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• On p. 874: In the statement of Lemma 2.2, which reads “Let V be a real finite dimensional
vector space endowed with a non-positive definite and non-degenerate quadratic form”,
should read “Let V be a real finite dimensional vector space endowed with a indefinite
non-degenerate quadratic form”.

• On p. 875 at item (2) of Theorem 2.7, the last line should be replaced by:

In particular, we get ∂t log |J(At (x)v)| ≥ δ(Xt (x)), x ∈ V , t ≥ 0, v ∈ Ex and J(v) > 0;
or ∂t log |J(At (x)v)| ≤ δ(Xt (x)), x ∈ V , t ≥ 0, v ∈ Ex and J(v) < 0.

• On p. 876: although not used anywhere in the article, item (5) of Theorem 2.7 is false. The
proof presented in p. 878 has a wrong sign in the calculation. The corrected calculation

gives only ∂t

( |J(At (x)w)|
J(At (x)v)

)
|t=0≥ 0 for the J-separated cocycle At (x) and strictly positive

if At (x) is a strictly J-separated cocycle.
• On p. 884: items (1) and (2) in the statement of Theorem 2.23 in [1] need to be corrected,

since [1, Example 5 with index 2] shows that hyperbolic behavior of the subbundles
cannot be expressed as necessary and sufficient conditions using the sign of the function
δ. Item (3) of [1, Thm. 2.7] is correct. We reformulate the statement of items (1) and (2)
as follows.

Theorem 0.1 [1, Theorem 2.23] Let � be a compact invariant set for Xt admitting a domi-
nated splitting E� = F− ⊕ F+ for a linear multiplicative cocycle At (x) over � with values
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in E. Let J be a C1 field of indefinite quadratic forms such that At (x) is strictly J-separated
admitting a function δ : � → R as given in Theorem 2.7. Then

(1) If �t
s(x) −−−−−−−→

(t−s)→+∞ −∞ for all x ∈ �, then F− is a uniformly contracted subbundle.

(2) If �t
s(x) −−−−−−−→

(t−s)→+∞ +∞ for all x ∈ �, then F+ is a uniformly expanding subbundle.

Since the short proof of these items uses the corrected expressions in item (2) of Theorem
2.7, we present it below.

Proof If �t
0(x) −−−−→

t→+∞ −∞, then from item (2) of [1, Thm 2.7] we get J(At (x)v)
J(v)

≤
e�t

0(x) −−−−→
t→+∞ 0 for all x ∈ � and v ∈ F−(x). So F− in uniformly contracted, by [1,

Lemmas 2.18 & 2.24].
If �t

s(x) −−−−−−−→
(t−s)→+∞ +∞, then analogously J(At (x)v)

J(v)
≥ e�t

0(x) −−−−→
t→+∞ +∞ for all

x ∈ � and v ∈ F+(x). So F+ in uniformly contracted, again by [1, Lemmas 2.18 & 2.24]. �	
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