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The Hurwitz space H’g, is the parameter space of covers [f: C — P!, Pis---, Pbl, Where
C is a smooth algebraic curve of genus g and f is a degree k map simply branched over
b = 2g + 2k — 2 distinct points pi,..., pp € P!. Note that we choose an ordering of
the branch points of f. The origins of the interest in Hurwitz spaces go back to Riemann’s
Existence Theorem and they have been used by Clebsch [3] and Hurwitz [11], as well as
much later in [10] to derive important information on the moduli space M, of curves of

genus g. We denote by ﬁz the moduli space of admissible covers constructed by Harris and
Mumford [10], whose study has been further refined in [1] via twisted stable maps. It comes
equipped with two maps

Mo M,
where b associates to an admissible cover its (ordered) set of branch points, whereas o
assigns to an admissible cover the stable model of its source curve. The symmetric group
Tk . . .o
&), operates on H, by permuting the branch points of each admissible cover and we set
Hek :=Hgy/ Sy Recall that the Kodaira-Iitaka dimension of a normal Q-factorial projective

variety X is defined as the Iitaka dimension of its canonical bundle. We say that the Kodaira-
Titaka dimension of X is maximal if it equals dim(X).

. . . . —k .
Our first result concerns the Kodaira-litaka dimension of the stack H ¢ of degree k admis-
sible covers for which we have optimal results:
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Theorem 0.1 The Kodaira-Titaka dimension ofﬁ];, is maximal for every g > 2 and k > 3.

Our result, which is uniform in g and k, is sharp. When k = 2 the map b, while being
ramified along the boundary at the level of stacks, induces an isomorphism between the

. =2 — . =2 . .
coarse moduli spaces He and Mg 2¢+2. In particular, H glisa rational variety for every g and

the canonical class of both the stack ﬁz, as well as that of the coarse moduli space ﬂ; is not
effective.
A crucial aspect in the proof of Theorem 0.1 is played by the map

7]( [—
0: Hy > Mg ptblk—21,
which associates to an admissible cover [ f:C—>R,pi,..., pb] the pointed curve
[C.xisenosxp, AL ..oy Apl,

where x; € f~!(p;) is the unique ramification point of f lying over the branch point p;
and A; := f~1(p;) — {x;} is the i-th set of antiramification points of f, that is, the set of
residual points in the fibre over the i-th branch point of f. The moduli space M p1pk—2]
is defined as a suitable quotient of M, px—1) by the finite group 6272, the action being
given by permuting b subsets of k — 2 marked points, we refer to Section 2 for details. On
Mg p1bik—21 We consider the effective divisor ® as being the closure of the locus of those
pointed curves [C, x1, ..., Xp, A1, ..., Ap] for which there exists a subset S consisting of g
ramification or antiramification points of f such that

h° (c, Oc ()gx)) >2.

The divisor ® has two desired features. On the one hand its class has a negative coefficient

of its Hodge class, on the other hand, the number of marked points being so large (and this

is the point in involving the antiramification points as well) the (posit~ive) coefficient of the

cotangent classes corresponding to the marked points in the class [D] is relatively small.

Taking advantage of these features, in Section 3 we prove Theorem 0.1 by finding a positive

constant B > 0 such that the class Kﬁk — B - 60*(®) can be expressed as a boundary divisor
8

k. . . . . =k . ...
onH,,in which the coefficient of each irreducible component of 9 H ¢ IS positive. As we then

point out in Remark 1.3 this implies the bigness of the canonical class Kﬁk of the stack of
8
admissible covers.

. —k s .
Next we move to the coarse moduli space H, and in this paper we restrict ourselves to
the case of trigonal curves, for which we prove the following result:

Theorem 0.2 The moduli space ﬂ; has maximal Kodaira-litaka dimension for all g > 2.

Theorem 0.2 follows the argument used in proving Theorem 0.1, once we observe that
the big boundary representative of the canonical class K5 of the stack of trigonal curves is
sufficiently positive to offset the negative coefficient of thge ramification divisor of the map
ﬁ; — ﬁz, therefore it produces a big boundary representative of the canonical class of ﬁz
as well.

We stress that in Theorems 0.1, 0.2 we have results on the Kodaira-Iitaka dimension of the
stack, and respectively, the coarse moduli space of the space of admissible covers. In the case
of M, where the boundary has an extremely simple structure, the Kodaira dimension of the

@ Springer



On the Kodaira dimension of Hurwitz spaces 3419

stack and that of the coarse moduli space trivially coincide, but this is no longer necessarily
the case for the Hurwitz space which has a complicated boundary structure. We explain in

.. . . —k =k
Proposition 1.4 the relation between the canonical class of H ¢ and that of He-

Moving to the case of covers of high degree, when k > gT“ one has a generically finite

=k = . . .
map x : H, — My 2x—g—2 obtained by attaching to an admissible cover

[f:C—>R, pl,...,pb]

the stabilization of the nodal (2k — g — 2)-pointed curve [C 2, q1, - qok—g—2], whereg; € C
is the unique ramification point of f over the branch point p;. It follows that ﬁf, is of general
type whenever the Kodaira dimension of ﬂngk_ ¢—2 is maximal. This is the case for all
g > 22 and we refer to Proposition 3.2 for a precise statement.

