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Abstract
In 1998 Friedlander and Iwaniec proved that there are infinitely many primes of the form
a2+b4. To show this they used the Jacobi symbol to define the spin of Gaussian integers, and
one of the key ingredients in the proofwas to show that the spin becomes equidistributed along
Gaussian primes. To generalize this we define the cubic spin of ideals of Z[ζ12] = Z[ζ3, i]
by using the cubic residue character on the Eisenstein integers Z[ζ3]. Our main theorem says
that the cubic spin is equidistributed along prime ideals of Z[ζ12]. The proof of this follows
closely along the lines of Friedlander and Iwaniec. The main new feature in our case is the
infinite unit group, which means that we need to show that the definition of the cubic spin
on the ring of integers lifts to a well-defined function on the ideals. We also explain how the
cubic spin arises if we consider primes of the form a2 + b6 on the Eisenstein integers.
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1 Introduction

Friedlander and Iwaniec [1] famously showed that there are infinitely many prime numbers
represented by a2 +b4. Remarkable here is that numbers of this form are very sparse, that is,
the number of such integers up to x is of order x3/4. Other similar results are Heath-Brown’s
proof that there are infinitely many primes of the form a3 + 2b3 [6], the generalization of
Heath-Brown and Moroz of this to binary cubic forms [8], the extension of this by Maynard
to general incomplete norm forms [11], and the result of Heath-Brown and Li [7] that the
Friedlander–Iwaniec result holds also with b restricted to prime values.

If a prime p is of the form a2+b4, then p = ππ for some Gaussian prime π = b2+ ia, so
that the arithmetic in the work of Friedlander and Iwaniec really lies in Z[i]. For a Gaussian
integer z = r + is with r odd, define the quadratic spin as

[z]2 :=
(
s

r

)
2
,

where (s/r)2 is the Jacobi symbol. One of the key ingredients in the proof of Friedlander and
Iwaniec is to show that the spin is equidistributed along Gaussian primes [1, Theorem 2],
which they obtained in the form

∑
p=r2+s2≤x

2 � r

(
s

r

)
2

� x1−1/77. (1.1)

This has been generalized by Milovic to show equidistribution of (v/u)2 over primes of
the form p = u2 − 2v2, which corresponds to the above with Z[√2] in place of Z[i] [14,
Theorem 2].

It is natural to ask if the argument can be extended to produce primes of the form a2 + b6.
Friedlander and Iwaniec have solved the ternary divisor problem for this sequence [3], and
under the assumption of the existence of exceptional Dirichlet characters they have shown
that there are infinitely many primes of this form [2].

sAt the moment there seems to be two major obstacles to solving the problem of primes
of the form a2 + b6. Firstly, the sequence of integers is now too sparse to replicate the steps
in [1, Sects. 5–9]. The second problem is structural. Recall that the proof of (1.1) relies on
the law of quadratic reciprocity. With the sequence a2 + b6 we end up with cubic residues
which unfortunately do not satisfy a suitable reciprocity law on Z.

The second obstacle can be overcome if we extend the whole set-up from Z to the Eisen-
stein integers Z[ζ3], where the cubic residue character does satisfy a reciprocity law (see
Lemma 4). Unfortunately the first issue remains and we are not able to detect primes of
Z[ζ3] of the form a2 + b6 with a, b ∈ Z[ζ3] (see Sect. 9 for more details). However, we
can still obtain the analogue of (1.1) in this situation and thus make partial progress on this
problem. The Gaussian integers now correspond to the ring Z[ζ12] = Z[ζ3, i] of integers of
the twelfth cyclotomic extension, since the relative norm is NQ(ζ12)/Q(ζ3)(r + is) = r2 + s2

for r , s ∈ Q(ζ3).
We say that z ∈ Z[ζ12] is primary if z ≡ ±1 (mod 3). For any (z, 3) = 1 there exists a

unit μ such that μz is primary. For a primary number z = r + is ∈ Z[ζ12] we define the
cubic spin

[z]3 :=
[
s

r

]
3
,

123



A cubic analogue of the Friedlander–Iwaniec spin over primes 2811

where [s/r ]3 is the cubic residue character on Z[ζ3] (see Sect. 2 for details). We extend
this to the ideals a of Z[ζ12] by defining [a]3 := [z]3 if z is a primary generator of a with
(r , s) = 1 and set [a]3 = 0 otherwise. In Sect. 3 we will show that this definition does not
depend on the choice of the primary associate z (note that by Dirichlet’s unit theorem there
are infinitely many possible choices). Our main theorem says that the values of the cubic spin
are equidistributed along prime ideals of Z[ζ12].
Theorem 1 We have ∑

NQ(ζ12) p≤x

[p]3 � x1−1/143.

Similarly as in [1, Theorem 2], the exponent 1/143 is not the best that could be obtained
and we have opted for simplicity in the proof over optimality.

The above cubic spin and the spin of Friedlander and Iwaniec [1] should not be confused
with the spin of a prime ideal as defined by Friedlander, Iwaniec, Mazur, and Rubin [4].

Note that for a given prime p = (r + is) all of its Galois conjugates appear in the sum,
which means that the sum is real. Indeed, for r + is primary we have

∑
σ∈Gal(Q(ζ12)/Q)

[σ(r + is)]3 =
[
s

r

]
3
+

[−s

r

]
3
+

[
s̄

r̄

]
3
+

[−s̄

r̄

]
3

= 4Re

([
s

r

]
3

)

by using the properties [s̄/r̄ ]3 = [s/r ]3 and [−s/r ]3 = [s/r ]3.
Note also that forπ = r2+s2 with r+is primarywe have by cubic reciprocity (Lemma 4)

[
s

r

]
=

[
s2

r

]2
=

[
π

r

]2
=

[
r

π

]2
, (1.2)

ssince r+is being primary implies that r and π are primary inZ[ζ3]. Thus, our main theorem
implies that r is a cube modulo primes π asymptotically one third of the time (to prove this,
expand 1r≡t3 (mod π) = (1 + [r/π ] + [r/π ]2)/3 and note that

∑[p]23 = ∑[p]3).
Corollary 2 We have

∑
NQ(ζ3)π≤x

π=r2+s2,
r≡±1 (mod 3), 3|s

1r≡t3 (mod π) = 1

3

∑
NQ(ζ3)π≤x

π=r2+s2,
r≡±1 (mod 3), 3|s

1 + O(x1−1/143).

Remark 1 Since we prove that [a]3 is independent of the choice of the primary generator
z = r + is, this means by (1.2) that for primes π = r2 + s2 the property that r ≡ t3

(mod π) is independent of the representation π = r2 + s2 where r + is is primary, so
that the sum in the above corollary is well-defined. The corollary may be viewed as an
approximation to the problem of primes of the form t6 + s2 on Z[ζ3] – instead of r being a
perfect cube, it is a cube modulo π = r2 + s2.

For any integer n ≥ 1 define

λ3(n) :=
∑

NQ(ζ12) a=n

[a]3.

For rational primes we get the following corollary of Theorem 1 (the error term we get from
the proof of Theorem 1 is actually Oε(x1−1/142+ε) so that the same error term holds for the
corollary below).
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2812 J. Merikoski

Corollary 3 We have ∑
n≤x

	(n)λ3(n) � x1−1/143.

Remark 2 The proof of Theorem 1 relies mainly on the law of cubic reciprocity. Thus, it
seems plausible that the result can be generalized as follows. If an algebraic number field K
contains a primitive mth root of unity, then we can define the mth power residue character
on K which satisfies a reciprocity law (see [13, Chapter VIII, Theorem 5.11], for instance).
Given a quadratic extension L/K we can then define a spin at elements of OL . It seems
plausible that the argument could be generalized to obtain equidistribution of the spin along
principal prime ideals of L . We hope to attack this question in a future article. Probably some
assumptions are required here. At least in the simplest case of K = Q(ζm) withm odd prime
and L = K [i] many parts of the argument seem to generalize nicely.

Remark 3 In [1, Sect. 23] Friedlander and Iwaniec write “We suspect, but have not examined
thoroughly, that λ(n) are related to the Fourier coefficients of some kind of metaplectic
Eisenstein series or a cusp form, by analogy to the Hecke eigenvalues (16.30) which generate
a modular form of integral weight.” Similarly, we expect that λ3(n) can be interpreted in
terms of automorphic forms. Working out the details of this would be useful with a view
towards the generalization outlined in the previous remark.

Remark 4 We suspect that our main theorem has some applications to elliptic curves over
Z[ζ3] but we do not have anything particularly interesting. For example, if π = r2 + s2 is
a prime and r ≡ t3 (mod π), then Corollary 2 provides us with a large family of elliptic
curves E : Y 2 = X3 + 3t2X ± 2s with bad reduction at some large prime π = π(E).

