗(λm+1 + μm)v2k(n)

= (g̃∗(λm)v2k(n) + g̃∗(λm+1) + vm
2k(n) + g̃∗(λm)v2k(n) )v2k(n)

= vm+1
2k(n) + g̃∗(λm+1)v2k(n)

and the proof is complete. 
�
Proof of Lemma 8.8 Let us set μ1 = λ0 = 0 and μ0 = λ1 = 1. Let x be an element of the
kernel of h̃∗. We can write x as

∑m
j=0 γ jv

j
2k(n) with γ j ∈ H(BSOn+1). Then, by Lemma

8.7,

x =
m∑

j=0

γ j (g̃
∗(μ j ) + g̃∗(λ j )v2k(n) )

fromwhich it follows by applying h̃∗ that
∑m

j=0 γ jλ j h̃∗(v2k(n) ) = 0. Denote by σ the element∑m
j=0 γ jλ j in H(BSOn+1) ⊗H H [μ2]. From

pn+1(σw)̃α = pn+1(σ )a∗
n+1(w)̃α = pn+1(σ )̃h∗(v2k(n) ) = 0

we get σw ∈ Jk(n)+1, since ker(pn+1) = Jk(n)+1. Thus, σw = ∑k(n)
j=0 σ jθ j for some σ j ∈

H(BSOn+1)⊗H H [μ2] and,multiplying by un+1, we obtain that un+1σw+un+1σk(n)θk(n) ∈
Jk(n). On the other hand, θk(n) + un+1w ∈ Ik(n), from which it follows by multiplying by σ

that σθk(n) + un+1σw ∈ Jk(n). Hence, (σ + un+1σk(n))θk(n) ∈ Jk(n). By Theorem 7.10 we
deduce that σ +un+1σk(n) ∈ Jk(n), from which it follows that σ ∈ Jk(n) + (un+1). Therefore,
g̃∗ pn+1(σ ) = 0 in H(BSpinn) and

x =
m∑

j=0

γ j g̃
∗(μ j ) ∈ I m(g̃∗ pn+1)

as we aimed to show. 
�

9 Themotivic cohomology ring of BG2

In this section, we use our main result to compute the motivic cohomology ring of the
Nisnevich classifying space of G2. This enables us to obtain motivic invariants for G2-
torsors, i.e. octonion algebras.

We start by noticing that there is a fiber sequence

Aq8 → BG2 → BSpin7

(see [1, Proposition 3.1.1]). We can exploit this sequence and previous results to compute the
motivic cohomology ring of BG2. Before proceeding, note that by Theorem 8.3 we know
the complete description of H(BSpin7).

Theorem 9.1 The motivic cohomology ring of BG2 is completely described by

H(BG2) ∼= H [u4, u6, u7].
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Subtle characteristic classes for Spin-torsors 69

Proof By applying Proposition 4.2 to the coherent morphism B̂G2 → BSpin7 whose fiber
is isomorphic to Aq8 we get a Gysin long exact sequence of H(BSpin7)-modules in motivic
cohomology

· · · → H p−8,q−4(BSpin7) → H p,q(BSpin7) → H p,q(BG2) → H p−7,q−4(BSpin7) → · · · .

Hence, in order to be able to describe H(BG2) we need only to understand where 1 is
sent under the morphism H p−8,q−4(BSpin7) → H p,q(BSpin7). Recall that from Theorem
8.3 we have that H(BSpin7) ∼= H [u4, u6, u7, v8].

Note that there is a commutative diagram

BSL2
� ��

��
∼=
��

BSL2 × BSL2 ��
��

∼=
��

BSL4��
∼=
��

BSpin3 �� BSpin4 �� BSpin6

where all the vertical maps are induced by the sporadic isomorphisms SL2 ∼= Spin3, SL2 ×
SL2 ∼= Spin4 and SL4 ∼= Spin6. Recall that H(BSLn) ∼= H [c2, . . . , cn] where ci is the
Chern class in bidegree (i)[2i] (see [14, Proposition 3.2.7] which works in the same way for
BSLn). Then, we get a commutative diagram of motivic cohomology rings

H [c] �� �∗
��

∼=
��

H [c′, c′′] ����
∼=
��

H [c2, c3, c4]��
∼=
��

H [v4] �� H [u4, v4] �� H [u4, u6, v8]
where the first vertical arrow identifies c with v4, the last vertical arrow identifies c2
with u4 and c3 with u6, c′ and c′′ are sent both to c and c4 maps to c′c′′. Now, note
that H(BSpin6) → H(BSpin4) factors through H(BSpin5) ∼= H [u4, v8]. Since h̃∗ :
H(BSpin4) → H(BSpin5) is nontrivial, the class w defined just before Proposition 8.4 in
the proof of Theorem 8.3 is equal to 1 and, so, by Lemma 8.7 we know that λ2 = u4. Hence,
v8 maps to v24 + u4v4. Moreover, since c is identified with v4 and both c′ and c′′ map to
c, the second vertical arrow identifies c′ and c′′ with v4 and v4 + u4. It follows that c′c′′ is
identified with v24 + u4v4. Therefore, c4 is identified with v8 since they are the only classes
in their degrees that restrict to the same element.

