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Abstract
Seshadri constants on abelian surfaces are fully understood in the case of Picard number one.
Little is known so far for simple abelian surfaces of higher Picard number. In this paper we
investigate principally polarized abelian surfaces with real multiplication. They are of Picard
number two and might be considered the next natural case to be studied. The challenge is
to not only determine the Seshadri constants of individual line bundles, but to understand
the whole Seshadri function on these surfaces. Our results show on the one hand that this
function is surprisingly complex: on surfaces with real multiplication in Z[√e] it consists of
linear segments that are never adjacent to each other—it behaves like the Cantor function.
On the other hand, we prove that the Seshadri function is invariant under an infinite group of
automorphisms, which shows that it does have interesting regular behavior globally.

Keywords Abelian surface · Seshadri constant · Real multiplication · Cantor function
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Introduction

Thepurpose of this paper is to contribute to the studyofSeshadri constants on abelian surfaces.
Recall that for an ample line bundle L on a smooth projective variety X , the Seshadri constant
of L at a point x ∈ X is by definition the real number

ε(L, x) = inf

{
L · C

multx (C)
C irreducible curve through x

}
.

On abelian varieties, where this invariant is independent of the chosen point x , we write
simply ε(L). Seshadri constants are highly interesting invariants for numerous reasons: They
are related to minimal period lengths [1,14], to syzygies [13,16], and they govern quite
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generally the geometry of linear series in many respects [11,12] (we refer to [15, Chapt. 5]
and [6] for more background on Seshadri constants).

On abelian surfaces, Seshadri constants are fully understood in the case of Picard number
ρ = 1 [5]. For ρ > 1, only self-products of elliptic curves have been studied, while the
important case of simple abelian surfaces is completely unexplored so far. In contrast to the
case of ρ = 1, the challenge on these surface is not only to determine the Seshadri constant
of one ample line bundle, but to understand the behavior of the Seshadri function,

ε : Amp(X) → R, L �→ ε(L),

which associates to each ample line bundle its Seshadri constant. To our knowledge, there
are—also beyond abelian surfaces—hardly any cases where this function is known explicitly,
the exception being certain self-products E×E of elliptic curves [4]. In general, the Seshadri
function of an abelian variety is known to be concave and continuous [4, Prop. 3.1], but at
present it is unclear what kind of behavior to expect beyond these basic properties.

We attack this problem on abelian surfaces of Picard number ρ = 2, which seems
to be the natural next case to investigate. As the Seshadri function is homogeneous, it is
completely determined by its values on a cross-section of Amp(X). So, when Amp(X) is
two-dimensional, we may consider it as a function ε : I → R on an interval I ⊂ R. We
always take this point of view when we speak of the Seshadri function.

For clarity of exposition let us introduce a piece of terminology:

Definition Let I ⊂ R be an interval. A function f : I → R is called broken linear, if it is
continuous and there is a non empty and nowhere dense subsetM ⊂ I such that the following
holds:

(i) Around every point of I\M there is an open interval, contained in I\M , on which f is
linear.

(ii) If I1 and I2 are maximal open subintervals of I on which f is linear, then I1 and I2 are
contained in I\M , and I1 and I2 are not adjacent to each other (i.e., an endpoint of I1 is
never an endpoint of I2).

Note that these conditions imply that M is a perfect set (i.e., that every point of M is an
accumulation point ofM) and, thus,M is uncountable.More concretely, condition (ii) implies
that whenever a linear piece of f ends (i.e., one of the maximal subintervals mentioned in
the definition), then no other linear piece begins at that point, but instead there is a sequence
of linear pieces converging to that point. And the same applies to the converging pieces: each
of them is again approached by a sequence of pieces. The Cantor function (see e.g. [10]) is
an example of a broken linear function (in which case the Cantor set is the perfect set M).

Our first result shows that on abelian surfaces with real multiplication, the Seshadri func-
tion is of the same baffling complexity as the Cantor function:

Theorem A Let X be a principally abelian surface, whose endomorphism ring is isomorphic
to Z[√e] for some non-square integer e > 0. Then the Seshadri function of X is broken
linear.

This result is in stark contrast to what had been observed so far: When E is a general
elliptic curve, then the restriction of the Seshadri function on E × E to any rational line is a
piecewise linear function, in the usual sense that each piece is adjacent to another piece [4].
The situation in Theorem A is at the other extreme: At no point are two pieces connected to
each other.
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The endomorphism ring of an abelian surface with real multiplication is an order of a
quadratic number fieldQ(

√
d). As the integer e appearing in TheoremA is not required to be

square-free, the only orders not covered there are those of the form Z[ 12 + 1
2

√
e], where e ≡

1 (mod 4). Surfaceswith these endomorphism rings add another level of complexity:We show
that on certain surfaces of this type, every line bundle has only one submaximal curve (which
then computes its Seshadri constant), while there also exist surfaces of this type carrying
line bundles with two submaximal curves (see Propositions 5.2 and 5.4). Interestingly, the
conclusion of Theorem A extends to the former surfaces (see Theorem 3.7), whereas on the
latter surfaces there exist boundary points of linear segments which are accumulation points,
as well as boundary points where linear segments meet (see Remark 3.8).

The discussion so far has shown how complex and subtle the Seshadri function on surfaces
with real multiplication is. Our next result states that globally it has more structure than one
might expect at this point:

Theorem B There exists a decomposition of the ample cone into infinitely many subcones
Ck , k ∈ Z, such that the group G of isometries of NS(X) that leave the Seshadri function
on Amp(X) invariant acts transitively on the set of subcones. In particular, the values of
the Seshadri function on any subcone of the subcones Ck completely determine the Seshadri
function on the entire ample cone.

There are only few known cases where one has effective computational access to the
Seshadri constants of all line bundles on the surface (the self-product E × E of a general
elliptic curve being an exception again). Our methods provide such computational access for
the surfaces studied here.

Theorem C There is an algorithm that computes the Seshadri constant of every given ample
line bundle on principally polarized abelian surfaces with real multiplication.

The algorithm enables us to efficiently compute Seshadri functions and thus to provide a
graphical representation for any given endomorphism ring (see examples in Sect. 4). Also, the
analysis of the method underlying the proof of Theorem C allows us to answer the question
as to which data in fact determine the Seshadri function. A priori, the function could depend
on the individual surface (or rather, on its isomorphism class). However, the numerical data
entering the computation ultimately stems from the endomorphism ring, and this implies:

Corollary D Let X and Y be principally polarized abelian surfaces with real multiplication,
such that End(X) � End(Y ). Then, in suitable linear coordinates on NS(X) and NS(Y ),
their Seshadri functions coincide.

Note that the assumption that End(X) and End(Y ) be isomorphic is strictly weaker than
requiring that X and Y be isomorphic. In fact, the corollary shows that only countably many
Seshadri functions occur, while the surfaces vary in two-dimensional families.

Concerning the organization of this paper, we start in Sect. 1 by establishing crucial
properties of Pell divisors and submaximal curves. We study in Sect. 2 the intervals on which
curves can be submaximal. Sect. 3 is devoted to the proofs of Theorems A and C, as well as
Corollary D. In Sect. 4 we study the decomposition of the ample cone and prove Theorem B.
Finally, in Sect. 5 we investigate in terms of End(X) the question on which surfaces there
are line bundles with two submaximal curves.

We would like to thank Robert Lazarsfeld for valuable suggestions concerning the expo-
sition.

Throughout we work over the field of complex numbers.
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1 Pell divisors and submaximal curves on abelian surfaces

As in the introduction,we refer to [15, Chapt. 5] and [6] for background onSeshadri constants.
Let us just fix a fewmatters of terminology here. When we speak of the general upper bound,
then we mean the bound ε(L, x) ≤ √

L2, which is valid for every ample line bundle L on a
smooth projective surface S and for every point x ∈ S. An effective divisor D on S is called
submaximal (for L at x), if L · D/multx D <

√
L2. If an irreducible curve C ⊂ S satisfies

the equation L ·C/multxC = ε(L, x), then we say that C computes ε(L, x). An irreducible
curve which computes ε(L, x) for some ample line bundle L on S will be called a Seshadri
curve on S.