For the Hurwitz space H, x where the branch points are unordered one cannot expect a
uniform result in the style of Theorem 0.1. Indeed, it has been classically known that the
(unordered) Hurwitz spaces ﬁg,k are unirational for all g as long as k < 5. These results
have been extended to the case of 6-gonal covers for finitely many cases by Geiss [9]. Further
unirationality results have been obtained in [15], whereas some isolated examples of Hurwitz
spaces ﬁg, x with effective canonical class in the range when the Kodaira dimension of ﬂg
is unknown have been produced in [5,6]. Using that ﬂg is of general type for g > 22 (see

[4,7,10]), it immediately follows that ﬂ&  (and therefore ﬂ];, as well) is of general type when

gT-i-Z < k < g+ 1. On the other hand, when k > g + 2, then ﬂg, & is birational to a projective
bundle over a universal Picard variety, therefore it is uniruled.

1 Divisors on Hurwitz spaces

The main actor of this paper is the stack ﬁ];, of twisted stable maps into the classifying stack
B& of the symmetric group &y. Precisely, we set

ﬁg = Mo,b (BGk) ,

where b := 2g + 2k — 2. We denote by ﬁz the associated coarse moduli space. The stack ﬁ];
is the normalization of the stack of admissible covers introduced by Harris and Mumford in

[10] and which, for lack of better notation, we denote by Wﬁ,. A point in ﬂ];, corresponds
to a twisted stable map [f: C — R, py1, ..., pp], where C is a nodal curve of arithmetic
genus g, the target curve R is a tree of smooth rational curves, f is a finite map of degree
k satisfying f’l(Rsing) = Csing, and pi, ..., pp € Rieg denote the branch points of f.
Note that the branch points py, ..., p, are ordered. Moreover, the two ramification indices
of f on the two branches of C over each singularity of C coincide. The extra information
distinguishing [f: C — R, p1, ..., pp] from its underlying admissible cover is the stacky
data at each of the points in Cgjng. The branch morphism

b: ﬁ; — Mo.ps
assigns to [f: C — R, pi, ..., pp] the stable b-pointed curve [R, py, ..., pp] of genus 0.

Clearly, b is a finite map. Its degree, which has been computed classically by Hurwitz [11]
for k < 6, has been recently the object of much attention in Gromov-Witten theory. We also
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3420 G. Farkas, S. Mullane

have a regular map

7]( JR—
0:Hy > Mg
which assigns to [ f: C — R, p1, ..., pp] the stable model of the nodal curve C.
In what follows, we discuss the geometry of the boundary divisors of ﬁ];. Fori =0, ..., g,

let B; be the boundary divisor of My ; defined as the closure of the locus of unions of two
smooth rational curves meeting at one point, such that precisely i of the marked points lie

on one component. A boundary divisor of ﬁ]; is determined by the following data:

(1) A partition I UJ ={1,...,b}, with [I| > 2 and |J| > 2.
(i) Transpositions {w;};c; and {w;} ;e in &y, satisfying

l_[w,'=u, l_IU)j =ul

iel jeJ
We denote by (1 := (my, ..., mg) F k be the partition corresponding to the cycle type of the

element u € Sy appearing above. Furthermore, we set

1 1 1
m(u) :=lcrn(m1,...,mg) and — = — +---4+ —. (1)
1% mj mg
Definition 1.1 Fori = 2, ..., % and a partition p of k, let E;.;, be the boundary divisor
on ﬁz given as the closure of the locus of covers [f: C —> R, p1,..., pb] € ﬁ]g, where
[R =R Uy, Ry, p1,...,pp] € By € ﬂo,h, with f_l(p) having partition type u, and
exactly i of the branch points py, ..., pp lying on the component R;.

The linear independence of the classes [E;., ] € CH ! (ﬁﬁ,) has been established in [14].
Note that it is often the case that E;., splits into several irreducible components. All the Chow

groups we consider are with rational coefficients. In particular, we identify C H'! (ﬁg) and

CH! (ﬁ];) and theclass [E;.,] € CH ! (ﬂ];,) refers to the stacky Q-class of the corresponding
boundary divisor.