1.1 A brief sketch of the Friedlander–Iwaniec argument

Wepresent here a non-rigorous sketch of the proof of (1.1) which appears in [1, Sects. 19–26].
Recall that the claim is that ∑

z∈Z[i]
|z|2=p≤x

[z]2 � x1−1/77,

where [r + is]2 = (s/r)2 is the usual Jacobi symbol. The summation needs to be restricted
to odd r but let us ignore this in the notation to simplify the presentation. Then by a sieve
argument (essentially Vaughan’s identity) the task is reduced to bounding Type I sums∑

|w|2∼M

αw

∑
|z|2∼N

[wz]2 (1.3)

and Type II sums ∑
|w|2∼M

αw

∑
|z|2∼N

βz[wz]2, (1.4)

where αw and βz are arbitrary bounded coefficients and MN = x with sufficiently flexible
ranges for M and N .

For w = u + iv with (u, v) = 1, let ω ≡ −vu−1 (mod u2 + v2), where u−1 denotes
the multiplicative inverse, so that ω2 ≡ −1 (mod u2 + v2). Similarly as in [1, Sect. 19],
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A cubic analogue of the Friedlander–Iwaniec spin over primes 2813

for any z = r + is we define (
z

w

)
2

:=
(
r + ωs

u2 + v2

)
2
.

Sinceω2 ≡ −1 (mod u2+v2), this symbol is completelymultiplicative in the upper variable
and is therefore a quadratic character modulo u2 + v2. We also have (z/w1)2(z/w2)2 =
(z/w1w2)2 provided that (w1, w2) = 1. The general multiplicativity rule in the lower part
is not much more complicated, but to simplify let us pretend that the symbol is completely
multiplicative also in the lower varliable.

The key lemma is [1, Lemma 20.1], which morally states that the quadratic spin is twisted
multiplicative in the sense that

[wz]2 = E[w]2[z]2
(
z

w

)
2

for some simple sign factor E . The proof of this relies on quadratic reciprocity multiple times.
To simplify the presentation we pretend that this holds with E = 1. Then bounding the Type
I and Type II sums is reduced to (absorbing factors into the coefficients αw and βw)

∑
|w|2∼M

αw

∑
|z|2∼N

[z]2
(
z

w

)
2

and
∑

|w|2∼M

αw

∑
|z|2∼N

βz

(
z

w

)
2
.

For the Type I sums (see [1, Sect. 22]) we fix w and write∣∣∣∣
∑

|z|2∼N

[z]2
(
z

w

)
2

∣∣∣∣ ≤
∑

r�√
N

∣∣∣∣
∑

s2∼N−r2

[
s

r

]
2

(
r + sω

u2 + v2

)
2

∣∣∣∣

=
∑

r�√
N

∣∣∣∣
∑
s∈I (r)

(
s

r(u2 + v2)

)
2

∣∣∣∣
by making making the change of variables s 	→ s + ωr , where I (r) denotes an interval of
length � √

N . The sum over s can be bounded using the Pólya-Vinogradov inequality for
short character sums, which yields a non-trivial bound for the Type I sums (1.3) in the range
M ≤ x1/3−η for any η > 0.

To handle the Type II sums (see [1, Sect. 21]) we use Cauchy–Schwarz to morally get

∑
|w|2∼M

αw

∑
|z|2∼N

βz

(
z

w

)
2

� N 1/2
( ∑

|w1|2,|w2|2∼M

αw1αw2

∑
|z|2∼N

(
z

w1w2

)
2

)1/2

.

Since (z/w1w2)2 is a quadratic character modulo |w1w2|2, the sum over z is very small
unless |w1w2|2 is a perfect square (at least for N large compared to |w1w2|2 � M2). The
part where |w1w2|2 is a perfect square is a very narrow subset of the variables, which gives a
non-trivial bound for the Type II sums. This bound can be amplified by a suitable application
of Hölder’s inequality and by the reciprocity (z/w)2 = (w/z)2. We get a non-trivial bound
for the Type II sums (1.4) in the full range xη � M, N � x1−η.

1.2 Structure of the article

The proof of Theorem 1 follows the same lines as the proof of [1, Theorem 2]. In Sect. 2
we recall the law of cubic reciprocity and prove that the cubic spin [z]3 satisfies a twisted
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2814 J. Merikoski

multiplicativity relation (Lemma 5). This relation is the key ingredient in all of the arguments
that follow. In Sect. 3 we recall basic facts about Q(ζ12) and show that the definition of the
spin [a]3 = [z]3 is independent of the choice of primary generator z of a (also for this we
need Lemma 5).

In Sect. 4 we use Buchstab’s identity to obtain a decomposition of the prime sum into
sums of Type I and Type II. We could also use similar arguments as in [1] to this end. In
Sect. 5 we explain how to choose unique primary generators for the ideals of a in a consistent
manner.

After these steps the arugment is essentially same as in [1] with only minor modifications.
In Sects. 7 and 8 we compute the Type I and Type II sums, respectively, which by Sect. 4
completes the proof of Theorem 1. For this we need a version of the Poisson summation on
Z[ζ3], which is given in Sect. 6. The reason why the exponent in Theorem 1 is worse than
that in [1, Theorem 2] is solely because in the Type I sums we essentially get a contribution
from the error term in a lattice point counting problem on Z[ζ3].

Lastly, in Sect. 9 we illustrate non-rigorously how the cupic spin arises from the problem
of primes of the type α2 + β6 on Z[ζ3]. The arguments follow the same lines as in [1]. We
also explain why the density issue prevents us from completing the goal of detecting primes
of this form.

1.3 Notations

For functions f and g, we write f � g or f = O(g) if there is a constant C such that
| f | ≤ C |g|. The notation f � g means g � f � g. The constant may depend on some
parameter, which is indicated in the subscript (e.g. �ε). We write f = o(g) if f /g → 0 for
large values of the variable. For variables we write n ∼ N meaning N < n ≤ 2N .

For two functions f and g with g ≥ 0, it is convenient for us to denote f (N ) ≺≺ g(N )

if f (N ) �ε N εg(N ). A typical bound we use is τk(n) ≺≺ 1, where τk is the k-fold divisor
function. For multivariable functions such as sums over two variables we write

∑
m∼M
n∼N

f (m, n) ≺≺
∑
m∼M
n∼N

g(m, n)

to mean
∑
m∼M
n∼N

f (m, n) �ε (M + N )ε
∑
m∼M
n∼N

g(m, n).

We say that an arithmetic function f is divisor bounded if | f (n)| � τk(n) for some k.
For a statement E we denote by 1E the characteristic function of that statement. For a set

A we use 1A to denote the characteristic function of A.

We let e(x) := e2π i x and eq(x) := e(x/q) for any integer q ≥ 1. We abbreviate modular
arithmetic such as a ≡ b (mod c) by a ≡ b (c). For any (a, b) = 1 we let a−1 (b) denote
the multiplicative inverse, so that aa−1 ≡ 1 (b).

We abbreviate the norm maps as follows. For any a = a(1) + a(2)ζ3 ∈ Z[ζ3], a( j) ∈ Z,
and ζ = r + is ∈ Z[ζ12], r , s ∈ Z[ζ3] we set

N3(a) := NQ(ζ3)(a) = (a(1))2 − a(1)a(2) + (a(2))2 = |a|2,
N12/3(ζ ) := NQ(ζ12)/Q(ζ3)(ζ ) = r2 + s2, and N12 := NQ(ζ12) = N3 ◦ N12/3.
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A cubic analogue of the Friedlander–Iwaniec spin over primes 2815

2 Cubic reciprocity

In this section we recall basic properties of the Eisenstein integersZ[ζ3] and the cubic residue
character (cf. [10, Chapter 7], for instance). We also prove a twisted multiplicativity rule for
the cubic spin [z]3 (Lemma 5) by using the cubic reciprocity law. To simplify the notation
we will abbreviate modular arithmetic such as a ≡ b (mod c) by a ≡ b (c).

The unit group of Z[ζ3] is the group of sixth roots of unity {±1,±ζ3,±ζ 2
3 }. We say that

an integer a ∈ Z[ζ3] is primary if a ≡ ±1 (3). Equivalently, a = a(1) + a(2)ζ3 with a( j) ∈ Z

is primary if 3|a(2) and a(1) ≡ ±1 (3). For any (a, 3) = 1 there exists a unit μ such that
μa ≡ 1 (3).

Any rational prime p ≡ 1 (3) splits as p = ππ̄ for a prime π ∈ Z[ζ3]. Then for any
a ∈ Z[ζ3], π � a, we have by Fermat’s Little Theorem

a p−1 ≡ 1 (π).

Since p ≡ 1 (3), we see that a(p−1)/3 ≡ ζ k
3 (π) for some k ∈ {0, 1, 2}, so that we may define

the cubic residue character modulo π [
a

π

]
3

:= ζ k
3 .

If π |a we set [a/π]3 := 0. The rational primes q ≡ 2 (3) are inert and we define [a/q]3 := 1
if q � a and [a/q]3 := 0 if q|a. For any unit μ of Z[ζ3] we set [a/μ]3 := 1, and for the
prime 1 − ζ3 we set [a/(1 − ζ3)]3 := 1 (recall that 3 = −ζ 2

3 (1 − ζ3)
2 is the only prime that

ramifies). Then for any prime τ ∈ Z[ζ3] the congruence x3 ≡ a (τ ) has a non-zero solution
if and only if [a/τ ]3 = 1.