It was shown in [5] that on an abelian surface of Picard number one, with ample generator
L of the Néron–Severi group, there is for suitable k ≥ 1 a divisor D ∈ |2kL| that computes
the Seshadri constant of L . The number k and the multiplicity of D at 0 are governed by a Pell
equation. We will see that a suitable notion of Pell divisors (in the sense of the subsequent
definition) also play a crucial role in the present investigation. The results in this section work
on all abelian surfaces and do not require that the surface has real multiplication.

Definition 1.1 Let A be an abelian surface, and let L be an ample primitive symmetric line
bundle such that

√
L2 /∈ Z. Consider the Pell equation

�2 − L2 · k2 = 1

and let (�, k) be its primitive solution. A divisor D ∈ |2kL|+ with mult0D ≥ 2� is called a
Pell divisor for L .

Here |2kL|+ denotes the linear subsystem of even divisors in |2kL|, i.e, those defined by
even theta functions (see [7, Sect. 4.7]). It will be convenient to extend the notion of Pell
divisors to non-primitive bundles, and even to Q-divisors:

Definition 1.2 Let A be an abelian surface, and let M be any ample Q-line bundle on A such
that

√
M2 /∈ Q. Write M = qL with a primitive ample line bundle L and q ∈ Q. A Pell

divisor for M is then by definition a Pell divisor for L .

It was shown in [2, Theorem A.1] that Pell divisors exist for every ample line bundle L
with

√
L2 /∈ Z. Their crucial feature is that they are submaximal for L . By contrast, the

existence of submaximal divisors is not guaranteed when
√
L2 ∈ Z. However, a dimension

count shows that for such bundles there exist divisors D ∈ |2L|+ satisfying in any event the
weak inequality L · D/mult0D ≤ √

L2.
Wewill see that on abelian surfaceswith realmultiplication it is almost never true that ε(L)

is computed by a Pell divisor of L . However, it will turn out that ε(L) is always computed
by a Pell divisor of some ample bundle on L , whenever

√
L2 is irrational. It is for this reason

that Pell divisors are crucial players in the present investigation.
The following statement will prove to be a valuable tool, as it provides strong restrictions

on submaximal curves. Also, it exhibits a situation where Pell divisors are unique.

Proposition 1.3 Let A be an abelian surface, and let C ⊂ A be an irreducible curve that is
submaximal for some ample line bundle. Then, putting m = mult0C, one has

C2 − m2 = −1 or C2 − m2 = −4.

Furthermore, suppose thatC is not an elliptic curve, andwriteOA(C) = pM with a primitive
ample bundle M and an integer p > 0. Then

√
M2 is irrational, and letting (�0, k0) be the

primitive solution of the Pell equation �2 − M2k2 = 1, we have:
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(i) If C2−m2 = −1, then the divisor 2C is the only Pell divisor for M and (�0, k0) = (m, p).
(ii) If C2−m2 = −4, then the curveC is the only Pell divisor for M and (2�0, 2k0) = (m, p).

In this case, the origin is the only halfperiod that lies on C.

Proof The first half of the following argument is implicit in the proof of [3, Thm. 2]. To
provide easier access, we briefly make it explicit here. As the claim on C2 −m2 is certainly
true for elliptic curves, we may assume thatC is non-elliptic, and hence thatOA(C) is ample.
The assumption that C is submaximal for some ample line bundle L then implies that C is
submaximal also for OA(C), and in fact computes ε(OA(C)) (see [4, Prop. 1.2]). Therefore
C must be symmetric and therefore descends to a (−2)-curve on the smooth Kummer surface
of A (cf. proof of [5, Thm. 6.1]). The multiplicitiesmi = multei (C) at the sixteen halfperiods
ei of A therefore satisfy the equation

C2 −
16∑
i=1

m2
i = −4. (1)

Putting m = m1, one shows as in the proof of [3, Thm. 1.2] that only the two cases

C2 − m2 = −1 or C2 − m2 = −4, (2)

are possible. This proves the first statement in the proposition.
Write now OA(C) = pM with a primitive ample bundle M and p > 0. It follows from

Eq. (2) that C2 cannot be a perfect square, and hence that
√
M2 is irrational. In the first case

of (2), the pair (m, p) satisfies the Pell equation m2 − M2 p2 = 1. The minimality of the
solution (�0, k0) implies then that m ≥ �0 and p ≥ k0. On the other hand, as C computes
ε(M), we have for every Pell divisor P ∈ |2k0M | of L ,

M · C
m

≤ M · P
mult0P

≤ M · P
2�0

This implies p
m ≤ k0

�0
. Using the fact that both pairs (m, p) and (�0, k0) solve the Pell equation,

we find m ≤ �0, and hence (m, p) = (�0, k0). So we have P = 2C in this case.
In the second case of (2), the number m is clearly even. But also p is even in this case,

because all multiplicitiesmi are even (sincewe have (m1, . . . ,m16) = (m, 0, . . . , 0)). There-
foreO(C) is totally symmetric, and it can therefore be written as an even multiple of another
bundle (see [7, Sect. 2, Cor. 4]). The upshot of this argument is that the pair (m2 ,

p
2 ) satisfies

the Pell equation (m2 )2 −M2(
p
2 )2 = 1. The minimality assumption implies then that m

2 ≥ �0
and p

2 ≥ k0. But C must be a component of any Pell divisor P ∈ |2k0M | by [5, Lemma 6.2],
and so p = 2k0 and m = 2�0. So we have P = C in this case. ��

Further, we show how two curves can intersect if they are submaximal for the same bundle:

Proposition 1.4 Let A be an abelian surface, and let C1 and C2 be two irreducible curves
on A that are submaximal for the same ample line bundle L on A, i.e.,

L · Ci

mult0(Ci )
<

√
L2

for i = 1, 2. Then, putting mi = mult0(Ci ), we have

C1 · C2 = m1m2,

i.e., the curves C1 and C2 meet only at the origin, and their tangent cones have no common
components there.
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Proof Consider the blow-up f : Y = Bl0(A) → A, let E be its exceptional divisor, and let
C ′
i ⊂ Y be the proper transform of Ci . For rational numbers t <

√
L2, the Q-divisor

B := f ∗L − t E

is big, because B2 = L2 − t2 > 0 and B · f ∗L = L2 > 0. If we take t strictly between

max
{
L·C1
m1

, L·C2
m2

}
and

√
L2, then we moreover have

B · C ′
i = ( f ∗L − t E) · ( f ∗Ci − mi E) = L · Ci − tmi < 0.

As a consequence, both C ′
1 and C ′

2 must be contained in the negative part of the Zariski
decomposition of B, and hence their intersection matrix is negative definite. This implies
that C ′2

1 C
′2
2 > (C ′

1C
′
2)

2, i.e.,

(C2
1 − m2

1)(C
2
2 − m2

2) > (C1 · C2 − m1m2)
2. (3)

We know from Proposition 1.3 that C2
i − m2

i ∈ {−1,−4}. Let us first consider the case
C2
1 − m2

1 = C2
2 − m2

2 = −1. Then inequality (3) directly implies C1 · C2 − m1m2 = 0.
Suppose next that C2

1 − m2
1 = −4 and C2

2 − m2
2 = −1. In that case inequality (3) tells us

that

C1 · C2 − m1m2 < 2,

since we have in any event C1 ·C2 −m1m2 ≥ 0 because of the intersection inequality. Using
now Proposition 1.3, we see that m1 is an even number and that C1 ≡ 2B1 for some line
bundle B1 on A. So we obtain B1 · C2 − m1

2 m2 < 1 and hence B1 · C2 = m1
2 m2, which

implies C1 · C2 = m1m2 = 0, as claimed. Finally, if both C2
1 − m2

1 and C
2
2 − m2

2 equal −4,
then we get

C1 · C2 − m1m2 < 4

from inequality (3), and we have C1 ≡ 2B1, C2 ≡ 2B2. As both m1 and m2 are even, this
yields B1 · B2 − m1

2
m2
2 = 0, and this implies the assertion. ��

2 Submaximal curves on intervals

Abelian surfaces with real multiplication. Let X be a simple abelian surface with real
multiplication, i.e., such that EndQ(X) = Q(

√
d) for some square-free integer d ≥ 2. The

endomorphism ring is an order in EndQ(X) and hence of the form End(X) = Z + f ωZ,
where f ≥ 1 is an integer and

ω =
{√

d if d ≡ 2, 3 (mod 4)
1
2 (1 + √

d) if d ≡ 1 (mod 4).