1.1 The local structure oflTI’g‘

—* . . . -
Over the stack H,, of twisted stable maps we consider the universal degree k admissible

cover f: C — P, where

P = Hg Xﬁo,h MO’bJrl (2)

. . . —k .
is the universal degree k orbicurve of genus zero over H ,. We fix a general point

t=[f:C— R,p1,..., ppl

of a boundary divisor Ej.;,, where i = (m, ..., my) is a partition of k. In particular, R is
the union of two smooth rational curves R; and R, meeting at a point p. The local ring at ¢
of the stack W’; of Harris-Mumford admissible covers has the following local description,
see [10, p. 62]:

=~ ml—-~-=m£=
O[’W/; =Clltr, ..oy tp—3, 81, .-, 8ell/s] ' = s t, 3)
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On the Kodaira dimension of Hurwitz spaces 3421

where 11 is the local parameter on My j, corresponding to smoothing the node p € R. We
set f~1(p) = {q1,...,qe}, with f being ramified with order mjatqj, forj =1,...,¢.
The local ring of C at the point [, g;] is OZ.W]; [[xj, yj1l/xjy; = s, while the local ring

of P at the point [z, p] is Ot,W';[[uf’ vill/ujv; = t;. The map C — P is given in local

coordinates by
) mjo o mj -
uj=x;",0; =y, ,forj=1,...,¢,

. . . . -k .
in particular s"' = ... = Szne = t1. In order to determine the local ring of H, at the point

one normalizes the ring (3). We introduce a further parameter T and choose primitive m j-th

roots of unity ¢; for j =1, ..., £. These choices correspond to specifying the stack structure
of the cover f: C — R at the points of C lying over p € Rsing. Thus
Ottt 7= Clltr, ... -3, 7]l 4)
m(p)

ands; = ¢yt ™ ,for j =1,..., L. Accordingly, the map b: ﬁ]; — Mg,b (at the level of
stacks!), being given locally by r; = ™ it is branched with order m () at each point

[I,{],...,Q]GE,‘;M. .
This discussion summarizes how the boundary divisors on My ; pull-back under the finite

map b: ﬁ/; — My.p, see also [10, p. 62], or [16, Lemma 3.1]:
b*(Bi) = ) m(u)Eiy. )

ek
1.2 The Hodge class on the compactified Hurwitz space

By definition, the Hodge class on ﬁ];, is pulled back from Mg via the map o. Its class

A= o*(L) on ﬁi, has been determined first in [12] using Bergman kernel methods. An
algebro-geometric proof, using Grothedieck-Riemann-Roch, appeared in [16, Theorem 1.1].

The Hodge class on ﬁg has the following expression in terms of boundary classes:

g+k—1 . .
B iQg+2k—2-i) 1. 1\) gk
3= g l;mm( seery nlk M)) [Eiul € CH' (). (6)

For a given i, the sum (6) is taken over those partitions p of k corresponding to conju-
gacy classes of permutations that can be written as products of i transpositions. We pick an
admissible cover

[f:C=CiUC,— R=R; U, Ry, D1, ..., ppl € 6%(By),

and set C| := f_l(Rl) and Cp := f_l(Rg) respectively. Note that the curves C; and C»
may well be disconnected. o
We record the following well-known facts on My p, see for instance [2]:

Proposition 1.2 (i) One has the following formulas in CH' (Mo.p):

15, 150 . .
b— —b—i—1
K, :Z(l(b_ll) —2) [B;] and :Z%w,«].

i=2 i=2
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3422 G. Farkas, S. Mullane

(ii) If ¥ j denotes the cotangent class corresponding to the jthmarked pointfor j =1, ..., b,

L5

b
Y=Y """ Dis
=1

i=2

(iii) Let D = Z _2 ¢i[Bi] be a divisor class with ¢; > 0 fori =2, . L%J. Then D is big.

The third statement follows once we use that «; is an ample class on M p, thus there exists
a constant o« € Q- such that D — « - i is effective.

Remark 1.3 A consequence of Proposition 1.2 is that any class on ﬂ];, of the form

DY ciulEiyd,

i>2 ukk

with all coefficients c;.,, > 0 is big.

1.3 The canonical class of ﬁlg(

We discuss the canomcal class on the coarse moduli space H,in particular how it changes

e
under the map €: " e ™ " from the stack to its coarse moduli space.

First, in order to determine the canonical class of the Hurwitz stack one applies the
Riemann-Hurwitz formula to the map b: ﬁz — M(), ». Via (5), the ramification divisor is
given by Ram(b) = Zi, Lk (m(u) — D[E;.,], hence we obtain the following formula for

. —k
the canonical class of Hg:

. iQg+2k—2—1i)
Kﬁ’; = b K7y, , + Ram(b) = i%_:k (m(u) ( SV T 1> - 1) [Eipn]. (7)

Before our next result, we introduce some useful terminology. If i and 1 are partitions,
we write &’ € u when each entry of u’ appears as an entry of 1 as well.

Proposition 1.4 Assume k > 3. The canonical class of the coarse moduli space ﬁ]; is given
by

K

iRg+2k—-2—1) /
= (m(u)< — 1) = 1) [Eiul = > [E],
&k 28 +2k -3 ik
where the second summation is taken over the boundary divisors E;. u S E;.. defined as the
components of E;., with a generic point parametrizing an admissible cover whose source
has an irreducible component mapping 2:1 onto the base and a branch point at the unique

node in the base.

