CORRECTION

Correction to: Infinitesimal Lyapunov functions for singular flows

Vitor Araujo¹ · Luciana Salgado²

Published online: 2 November 2021 © Springer-Verlag GmbH Germany, part of Springer Nature 2021

Correction to: Math. Z. (2013) 275:863-897 https://doi.org/10.1007/s00209-013-1163-8

- On p. 874: In the statement of Lemma 2.2, which reads "Let *V* be a real finite dimensional vector space endowed with a *non-positive definite* and non-degenerate quadratic form", should read "Let *V* be a real finite dimensional vector space endowed with a *indefinite* non-degenerate quadratic form".
- On p. 875 at item (2) of Theorem 2.7, the last line should be replaced by:

In particular, we get $\partial_t \log |\mathcal{J}(A_t(x)v)| \ge \delta(X_t(x)), x \in V, t \ge 0, v \in E_x$ and $\mathcal{J}(v) > 0$; or $\partial_t \log |\mathcal{J}(A_t(x)v)| \le \delta(X_t(x)), x \in V, t \ge 0, v \in E_x$ and $\mathcal{J}(v) < 0$.

- On p. 876: although not used anywhere in the article, item (5) of Theorem 2.7 is false. The proof presented in p. 878 has a wrong sign in the calculation. The corrected calculation gives only $\partial_t \left(\frac{|\mathcal{J}(A_t(x)w)|}{\partial(A_t(x)v)} \right)|_{t=0} \ge 0$ for the \mathcal{J} -separated cocycle $A_t(x)$ and strictly positive if $A_t(x)$ is a strictly \mathcal{J} -separated cocycle.
- On p. 884: items (1) and (2) in the statement of Theorem 2.23 in [1] need to be corrected, since [1, Example 5 with index 2] shows that hyperbolic behavior of the subbundles cannot be expressed as necessary and sufficient conditions using the sign of the function δ. Item (3) of [1, Thm. 2.7] is correct. We reformulate the statement of items (1) and (2) as follows.

Theorem 0.1 [1, Theorem 2.23] Let Γ be a compact invariant set for X_t admitting a dominated splitting $E_{\Gamma} = F_{-} \oplus F_{+}$ for a linear multiplicative cocycle $A_t(x)$ over Γ with values

Luciana Salgado lsalgado@im.ufrj.br

¹ Instituto de Matemática e Estatística, Universidade Federal da Bahia, Av. Adhemar de Barros, S/N, Ondina, 40170-110 Salvador, BA, Brazil

The original article can be found online at https://doi.org/10.1007/s00209-013-1163-8.

[☑] Vitor Araujo vitor.d.araujo@ufba.br

² Instituto de Matemática, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, CT Bloco C, Cidade Universitária, P.O. Box 68530, Rio de Janeiro, RJ 21941-909, Brazil

in E. Let \mathcal{J} be a C^1 field of indefinite quadratic forms such that $A_t(x)$ is strictly \mathcal{J} -separated admitting a function $\delta : \Gamma \to \mathbb{R}$ as given in Theorem 2.7. Then

- (1) If $\Delta_s^t(x) \xrightarrow[(t-s)\to+\infty]{} -\infty$ for all $x \in \Gamma$, then F_- is a uniformly contracted subbundle.
- (2) If $\Delta_s^t(x) \xrightarrow[(t-s)\to+\infty]{} +\infty$ for all $x \in \Gamma$, then F_+ is a uniformly expanding subbundle.

Since the short proof of these items uses the corrected expressions in item (2) of Theorem 2.7, we present it below.

Proof If $\Delta_0^t(x) \xrightarrow[t \to +\infty]{} -\infty$, then from item (2) of [1, Thm 2.7] we get $\frac{\mathcal{J}(A_t(x)v)}{\mathcal{J}(v)} \leq e^{\Delta_0^t(x)} \xrightarrow[t \to +\infty]{} 0$ for all $x \in \Gamma$ and $v \in F_-(x)$. So F_- in uniformly contracted, by [1, Lemmas 2.18 & 2.24].

If $\Delta_s^t(x) \xrightarrow[(t-s)\to+\infty]{} +\infty$, then analogously $\frac{\mathcal{J}(A_t(x)v)}{\mathcal{J}(v)} \ge e^{\Delta_0^t(x)} \xrightarrow[t\to+\infty]{} +\infty$ for all $x \in \Gamma$ and $v \in F_+(x)$. So F_+ in uniformly contracted, again by [1, Lemmas 2.18 & 2.24]. \Box

Reference

 Araujo, V., Salgado, L.: Infinitesimal Lyapunov functions for singular flows. Mathematische Zeitschrift 275, 863–897 (2013)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.