For our purposes an alternative distinction of the possible cases will be more convenient:

• Case 1: End(X) = Z[√e], with a non-square integer e > 0.
• Case 2:End(X) = Z[ 12 + 1

2

√
e]with a non-square integer e > 0 such that e ≡ 1 (mod 4).

If X carries a principal polarization L0, then we have an isomorphism ϕ : NS(X) →
Endsym(X) = End(X). It provides us with a lattice basis of NS(X), given by L0 = ϕ−1(1)
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and L∞ := ϕ−1(
√
e) (resp. ϕ−1( 12 + 1

2

√
e)). The intersection matrix of this basis is

(
2 0
0 −2e

)
in Case 1, and

(
2 1
1 1−e

2

)
in Case 2. (4)

This follows by considering the characteristic polynomials of
√
e and 1

2 + 1
2

√
e in Q(

√
e)

(which coincides with the analytic characteristic polynomial of the endomorphism) and
applying [7, Prop. 5.2.3].

Using the Nakai–Moishezon criterion (in the version of [7, Cor. 4.3.3]), and the fact that
X does not contain any elliptic curves, we find:

Lemma 2.1 Let L be a line bundle on X with numerical class given by L = aL0 + bL∞ for
a, b ∈ Z. If End(X) = Z[√e], then L is ample if and only if

a > 0 and a2 − eb2 > 0,

and if End(X) = Z[ 12 + 1
2

√
e], then L is ample if and only if

a > 0 and a2 + ab + 1−e
4 b2 > 0.

In either case, L is ample if and only if |L| �= ∅.

From now on we will assume that X is a principally polarized abelian surface with real
multiplication. We are interested in its Seshadri function

ε : Nef(X) → R, L �→ ε(L) = ε(L, 0).

Thanks to homogeneity, it is enough to consider this function on a compact cross-section of
the nef cone.Any non-trivial nef class L ∈ NSR(X) is a positivemultiple of a class of the form
Lt := L0+ t L∞ with suitable t ∈ R. Applying Lemma 2.1, we see that if End(X) = Z[√e],
then the line bundle Lt is nef if and only if |t | ≤ 1√

e
, and if End(X) = Z[ 12 + 1

2

√
e], then

Lt is nef if and only if − 2√
e+1

≤ t ≤ 2√
e−1

. Ampleness holds when the inequalities are

strict. We denote by N (X) = [− 1√
e
, 1√

e
] and N (X) = [− 2√

e+1
, 2√

e−1
], respectively, the

interval where Lt is nef. This intervalN (X) is a model for the cross-section of the nef cone,
and therefore we will also write Lt ∈ N (X) instead of t ∈ N (X). So for every nef R-line
bundle, the rayR>0L has a unique representative inN (X), and wemay consider the Seshadri
function as

ε : N (X) → R, t �→ ε(Lt ).

Any effective divisor D defines a linear function

�D : R → R, t �→ D · Lt

mult0D

which computes the Seshadri quotient of the divisor D for any line bundle Lt . We denote
the open subset containing all ample line bundles Lt , whose Seshadri quotient with D is
submaximal, by ID , i.e.,

ID :=
{
t ∈ N (X) �D(t) <

√
L2
t

}
,

and we call ID the submaximality interval of D.
It is a result of Szemberg [17, Prop. 1.8] that on any smooth projective surface S an ample

line bundle can have at most ρ(S) (two, in our case) submaximal curves at any given point.
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Using the restrictions derived from Propositions 1.3 and 1.4 we show that in many cases only
one curve can exist:

Theorem 2.2 Let L be any ample line bundle on X with ε(L) <
√
L2. Suppose that either

• End(X) = Z[√e] for a non-square integer e > 0, or
• End(X) = Z[ 12 + 1

2

√
e] for a non-square integer e > 0, such that e ≡ 1 modulo 4 and

e has a prime factor p with p ≡ 5 or 7 modulo 8,

holds. Then there exists exactly one irreducible curve C that is submaximal for L.

Proof Wewill show that the restrictions given in Propositions 1.3 and 1.4 cannot hold for two
submaximal curves. In fact, we will show that the following equations can never be satisfied
by any two ample line bundles L1 and L2 and two positive integers m1 and m2:

(i) L2
1 = m2

1 − 1 for m1 > 1 ,
(ii) L2

2 = m2
2 − 1 for m2 > 1 ,

(iii) L1 · L2 = m1m2 .

Note that this also includes the case C2 = m2 − 4 from Proposition 1.3, because in this case
OX (C) is an even multiple of another line bundle and dividing the equation by 4 leads to an
equation of the form (i).

First we treat themore immediate case: End(X) = Z[√e], where e is a non-square positive
integer. Assume that there exist ample line bundles L1 and L2 satisfying (i) and (ii), with
their numerical classes given by Li ≡ ai L0 + bi L∞ for i = 1, 2. Then m1 and m2 must be
odd, since L2

i is even. But the intersection number for any two line bundles on X is even,

(a1L0 + b1L∞) · (a2L0 + b2L∞) = 2a1a2 − 2eb1b2,

and hence it can never equal m1m2.
Next we treat the more subtle case: End(X) = Z[ 12 + 1

2

√
e], where e is a non-square

positive integer with e ≡ 1 modulo 4, which has a prime factor p with p ≡ 5 or 7 modulo
8. The crucial idea in this case is to consider the three equations modulo p. Assume that
L1 and L2 are two line bundles satisfying (i)–(iii), with their numerical classes given by
Li ≡ ai L0 + bi L∞ for i = 1, 2. If we consider the equations

(i) 2L2
1 = 4a21 + 4a1b1 + (1 − e)b21 = 2m2

1 − 2,
(ii) 2L2

2 = 4a22 + 4a2b2 + (1 − e)b22 = 2m2
2 − 2,

(iii) 2L1 · L2 = 4a1a2 + 2a1b2 + 2a2b1 + (1 − e)b1b2 = 2m1m2,

modulo p and replace 2ai + bi by ci for i = 1, 2, then the equations can be expressed by
bilinear forms over the finite field Fp . For (i) and (ii) we obtain

(I)

(
c1
m1

)T (
1 0
0 −2

) (
c1
m1

)
= c21 − 2m2

1 = −2,

(II)

(
c2
m2

)T (
1 0
0 −2

) (
c2
m2

)
= c22 − 2m2

2 = −2.

It follows that (ci ,mi ) �= (0, 0) ∈ F
2
p . For equation (iii) we find that

(III)

(
c1
m1

)T (
1 0
0 −2

) (
c2
m2

)
=

(
c1

−2m1

)T

·
(

c2
m2

)
= 0
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and, therefore, we obtain
(

c2
m2

)
∈ ker

(
c1

−2m1

)T

=
{
λ

(−2m1

c1

)
λ ∈ Fp

}
,

i.e., c2 = −2m1λ and m2 = c1λ for some λ ∈ Fp . Using (I) and (II) we obtain

−2 =
(

c2
m2

)T (
1 0
0 −2

) (
c2
m2

)
= λ2(4m2

1 − 2c21) = 4λ2.

This implies that −2 is a quadratic residue modulo p. But as p ≡ 5 or 7 modulo 8, this is
impossible, and thus we arrive at a contradiction. ��

As a consequence of Theorem 2.2 we observe:

Corollary 2.3 Let End(X) be as in Theorem 2.2. Then for every ample R-line bundle Lλ with

ε(Lλ) <

√
L2

λ the Seshadri function is given by a linear function in a neighborhood of Lλ.

Proof Let Lλ be an ample R-line bundle with ε(Lλ) <

√
L2

λ and let C be any Seshadri curve
of Lλ. By the previous Theorem 2.2 the curve C is the only submaximal curve for every
Q-line bundle in IC . Assume now that there exists an ample R-line bundle Lt ∈ IC with
two submaximal curves. By continuity both curves remain submaximal in a neighborhood of
Lt and, thus, there also exist Q-line bundles which also have two submaximal curves. This,
however, is impossible by Theorem 2.2. ��

Wewill see that the assumption ε(Lλ) <

√
L2

λ is essential for the validity of the statement
in the corollary, and in fact we will show that the local behavior in the remaining case

ε(Lλ) =
√
L2

λ is surprisingly intricate (see Corollary 3.6).
Computer-assisted calculations suggest that Theorem 2.2 is in fact an “if and only if”

statement, which means that in the remaining cases there should always exist a line bundle
with two submaximal curves. In Sect. 5 we will show how the existence of a line bundle with
two submaximal curves can be verified using computer-assisted calculations. Furthermore,
we will provide a sequence of numbers en with the property that there exists a line bundle
with two submaximal curves on any abelian surface with End(X) = Z[ 12 + 1

2
√
en].