Proof We begin by making the following elementary observation. Suppose u: ¥ — P! isa
finite cover from a smooth curve Y such that at most one of its branch points is not simple.
Assume ¢: Y — Y is an automorphism such that u o ¢ = u. Then necessarily deg(u) = 2
and ¢ is the involution of Y changing the sheets of u. Indeed, considering the covering map
7:Y — Y where Y := Y/(¢), for each y € Y the ramification indices at all points in
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On the Kodaira dimension of Hurwitz spaces 3423

the fibre 7! (77 (y)) are the same, precisely equal to |Stab<¢>( y)|. Applying the Hurwitz-
Zeuthen formula # must have at least two branch points, one of which is necessarily simple
by assumption. This implies deg(u) = 2.

Assumet = [f: C =CiUCy - R{URy, p1, ..., pp]isageneral point of a component
of a boundary divisor E;.;, admitting a non-trivial automorphism ¢: C — C with fo¢ = f.
Since deg(f) > 3, applying the previous observation, there exists one component of R, say

Ry, such that ¢|c, = idcl Furthermore, C; splits into connected components Y7, ..., Y, and

Y 1/ ,..., Y/, wherea < 5, such that ¥; maps with degree 2 onto R, for j = 1, ..., a, whereas

each of the components Y7, ..., ¥/ map onto R,. Furthermore ¢y/ = idy- for j=1,...,r
J J

Note that Aut(t) = (Z/ZZ)@“. The normalization map ﬁ]; —~ H M]; has 29~ ! sheets over
the point corresponding to 7, each of them ramified with order 2. We denote these points

by [#,¢1,...,84] € Hg, where {1, ..., ¢, € {1, —1}. Using the local description provided
by (4), we conclude that the map e: ﬁ]; — ﬂg is ramified with order 2 over each such
component of a divisor Ej.,,, where j1 2 (29, 1K24), u]

2 Divisors on Hurwitz space via ramification and antiramification
points

We set [n] := {1, ..., n} and recall that for an integer i > 0 and a set S C [n], we denote
by §;.s the divisor class corresponding to the boundary divisor A;.s on ﬂg, n» Whose generic
point is a transversal union of two smooth curves of genera i and g — i respectively, the
marked points labeled by S being precisely those lying on the genus i component. We set as
usual §;.; 1= Z\S|=s 8i-s.

An important role in our work is played by (the pullbacks) of the divisor £og on ng g
defined as the closure of the locus of smooth pointed curves [C, x1, ..., xg] € M, ¢ for
which hO(C, Oclxy + -+ xg)) > 2. The class of this divisor was computed by Logan
[13]:

) & s —il+1
[Log] = —A + Z Yi — Z < >5i:s~

i=1 i=0 s=

We obtain an effective divisor £og, , on Mg n for n > g by averaging the pullback of Log
under the all choices of forgetful morphisms to Mg, ¢ and normalising the y-coefficient:

Lemma 2.1 The class of the effective divisor Log, , in Mg,nfor n > g is given by

Logy, = Zw, — gx Zb”(S,S e CH' (Mg, for

) 0O

. X
where we use the convention that (y) = 0fory > x.
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3424 G. Farkas, S. Mullane

Proof This class is obtained as

-1
—1
’Qo«gg,n = (Z _ 1> Z ﬂ;(ﬂog),

S C [n]
IS|=¢

where g: Mg, —> M, , forgets all marked points outside S C [n] with |S| = g. The
claimed formula now follows by repeatedly applying the formulas [2, Lemma 1.2] concerning
the pullbacks of the tautological generators of C H'! (My,,) under the maps 7. O

For integers g, k > 2 and b > 1, we introduce the following moduli space
M pbik—21 = Mg =1/ S}_s.
where the ith copy of the symmetric group G4 acts by permuting the marked points x; for
jeAi={b+G—-D(k=-=2)+1,....b+ik—2)} Let
p: Mg b—1) —> Mg ptblk—2]

be the natural projection. We refer to the marked points in .A; as the ith antiramification
points. In the case b = 2g + 2k — 2, this terminology is explained by the existence of the
regular map

7]( —_—
0:H, — Mg byplk-2], ®)

that forgets an admissible cover [f: C — R, p1, ..., pp] and recalls the source curve, the
(unique!) ramification point x; € f ~1(b;) and the set A; of k — 2 unordered residual points
in f~Y(pi) \ {xi}, foreach i = 1, ..., b. We refer to the marked points in A; as being the
i-th antiramification points of f.

Observe that the ramification locus of p is the divisor

b
n=Y Y s
i=1 \SS\E=AZ.

and denote the branch divisor by ‘B.