For any non-zero λ ∈ Z[ζ3] we have a unique factorization
λ = ±ζ k

3 (1 − ζ3)

π

α1
1 · · · παm

m qβ1
1 · · · qβn

n ,

where π j ≡ 1 (3), and q j ≡ 2 (3) are rational primes. Therefore, we may extend [·/π]3 to
all of Z[ζ3] multiplicatively

[
a

λ

]
3

:=
[
a

π1

]α1

3
· · ·

[
a

πk

]αk

3
.

It is then clear that this is completely multiplicative in both variables. From here on we
simplify notations by ignoring the subscript 3, that is, we write [a/b] := [a/b]3.

For any a, b ∈ Z[ζ3] we write (a, b) = 1 if a and b are coprime. For any (a, b) = 1 we
let ε(a, b) denote the cubic root of unity such that

[
a

b

]
= ε(a, b)

[
b

a

]
,

Note that for any a, b, c ∈ Z[ζ3] with (a, bc) = 1 we have multiplicativity in the sense that

ε(a, bc) = ε(a, b)ε(a, c) and ε(bc, a) = ε(b, a)ε(c, a).

Note also that ε(a, b) = ε(a, b)−1 = ε(b, a)2.
By [10, Theorem 7.8] we have the following cubic reciprocity law (which can also be

found in [13, Chapter VIII, Example 5.13]).
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Lemma 4 (Cubic reciprocity). Let a, b ∈ Z[ζ3] be coprime. If a and b are primary, then
ε(a, b) = 1. If a = a(1) +a(2)ζ3 is primary, then depending on the sign of a(1) ≡ ±1 (mod 3)
we have

ε(ζ3, a) = ζ
(1±(−a(1)−a(2)))/3
3 , ε(1 − ζ3, a) = ζ

(±a(1)−1)/3
3 , ε(3, a) = ζ

±a(2)/3
3 ,

so that for any c ∈ Z[ζ3] we have
ε(ζ3, a + 9c) = ε(ζ3, a) and ε(1 − ζ3, a + 9c) = ε(1 − ζ3, a).

We say that z ∈ Z[ζ12] is primary if z ≡ ±1 (3). For a primary z = r + is ∈ Z[ζ12] we
define

[z] := [z]3 =
[
s

r

]
.

We will extend this definition to ideals of Z[ζ12] in Sect. 3. We say that w = u+ iv ∈ Z[ζ12]
is primitive if (u, v) = 1. For w ∈ Z [ζ12] primary primitive, set ω ≡ −vu−1 (mod u2 +v2),
where u−1 is the multiplicative inverse modulo u2+v2. Analogously to the Dirichlet symbol
defined in [1, Sect. 19], we define (

z

w

)
:=

[
r + ωs

u2 + v2

]
. (2.1)

Since ω2 ≡ −1 (u2 + v2), this is completely multiplicative in the upper variable, so that this
is an extension of the character [r/(u2 + v2)] from Z[ζ3] to Z[ζ12].

Similarly as [1, Lemma 20.1] follows from the quadratic reciprocity, the cubic reciprocity
law implies that the cubic spin [z] is multiplicative up to the symbol (z/w). The analogous
result on Z[√2] in the work of Milovic is [14, Proposition 8].

Lemma 5 Let w = u + iv, z = r + is ∈ Z[ζ12] be primary with w primitive. Then

[wz] = [w][z]
(
z

w

)
.

Proof First note that since w and z are primary, it follows that all of u, r , wz, and ur − vs
are primary, and 3|v and 3|s. If (u, v) �= 1 or (r , s) �= 1, then the claim is trivial since then
both sides vanish. Assume then that (u, v) = (r , s) = 1. Let r0 = (r , v) be primary, and
denote r = r0r1, v = r0v1, so that (r1, v1) = 1 (since r is primary we have (3, r0) = 1 and
we may pick a primary representative for r0). By using s ≡ ur1v

−1
1 (ur1 − v1s) we get

[wz] =
[
us + vr

ur − vs

]
=

[
us

r0

][
us + vr

ur1 − v1s

]
=

[
u

r0

][
s

r0

][
u2r1v

−1
1 + vr

ur1 − v1s

]

=
[
u

r0

][
s

r0

][
r1v

−1
1

ur1 − v1s

][
u2 + v2

ur1 − v1s

]

=
[
u

r0

]2[ s

r0

][
r1v

−1
1

ur1 − v1s

][
u

r0

]2[ u2 + v2

ur1 − v1s

]

=
[
u

r0

]2[ s

r0

][
r1v

−1
1

ur1 − v1s

][
u2 + v2

r0

][
u2 + v2

ur1 − v1s

]

=
[
s

r0

][
r1

ur1 − v1s

]
·
[
u

r0

]2[
v1

ur1 − v1s

]2
·
[
u2 + v2

ur − vs

]
.

We now compute the above three factors separately.
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We have[
s

r0

][
r1

ur1 − v1s

]
=

[
s

r0

][
ur1 − v1s

r1

]
=

[
s

r0

][
v1s

r1

]
=

[
v1

r1

]
[z]

by Lemma 4 since ur1 − v1s and r1 are both primary.
By a similar argument the second factor is

[
u

r0

]2[
v1

ur1 − v1s

]2
=

[
u

r0

]2[ur1 − v1s

v1

]2
ε(v1, ur1 − v1s)

2

=
[
u

r0

]2[ur1
v1

]2
ε(v1, ur1 − v1s)

2

=
[
u

v

]2[ r1
v1

]2
ε(v1, ur1 − v1s)

2

= [w]2
[
r1
v1

]2
ε(v1, ur1 − v1s)

2ε(u, v)2.

For the third factor, since u, u2+v2, and ur −vs are primary, we have by two applications
of Lemma 4[

u2 + v2

ur − vs

]
=

[
ur − vs

u2 + v2

]
=

[
u

u2 + v2

](
z

w

)
=

[
u2 + v2

u

](
z

w

)
= [w]2

(
z

w

)
.

Combining all we have [wz] = E[w][z]( z
w

) for

E =
[

v1

r1

]
·
[
r1
v1

]2
ε(v1, ur1 − v1s)

2ε(u, v)2

= ε(v1, r1)ε(v1, ur1 − v1s)
2ε(v, u)

Let v1 = ±ζ k
3 (1−ζ3)


λwhereλ is primary. Then, since 9|v1s, we see from the supplementary
laws in Lemma 4 (note also that ε(λ, ur1 − v1s) = 1 = ε(λ, ur1) since ur1 − v1s and ur1
are primary)

ε(v1, ur1 − v1s) = ε(ζ3, ur1 − v1s)
kε(1 − ζ3, ur1 − v1s)


ε(λ, ur1 − v1s)

= ε(ζ3, ur1)
kε(1 − ζ3, ur1)


ε(λ, ur1) = ε(v1, ur1)

= ε(v1, u)ε(v1, r) = ε(r0, u)2ε(v, u)ε(v1, r) = ε(v, u)ε(v1, r)

since r0 and u are primary. Hence, we get E = ε(v1, r1)ε(v, u)2ε(v1, r1)2ε(v, u) = 1. ��
Remark 5 It is perhaps surprising that our Lemma 5 is much simpler than the corresponding
results in the quadratic case [1, Lemma 20.1] and [14, Proposition 8], where the equalities
hold only up to a simple factor. The main reason for this seems to be that−1 is always a cube
so that [−1/a] = 1 for all a ∈ Z[ζ3], a fact that we used in the proof.

We will abbreviate the norm maps as follows. For any a = a(1) + a(2)ζ3 ∈ Z[ζ3] and
ζ = r + is ∈ Z[ζ12], r , s ∈ Z[ζ3] we set

N3(a) := NQ(ζ3)(a) = (a(1))2 − a(1)a(2) + (a(2))2 = |a|2,
N12/3(ζ ) := NQ(ζ12)/Q(ζ3)(ζ ) = r2 + s2, and N12 := NQ(ζ12) = N3 ◦ N12/3.
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The symbol (z/w) in Lemma 5 is completely multiplicative in the upper variable. Similar
to [1, Sects. 19 and 21], to handle Type II sums we need a multiplier rule in the lower variable
also, which is given by the following.

Lemma 6 Letw1, w2 ∈ Z[ζ12] be primary primitive and let ζ = r + is ∈ Z[ζ12] be primary.
Set

q j = N12/3(w j ), e := (w1, σ (w2
2)), and d := N12/3(e),

where σ is the conjugation σ(a + ib) = a − ib. Then for some root ω2 + 1 ≡ 0 (q1q22 ) we
have (

ζ

w1

)(
ζ

w2

)2

=
[
r − ωs

d

][
r + ωs

q1q22/d

]
.