Before we continue studying the local behavior of the Seshadri function in the case where
line bundles can have two submaximal curves, we prove a useful relation between submaxi-
mality intervals and reducibility of effective divisors:

Lemma 2.4 Let D be an effective divisor on X which is submaximal for some ample line
bundle. If there exists another effective divisor D′ whose submaximality interval ID′ satisfies
ID � ID′ , then D is reducible.

Proof Let ID = (a, b) and ID′ = (c, d) be the submaximality intervals of D and D′,
respectively. Denoting by F the general upper bound function t �→

√
L2
t , the linear function

�D is given by the straight line joining the points (a, F(a)) and (b, F(b)) and, respectively,
�D′ by joining the points (c, F(c)) and (d, F(d)). Since F is strictly concave, the linear
function �D′ is strictly smaller than �D in ID′ . Therefore D can never compute the Seshadri
constant for any line bundle. However, if D were irreducible, then D would compute its own
Seshadri constant (see [4, Prop. 1.2]), which is a contradiction. ��

123



3442 T. Bauer, M. Schmidt

By [17, Prop. 1.8], the number of curves that can be submaximal for an individual ample
line bundle Lt is bounded. We will now show that the number remains bounded even when

all line bundles in an open neighborhood of Lt are considered, provided that ε(Lt ) <

√
L2
t .

This is a consequence of the following lemma.

Lemma 2.5 Let D be an effective divisor on X which is submaximal for an ample line bundle
Lt . Then there exists at most four irreducible curves which are submaximal for some line
bundles in ID.

Moreover, if D is irreducible, then there exists at most three irreducible curves which are
submaximal for some line bundles in ID.

Proof Assume, there exists five pairwise distinct irreducible curves C1, . . . ,C5 which are
submaximal for some line bundles in ID = (a, b). Let ICi = (ai , bi ) be the submaximality
interval of Ci and let Lti ∈ N (X) be the unique representative ofOX (Ci ). We will show that
the submaximality interval of C3 is contained in ID , which by Lemma 2.4 would imply that
C3 is reducible.

Since Ci is submaximal for some ample line bundle, Ci is submaximal for OX (Ci ) by
[4, Prop. 1.2]. Therefore, Ci is submaximal for Lti and, thus, ti ∈ ICi . Moreover, since
Ci is the only submaximal curve for OX (Ci ), we have ti /∈ IC j for i �= j . By assuming
t1 < t2 < t3 < t4 < t5 we deduce for i = 2, 3, 4 that

(ai , bi ) ⊂ (ti−1, ti+1) and ti ∈ (bi−1, ai+1) . (∗)

The submaximality intervals (a1, b1) and (a5, b5) have to intersect with (a, b), because by
assumptionC1 andC5 are submaximal for some line bundles in ID and, thus, we have a < b1
and a5 < b. Furthermore, (∗) implies that t2, t3, t4 ∈ (b1, a5) and, as a consequence, the
interval (t2, t4) is contained in (b1, a5) and, therefore, in ID . Since (a3, b3) is contained in
(t2, t4), it is also contained in ID . This, however, implies that C3 is reducible by Lemma 2.4,
which is a contradiction.

For the second statement, we assume there exists three irreducible curves. Using the same
notation and arguments as above, it follows that t2 ∈ (b1, a3), a < b1, and a3 < b. Hence,
we have t2 ∈ (b1, a3) ⊂ ID . But this means that Lt2 has C2 and D as submaximal curves,
which is a contradiction. ��

Hence, we conclude for the local structure of the Seshadri function:

Corollary 2.6 For every ample R-line bundle Lt with ε(Lt ) <

√
L2
t the Seshadri function

is locally a piecewise linear function, i.e., it is locally the minimum of at most two linear
functions.

As before, the assumption ε(Lt ) <

√
L2
t is essential for this statement to be true (see

Remark 3.8).
Clearly, if a line bundle L has two submaximal curves, then there exists a neighborhood

of L such that every line bundle has two submaximal curves, since any submaximal curve
will remain submaximal in a neighborhood of L . On the other hand, we show that every
submaximal curve gives rise to an open interval, in which it is the only submaximal curve:

Proposition 2.7 Let C ≡ qL0 + pL∞ be an irreducible curve that is submaximal for some
ample line bundle L on X. Then there exists a neighborhood U of L p

q
in N (X) such that C

is the only submaximal curve for all line bundles in U. In particular, the Seshadri function
coincides with �C in U.
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Proof SinceC is submaximal for some ample line bundle L , we know thatC is also submax-
imal for OX (C) by [4, Prop. 1.2], and in fact C is the only submaximal curve for OX (C),
since everyOX (C)-submaximal curve has to be a component of C by [5, Lemma 5.2]. Thus,
C is the only submaximal curve for L p

q
. Applying Lemma 2.5, there exist at most two other

curves, which are submaximal for some line bundle L ′ ∈ IC . Thus, the only possibility in
which no such neighborhood of L p

q
exists, is the case where one of the other curves C ′

satisfiesOX (C) ·C ′/mult0(C ′) = √
C2. This, however, implies that C ′ is a component of C

by [5, Lemma 5.2]. ��

3 Seshadri function on abelian surfaces with real multiplication

In this section we will develop a method to algorithmically compute the Seshadri constant for
any ample Q-line bundle on X , proving Theorem C stated in the introduction. Furthermore,
we will see that the local structure of the Seshadri function has unexpected behavior at Lλ

if ε(Lλ) =
√
L2

λ. Our strategy is to make use of Pell divisors in such a way that it is not
necessary to explicitly know their multiplicity, but to use their expected multiplicity given by
the Pell solution.

Definition 3.1 Let Lλ be an ample Q-line bundle with
√
L2

λ /∈ Q and let q ∈ N be the
unique integer such that qLλ is a primitive Z-line bundle, i.e., q is the denominator of a
coprime representation of λ = p

q . Denote by (l, k) the primitive solution of the Pell equation

x2 − (qLλ)
2y2 = 1. We call

πλ : R → R, t �→ kqLλ · Lt

l

the Pell bound at Lλ, and

Jλ = {t ∈ N (X) πλ(t) <

√
L2
t }

the submaximality interval of πλ.

So if
√
L2

λ /∈ Q and P is a Pell divisor of Lλ, thenwe have the following chain of inequalities:

ε(Lλ) ≤ Lλ · P
mult0P

≤ πλ(λ) <

√
L2

λ.

Moreover, πλ is an upper bound for the Seshadri function in the submaximality interval Jλ:

ε(Lt ) ≤ Lt · P
mult0P

≤ πλ(t) <

√
L2

λ for all t ∈ Jλ.

We will now establish two important connections between submaximal curves and Pell
bounds. First we prove that every submaximal curve has a unique representative in the set
of Pell bounds. Secondly, we will exhibit a relation between the submaximality interval of a
Seshadri curve C of Lλ and the submaximality interval of the Pell bound πλ.

Proposition 3.2 Let Lλ be an ample Q-line bundle with
√
L2

λ /∈ Q and let C ≡ qL0 + pL∞
be an irreducible curve that is submaximal for some ample line bundle L on X. Then the
following are equivalent:

123



3444 T. Bauer, M. Schmidt

(i) Either C or 2C is the unique Pell divisor of Lλ.
(ii) The linear functions �C and πλ coincide.
(iii) We have λ = p

q .

Proof The equivalence of (i) and (iii) is an immediate consequence of Proposition 1.3. Fur-
thermore, the implication (i) ⇒ (ii) also follows from Proposition 1.3, since it shows that
the multiplicity of C coincides with the expected multiplicity given by the Pell solution, and
therefore the linear functions �C and π p

q
coincide.

For the implication (ii) ⇒ (iii) we have to show that �C = πλ implies λ = p
q . By Proposi-

tion 2.7 the linear function �C coincides with the Seshadri function in an open neighborhood
U of L p

q
. For any Pell divisor P of Lλ we have

ε(Lt ) = �C (t) ≤ �P (t) ≤ πλ(t) for all t ∈ U ,

and hence the linear function �P coincides with �C , since by assumption πλ = �C .
We claim that for every component C ′ of P the linear functions �C ′ and �C also coincide.