Moreover, we can notice that there is a cartesian square of simplicial schemes given by

BSL3 ��

��

BSL4 ∼= BSpin6

��
BG2 �� BSpin7.

Recall that H(BSL3) ∼= H [c2, c3], H(BSL4) ∼= H [c2, c3, c4] and H(BSpin6) ∼=
H [u4, u6, v8]with the identifications c2 = u4, c3 = u6 and c4 = v8 discussed above. Hence,
byCorollary 4.4we easily deduce that themorphism H p−8,q−4(BSpin7) → H p,q(BSpin7)

sends 1 to an element which maps to c4 via the morphism H(BSpin7) → H(BSL4). There-
fore, H p−8,q−4(BSpin7) → H p,q(BSpin7) can only be multiplication by v8 +{a}u7, from
which it immediately follows that H(BG2) ∼= H [u4, u6, u7], which is what we aimed to
prove. 
�
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10 Relations among subtle classes for Spinn-torsors

In this section we deduce, just from the triviality of u2 in the motivic cohomology of BSpinn ,
some very simple relations among subtle classes in the motivic cohomology of the Čech
simplicial scheme associated to a Spinn-torsor. This provides information about the kernel
invariant (see [14, 2.7.1]) of quadratic forms from I 3.

We start by recalling that there exists a map from Spinn-torsors over the point to n-
dimensional quadratic forms from I 3 which is surjective and has trivial kernel, where I is the
fundamental ideal in the Witt ring. Moreover, we have the following commutative diagram

Č(Xq) ��

��

BSpinn ��

��

BSOn

��
Spec(k)

q �� Bét Spinn �� Bét SOn

for any n-dimensional q ∈ I 3 and all above-diagonal classes in H(BSpinn) coming from
the étale classifying space trivialise in H(Č(Xq)), since the above-diagonal cohomology of
a point is zero. Here Č(Xq) is the Čech simplicial scheme associated to the torsor Xq =
I so{q ↔ qn}. In particular Chern classes ci (q) = τ i mod2ui (q)2 are zero, as these are coming
from the étale space (see [14] just before Thorem 3.1.1).

From previous remarks we obtain the following proposition, which provides us with
relations among subtle characteristic classes for quadratic forms from I 3.

Proposition 10.1 For any n-dimensional q ∈ I 3, the following relations hold in H(Č(Xq))

2 j∑
h=0

u2 j −h(q)u2 j +1+h(q) = 0

for any j satisfying 2 j + 1 ≤ n.

Proof We will actually prove that

θ j+1(q) =
2 j∑

h=0

u2 j −h(q)u2 j +1+h(q)

and the result will follow by recalling that u2(q) = 0. For j = 0 and j = 1, by Wu formula
(Proposition 5.7), we have respectively θ1(q) = u3(q) and θ2(q) = u2(q)u3(q) + u5(q),
which provide our induction basis. Suppose the statement holds for θ j (q) with j ≥ 2, then

123



Subtle characteristic classes for Spin-torsors 71

by Cartan formula and Proposition 5.7 we have that

θ j+1(q) = Sq2 j
θ j (q) = Sq2 j

2 j−1∑
h=0

u2 j−1−h(q)u2 j−1+1+h(q)

=
2 j−1−1∑

h=0

(τ hmod2u2 j−1−h(q)2Sq2 j−1+hu2 j−1+1+h(q)

+ τ (h+1)mod2Sq2 j−1−h−1u2 j−1−h(q)u2 j−1+1+h(q)2) + Sq2 j
u2 j +1(q)

=
2 j−1−1∑

h=0

(c2 j−1−h(q)Sq2 j−1+hu2 j−1+1+h(q) + Sq2 j−1−h−1u2 j−1−h(q)c2 j−1+1+h(q))

+
2 j∑

h=0

u2 j −h(q)u2 j +1+h(q) =
2 j∑

h=0

u2 j −h(q)u2 j +1+h(q).


�
In other words, we obtain that

u2 j +1(q) =
2 j−1−1∑

h=0

u2 j−1−h(q)u2 j−1+1+h(q)

for any j satisfying 2 j + 1 ≤ n.
In [14], Smirnov and Vishik highlighted the deep relation between subtle Stiefel–Whitney

classes and the J -invariant of quadrics defined in [17]. More precisely, they proved the
following result.

Theorem 10.2 Let q be an n-dimensional quadratic form, p = q, for even n, and p = q ⊥
〈det±(q)〉, for odd n. Then,

u2 j+1(p) ∈ (u2l+1(p)|0 ≤ l < j) ⇒ j ∈ J (q).

Proof See [14, Corollary 3.2.22]. 
�
From the previous theorem and from Proposition 10.1 we immediately deduce the fol-

lowing well known corollary.

Corollary 10.3 For any n-dimensional q ∈ I 3, 2 j−1 ∈ J (q) for any j satisfying 2 j + 1 ≤ n.