Proof We can write ζ = az, where a ∈ Z[ζ3] and z is primary primitive. Since both sides
are completely multiplicative, it suffices to prove the claim separately for a ∈ Z[ζ3] and for
z ∈ Z[ζ12] primary primitive.

For any a ∈ Z[ζ3] we have by definition
(

a

w1

)(
a

w2

)2

=
[
a

q1

][
a

q22

]
=

[
a

d

][
a

q1q22/d

]
.

For z = r + is primary primitive we get from Lemma 5 a reciprocity law (z/w) = (w/z)
for any primary primitivew. Note that by definitionw1w

2
2/d is primary primitive. Therefore,

we get by reciprocity (note that r2 + s2 and d are primary)
(

z

w1

)(
z

w2

)2

=
(

w1

z

)(
w2
2

z

)
=

(
d

z

)(
w1w

2
2/d

z

)
=

[
d

N12/3(z)

](
w1w

2
2/d

z

)

=
[
r2 + s2

d

][
r + ωs

q1q22/d
2

]
=

[
r − ωs

d

][
r + ωs

q1q22/d

]
,

since r2 + s2 ≡ (r + ωs)(r − ωs) (d). ��
Remark 6 In [1, Sect. 19] we have for primary z = r + is, w = u + iv ∈ Z[i] with w

primitive (
z

w

)
2

:=
(
r + ωs

u2 + v2

)
2

=
(
ur − vs

u2 + v2

)
2

=
(
Rewz

|w|
)
2
.

In our case the middle equality does not hold but we have for z = r + is, w = u+ iv ∈ Z[ζ3]
primary (

ur − vs

u2 + v2

)
=

(
u

u2 + v2

)(
r + ωs

u2 + v2

)
= [w]2

(
z

w

)

by reciprocity ifw is primary primitive. Lack of this alternative representation does not hinder
us in any way.

3 The twelfth cyclotomic extension

So far we have defined [z] only for primary z ∈ Z[ζ12]. In this sectionwe extend the definition
to ideals of Z[ζ12].

123



A cubic analogue of the Friedlander–Iwaniec spin over primes 2819

Table 1 Values of εk0ζ 

12. Note that for z ∈ Z[ζ12] if z ≡ ±1,±i (3), then both of the coefficients of

√
3/2

and i
√
3/2 are divisible by 3

k


 0 1 2

1 1
2 + i

2 +
√
3
2 + i

√
3

2
1
2 + i + i

√
3

2
−1
2 + i + i

√
3

2

2 2i + i
√
3 −1 + 3i

2 −
√
3
2 − i

√
3 −3

2 + i − √
3 + i

√
3

2

3 −5
2 + 5i

2 − 3
√
3

2 + 3i
√
3

2
−7
2 + i − 2

√
3 + i

√
3

2
−7
2 − i − 2

√
3 − i

√
3

2

4 −7 − 4
√
3 −6 − 7i

2 − 7
√
3

2 − 2i
√
3 −7

2 − 6i − 2
√
3 − 7i

√
3

2

5 −19
2 − 19i

2 − 11
√
3

2 − 11i
√
3

2
−7
2 − 13i − 2

√
3 − 15i

√
3

2
7
2 − 13i + 2

√
3 − 15i

√
3

2

The only entry satisfying this is ε30 = −5
2 + 5i

2 − 3
√
3

2 + 3i
√
3

2 , but we have ε30 = 5 − 2i − 3(1 + i)ζ3 ≡
2 − 2i �≡ ±1,±i (3), so that none of the values in the table are ≡ ±1,±i (3)

The unit group ofZ[ζ12] is generated by ζ12 and the fundamental unit (cf. [10,Chapter 7.4])

ε0 := 1 + √
3

1 − i
= 1 + ζ3 − iζ3.

For every z ∈ Z[ζ12] coprime to 3 there exists a unit μ such that μz ≡ 1 (3) (cf. [10,
Exercise 7.4]). Thenext lemmashows that the subgroupof primaryunits is {±(iε60 )

k : k ∈ Z}.
Lemma 7 We have −iε60 ≡ 1 (3). Furthermore, k = 6 is the smallest positive exponent such
that εk0 ≡ ζ 


12 (3) for some integer 
, so that as a set

(Z[ζ12]/3Z[ζ12])× = {ζ 

12ε

k
0 , k ∈ {0, 1, . . . , 5}}.

Also, we have

[ ± iε60 ] = 1.

Proof By direct computation we see that

iε60 = 26 + i(15 + 30ζ3) ≡ 2 (3),

and that for 1 ≤ k ≤ 5 and for all 
we have εk0ζ


12 �≡ ±1 (3) (see Table 3). Note that to check

this it suffices to verify that for all 1 ≤ k ≤ 5 and 0 ≤ 
 ≤ 2 we have εk0ζ


12 �≡ ±1,±i (3).

Since every number coprime to 3 is congruent to some unit modulo 3, this implies the
claimed structure for (Z[ζ12]/3Z[ζ12])×. By the definition of [z] we get

[iε60 ] =
[
15 + 30ζ3

26

]
=

[
15

26

][
1 + 2ζ3

26

]
=

[
ζ3

26

][
1 − ζ3

26

]
= ζ

(1+26)/3
3 ζ

(−1−26)/3
3 = 1

by the supplementary laws in Lemma 4, and since [m/n] = 1 for all m, n ∈ Z with n �= 0. ��
As a corollary we see that [z] does not depend on which primary associate we choose.

Lemma 8 If z and z′ are primary associates, then [z] = [z′].
Proof There is some unit μ such that z = μz′. Since z and z′ are primary, also μ must be
primary. By Lemma 7 we see that μ = ±(iε60)

k for some k ∈ Z. Hence, by Lemma 5

[z] = [μz′] = [μ][z′]
(
z′

μ

)
.
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2820 J. Merikoski

By definition (
z′

μ

)
=

[
r ′ + ωs′

N12/3(μ)

]
= 1

since N12/3(μ) is a unit in Z[ζ3], and similarly we see that

[μ] = [±(iε60)
k] = [iε60 ]k = 1

by using the last part of Lemma 7. ��
Since Z[ζ12] is a principal ideal domain, by the above lemma the following definition is

appropriate.

Definition 1 For any ideal a of Z[ζ12], we define

[a] := [z] =
[
s

r

]

if a is generated by z = r + is and z is primary.

Remark 7 We also define [z] for non-primary z = r + is by [z] := [s/r ]. Then we have
[z] = ν(z)[(z)] where ν(z) depends only on the residue class z (3). We will not need it in the
following but it might be interesting to give a simple closed formula for ν(z).

Remark 8 It is natural that we need the reciprocity laws to prove that the spin is well-defined
on ideals. After all, the cubic reciprocity can be restated as a transformation rule for [z] under
multiplication of z by a root of unity. This is because for z = r + is

[i z] = [−s + ir ] =
[
r

s

]
= ε(r , s)[z], and [ζ3z] =

[
ζ3s

ζ3r

]
=

[
ζ3

r

][
s

r

]
= ε(ζ3, r)[z],

which by considering z1 = r + i(1 − ζ3) and z2 = r + i3 covers also the supplementary
laws.

4 Sieve argument

In this section we prove Theorem 1. We apply a sieve argument in Z[ζ12] to decompose our
sum into Type I and Type II sums. The argument is essentially same as in Harman’s sieve
method [5]. We could use [4, Proposition 5.2] directly but we give our on proof based on
Buchstab’s identity since it does not take much effort to inclue it here.

For two functions f and g with g ≥ 0, it is convenient for us to denote f (N ) ≺≺ g(N )

if f (N ) �ε N εg(N ). A typical bound we use is τk(n) ≺≺ 1, where τk is the k-fold divisor
function. For multivariable functions such as sums over two variables we write∑

m∼M
n∼N

f (m, n) ≺≺
∑
m∼M
n∼N

g(m, n)

to mean ∑
m∼M
n∼N

f (m, n) �ε (M + N )ε
∑
m∼M
n∼N

g(m, n).

We say that an arithmetic function f is divisor bounded if | f (n)| � τk(n) for some k.
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For the sieve we require the following arithmetic information, which is proved in Sects. 7
and 8.

Proposition 9 (Type I sums) Let αd be divisor bounded. Then∑
N12(d)≤D

αd

∑
N12(n)∼x/N12(d)

[dn] ≺≺ x11/12D13/12

Proposition 10 (Type II sums) Let αm and βn be divisor bounded coefficients. Then∑
N12(m)∼M

∑
N12(n)∼N

αmβn[mn] ≺≺ MN 9/10 + M9/10N .

Remark 9 Note that [a] = 0 if a is not primitive. Thus, we may assume that the coefficients
α and β in the above are supported on primitive ideals.

Remark 10 Our Type I information is very weak but this is compensated by the fact that the
Type II bound is non-trivial as soon as M � xη or N � xη.

Define

P12(Y ) :=
∏

N12(p)<Y

p.

Note that the norm map induces a partial ordering on the set of ideals, and that for every
prime ideal there are at most four prime ideals of the same norm. For any ideal d ⊆ Z[ζ12]
we set

S(Ad, Y ) :=
∑
n

N12(dn)∼x

1(n,P12(Y ))=1[dn].