For this, assume that there exists a t0 ∈ U such that �C (t0) < �C ′(t0). Then, upon writing
P = C ′ + R, we have

C · Lt0

mult0C
= �C (t0) = �P (t0) = (C ′ + R) · Lt0

mult0C ′ + mult0R
.

This, however, implies that

C · Lt0

mult0C
>

R · Lt0

mult0R
,

which is impossible, since C computes the Seshadri constant ε(Lt0).
So we have shown that C and any component C ′ of the Pell divisor P define the same

linear function. This means, in particular, that any component C ′ of P is also submaximal
for the line bundle OX (C). But OX (C) has only C as a submaximal curve by [5, Lem. 5.2],
and, therefore, P = kC for k ∈ N. This implies that L p

q
and Lλ are rational multiples of

each other. But in N (X) this is only possible if λ = p
q . ��

Proposition 3.3 Let Lλ be an ample Q-line bundle with
√
L2

λ /∈ Q and let Jλ = (t1, t2)
be the submaximality interval of the Pell bound πλ. Then every Seshadri curve C of Lλ is
submaximal on (t1, λ) or on (λ, t2).

Proof Assume that C is not submaximal on (λ, t2), i.e., �C (t2) >

√
L2
t2 = πλ(t2). Further-

more, since C is a Seshadri curve of Lλ, we have �C (λ) ≤ πλ(λ). Therefore the slopes mλ

of πλ and mC of �C satisfy mλ < mC . But this implies that �C (t1) < πλ(t1) and therefore C
is submaximal on (t1, λ). ��

We will need the submaximality intervals of Pell bounds in the following explicit form:

Lemma 3.4 Let Lλ be an ample Q-line bundle with
√
L2

λ /∈ Q, and let l, k and q be as in

Definition 3.1. If End(X) = Z[√e], then the submaximality interval Jλ of πλ is given by

Jλ =
(
2ek2q2λ − l

√
e

e(2k2q2 + 1)
,
2ek2q2λ + l

√
e

e(2k2q2 + 1)

)
,
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and, if End(X) = Z[ 12 + 1
2

√
e], then the submaximality interval Jλ of πλ is given by

Jλ =
(
2 + 2ek2q2λ − 2l

√
e

(e − 1) + 2eq2k2
,
2 + 2ek2q2λ + 2l

√
e

(e − 1) + 2eq2k2

)
.

Proof The interval limits of the submaximality interval Jλ = (t1, t2) are the solutions t of
the equation √

L2
t = πλ(t).

In the case End(X) = Z[√e], the solutions are

t1,2 = 2ek2q2λ ∓ l
√
e
√
l2 − (qLλ)2k2

e(2ek2q2λ2 + l2)
.

Upon applying the Pell equation l2 − (qLλ)
2k2 = 1, these solutions can be expressed by

t1,2 = 2ek2q2λ ∓ l
√
e

e(2k2q2 + 1)
.

The case End(X) = Z[ 12 + 1
2

√
e] is computed analogously. ��

As the linear function �C of a submaximal curveC coincideswith a Pell bound, the interval
borders for Seshadri curves have the same structure. This reveals an interesting behavior of
submaximality intervals of Seshadri curves:

Proposition 3.5 Let C1 and C2 be two submaximal curves on X. Then the submaximality
intervals IC1 and IC2 are never adjacent to each other, i.e., if IC1 = (t1, t2) and IC2 = (s1, s2),
then t1 �= s2 and t2 �= s1.

Proof Using the computation of the interval limits of Lemma 3.4, it follows that the left-hand
side of the interval is always of the form a − b

√
e for some a ∈ Q and b ∈ Q

+, whereas the
right-hand side is of the form a′ + b′√e for some a′ ∈ Q and b′ ∈ Q

+. Since 1 and
√
e form

a basis of the Q-vector space Q(
√
e), they can never coincide. ��

Corollary 3.6 Let Lλ be any ample R-line bundle such that ε(Lλ) =
√
L2

λ. For every neigh-
borhood U of λ, the Seshadri function is the pointwise infimum of infinitely many linear
functions πμ, but it is not a piecewise linear function on U.

Proof In any neighborhood U of λ, the rational numbers μ ∈ U with ε(Lμ) <
√
L2

μ are

dense inU . Thus, by continuity of the Seshadri function we can express the Seshadri constant
for any value t ∈ U as an infimumof linear functionsπμ. The only possibility for the Seshadri
function to be a piecewise linear function in a neighborhood of λ is, if the Seshadri function

is computed near λ by two linear functions �1 and �2 with �1(λ) = �2(λ) =
√
L2

λ. This,
however, is impossible by Proposition 3.5. ��

By combining Corollaries 2.3 and 3.6 we deduce the following more general version of
Theorem A stated in the introduction.

Theorem 3.7 Let End(X) be as in Theorem 2.2. Then the Seshadri function is broken linear.
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Proof It follows from Corollary 2.3 that for every point t ∈ N (X) with ε(Lt ) <

√
L2
t the

Seshadri function is a linear function in a neighborhood of t . By Proposition 3.5 the maximal
intervals, on which the Seshadri function is linear are never adjacent to each other. Lastly,

we have to argue that the set M(X) =
{
t ∈ N (X) ε(Lt ) =

√
L2
t

}
is nowhere dense and

non empty. For this we consider ample line bundles of the form L = qL0 + 4qL∞ for odd
q ∈ N and p ∈ Z. In this cases L2 can never be a square number as L2 ≡ 2 (mod 4).

This yields a dense subset of lines bundles L4q/p inN (X) with ε(L4p/q) <
√
L2
4p/q . As the

Seshadri function is continuous, we get for each line bundle L4q/p an open neighborhood on
which the Seshadri function is submaximal. Thus, M(X) is a nowhere dense subset ofN (X).
Explicit computations show that the Seshadri curve C ∈ |4L0| of L0 with mult0C = 6 is not
submaximal on N (X) and, therefore, the interval borders of the submaximality interval IC
are contained in M(X). ��
Remark 3.8 Suppose that on X there is a line bundle Lλ with two submaximal curves. Then
there exists a neighborhood of Lλ in which every line bundle has two submaximal curves,
and thus there exist linear segments of the Seshadri function that are adjacent to each other.
On the other hand, we have seen in Proposition 2.7 that there are also neighborhoods, in
which only one submaximal curve exists. Furthermore, using Proposition 1.4 one can show
that every line bundle in the submaximality interval I0 of L0 has only one submaximal curve
C , which is the unique Pell divisor of L0. Consequently, the limit points of this submaximal
interval are accumulation points of (piecewise) linear segments. So in this case, as in the
situation of Theorem 3.7, the Seshadri function does not consist of only finitely many linear
pieces.

We return to the submaximality interval Jλ = (t1, t2) of a Pell bound πλ by providing an
upper bound for its length:

Lemma 3.9 Let Lλ be an ample Q-line bundle with
√
L2

λ /∈ Q, and let l, k and q be as in
Definition 3.1. Then the interval length of Jλ = (t1, t2) is bounded by

t2 − t1 <

√
11

q
√
e
.

Proof Using the fact that the Pell equation is equivalent to

l

kq
=

√
L2

λ + 1

k2q2
,

the interval length can be determined via Lemma 3.4: In the case End(X) = Z[√e] we get

t2 − t1 = 2 l
kq√

e(2kq + 1
kq )

=
2
√
L2

λ + 1
k2q2√

e(2kq + 1
kq )

=
2
√
2 − 2ep2k2−1

k2q2√
e(2kq + 1

kq )
<

√
2

q
√
e
,

and in the case End(X) = Z[ 12 + 1
2

√
e] we obtain

t2 − t1 = 4 l
kq

√
e

e−1
kq + 2ekq

=
4
√
e
√
2 + 2λ − e−1

2 λ2 + 1
k2q2

e−1
kq + 2ekq

<
2
√
2 + 2

e−1 + 1
k2q2

q
√
e

<

√
11

q
√
e
.
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In the third step we replaced the term 2λ − e−1
2 λ2 with its maximum value 2

e−1 , and we use

e ≥ 5 in the last step. Also, we made use of the inequality 1
k2q2

≤ 1
4 , which can be verified

by explicitly considering all possible Pell solutions for q = 1. ��
Remark 3.10 In the last step of the proof we could have used the more direct estimate 1

k2q2
≤

1, which implies

2
√
2 + 2

e−1 + 1
k2q2

q
√
e

<

√
14

q
√
e

However, it turns out that this upper bound is not sufficient for our purposes (in particular,
for the proof of Proposition 5.4).