We now discuss the structure of the boundary divisors on ﬂg,bﬂ,[k_z]. For any subset
T C[bland0 < j; <k —2fori =1,...,b, wedefine 8.7 [j,.. j,) € CH' (Mg pibk—2])
to be the class of the closure of the locus of stable curves with a separating node such that
one component is of genus i and contains the marked points labeled by 7 and precisely j;
of the ith antiramification points fori = 1, ..., b. We denote

i = Z 8i:T Lty ] € CHI(Mg,b+b[k—2])'
[T+ j1++jp=s

Let  := .7 ¥; € CH'(Mgptbpe—21) be the cotangent class corresponding to the
ramification points. Finally, we introduce the cotangent class of the antiramification points

b
V= Z w[i] (<] CHI(Mg,ber[ku]),
i=1

where ;) € CH'(Mg pipk—2)) is the class characterized by the fact p*(yy;)) =
Z/EA,' 1’Zf"j'
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The divisor that is of primary interest to us is the push-forward of £og, ,k—1y under p,
which (after normalising the ¥ and the W-coefficients) we denote by ©. The proof of the
following fact is a simple application of the discussion above.

Proposition 2.2 The class ofEN) in CH! (Mg,b+b[k—2]) is given by

~ bk — 1 ~
S=y+v- 2D S B an
8

i,s

(b= —-1\""¢ (s)(b(k—l)—s)(lj—il—i—l)
C’”_< g—1 ) ;] g—J 2

and some a > 0.

Remark 2.3 Regarding the coefficients cq., that will play an important role in our considera-
tions, for all s > 2 the following inequality holds:

o s g—1
cos =5 + (2>7b(k— D1 > 5. )

Fori > 0, we will make use of the following estimate of the coefficient ¢;.;, which is obtained
by ignoring the absolute values in the summand in its definition in Proposition 2.2:
ii — Dbk —1)> — (i — 1)(2gs +i)b(k — 1) + gs(gs —g +2i —s — 1)

Ci:g = . (10)
2¢(b(k —1)—1)

In what follows we consider the pull-back of D to the Hurwitz space under the map 6
considered in (8).

Proposition 2.4 The pullback € :=0*Disan effective divisor on ﬁ]; forall g > 2 and
k> 3.

Proof We identify an admissible cover for each irreducible component of D that lies outside
of the pullback.

Consider the admissible cover constructed by gluing a genus g hyperelliptic double cover
h: C — Ry = P! at an unramified point p € C to a simply branched degree k — 1 rational
cover u: C» — R = P! at an unramified point which we also denote by p € C,, and
further attaching the required rational tails mapping isomorphically to R; at the k — 2 points
1~ (u(g)) \ {g} and a rational tail mapping isomorphically to R, at the point conjugate to p
under the hyperelliptic involution. The ordering of the branch points will be specified below.

Recall the class of ® is the pushforward of

-1
—1
Log,, = (Z B 1) > 7§(Log).

S C[n]
IS|=¢

where 775 Mg , —> Mg , forgets all marked points outside S C [n] with |S| = g.
Hence the irreducible components of the divisor ® in M 1 px—2] are indexed by parti-
tions [T, ji,..., jplfor T C[b]and 0 < j; <k —2fori =1,...,b and

Tl+j+-+ijp=2g
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3426 G. Farkas, S. Mullane

For such a partition, if A; C A; is a subset of antiramification points with |A | = j;
and $ = TUA; U...UAj C [b(k— 1)], then the general point of the corresponding
component of D corresponds to a pointed curve satisfying hO(C Oc(Yjes Xi ) = 2. For
each such partition we specify a labelling of the above constructed admissible cover such
that the admissible cover lies outside of the pullback of the specified irreducible component
of ®. Let

Z:={ie[b]:ji>0andi¢T}

and let r := |Z| and a := |T|. Label a + r < g of the 2g + 2 branch points of points of
h: C — P! as the points T U Z and choose a fixed labelling of the remaining branch points
of the admissible cover. Observe that as C is hyperelliptic, we have

h(C.Oc(wy + -+ +wa + (g —a)p)) = 1

for any choice of a distinct Weierstrass points w; of C. Hence this admissible cover is
not contained in the pullback of the irreducible component of © specified by the partition
[T, j1, ..., jbl ]

Before stating our next result, we recall the partition [b(k — 1)] = [b]U A1 U...U A of
the set of labels for the ramification and antiramification points respectively.

Proposition 2.5 At the level of divisors, the map 0 ﬁf, — Mg,“b[kfz] behaves as follows:

g+k—1 i(h—
M o'W = Y Y mwy— [EIMJ
i=2 ukk (
g+k—1 l( b—2 b
(i) 0*(W) =(k=-2) Y Y mw—>- [EZMH Yoo 56 (sus)
i=2 ukk s=2i=1 SC[btk—1)]

ISNA;l =5

Proof We recall that we have introduced in (2) the universal degree k admissible cover
f:C—>"P

and we denote by ¢: P — ﬂﬁ, andv :=¢o f:C — ﬁﬁ, the two universal curves over
the Hurwitz space. We consider the ramification divisors Ry, ..., Ry € C, as well as the
antiramification divisors A, ..., Ay € C. If 9By, ..., B, < P denote the corresponding
branch divisors of f, then clearly f.([R;]) = [®B;] and f.([A;]) = (k — 2)[%B;]. It is
important to observe that R; - A; =0fori =1,...,b.