Proof of Theorem 1 Let Z = xγ for some γ ∈ (0, 1/2) which we will optimize later on. By
Buchstab’s identity

S(A, 2
√
x)= S(A, Z) −

∑
Z≤N12(p)<2

√
x

S(Ap, N12(p)) + O(E)=: S1(A) − S2(A) + O(E),

where the error term E consists of that part in S2(A)where the implicit variable n is divisible
by another prime ideal of same norm N12(p) (we could also handle this part by fixing a
complete ordering for prime ideals p but then wewould later have to remove cross-conditions
coming from this). We have trivially

E ≤
∑

Z≤N12(p)<2
√
x

∑
n

N12(n)∼x

1N12(p)2|N12(n) ≺≺
∑

Z≤k<2
√
x

∑
n∼x

1k2|n � x Z−1.

For the second sum we have (writing n = p1 · · · pk)
S2(A) =

∑
Z≤N12(p)<2

√
x

∑
n

N12(pn)∼x

1(n,P12(N12(p)))=1[pn]

=
∑
k�1

∑
Z≤N12(p)<2

√
x

∑
N12(p)<N12(p1)<···<N12(pk )

N12(pp1···pk )∼x

[pp1 · · · pk] + O(Ẽ)

≺≺ x Z−1/10 + x Z−1 (4.1)
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byProposition10oncewe remove the cross-conditions N12(p) < N12(p1) and N12(pp1 · · · pk)
∼ x by Perron’s formula (cf. for instance [5, Chapter 3.2], this works essentially the same in
our situation since we apply it to the real quantities N12(p j )). Here the error term Ẽ consists
of the part where pp1 · · · pk is divisible by a square, so that we have Ẽ � x Z−1by a similar
argument as with E above.

For the first sum S1(A)we use theMöbius function to expand the condition (n, P12(Z)) =
1 to get

S1(A) =
∑

d|P12(Z)

μ(d)
∑
n

N12(dn)∼x

[dn]

=
∑

d|P12(Z)
N12(d)<Z

μ(d)
∑
n

N12(dn)∼x

[dn] +
∑

d|P12(Z)
N12(d)≥Z

μ(d)
∑
n

N12(dn)∼x

[dn] =: S11(A) + S12(A)

For the first sum we apply Proposition 9 to get

S11 =
∑

d|P12(Z)
N12(d)<Z

μ(d)
∑
n

N12(dn)∼x

[dn] ≺≺ x11/12Z13/12. (4.2)

For the second sum we write d = p1 · · · pk for N12(p1) ≤ · · · ≤ N12(pk) < Z . Since there
are at most four prime ideals of the same norm and d is square free, by the greedy algorithm
there is a unique 
 ≤ k such that d = d1d2 with

d1 = p1 · · · p
, d2 = p
+1 · · · pk,
N12(d1) ∈ [Z , Z5], N12(d

′
1) < Z , N12(p
) < N12(p
+1),

where d′
1 := p1 · · · p
− j if j is the largest number such that N12(p
− j+1) = N12(p
) (that

is, we apply the greedy algorithm for groups of at most four prime ideals of the same norm).
Hence, the second sum S12(A) can be partitioned as

∑
k�log x

(−1)k
∑

≤k

∑
N12(d1)∈[Z ,Z5]

N12(d
′
1)<Z

d1=p1···p
 square free
N12(p1)≤···≤N12(p
)<Z

∑
d2=p
+1···pk square free

N12(p
)<N12(p
+1)≤···≤N12(pk )<Z

∑
n

N12(d1)N12(d2n)∼x

[d1d2n].

The cross-conditions N12(p
) < N12(p
+1) and N12(d1)N12(d2n) ∼ x can now be removed
by Perron’s formula, so that by Proposition 10 we get

∑
d|P(Z)

N12(d)≥Z

μ(d)
∑
n

N12(dn)∼x

[dn] ≺≺ x

Z
Z9/10 + Z5

(
x

Z5

)9/10

. (4.3)

Combining the bounds (4.1), (4.2), and (4.3), and choosing Z := x5/71 (note that then
Z5 < x1/2) to optimize we get

S(A, 2
√
x) ≺≺ x Z−1/10 + x11/12Z13/12 �ε x1−1/142+ε � x1−1/143.

��
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5 Fixing primary generators

For the proofs of our arithmetic information (Propositions 9 and 10 ) we need to fix primary
generators of ideals of Z[ζ12] in a consistent manner, and in such a way that the resulting
conditions do not cause problems later on. Luckily fixing an embedding of Z[ζ12] in C

along with Lemma 7 allows us to do just this. We choose the embedding which maps ζ12 to
e2π i/12 ∈ C. For any z = r + is ∈ Z[ζ12], r , s ∈ Z[ζ3] we let |z| := |r + is| denote the
norm of the complex number r + is ∈ C. Note that then

|ε0| =
∣∣∣∣1 + √

3

1 − i

∣∣∣∣ = (1 + √
3)/

√
2 > 1.

Lemma 11 For every ideal a coprime to 3 there exists a unique generator z = r+is ∈ Z[ζ12]
of a such that z ≡ 1 (3) and

N12(z)
1/4 ≤ |z| < N12(z)

1/4|ε0|6. (5.1)

Furthermore, for such a z = r + is we have |r |, |s| � |z|.
Proof If z0 ≡ 1 (3) is a generator of a, then byLemma7 the associates of z0 which are≡ 1 (3)
are precisely (−iε60)

k z0 with k ∈ Z. Clearly there is a unique k such that z = (−iε60)
k z0

satisfies (5.1). From (5.1) it follows that

|r2 + s2|1/2 � |r + is|,
so that |r − is| � |r + is| which implies |r |, |s| � |z|. ��
In the summations we will denote this condition by

∑∧
, so that we may write, for example,

∑∧

N12(z)∼N

[z] =
∑

N12(z)∼N
z≡1 (3)

N12(z)1/4≤|z|<N12(z)1/4|ε0|6

[z] =
∑

N12(n)∼N

[n]. (5.2)

6 Truncated Poisson summation formula on Z[�3]
In the proofs of Propositions 9 and 10 we will need a version of the Poisson summation
formula on Z[ζ3]. For the lemma we fix an embedding identifying ζ3 with e2π i/3 ∈ C, so
that any element of Z[ζ3] is viewed as a complex number. For z ∈ C denote

z = z(1) + ζ3z
(2)

with z(1), z(2) ∈ R. For q ∈ Z[ζ3] \ {0}, β ∈ C, and h1, h2 ∈ Z we define (denoting
eq(x) := e2π i x/q )

ψ(h1,h2)
q (β) := eN3(q)(h1(βq̄)(1) + h2(βq̄)(2)),

so that ψ(h1,h2)
q is an additive character of Z[ζ3]/qZ[ζ3] (here q̄ denotes the complex conju-

gate).

Lemma 12 (Truncated Poisson summation formula on Z[ζ3]). Fix β, q ∈ Z[ζ3] and x0, y0 ∈
R. For K > 1 let

GK (x, y) := G

(
x − x0
K

,
y − y0
K

)
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for some fixed compactly supported C∞-smooth function G : R
2 → C. We define GK : C →

C by setting GK (α) := GK (α(1), α(2)). Then for any C, ε > 0 with H := K ε/2N3(q)1/2/K
we have

∑
α∈Z[ζ3]
α≡β (q)

GK (α) = 1

N3(q)

∑
α∈Z[ζ3]

GK (α) + K ε

H2

∑
|h1|,|h2|≤H

(h1,h2) �=(0,0)

ch1,h2ψ
(h1,h2)
q (−β) + OG,C,ε(K

−C )

for some bounded coefficients ch1,h2 = ch1,h2,G,K ,q satisfying |ch1,h2 | �G 1.

Proof Recall that for α, q ∈ Z[ζ3] we have
αq = α(1)q(1) − α(2)q(2) + ζ3(α

(2)q(1) + α(1)q(2) − α(2)q(2)).

Substituting α 	→ αq + β, we get by two applications of the usual Poisson summation
formula (denoting x := x1 + ζ3x2 ∈ C)∑

α∈Z[ζ3]
α≡β (q)

GK (α) =
∑

α∈Z[ζ3]
GK (αq + β) =

∑
α∈Z[ζ3]

GK ((αq)(1) + β(1), (αq)(2) + β(2))

=
∑

α(1),α(2)∈Z

GK (α(1)q(1) − α(2)q(2) + β(1), α(2)q(1) + α(1)q(2) − α(2)q(2) + β(2))

=
∑
h1,h2

∫∫
GK (x1q

(1) − x2q
(2) + β(1), x2q

(1)

+ x1q
(2) − x2q

(2) + β(2))e(h1x1 + h2x2)dx1dx2

=
∑
h1,h2

∫∫
GK ((xq)(1) + β(1), (xq)(2) + β(2))e(h1x1 + h2x2)dx1dx2

=
∑
h1,h2

∫∫
GK (xq + β)e(h1x1 + h2x2)dx1dx2,

where xq is computed as a multiplication of two complex numbers, so that

xq = (xq)(1) + ζ3(xq)(2).