The previous Lemma yields the following:

Corollary 3.11 For any given interval I ⊂ N (X) there exist only finitely many Pell bounds
πλ that are submaximal on I .

Proof Let s be the length of I and let πλ be a Pell bound that is submaximal on I . Then s is
at most the length of Jλ, so that it follows from Lemma 3.9 that the denominator of λ = p

q
satisfies

s ≤
√
11

q
√
e
.

Thus, λ has to be contained in the finite set{
a

b
∈ N (X) 1 ≤ b ≤

√
11

s
√
e
, gcd(a, b) = 1

}
.

��
By combining Proposition 3.3 and Corollary 3.11 we will obtain a purely numerical

method to compute the Seshadri constant and determine the Seshadri curves of Lλ:

Proposition 3.12 Let Lλ be an ample Q-line bundle with
√
L2

λ /∈ Q, and Jλ = (t1, t2) be
the submaximality interval of πλ. Let s(λ) = min{λ − t1, t2 − λ}, and consider the finite set
Aλ :=

{
a
b ∈ N (X) 1 ≤ b ≤

√
11

s(λ)
√
e
, gcd(a, b) = 1

}
. Then the Seshadri constant of Lλ is

given by

ε(Lλ) = min{πμ(λ) μ ∈ Aλ}.
Moreover, every Seshadri curveC of Lλ is represented by a unique Pell boundπτ with τ ∈ Aλ

and ε(Lλ) = πτ (λ).

Proof By Prop. 3.3 any Seshadri curve C of Lλ is submaximal either on (t1, λ) or on (λ, t2),
and therefore it is submaximal on an interval of length s = min{λ − t1, t2 − λ}. By Propo-
sition 3.2 the linear function �C coincides with a unique Pell bound πτ , and therefore their
submaximality intervals coincide. Thus, τ is an element of the finite set Aλ by Corollary 3.11.

��
Furthermore, we can identify those Pell bounds which uniquely represent submaximal

curves:
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Proposition 3.13 Let Lλ be an ample Q-line bundle with
√
L2

λ /∈ Q and let Aλ be as in
Proposition 3.12. Then the following conditions are equivalent:

(i) The Pell bound πλ coincides with �C for some submaximal irreducible curve C.
(ii) Every Pell bound πμ with μ ∈ Aλ \ {λ} satisfies πλ(λ) < πμ(λ).

Proof Assume that πλ = �C , and let πμ be any Pell bound with μ �= λ. Proposition 3.2
shows that the unique representative of OX (C) in N (X) is Lλ. As C computes the Seshadri
constant of Lλ, we have πλ(λ) ≤ πμ(λ). Thus, we have to show that equality does not occur
for λ �= μ.

Assume that πλ(λ) = πμ(λ) holds. We will show that this implies λ = μ. By Proposi-
tion 2.7 the submaximal curve C computes the Seshadri constant in an open neighborhood
U at Lλ, hence

πλ(t) ≤ πμ(t) for t ∈ U .

This implies that the linear functions πλ and πμ coincide, since otherwise we would have
πλ(t) < πμ(t) for either t < λ or t > λ, which is impossible because πλ computes the
Seshadri function locally. But by Proposition 3.2 the linear function �C only coincides with
the Pell bound πλ and, thus, we have λ = μ.

For the other implication, we argue as in the proof of Proposition 3.12: For every Seshadri
curveC of Lλ there is a unique πτ with �C = πτ and τ ∈ Aλ. SinceC computes the Seshadri
constant of Lλ, the Pell bound πτ computes the Seshadri constant in λ. In particular, we have
πτ (λ) ≤ πλ(λ). Since by assumption πλ(λ) < πμ(λ) for μ �= λ, we conclude that τ = λ,
and therefore πλ = �C . ��

So far, the assumption
√
L2

λ /∈ Q was crucial for our arguments since they depended on
the existence of Pell divisors. We will now show that the Seshadri constant can in fact be
effectively computed for any ampleQ-line bundle. Thiswill complete the proof of TheoremC
stated in the introduction.

Theorem 3.14 There is an algorithm that computes the Seshadri constant of every given
ample line bundle on principally polarized abelian surfaces with real multiplication.

Proof If Lλ is a Q-line bundle such that
√
L2

λ /∈ Q, then the assertion follows from the fact,

that the set Aλ from Proposition 3.12 is finite. Suppose then that
√
L2

λ ∈ Q. We will construct
a theoretical interval around Lλ, on which every Seshadri curve of Lλ must be submaximal,

if ε(Lλ) <

√
L2

λ. By Corollary 3.11, there are only finitely many Pell bounds on this interval,
and ε(Lλ) is the minimum of those.

Assume that the Seshadri constant satisfies ε(Lλ) <

√
L2

λ. Let λ = p
q be a coprime

representation. Then, L := qLλ is a primitive Z-line bundle. Denote by C any Seshadri
curve of Lλ. As explained in Sect. 1, there exists an effective Divisor D ∈ |2L|+ such that D
satisfies D · L/mult0(D) ≤ √

L2. As C is the Seshadri curve of L , C is a component of D
by [5, Lemma 6.2]. It follows that the intersection-number C · L is bounded by D · L = 2L2.
As a consequence, the Seshadri constant can only take certain rational values:

ε(L) ∈
{
1 ≤ a

b
<

√
L2 1 ≤ a ≤ 2L2, b ∈ N

}
.
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Therefore, we find that the Seshadri constant is at most

ε(L) ≤ 2L2 − 1

2
√
L2

.

For the construction of the interval, we will give a lower and an upper bound for the slope
of the linear function �C . To this end, we will chose any two rational numbers μi ∈ N (X)

with μ1 < λ < μ2 and
√
L2

μi
/∈ Q for i = 1, 2. Next, we compute a Seshadri curve Ci

of Lμi using Proposition 3.13. We denote by mi the slope of the linear function �Ci . As the
Seshadri function is a concave function, the slope m of the linear function �C is bounded,
m2 ≤ m ≤ m1. Let ri be the linear function passing through the point (λ, (2L2 − 1)/(2

√
L2))

with slope mi . Then the function u(t) = max {r1(t), r2(t)} is an upper bound for �C , since
we have

�C (t) ≤ r1(t) for λ ≤ t and �C (s) ≤ r2(s) for s ≤ λ.

Denote by I the submaximality interval of u. It follows thatC has to be submaximal on I , and
so we have constructed a computable interval on which C is submaximal. Now, by following
the same argument from Proposition 3.12 we can compute the Seshadri constant of Lλ by
taking the minimum of Pell bounds in λ, which are submaximal on I . Clearly, if none of

these Pell bounds are submaximal in λ, then the Seshadri constant satisfies ε(Lλ) =
√
L2

λ. ��

Remark 3.15 In the proof of Theorem 3.14we have shown how to algorithmically distinguish

the cases ε(L2
λ) <

√
Lλ and ε(Lλ) =

√
L2

λ. Both cases do, in fact, occur for line bundles L

with
√
L2 ∈ Q: Consider a principally polarized abelian surface X with End(X) = Z[√2].

Then the line bundle L = 2L0 + L∞ satisfies ε(L) = √
L2 = 2, whereas the line bundle

L ′ = 58L0+L∞ satisfies ε(L ′) <
√
L ′2, since the Seshadri curveC of L0 is also submaximal

for L ′.

It is an important consequence of Theorem 3.14 that the Seshadri function depends only
on the endomorphism ring of X , but not on the isomorphism class of the surface:

Theorem 3.16 Let X and Y be (not necessarily isomorphic) principally polarized abelian
surfaces with real multiplication with End(X) ∼= End(Y ). Then their Seshadri functions
coincide in the following sense: Choosing suitable bases of the Néron-Severi groups NS(X)

and NS(Y ) yields an isomorphism Nef(X) � Nef(Y ), under which we have εX = εY .

This implies Corollary D stated in the introduction.