11 The Chern subring of Ch(BétSpinn)

In this last section we obtain from the structure of H(BSpinn) some information about
the subring generated by Chern classes (coming from the representation given by the map
Spinn → SOn) of the Chow ring Ch(Bét Spinn). This is a generalization to more general
fields of a result by Yagita (see [21, Corollary 5.2]).

First, recall from [3, Section 1] and [14, Theorem 3.1.1] that in H(Bét SOn) there are
Stiefel–Whitney classes, which we denote by w̃i , in bidegree (i)[i] that are mapped to
τ [(i+1)/2]ui by the homomorphism H(Bét SOn) → H(BSOn).
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Lemma 11.1 The homomorphism H(Bét SOn) → H(Bét Spinn) maps w̃2 to 0.

Proof It immediately follows from [3, Theorem 1.14]. 
�
Note, however, that c2 is not always mapped to 0 in H(Bét Spinn) as the computations

of Ch(Bét Spin7) in [4] and of Ch(Bét Spin8) in [9] show. This implies that c2 is non zero
in Ch(Bét Spinn) for all n ≥ 7 just by looking at the homomorphisms Ch(Bét Spinn) →
Ch(Bét Spinn−1) that send ci to ci for all i ≤ n − 1.

In the following lemma we report some formulas holding in H(BSOn) involving the
action of the Milnor operations Qi on u2. These formulas have formally identical analogues
in topology and we present a proof just for completeness.

Before proceeding recall from [7, Corollary 4] that in our case (ρ = 0) the Milnor
operations can be defined (as in topology) inductively by:

Q0 = Sq1;
Qi = Sq2i

Qi−1 + Qi−1Sq2i
.

Lemma 11.2 In H(BSOn) for any i ≥ 1 we have that:

(1) θi = Qi−1u2;
(2) Sq1θi+1 = θ2i .

Proof We proceed by induction. For (1), we know that θ1 = Sq1u2 = Q0u2 by definition.
Now, suppose θi = Qi−1u2, then

Qi u2 = Sq2i
Qi−1u2 + Qi−1Sq2i

u2 = Sq2i
θi = θi+1

since for i = 1 one has that Q0Sq2u2 = Sq1(u2
2) = 0 while for i > 1 the triviality of Sq2i

u2

follows from Wu formula.
For 2), we just need to prove that Qi u3 = Sq1Qi u2 = θ2i for i ≥ 1. If i = 1, then

Q1u3 = Sq2Sq1u3 + Sq1Sq2u3 = Sq3u3 = u2
3 = θ21 .

Suppose Qi−1u3 = θ2i−1. Therefore, by Cartan formula

Qi u3 = Sq2i
Qi−1u3 + Qi−1Sq2i

u3 = Sq2i
(θ2i−1) = (Sq2i−1

θi−1)
2 = θ2i

since for i ≥ 2 we have that Sq2i
u3 = 0 by Wu formula, which completes the proof. 
�

Remark 11.3 Note that the element τθ2i lives in the Chern subring (see [10, Section 5])

Chern(Bét SOn) ∼= Chern(BSOn) ∼= Z /2[c2, . . . , cn]
of H(BSOn) for any i ≥ 1. Moreover, by Lemma 11.1 and since w̃2 maps to τu2 via
the homomorphism H(Bét SOn) → H(BSOn), we deduce that τθ2i = τ Sq1θi+1 =
Sq1Sq2i · · · Sq1w̃2 vanishes in Chern(Bét Spinn) for all i ≥ 1.

Proposition 11.4 There exists a ring isomorphism

Chern(Bét Spinn) ∼= Z /2[c2, . . . , cn]/In

where the ideal In satisfies the following chain of inclusions

(τθ21 , . . . , τθ2k(n)−1) ⊆ In ⊆ ι−1(Ik(n))

and ι : Z /2[c2, . . . , cn] → H(BSOn) is the inclusion of the Chern subring of H(BSOn).
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Proof The ideal In is just the kernel of the epimorphism Z /2[c2, . . . , cn] →
Chern(Bét Spinn). Then, the first inclusion of the chain is justified by Remark 11.3.

The second inclusion follows from the fact that the epimorphism Z /2[c2, . . . , cn] →
Chern(BSpinn) factors through Chern(Bét Spinn) and by Theorem 8.3. 
�

One can easily see that passing to the radicals in the chain of inclusions above gives√
(τθ21 , . . . , τθ2k(n)−1) ⊆ √

In ⊆
√

(θ20 , τθ21 , . . . , τθ2k(n)−1)

which implies that, modulo nilpotent elements, there exists the following composition of
epimorphisms

Z /2[c2, . . . , cn]/
√

(τθ21 , . . . , τθ2k(n)−1) → Chern(Bét Spinn)red

→ Z /2[c2, . . . , cn]/
√

(θ20 , τθ21 , . . . , τθ2k(n)−1).

As we have already mentioned, the previous result is analogous to [21, Corollary 5.2]
(which is stated over complex numbers) but it is valid more generally without further restric-
tion on the base field (provided that ρ = 0). This suggests that studying Nisnevich classifying
spaces could also be useful for the understanding of the Chow ring of étale classifying spaces
over more general fields where one usually lacks topological insights.
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