We make the change of variables

x j 	→ x j K/N3(q)1/2 − (βq̄)( j)/N3(q) for j ∈ {1, 2}
so that xq + β is mapped to(

x1K/N3(q)1/2 + ζ3x2K/N3(q)1/2 − βq̄/N3(q)

)
· q + β = K

N3(q)1/2
xq.

We get

∑
α∈Z[ζ3]
α≡β (q)

GK (α) = K 2

N3(q)

∑
h1,h2

ch1,h2ψ
(h1,h2)
q (−β),

where

ch1,h2 :=
∫∫

GK

(
K

N3(q)1/2
xq

)
e

(
K (h1x1 + h2x2)

N3(q)1/2

)
dx1dx2
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=
∫∫

G

(
(xq)(1)

N3(q)1/2
− x0

K
,

(xq)(2)

N3(q)1/2
− y0

K

)
e

(
K (h1x1 + h2x2)

N3(q)1/2

)
dx1dx2

= ψ(h1,h2)
q (x0 + ζ3y0)

∫∫
G

(
(xq)(1)

N3(q)1/2
,

(xq)(2)

N3(q)1/2

)
e

(
K (h1x1 + h2x2)

N3(q)1/2

)
dx1dx2

by making the translation (denoting z0 := (x0 + ζ3y0))

x 	→ x + 1

K N3(q)1/2
z0q̄,

that is,

x j 	→ x j + 1

K N3(q)1/2
(z0q̄)( j).

For all h1, h2 we have the trivial estimate |ch1,h2 | ≤ c0,0 �G 1 (note that x 	→
xq/N 1/2

3 (q) is a rotation in C so that c0,0 is independent of q). As usual, h1 = h2 = 0
gives us the main term, since by another double application of Poisson summation

K 2

N3(q)
c0,0 = K 2

N3(q)

∫∫
G

(
(xq)(1)

N3(q)1/2
,

(xq)(2)

N3(q)1/2

)
dx1dx2 = K 2

N3(q)

∫∫
G(x1, x2)dx1dx2

= 1

N3(q)

∫∫
GK (x1, x2)dx1dx2 = 1

N3(q)

∑
α∈Z[ζ3]

GK (α) + OC (K−C ).

For |h1| > H or |h2| > H we can iterate integration by parts to show that the contribution
from this part is �C,ε K−C . ��

7 Type I sums

Using the notation of Sect. 5, for any primary w ∈ Z[ζ12] define
Kw(N ) :=

∑∧

N12(z)∼N

[wz]

In this section we show (analogously to [1, Proposition 22.1]) the following proposition,
which implies Proposition 9.

Proposition 13 We have

Kw(N ) ≺≺ N 11/12N12(w)1/6

For the proofweneed a generalization of thePólya-Vinogradov estimate for short character
sums. Unfortunately on Z[ζ3] we do not quite have the usual square-root bound since the
estimate relies on the error term in counting lattice points; on a number field of degree d and
a primitive non-principal character χ modulo q Landau’s generalization gives∑

N (a)≤x

χ(a) � (Nq)1/(d+1)(log N (q))d x (d−1)/(d+1).

However, for a smoothed version we have the Pólya–Vinogradov estimate in the usual form.
Also, since we require the bound not only for short sums near 0 but in more general small
sets, the smoothed version is more convenient for us. Unfortunately in our application we
need to transition from a smoothed version to a sharp cut-off, which causes us to lose a power
of x compared to the results in [1].
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Lemma 14 Fix β, q ∈ Z[ζ3] and x0, y0 ∈ R. For K � 1 let

GK (x, y) := G

(
x − x0
K

,
y − y0
K

)

for some fixed compactly supported C∞-smooth function G. For α ∈ Z[ζ3], let GK (α) :=
GK (α(1), α(2)). If q ∈ Z[ζ3] is primary primitive and not a perfect cube, then

∑
s≡t (3)

GK (s)

[
s

q

]
≺≺ √

N3(q).

Proof By Lemma 12 we have

∑
s≡t (3)

GK (s)

[
s

q

]
= 1

9

∑
ψ∈ ̂Z[ζ3]/3Z[ζ3]

ψ(−t)
∑

β (3q)

ψ(β)

[
β

q

] ∑
s≡β (3q)

GK (s)

≺≺ max
ψ,h1,h2

∑
β (3q)

[
β

q

]
ψ

(h1,h2)
3q (−β)ψ(β) ≺≺ √

N3(q)

by the standard bound for Gauss sums on Z[ζ3]/3qZ[ζ3] (proved by exactly the same argu-
ment as in the classical case on Z). Note that the main term (corresponding to (h1, h2) =
(0, 0)) is 0 by orthogonality of multiplicative characters. ��
Proof of Proposition 13 By Lemma 5, if q := N12/3(w), then for some ω2 + 1 ≡ 0 (q)

denoting z = r + is, r , s ∈ Z[ζ3]

Kw(N ) �
∑∧

N12(z)∼N

[
s

r

][
r + ωs

q

]
.

Shifting s by ωr to get [(r + ω(s + rω))/q] = [ω/q][s/q], we see by Lemma 11 that

Kw(N ) �
∑

N3(r)� 2
√
N

∣∣∣∣
∑
s∈I (r)
s≡ωr (3)

[
s

rq

]∣∣∣∣,

where I (r) is the domain in C defined by the conditions

|r + i(s − ωr)||r − i(s − ωr)| ∼ N 1/2 and

|r − i(s − ωr)| ≤ |r + i(s − ωr)| < |r − i(s − ωr)||ε0|12

(so that I (r) is contained in the annulus |s−r(i−ω)| � N 1/4). If rq is a perfect cube we use
the trivial bound. In the remaining part we use a smooth finer-than-dyadic decomposition.
Let K > 1 be a parameter to be optimized later. There exists a smooth partition of unity∑

n∈Z

F(x − n) = 1 for all x ∈ R

for a certain fixed compactly supported C∞-smooth function F . By scaling and squaring we
get a smooth partition

∑
(n1,n2)∈Z2

F

(
x − n1K

K

)
F

(
y − n2K

K

)
= 1 for all (x, y) ∈ R

2.

.
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Using this we can to partition I (r) into smoothed boxes of side-length � K , obtaining
� N 1/2/K 2 such boxes weighted with functions GK as in Lemma 14. On the boundary of
I (r) we use the trivial bound K 2 and the fact that there are � N 1/4/K boxes that intersect
with the boundary, so that

Kw(N ) �
∑

N3(r)≤2
√
N

rq=t3

√
N +

∑
N3(r)≤2

√
N

N 1/4K +
∑

N3(r)≤2
√
N

rq �=t3

N 1/2

K 2 max
GK

∣∣∣∣
∑

s≡ωr (3)

GK (s)

[
s

rq

]∣∣∣∣

for any K � N 1/4. By Lemma 14 we have

∑
s≡ωr (3)

GK (s)

[
s

rq

]
≺≺ √

N3(rq)

assuming that rq is not a perfect cube. Hence,

Kw(N ) ≺≺
∑

N3(r)≤2
√
N

rq=t3

√
N +

∑
N3(r)≤2

√
N

N 1/4K +
∑

N3(r)≤2
√
N

N 1/2

K 2

√
N3(rq)

≺≺
∑

n≤2
√
N

nm=t3

√
N + N 3/4K + N 5/4N3(rq)1/2

K 2 ≺≺ N 2/3 + N 3/4K + N 5/4N3(q)1/2

K 2 .

Choosing K = N 1/6N3(q)1/6 � N 1/4 to optimize the bound we get

Kw(N ) ≺≺ N 11/12N3(q)1/6.

Note that if K = N 1/6N3(q)1/6 � N 1/4 then this bound is trivial. ��

8 Type II sums

The goal of this section is to prove Proposition 10. It turns out that the arguments in [1,
Sect. 21] generalize to our case essentially verbatim. Our slightly better exponent is thanks
to a small technical refinement (using a smooth weight) which is actually necessary in our
situation.

By using Lemma 5 and the notation of Sect. 5, the claim is reduced to bounding (absorbing
[z] and [w] into the coefficients)

Q(M, N ) :=
∑∧

N12(w)∼M

∑∧

N12(z)∼N

αwβz

(
z

w

)
,

where αw and βz are supported on primitive numbers. First we require the following prelim-
inary bound for Q(M, N ) (compare to [1, Lemma 21.2]).

Lemma 15 We have

Q(M, N ) ≺≺ M5 + M1/2N .