Proof The proof of Theorem 3.14 shows that the numerical data that enters the computation
of the Seshadri functions stems from the endomorphism ring. Therefore, an isometry of
NS(X) that leaves the ample cone invariant also leaves the Seshadri function invariant. ��

4 Fundamental cone and sample plots for Seshadri functions

We will now determine the subgroup G ⊂ Aut(NS(X)) of isometries with respect to the
intersection product that leave the Seshadri function on Amp(X) invariant. This group gives
rise to a decomposition of the ample cone into subcones on which G acts transitively.
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With respect to the basis (L0, L∞), an automorphism ϕ ∈ Aut(NS(X)) is given by a
matrix

Mϕ =
(

α β

γ δ

)
∈ GL2(Z).

By Theorem 3.16 the Seshadri function remains invariant under the automorphism Mϕ if it
is an isometry of NS(X) and additionally leaves the ample cone invariant. These conditions
can be expressed by:

(i) L2
0 = (αL0 + γ L∞)2,

(ii) L2∞ = (βL0 + δL∞)2,
(iii) L0 · L∞ = (αL0 + γ L∞) · (βL0 + δL∞),
(iv) α > 0.

The conditions (i)–(iii) are equivalent to ϕ being an isometry, whereas condition (vi) ensures
that the ample cone is left invariant.

In the case of End(X) = Z[√e] we find by solving (i)–(iv) that Mϕ is of the form
(

α e β

β α

)
or

(
α −e β

β −α

)
, with α > 0 and α2 − eβ2 = 1.

Since any other Pell solution of x2 − ey2 = 1 is generated by the minimal solution (α0, β0),
the group G is generated by

ϕ0 :=
(

α0 e β0

β0 α0

)
and τ :=

(
1 0
0 −1

)
.

A line bundle L = aL0 + bL∞ is a principal polarization if and only if (a, b) is a solution
of Pell’s equations x2 − ey2 = 1 with a > 0. Therefore, we can express every principal
polarization by Lk := xk L0 + yk L∞, where (xk, yk) satisfies

(
xk
yk

)
=

(
α0 e β0

β0 α0

)k (
1
0

)
= ϕk

0

(
1
0

)
k ∈ Z.

So we have ϕ0(Lk) = Lk+1. Next, we consider for k ∈ Z the subcone Dk ⊂ Amp(X)

generated by Lk and Lk+1. We have ϕk
0(D0) = Dk . Additionally, by also considering the

automorphism τ we can further divide the subcone D0 into two subcones D0,1 and D0,2 as
follows: The automorphism ϕ0 ◦ τ is of order two and maps the coneD0 onto itself. The line
bundle L ′ := eβ0L0 + (α0 − 1)L∞, which satisfies ϕ0 ◦ τ(L ′) = L ′, divides the subcone
D0 into two subcones D0,1 and D0,2, where D0,1 is generated by L0 and L ′,

D0,1 = {
λ1L0 + λ2L

′ λ1, λ2 ≥ 0
}
,

andD0,2 is generated by L ′ and L1. The subconesD0,1 andD0,2 satisfy ϕ0 ◦ τ(D0,1) = D0,2

and, again by construction of τ , the Seshadri constants remain invariant. We call D0,1 the
fundamental cone of Amp(X). This cone corresponds to the interval [0, α0−1

eβ0
] inN (X). The

decomposition of the subcone D0 into D0,1 and D0,2 extends via ϕk
0 to every subcone Dk .

After renumbering we obtain a decomposition of Amp(X) into subcones Ck with C0 = D0,1.
We now deal with the case of End(X) = Z[ 12 + 1

2

√
e]. In this case we find that Mϕ is

given by(
α e−1

4 β

β α + β

)
or

(
α α − e−1

4 β

β −α

)
, with α > 0 and α2 + αβ − e−1

4 β2 = 1.
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Note that we have the following bijection

{
(x, y) ∈ Z

2 x2 − ey2 = 4
} ∼−→ {

(x, y) ∈ Z
2 x2 + xy − e−1

4 y2 = 1
}

(x, y) �→ (
x−y
2 , y).

By [8, Prop. 6.3.16] the set of solutions for the Pell-type equation x2 − ey2 = 4 can be
expressed through a minimal solution (x0, y0) (we may assume x0 > y0 > 0) as follows:

{
± 1

2k

(
x0 ey0
y0 x0

)k (
2
0

)
k ∈ Z

}
.

With some calculation, the set of solutions of α2 + αβ − e−1
4 β2 = 1 can be determined as

{
±

(
α0

e−1
4 β0

β0 α0 + β0

)k (
1
0

)
k ∈ Z

}
,

where (α0, β0) := (
x0−y0

2 , y0) and, hence, the group G is generated by

ψ0 :=
(

α0
e−1
4 β0

β0 α0 + β0

)
and σ :=

(
1 1
0 −1

)
.

Using the exact same argument as before, we get a decomposition of the ample cone: We
can express every principal polarization by Lk := xk L0 + yk L∞ with (xk, yk) = ψk

0 (1, 0).
The subcones Dk generated by Lk and Lk+1 satisfy ψk

0 (D0) = Dk . Furthermore, ψ0 ◦ σ

divides the subcone D0 into two subcones D0,1 and D0,2, which are generated by L0 and
L ′ := (α0 + 1)L0 + β0L∞ and, respectively, L ′ and L1. In this case, the fundamental cone
D0,1 corresponds to the interval [0, β0

α0+1 ] in N (X).
The considerations above prove Theorem B stated in the introduction.

We nowprovide some sample plots in order to illustrate the behavior of Seshadri functions.
Concretely, we compute for fixed e all Seshadri curvesC = qL0+ pL∞ with q ≤ 3.000 that
are contained in C0. From this set of curves we derive further Seshadri curves by applying
the automorphisms in G. In the pictures, the dotted lines indicate the fundamental interval
from which the complete Seshadri function can be computed by Theorem B.

The values of e in Figs. 1, 2, 3 and 4 are chosen in such a way that they illustrate different

kinds of behavior: In the case ofZ[√2] there existQ-line bundles Lλ with ε(Lλ) =
√
L2

λ ∈ Q

whereas in the case of Z[√5] no such bundles exist. These line bundles generate “gaps” in
the graph, because they do not give rise to a linear segment. In fact, at each of these gaps
there are infinitely many linear segments which converge from both sides. In the plots for
the case End(X) = Z[ 12 + 1

2

√
e] for e = 5 and 33 the ample cone is not symmetric at 0 in

the case of End(X) = Z[ 12 + 1
2

√
e].

The Seshadri function for e = 5 consists only of linear segments which by Theorem 2.2
are never adjacent to each other. In the case of e = 33 there exist line bundles with two
submaximal curves, e.g., at t = 0.37. In fact, calculations show that there are chains of linear
segments which overlap. It should also be noted that the size of the fundamental interval
depends heavily on the minimal solution of x2 − ey2 = 1 or, respectively, x2 + xy −
e−1
4 x2 = 1: In the first three cases the minimal solutions are small, which leads to a small

fundamental interval. However, experience with further examples has shown that the limit
of the fundamental interval can be arbitrarily close to the interval limit of N (X).
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Z[
√
2]

t

ε(Lt)

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.2
0.4
0.6
0.8
1.

1.2
1.4

Fig. 1 The Seshadri function of an abelian surface with real multiplication in Z[√2]

Z[
√
5]

t

ε(Lt)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0.2
0.4
0.6
0.8
1.

1.2
1.4

Fig. 2 The Seshadri function of an abelian surface with real multiplication in Z[√5]

Z[12 +
1
2

√
5]

t

ε(Lt)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.2
0.4
0.6
0.8
1.

1.2
1.4
1.6
1.8

Fig. 3 The Seshadri function of an abelian surface with real multiplication in Z[ 12 + 1
2

√
5]

5 Distinguishing the cases of one and two submaximal curves

In this section we derive a method that allows one to distinguish whether all line bundles on
X have at most one submaximal curve or if there exists a line bundle which has 2 submaximal
curves. By Theorem 2.2 we already know that there are infinitely many cases for End(X) =
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Z[12 +
1
2

√
33]

t

ε(Lt)

−0.3 −0.2 −0.1 0 0.2 0.40.30.1

0.2
0.4
0.6
0.8
1.

1.2
1.4
1.6
1.8

Fig. 4 The Seshadri function of an abelian surface with real multiplication in Z[ 12 + 1
2

√
33]

Z[ 12 + 1
2

√
e], where every line bundle has at most one submaximal curve. We will show that

the case with two submaximal curves also appears infinitely many times.