In order to estimate the class 6*(;), we multiply the relation

fr(Bi) =2R; + A; (11)
with the class of R;, and using that R; and A; are disjoint we write as follows:
1 1 1
0% (W) = = ([RiI?) = =S ("(B)) - Ri) = =5 0. (I1Bi°) = 67 (v7),

where in the interest of clarity we denote by wib € CH'(My) the cotangent class corre-
sponding to the ith branch point. Now (i) follows by applying part (ii) of Proposition 1.2. To
estimate 6 (;1), we first introduce the class v;; on My 4 p[k—2] characterized by
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On the Kodaira dimension of Hurwitz spaces 3427

foreach [C, x1,...,xp, A1, ..., Apl € mg,b+b[k—2]~ Then using [8, (5)], we observe that
b—2
P(Wi) =D Y=Y > sdos. (12)
xX€A; s=2 |SNA;|=s

Next, we multiply (11) with the class of the antiramification divisor A; and write:
0* (V1)) = —va([A1%) = —u (S5 (BD) - Ai) = —(k — 2. (1B 1) = (k — 2)6*(v7).

The rest follows again via Proposition 1.2 (ii) coupled with formula (5). O

3 The positivity of the canonical class of ﬁ:

We are now in a position to complete the proof of both Theorems 0.1 and 0.2. Recall that

. . —k — .. .
we have introduced in (8) the map 6 : Hg — Mg pib[k—2] Tetaining from a cover its source
together with ramification and antiramification points.

Proposition 3.1 The following divisor classes are effective on ﬂ];, :
() 9*(59:2) — (k- 2)[E2;(1k)] - (k - 4)[E2;(22,1k74)] — (k- 3)[E2;(3,1k73)] >0.
(ii) 9*(82;3) —4[Ey. 2 1--4]1 = 0.
(iii) 0*(80:4) — [Ep.3,1k-3)] = 0.

Proof We analyse the image under 6 of a general point ¢ belonging to various boundary

components of ﬁ];,. Suppose first that t = [f: C — R, p1, ..., pp] corresponds to the
general point of a component of Ej.(j«). The base R is the transverse union of two rational
components R; and R, meeting at a point p and assume pi,..., pp—2 € Ry \ {p} and

Pb—1, Pb € R2 \ {p}. Denoting by C; := f’l(R,-) and by xp_1, xp € C the ramification
points over pp_; and pp respectively, we observe that C, contains kK — 2 smooth rational
components each intersecting C; at one point and mapping isomorphically onto R;. Each
of these components contains two antiramification points of f lying over pp—; and pp_»
respectively. This implies that the image under 6 of the boundary component of ﬂg containing
the point ¢ lies in the (k — 2)nd self intersection of the boundary divisor Ag.g 0,....0,1,1]- This
in turn yields that the pullback 9*(30;2) contains E..x) with multiplicity at least k — 2.

Similarly,ifr = [f: C — R, p1, ..., pp]lisageneral point of a component of Ey. (3 jx-3y,
with R = R; U R, as above and py, ..., pp—2 € Ry \ {p} and pp—1, pp € R2 \ {p}, let
C3 denote the component of C mapping with degree 3 onto R». From the Hurwitz-Zeuthen
formula, C» is necessarily of genus zero. The curve C» will contain two ramification points
xp—1 and xp, as well as two antiramification points lying in the fibres over pp_1 and pp
respectively. Therefore the component of the boundary divisor of ﬂg containing ¢ is mapped
to the divisor Ag.(p—1,5},0....,0,1,1]> that is, 49*(30;3) contains E). 3,143 Arguing as above,
0(t) lies in the (k — 3)rd self intersection of Ag.4 [0,....0,1,1]-

Finally,letz = [f: C — R, p1, ..., pp] beageneral point of acomponent of Ey. 52 jx-4),
with R = R; U R and the distribution of the ramification points as above. Then f -1 (R2)
contains two smooth rational curves C» and C mapping with degree 2 onto R, and meet-
ing Cy := f’l(R1) at a ramification point. Assume x,_; € C> and x; € Cé are the two
ramification points over pp_;1 and pp. Then C; (respectively Cé) contains two further anti-
ramification points lying in f~!(pp) (respectively £~ (pp—1)). Note furthermore that both
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C5 and C) admit an automorphism of order 2 fixing the two ramification points and per-
muting the two respective antiramification points. It follows that both 9*(A0 b).10,.. 0,2,0])

and 6*(Ag:p—1}.[0....,0,21) contain the boundary divisor of Hg containing the point ¢ with
multiplicity at least 2, hence
0%(80:3) = 0% (A0xo1.10....0.2.01) + O (A0 (p—1}.10....0.21) = 4 Ep. 02 11-4)].
Finally, the point 8(¢) lies in the (k — 4)th self intersection of Ag.g,(0,....0.1.1]- ]
We are now in a position to complete the proof of Theorem 0.1 and show that for all
g > 2, and k > 3 the Kodaira-litaka dimension of the stack ﬁ];, is maximal.