Proof We may assume that N > M4+η for some small η > 0, since otherwise by a trivial
bound

Q(M, N ) ≺≺ MN ≤ M5+η.
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By Cauchy-Schwarz and by Lemma 11 we have

Q(M, N ) ≺≺ N 1/2
( ∑∧

N12(z)∼N

∣∣∣∣
∑∧

N12(w)∼M

αw

(
z

w

)∣∣∣∣
2)1/2

≤ N 1/2
( ∑∧

w1,w2

αw1αw2

∑
z=r+is

r≡1 (3), 3|s

F√
N (r)F√

N (s)

(
z

w1

)(
z

w2

)2)1/2

where F√
N (r) = F(N3(r)/

√
N ) for a fixed compactly supported C∞-smooth function F

so that F√
N (r)F√

N (s) is a smooth majorant for the original summation range. Let q :=
N12/3(w1w2) = u2 + v2 with (u, v) = 1. Note that (3, q) = 1 since −1 is not a square
in Z[ζ3]/(1 − ζ3)Z[ζ3]. Splitting the sum over z into residue classes modulo 3q we get for
some constant c0

∑
z=r+is

r≡1 (3), 3|s

F√
N (r)F√

N (s)

(
z

w1

)(
z

w2

)2

=
∑

ζ=r0+is0∈Z[ζ12]/3qZ[ζ12]
r0≡1 (3), 3|s0

(
ζ

w1

)(
ζ

w2

)2 ∑
r ,s∈Z[ζ3]

(r ,s)≡(r0,s0) (3q)

F√
N (r)F√

N (s)

=
(

c20N

N3(3q)2
+ OC

(
X−C

)) ∑
ζ=r0+is0∈Z[ζ12]/3qZ[ζ12]

r0≡1 (3), 3|s0

(
ζ

w1

)(
ζ

w2

)2

by Lemma 12 since N3(q) � M2 < X−η
√
N . Recall the notation of Lemma 6, that is,

q j = N12/3(w j ), e := (w1, σ (w2
2)), and d := N12/3(e),

where σ is the conjugation σ(a+ ib) = a− ib. By Lemma 6 we have (writing x := r0−ωs0,
y := r0 + ωs0)

∑
ζ=r0+is0∈Z[ζ12]/3qZ[ζ12]

r0≡1 (3), 3|s0

(
ζ

w1

)(
ζ

w2

)2

=
∑

r0,s0∈Z[ζ3]/3qZ[ζ3]
r0≡1 (3), 3|s0

[
r0 − ωs0

d

][
r0 + ωs0
q1q22/d

]

=
∑

x∈Z[ζ3]/3qZ[ζ3]
x≡1 (3)

[
x

d

] ∑
y∈Z[ζ3]/3qZ[ζ3]

y≡1 (3)

[
y

q1q22/d

]

= N3(q)
∑

x∈Z[ζ3]/3dZ[ζ3]
x≡1 (3)

[
x

d

] ∑
y∈Z[ζ3]/(3q/d)Z[ζ3]

y≡1 (3)

[
y

q1q22/d

]
= 0

unless both of d and q1q22/d are perfect cubes in which case we get

N3(q)ϕ(N3(d))ϕ(N3(q/d)) ≤ N3(q)2.
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To see this, recall that (3, q) = 1 and note that [y/(q1q22/d)] is a cubic character modulo
q/d . Hence, we get

Q(M, N )2 ≺≺ N 2
∑

q1,q2∈Z[ζ3]
q1q22=t3

N3(q1),N3(q2)≤2M

1.

We have ∑
q1,q2∈Z[ζ3]
q1q22=t3

N3(q1),N3(q2)≤2M

1 ≺≺
∑

m1,m2≤2M
m1m2

2=c3

1 =
∑
d≤2M

∑
m1,m2≤2M/d
(m1,m2)=1

m1=c31,m2=c32

1 � M2/3
∑
d≤2M

d−2/3 � M,

so that for N > XηM4

Q(M, N ) ≺≺ M1/2N .

��
Remark 11 Note that the modulus q1q22 being a cube is morally the same as q1q2 being a
square which explains why we get the same term M1/2N as in [1, Lemma 21.2].

Lemma 15 is non-trivial as soon as N � M4 � 1. Similarly as in [1], we now use Hölder’s
inequality to extend this range so that we can handle the range M � N . We get

Qk(M, N ) ≺≺ Mk−1
∑∧

w

∣∣∣∣
∑∧

z

βz

(
z

w

)∣∣∣∣
k

= Mk−1 Q̃(M, Nk),

where Q̃ is of similar form as Q except that αw is replaced by some coefficients α̃w with
|α̃w| ≤ 1 and βz is replaced by the divisor bounded coefficient

β̃z =
∑∧

z1···zk=z

βz1 · · · βzk

where now each z1 satisfies the conditions of Lemma 11 separately. Applying Lemma 15 to
Q̃(M, Nk) we get

Q(M, N ) ≺≺ M1+4/k + M1−1/2k N .

Similarly as in [1], we will use reciprocity below to get a symmetric bound. Hence, the most
difficult range will be M = N . To optimize the bound we choose k = 5 to get

Q(M, N ) ≺≺ M9/5 + M9/10N ≺≺ M9/10N

if M ≤ N . Since by Lemma 5 (z/w) = (w/z) for primitive primary z and w, the form
Q(M, N ) is symmetric and we get

Q(M, N ) ≺≺ MN 9/10 + M9/10N .

��
Remark 12 The reason our bound is superior to that in [1, Proposition 21.3] is that we used the
smooth function F√

N (r) instead of a sharp cut-off N3(r) ≤ √
N in the proof of Lemma 15.

This allows us to improve the term M2N 3/4 appearing in Lemma [1, Lemma 21.2] to M5.
Obviously the same refinement can be implemented to improve their bound to the same form.
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9 Connection to primes of the form ˛2 + ˇ6 on Z[�3]
It is tempting to ask if the method of Friedlander and Iwaniec can be extended to produce
primes of the form a2 + b6 on Z (cf. [12, Remarque 4.20]). Unfortunately there seems to be
two large obstacles to this. Firstly, the sequence is too sparse for replicating the steps in [1,
Sects. 5–9]. The second problem is structural—the proofs in [1] rely on the law of quadratic
reciprocity in multiple places, while for cubic residues we do not have a suitable reciprocity
law on Z. To mend this we need to transfer the whole set-up to Z[ζ3]. Unfortunately the first
problem persist (cf. the paragraph around (9.4) below).

In this section we explain how the sum in Theorem 1 arises if we consider primes of the
form α2 + β6 on Z[ζ3], which was the original motivation for this manuscript. All of the
discussion presented here is non-rigorous and for the sake of illustration we omit all of the
technical issues that arise in [1]. The argument follows exactly the same lines as in [1].

Note that if z ∈ Z[ζ3] is the sumof two squares, it has infinitelymany such representations.
To make the analogy with the Friedlander-Iwaniec Theorem precise we consider primary
primes π = β3 + iα on Z[ζ12] with the restriction

N12(β
3 + iα)1/4 ≤ |β3 + iα| < N12(β

3 + iα)1/4|ε0|6 (9.1)

as in Sect. 5. Note that this implies that |α| � x1/4 and |β| � x1/12 if N12(π) � x .
The number of ideals a with N12a ≤ x that have such a generator β3 + iα is

∑
N12a≤x

∑∧

y=β3+iα
(y)=a

1 � x2/3,

which is very sparse (the inability of the Friedlander-Iwaniecmethod to handle sets of density
< x−1/3 is also noted by Helfgott [9]). Due to this we are not able to handle the Type II
sums, as we shall see soon below (see (9.4)). However, it should be possible to obtain an
approximation to this problem by considering primes of the form α2 + λ2β6 where λ runs
over elements of small norm N3(λ) ≤ xδ , to show that for some fairly small δ > 0 we get
a lower bound of the correct order of magnitude for the number of such primes. For this
the sieve of Friedlander and Iwaniec needs to be replaced by Harman’s sieve (see [11] for a
version of this on Number fields).

Remark 13 Restricting to generators satisfying (9.1) does not decrease the density essentially.
Most of the integers β3 + iα ∈ Z[ζ12] with |α2 + β6|2 ≤ x come from the part |α| � x1/4

and |β| � x1/12. To see this note that we have |β3 + iα||β3 − iα| ≤ x1/2. Suppose that
|β3 + iα| and |β3 − iα| are not of similar size, say, |β3 − iα| � Y for some 1 � Y � x1/4.
For any given β there are roughly Y 2 choices of α that satisfy |β3 − iα| � Y . But then
|β3 + iα| � x1/2/Y is morally the same as |β| � x1/6/Y 1/3, so that there are roughly
x1/3/Y 2/3 choices for β and we get

|{α, β ∈ Z[ζ3] : |α2 + β6|2 ≤ x, |β3 − iα| � Y }| � Y 2 · x1/3/Y 2/3 = x1/3Y 4/3,

which is much less than x2/3 if Y is much smaller than x1/4. Heuristically the same holds
also for Y < 1, since the probability of finding a lattice point iα near β3 is proportional to the
area Y 2. Thus, we cannot increase the density by considering all generators β3 + iα instead
of just those satisfying (9.1).
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Using a sieve argument the main problem is to handle Type II sums of the form

S1 :=
∑

N12m∼M

αm

∑
N12n∼N

βn

∑∧

y=β3+iα
(y)=mn

1,

whereMN = x , andα andβ are bounded coefficientswithβ behaving like aMöbius function
in termsof aSiegel–Walfisz type condition. Thegoal then is to show that S1 �C x2/3 log−C x .