Proposition 5.1 There exists a line bundle on X that has two submaximal curves if and only
if there exist two Pell bounds πλ and πμ such that the following two conditions are met:

(i) Their submaximality intervals Jλ and Jμ intersect and one is not contained in the other.
(ii) There does not exist a Pell bound πτ such that the submaximality interval Jτ contains

Jλ ∪ Jμ.

Proof Assume that there exists a line bundle L on X with two submaximal curves C1 and
C2. The linear functions �C1 and �C2 are Pell bounds by Proposition 3.2, and their submaxi-
mality intervals IC1 and IC2 must intersect, because C1 and C2 are both L-submaximal. By
Lemma 2.4 one submaximality interval can not be contained in the other. Assume that there
exists a Pell bound πτ such that IC1 ∩ IC2 ⊂ Jτ . Then any Pell divisor P of Lτ is submaximal
on IC1 ∩ IC2 , and therefore C1 and C2 are reducible by Lemma 2.4, a contradiction.

Suppose now that there exist two Pell bounds πλ and πμ such that (i) and (ii) holds. The
Pell bounds yields an upper bound for the Seshadri function in Jλ ∪ Jμ: We have

ε(t) ≤ min{πλ(t), πμ(t)} <

√
L2
t for t ∈ Jλ ∪ Jμ.

LetC1 be aSeshadri curve for a line bundle Lt1 with t1 ∈ Jλ∪Jμ.Due to (ii) the submaximality
interval IC1 of C1 cannot cover the complete interval Jλ ∪ Jμ. Therefore, by continuity there
exists a t2 ∈ (Jλ ∪ Jμ) ∩ IC1 such that

ε(Lt2) ≤ min{πλ(t2), πμ(t2)} <
C1 · Lt2

mult0C1
<

√
L2
t2 ,

i.e., C1 is submaximal for Lt2 but does not compute its Seshadri constant. But the Seshadri
constant of Lt2 is computed by a curve, and thus there exists for Lt2 another submaximal
curveC2 that computes the Seshadri constant. It follows that Lt2 has two submaximal curves.
��

The criterion in Proposition 5.1 provides us with a numerical method to search for line
bundles with two submaximal curves: First, we search for Pell bounds whose submaximality
intervals intersect. After that, one checks by using Proposition 3.12 whether there exists
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another Pell bound which contains both intervals. Using computer-assisted computation, this
yields the following:

Proposition 5.2 Suppose that End(X) = Z[ 12 + 1
2

√
e] for a non-square integer e with 0 <

e ≤ 25.000, such that we have e ≡ 1 modulo 4 and e does not have a prime factor p with
p ≡ 5 or 7 modulo 8. Then there exists a line bundle on X with two submaximal curves.

Theorem 2.2 and the previous proposition suggest the following conjecture:

Conjecture 1 Let L be any ample Q-line bundle on X. Then there exists at most one irre-
ducible curve C that is submaximal for L if and only if End(X) satisfies either

• End(X) = Z[√e] for a non-square integer e > 0, or
• End(X) = Z[ 12 + 1

2

√
e] for a non-square integer e > 0, such that e ≡ 1 modulo 4 and

e has a prime factor p with p ≡ 5 or 7 modulo 8.

Remark 5.3 One can show by applying well-known results on quadratic residues and binary
quadratic forms (see e.g. [8, Prop. 2.2.4] and [9, Lemma 2.5]) that the following conditions
are equivalent for a non-square integer e with e ≡ 1 modulo 4:

(i) e does not have any prime factor p with p ≡ 5 or 7 modulo 8.
(ii) −2 is a quadratic residue modulo e.
(iii) e = A2 + 8B2 for some A, B ∈ N with gcd(A, B) = 1.

Finally, we will show that the case with two submaximal curves occurs infinitely often.

Proposition 5.4 Let en := 1+8n2. If en is not a perfect square, then every principally polar-
ized abelian surface with End(X) = Z[ 12 + 1

2
√
en] has a line bundle with two submaximal

curves.

Proof Consider the ample line bundles L = 2nL0 + L∞ and L ′ = (2n − 1)L0 + L∞. The
Pell solution of x2−L2y2 = 1 is given by (2n+1, 1), and the Pell solution of x2−L ′2y2 = 1
is (2n− 1, 1). Hence, the submaximality intervals of the corresponding Pell bounds π 1

2n
and

π 1
2n−1

are given by

J 1
2n

=
(
16n3 + (2n + 1)(1 − √

8n2 + 1)

8n2(4n2 + 1)
,
16n3 + (2n + 1)(1 + √

8n2 + 1)

8n2(4n2 + 1)

)

and, respectively,

J 1
2n−1

=
(
2n + (2n − 1)(8n2 − √

8n2 + 1)

32n4 − 32n3 + 16n2 − 4n + 1
,
2n + (2n − 1)(8n2 + √

8n2 + 1)

32n4 − 32n3 + 16n2 − 4n + 1

)
.

Explicit computations show that both Pell bounds π 1
2n

and π 1
2n−1

are submaximal at 2
4n−1 ,

and therefore their submaximality intervals intersect.
So the first condition of Proposition 5.1 is satisfied. In order to conclude that a line bundle

with two submaximal curves exists, it remains to show that there does not exist another Pell
bound πλ whose submaximality interval covers the interval I := J 1

2n
∪ J 1

2n−1
. For this, we

will derive an upper bound and a lower bound for the denominator q of λ = p
q which must be

satisfied if the Pell bound πλ covers I . As we will see, the upper and lower bound contradict
each other and thus there cannot exist such a Pell bound.
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Upper bound for q: The Pell bound πλ has to cover both submaximality intervals, i.e., the
interval

I =
(
16n3 + (2n + 1)(1 − √

8n2 + 1)

8n2(4n2 + 1)
,
2n + (2n − 1)(8n2 + √

8n2 + 1)

32n4 − 32n3 + 16n2 − 4n + 1

)
.

One can show that the length of this interval is at least (
√
2+1)/(4n2), and using Lemma 3.9

we derive the upper bound

q ≤ 4
√
11n2

(
√
2 + 1)

√
8n2 + 1

≤ 35

18
n.

Lower bound for q: First, we observe that the unique Pell bound π0 is not submaximal for
L and L ′ and, thus, we may assume that λ �= 0, i.e. p �= 0. We obtain a preliminary lower
bound for q by taking into account that the line bundle Lλ has to be ample, i.e.,

L2
λ = 2 + 2p

q
− 4n2 p2

q2
> 0,

and, thus,

q ≥ p

2
(
√
8n2 + 1 − 1) ≥ √

2 (n − 1).

Unfortunately, this lower bound yields no contradiction with our upper bound. However, it
provides us with amethod to refine the lower bound. Using the computation fromLemma 3.9,
we find a maximal possible length for the submaximality interval Jλ = (t1, t2) provided that√
2 (n − 1) ≤ q ≤ 35

18n:

t2 − t1 <
2
√
2 + 2

en−1 + 1
k2q2

q
√
en

≤
2
√
2 + 1

4n2
+ 1

2 (n−1)2√
2(n − 1)

√
1 + 8n2

<

√
2 + 1

4n2
+ 1

2 (n−1)2

2n(n − 1)
.

This in turn, gives us an upper bound for λ, since the submaximality interval of πλ can cover
at most t1 − t2:

λ ≤ 16n3 + 2n + 1 − (2n + 1)
√
8n2 + 1

8n2(4n2 + 1)
+

√
2 + 1

4n2
+ 1

2 (n−1)2

2n(n − 1)
.

It follows that λ ≤ 1
2n−3 and, therefore, the denominator q of λ must be at least 2n − 3.

This shows that for n ≥ 55 there cannot exist a Pell bound whose submaximality interval
covers J 1

2n
and J 1

2n−1
. Thus, the assertion follows for n ≥ 55 from Proposition 5.1. The

explicit computations from Proposition 5.2 cover the remaining cases for n ≤ 54. ��

Remark 5.5 The case where en is a square number, i.e., en = 1 + 8n2 = r2 for an integer
r ∈ N, is equivalent to the case where (r , n) is a solution for the Pell equation x2 − 8y2 = 1,
and hence there are infinitely many n such that en is not a square number.
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