Proof of Theorem 0.1 We consider once more the map 6 : ﬁf, — Mg p+bik—2) and the divisor

£ introduced in Proposition 2.4. We show that there exists a constant B > 0 such that

Ky — B - £ is big, which implies that K itself is big. To that end, via Proposition 1.2
~ 8

(iii), it suffices to show that Kyt — B - £ has a representative in terms of boundary classes

8
in which the coefficient of the class of each irreducible component of E;.,, is positive.
Observe first that the image of 6 is disjoint from the branch locus B of

P Mg bk-1) = Mg pibi—2-

Indeed, the source of an admissiblecover[f: C — R, p1, ..., pp] € ﬁg cannot contain a
smooth rational component C’ containing precisely two antiramification points lying over the
same branch point, for then deg( f|c’) > 2, which implies that f|c admits further ramification
at points lying in C’ \ C.

‘We shall find a constant B > 0 such that forall 2 < i < % and all partitions p - k the
following quantity, equaling the coefficient of [E;.;, ] in Kﬁz —B- E, is positive:

1)1 +Bm<u>”<"g‘ “(;{’;:?} - L- %))

b=2 b

—Bm(u)%JrB@* Zc,s,s Y30 > sdos| >0.313)

s=2 j=1|SNAj|=s

i(b—1i)

m(w) (==

ip
where for a boundary divisor o on mg’b+b[k_2], we denote by 6*(«);., the coeliﬁcient of

[Ei.,.] in 0*() viewed as a boundary divisor. Observe that the contribution of £ follows
from Proposition 2.2 and Proposition 2.5. Set

B (2(1)—2) _2> (b(b—2)(k— H k=3 -2)
T\ b—1 4g(b—1) b—1

-1

+2(k — 2))
_ l6g
T b3 —2b%(g + 1) + 4bg — 16g2

We check (13) case by case, starting with the most challenging case i = 2, since this is
when the coefficient of [E;., ] in Kﬁk may be negative.
8

(14)

(i) First assume that . = (1%), thus i = k. Using (3.1) we have 9*(30;2) > (k= 2)[Ey.1x)]-
Furthermore, for any component Z of Ej.(j+) we have

b-2 b

02 LY D > Aos,

s=2 j=1|SNAj|=s
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therefore inequality (13) becomes in this case
2(b—2) 24 B <b(b -2k —=1) _ 2k —-3)b-2)
b—1 4g(b—1) b—1
which is clear by our choice of B and the observation that cp., > 2 by (9).

(i) Assume now p = (3, 1¥73), thus i =k— % and m () = 3. Using that for any component
Z of Ey.3 1k-3y one has

+qw@—ﬁ)>Q

b-2 b

0L Y Y. Aos,

s=2 j=1|SNA;|=s
and 6*(80.4) > [E3.(3,1+-3)] and 0*(802) > (k — 3)[Ey.3,14-3y] by (3.1), inequality (13) is
implied by the following inequality
2(b—2 3b(b —2)(k—1 2 3b-2)2k-3
5 ( )_1)_1+B( b-Dk-1) 2 3(b-2@2k-3)
b—1 4g(b—1) 3 b—1
+eoa(k = 3) + o) > 0.
Leta := k —3 > 0, thus b = 2g + 2a + 4. After substituting B by the value provided by
(14) and observing cp.s > s by (9) we obtain that the above value is greater than
2(3ag? + 6a*g + 9ag + 10g + 3a> + 154> + 24a + 12)

> 0.
3(ag? +2a%g + Tag + 6g + a3 + 5a% + 8a + 4)

(iii) Suppose pu = (22, 1¥=%), thus i =k — 3 and m(n) = 2. In particular, @ > 1. In this
case (3.1) provides that 6% (3:3) > 4[Ey.2 e-4)] and 0*(80:2) > (k — 4)[Ey. 22 1-4)]. On
the other hand, the discussion of the final part of the Proof of Proposition 3.1 shows that

b=2 b

OrdEz;(22,1k—4)9* ZZ Z sAogs | =8

s=2 j=1|SNAj|=s

the statement holds along each irreducible component of Ej.2 jx-4). It follows that (13)
would be implied by the following inequality:

4(b —2) bb—2)k—1) 1 22k-3)(b—-2) ]
b_1 ( 26— g 5 b1 +C();2(k—4)+4c():3—8>>0.