We now pick a primary generator z of n according to Sect. 5, and then pick a generator
σ(w) of m such that y = σ(w)z. The cross-condition

N12(w)1/4N12(z)
1/4 ≤ |z||w| < N12(w)1/4N12(z)

1/4|ε0|6 (9.2)

is easily removed by Perron’s formula, so that we are essentially left with

S2 :=
∑∧

N12(w)∼M

ασ(w)

∑∧

N12(z)∼N

βz

∑
σ(w)z=β3+iα

1

(note that (9.2) together with |z| � N12(z)1/4 implies |w| � N12(w)1/4 which is morally
same as the condition implied by the ∧ in the sum over w).

Applying the Cauchy–Schwarz inequality similarly as in [1] we get S2 � M1/2S1/23 for

S3 :=
∑∧

z1,z2

βz1βz2

∑
w

∑
σ(w)z1=β3

1+iα1
σ(w)z2=β3

2+iα2

FM (w)

for some suitable smooth function FM supported on N12(w) � M and |w| � M1/4.
From the diagonal part z1 = z2 we get a contribution (MN )2/3, which is sufficient for

S1 � x2/3 log−C x as long as

N � x1/3 logC x . (9.3)

In the off-diagonal the generic case is (z1, z2) = 1, and by the same argument as in [1,
Sect. 6] we have

i�w = β3
1 z2 − β3

2 z1,

where z j = r j + is j and � := r1s2 − r2s1. Thus, the off-diagonal part is

S4 :=
∑∧

(z1,z2)=1

βz1βz2

∑
β3
1 z2≡β3

2 z1 (�)

FM ((β3
1 z2 − β3

2 z1)/i�)

=
∑∧

(z1,z2)=1

βz1βz2

∑
γ1,γ2 (�)

γ 3
1 z2≡γ 3

2 z1 (�)

∑
(β1,β2)≡(γ1,γ2) (�)

FM ((β3
1 z2 − β3

2 z1)/i�).

Similarly to [1] we note that the congruence β3
1 z2 ≡ β3

2 z1 (�) is in fact a Z[ζ3]-rational
congruence, since

z2z
−1
1 ≡ r1r2 + s1s2

r21 + s21
(�).

Unfortunately here we run into a problem with the sparseness of our sequence (note that
also in [1] for the Type II sums this is the only part of the argument affected by the sparsity).
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We would like to apply Poisson summation (Lemma 12) to evaluate the smoothed sum over
β1, β2. However, due to the diagonal contribution (9.3) we have essentially

N3(�) ≈ N � x1/3 logC x

while the length of the sum is

N3(β j ) � x1/6 (9.4)

which is just narrowly too short (Poisson summation becomes ineffective if the length of
the sum is less than square root of the size of the modulus). Due to this we are not able to
evaluate the sum in any range of N . If we consider the aforementioned approximation version
of the problem with α2 + λ2β6 for N3(λ) ≤ xδ , then the diagonal part gives a restriction
N � x1/3−2δ/3 logC x which gives some room to work with. We have been able to evaluate
the sum over β3

1λ1z2 ≡ β3
2λ2z1 (�) in some ranges using a large sieve argument similar to

that in Heath-Brown and Li [7] (although the argument required here is muchmore intricate).

Remark 14 Since the argument falls short barely, there is some hope that with a delicate
estimate we could handle Type II sums in some very narrow non-trivial range for N =
x1/3+o(1). This would suffice to break the parity barrier, that is, to show that there are infinitely
many of α2 + β6 are a product of exactly two primes (one of size M and the other of size
N ).

Assuming that the sum over β1, β2 could be computed, then the main term is essentially
(up to a multiplicative factor and a smooth coefficient, and ignoring the fact that γ j may have
common factors with �)

S5 :=
∑∧

(z1,z2)=1

βz1βz2

∑
(ω,�)=1

ω3≡z2z
−1
1 (�)

1

(for the approximate version of the problem the congruence is ω3 ≡ z2λ1z
−1
1 λ−1

2 (�), which
is morally the same). Here we need to show only a little bit of cancellation, that is, S5 �
N 2 log−C x . To evaluate the sum over cubic roots we make use of the Chinese Reminder
Theorem and the cubic residue character to get (assuming � is square-free, primitive, and
ignoring the fact that 3|�)

∑
(ω,�)=1

ω3≡z2z
−1
1 (�)

1 =
∏
π |�

(
1 +

[
z2z

−1
1

π

]
+

[
z2z

−1
1

π

]2)

=
∑

δ1δ2|�

[
z2z

−1
1

δ1

][
z2z

−1
1

δ2

]2
.

Thus, we essentially get (compare to T (β) in [1, Sect. 10])

S5 =
∑
δ1,δ2

∑∧

(z1,z2)=1
�≡0 (δ1δ2)

βz1βz2

[
z2z

−1
1

δ1

][
z2z

−1
1

δ2

]2
.

Similarly as in [1, Sect. 10], we now split the sum into three parts U + V + W according
to the size of δ1δ2, where in U we have N3(δ1δ2) � logC N , in W we have N3(δ1δ2) �
N3(�) log−C , and V is the remaining middle part.
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For U we get the required cancellation from the βz , which look like a Möbius function,
by using a suitable Siegel–Walfisz type bound.

For V we have not checked in detail but we expect that the large sieve -type arguments in
[1, Sects. 11–15] generalize to our case.

ForW the generic case is δ1δ2 = �. To handle this we need the following analogue of [1,
Lemma 17.1], which we will prove at the end of this section.

Lemma 16 For z1, z2,� = r1s2 − r2s1 with z1, z2 primary and z1 ≡ z2 (9) we have
[
z2z

−1
1

�

]
=

[
s1
r1

]2[ s2
r2

]
.

To guarantee that z1 ≡ z2 (9) we have to split z into residue classes modulo 9 before the
application of Cauchy–Schwarz.

Using this lemma the sum W is essentially reduced to

S6 :=
∑∧

(z1,z2)=1

βz1βz2

∑
�=δ1δ2

[
z2z

−1
1

δ1

][
z2z

−1
1

δ2

]2

=
∑∧

(z1,z2)=1

βz1βz2

[
z2z

−1
1

�

] ∑
δ2|�

[
z2z

−1
1

δ2

]

=
∑∧

(z1,z2)=1

βz1

[
s1
r1

]2
βz2

[
s2
r2

] ∑
δ2|�

[
z2z

−1
1

δ2

]
.

We now again partition the sum into three parts W1 + W2 + W3 according to the size of
δ2.

In W1 the generic case is δ2 = 1 and we get a sum

∑∧

(z1,z2)=1

βz1

[
s1
r1

]2
βz2

[
s2
r2

]
,

which can be bounded using similar arguments as in the proof of Theorem 1 (once we
remove the condition (z1, z2) = 1 either by Möbius function or by the device in [1]), since
the coefficients βz have a Type I/Type II decomposition.

Similarly for W3 the generic case is δ2 = � and we get by a second application of
Lemma 16 a sum

∑∧

(z1,z2)=1

βz1

[
s1
r1

]
βz2

[
s2
r2

]2

which is of the same form as with W1.
Finally forW2 we note that this sum is essentially contained in the earlier sum V but with

the coefficients βz twisted by [z] or [z]2, so that the same argument as with V should take
care of this part.

Proof of Lemma 16 The argument is essentially the same as the proof of [1, Lemma 17.1].
For simplicity we give the proof only in the case (r1, r2) = 1 (in the general case we have to
juggle back and forth with the factor (r1, r2)). Since [r31/�] = 1, we have

[
z2z

−1
1

�

]
=

[
(r21 + s21 )

−1(r1r2 + s1s2)

�

]
=

[
(r21 + s21 )

−1(r1r2 + s1s2)r31
�

]
.
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We have

(r1r2 + s1s2)r
3
1 − (r21 + s22 )r

2
1r2 = r21 s1(r1s2 − r2s1) ≡ 0 (�),

so that

(r21 + s21 )
−1(r1r2 + s1s2)r

3
1 ≡ r21r2 (�).

Hence, [
z2z

−1
1

�

]
=

[
r21r2
�

]
=

[
r1
�

]2[r2
�

]
=

[
�

r1

]2[
�

r2

]

by the supplementary laws in Lemma 4, since z1 ≡ z2 (9). Therefore,
[
z2z

−1
1

�

]
=

[
r1s2 − r2s1

r1

]2[r1s2 − r2s1
r2

]
=

[−r2s1
r1

]2[r1s2
r2

]
=

[
s1
r1

]2[ s2
r2

]
,

since by Lemma 4 for r1 and r2 primary
[−r2

r1

]2[r1
r2

]
=

[
r2
r1

]2[r1
r2

]
=

[
r1
r2

]3
= 1.
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