By substituting the value for B and observing that co.; > s the above value is greater than

ag? +2a’g +3ag + g +a> +5a%> + 8a + 4
>
ag® +2a’g + Tag + 6g +a® + 5a> + 8a + 4

(iv) Assume now that i > 3 and assume first pu # (1%), that is, m(p) > 2. We shall show
that the following inequality, which is stronger than (13), holds:

i(b—1i) bk—1) yitb—i) 1 1 2k — 3)i(b — i)
’”“”(( h—1 _1)+B 2 (8(17—1)_5("_;))_3 2(b—1) >_1>0'

15)

The coefficient of i (b — i) in this expression being positive, its smallest value is attained
when i = 3. Furthermore, using the means inequality we find that i > l, whereas m(u) > 2
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for any partition p of k. Substituting i = 3, m(n) = 2 and [lL = % in (15), we obtain the
inequality which implies (15), which in turn implies inequality (13):
3(ag? +2ag + 2ag +2g + @’ + 4a* + 4a)
>
ag? +2a%g + Tag + 6g + a3 + 5a%* + 8a + 4

(v) Assume now that i > 3 and u = (1¥), in which case as p is the cycle class of an even
permutation, i is even and hence i > 4. In this case (15) can be reduced to the following,
obtained by substituting i = 4:

2(ag® +2da*g +ag +2g+a +3a*> —4) -
ag? +2a%g + Tag + 6g + a® + 54> + 8a +
g2 +2a%g +Tag + 6g +a® + 5a% + 8a + 4

)

which holds in all cases outside of g = 2 and k = a + 3 = 3 where the left hand side is
equal to zero. However, in this case as all other inequalities hold, the choice of
16g 1

B= .1
b —202(g+ 1) +dbg— 162 4 °©

for ¢ > 0 small enough completes the proof. O

We are now in a position to prove Theorem 0.2 and show that all coarse moduli spaces
=3 . . N . .
H, of trigonal curves of genus g > 2 have maximal Kodaira-litaka dimension.

Proof of Theorem 0.2 We use the constant B introduced in (14), which in the case k = 3 takes
the form
_ 8
3g+2

and we show that Kﬁ,z — B - £ admits a boundary representative in which all boundary
8

=3 . . . . .
components of , appear with positive coefficients. Using Proposition 1.4, we have

hyp
Z[E2h+l (2, 1)

where the general point of each component of E;’Zil: @ parametrize an admissible cover
t=[f:C— R=Ri U, Ry, p1,..., prgtsl, where C := f’l(R1) is a smooth curve of
genus g — h mapping with degree 3 over Ry and f~!(Rs) = Co U C}, where C; is a smooth
hyperelliptic curve of genus 2 mapping with degree 2 onto R, and meeting C; and precisely
one point ¢ € £~ !(p), which is a ramification point for both C; and C;. The component C}
is a smooth rational curve mapping isomorphically onto R;.

Observe that 0*(80 2h+1) > [E2h+1 2 1)] as well as 9*(8h 2h+1) > [E2h+1 2, 1)] Using
the estimate (10), the coefficient of [E2h e 1)] in the expression of Kf — B - £isatleast

g
equal to

4gh* + 38g%h — 20gh®> — 28g> + 77gh — 28h* — 65g + 28h — 28
>V,
(4g+7)(3g+2)

which can be checked in a straightforward manner. Since the other boundary coefficients of

K_3 and K—3 coincide, we can invoke the proof of Theorem 0.1 to conclude. O

H, H,
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As described in the introduction, when k > g—;rz, one has a natural map

7k —_—
Xt Hy = Mg ok—g—2,

which assigns to an admissible cover [ f:C —- R, p1,..., pb] the stabilization of the
pointed curve [C . q1, .-, qak—g—2], where g; € C is the unique ramification point of f
lying in f~'(p;), fori =1,...,2k — g — 2.

Proposition 3.2 The map x : ﬁlgf — ﬂg,zk,g,z is generically finite. It follows that ﬁ];, isa
variety of general type when k > g + 1 and g > 12. Similarly, ﬁlg is of general type when

kzgzizanngZZ.

Proof The generic finiteness of the map yx follows essentially from results in [4]. We set
n = 2k — g — 2 > 0 and consider the stable curve [X, g1, ..., q,] € ﬂg,n, where X

consists of a smooth rational component R and g elliptic tails Ey, ..., Eg, each E; meeting
R at a single point x;. The marked points ¢y, ..., g, lie on R\ {xy, ..., xg}. Then the fibre
x'(IX.q1,....qnl)isisomorphic to the variety of limit linear series of type g; on X having

simple ramification at each of the points ¢;. Applying [4, Theorem 1.1], we obtain that this
variety is pure of dimension

p(g. LLk)—n=g—2(@g—k+1)—Qk—g—2)=0.

Therefore y is generically finite, in particular K(ﬁz) > K(ﬂg,n). When g > 12 and k >
g+ 1,thenn > g + 1 and it follows from [13] that M, , is of general type in this range,
which finishes the proof. O

Remark 3.3 Note that in the range k > g+ 1, one has an Gj-cover ﬂg — ﬂg, & Whose source

. k. . = . .
variety H, is of general type, whereas its base H, x is uniruled. Observe also that the degree

of x: ﬁ]; — ﬂg,zk_ ¢—b 18 the Catalan number %, therefore independent of g!
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